1 // SPDX-License-Identifier: GPL-2.0+
2 /* Faraday FOTG210 EHCI-like driver
4 * Copyright (c) 2013 Faraday Technology Corporation
6 * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
7 * Feng-Hsin Chiang <john453@faraday-tech.com>
8 * Po-Yu Chuang <ratbert.chuang@gmail.com>
10 * Most of code borrowed from the Linux-3.7 EHCI driver
12 #include <linux/module.h>
14 #include <linux/device.h>
15 #include <linux/dmapool.h>
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <linux/ioport.h>
19 #include <linux/sched.h>
20 #include <linux/vmalloc.h>
21 #include <linux/errno.h>
22 #include <linux/init.h>
23 #include <linux/hrtimer.h>
24 #include <linux/list.h>
25 #include <linux/interrupt.h>
26 #include <linux/usb.h>
27 #include <linux/usb/hcd.h>
28 #include <linux/moduleparam.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/debugfs.h>
31 #include <linux/slab.h>
32 #include <linux/uaccess.h>
33 #include <linux/platform_device.h>
35 #include <linux/iopoll.h>
36 #include <linux/clk.h>
38 #include <asm/byteorder.h>
40 #include <asm/unaligned.h>
42 #define DRIVER_AUTHOR "Yuan-Hsin Chen"
43 #define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
44 static const char hcd_name[] = "fotg210_hcd";
46 #undef FOTG210_URB_TRACE
49 /* magic numbers that can affect system performance */
50 #define FOTG210_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */
51 #define FOTG210_TUNE_RL_HS 4 /* nak throttle; see 4.9 */
52 #define FOTG210_TUNE_RL_TT 0
53 #define FOTG210_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */
54 #define FOTG210_TUNE_MULT_TT 1
56 /* Some drivers think it's safe to schedule isochronous transfers more than 256
57 * ms into the future (partly as a result of an old bug in the scheduling
58 * code). In an attempt to avoid trouble, we will use a minimum scheduling
59 * length of 512 frames instead of 256.
61 #define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
63 /* Initial IRQ latency: faster than hw default */
64 static int log2_irq_thresh; /* 0 to 6 */
65 module_param(log2_irq_thresh, int, S_IRUGO);
66 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
68 /* initial park setting: slower than hw default */
70 module_param(park, uint, S_IRUGO);
71 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
73 /* for link power management(LPM) feature */
74 static unsigned int hird;
75 module_param(hird, int, S_IRUGO);
76 MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
78 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
82 #define fotg210_dbg(fotg210, fmt, args...) \
83 dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
84 #define fotg210_err(fotg210, fmt, args...) \
85 dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
86 #define fotg210_info(fotg210, fmt, args...) \
87 dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
88 #define fotg210_warn(fotg210, fmt, args...) \
89 dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
91 /* check the values in the HCSPARAMS register (host controller _Structural_
92 * parameters) see EHCI spec, Table 2-4 for each value
94 static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
96 u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
98 fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params,
102 /* check the values in the HCCPARAMS register (host controller _Capability_
103 * parameters) see EHCI Spec, Table 2-5 for each value
105 static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
107 u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
109 fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label,
111 HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
112 HCC_CANPARK(params) ? " park" : "");
115 static void __maybe_unused
116 dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
118 fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
119 hc32_to_cpup(fotg210, &qtd->hw_next),
120 hc32_to_cpup(fotg210, &qtd->hw_alt_next),
121 hc32_to_cpup(fotg210, &qtd->hw_token),
122 hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
124 fotg210_dbg(fotg210, " p1=%08x p2=%08x p3=%08x p4=%08x\n",
125 hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
126 hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
127 hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
128 hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
131 static void __maybe_unused
132 dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
134 struct fotg210_qh_hw *hw = qh->hw;
136 fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh,
137 hw->hw_next, hw->hw_info1, hw->hw_info2,
140 dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
143 static void __maybe_unused
144 dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
146 fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label,
147 itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
151 " trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
152 hc32_to_cpu(fotg210, itd->hw_transaction[0]),
153 hc32_to_cpu(fotg210, itd->hw_transaction[1]),
154 hc32_to_cpu(fotg210, itd->hw_transaction[2]),
155 hc32_to_cpu(fotg210, itd->hw_transaction[3]),
156 hc32_to_cpu(fotg210, itd->hw_transaction[4]),
157 hc32_to_cpu(fotg210, itd->hw_transaction[5]),
158 hc32_to_cpu(fotg210, itd->hw_transaction[6]),
159 hc32_to_cpu(fotg210, itd->hw_transaction[7]));
162 " buf: %08x %08x %08x %08x %08x %08x %08x\n",
163 hc32_to_cpu(fotg210, itd->hw_bufp[0]),
164 hc32_to_cpu(fotg210, itd->hw_bufp[1]),
165 hc32_to_cpu(fotg210, itd->hw_bufp[2]),
166 hc32_to_cpu(fotg210, itd->hw_bufp[3]),
167 hc32_to_cpu(fotg210, itd->hw_bufp[4]),
168 hc32_to_cpu(fotg210, itd->hw_bufp[5]),
169 hc32_to_cpu(fotg210, itd->hw_bufp[6]));
171 fotg210_dbg(fotg210, " index: %d %d %d %d %d %d %d %d\n",
172 itd->index[0], itd->index[1], itd->index[2],
173 itd->index[3], itd->index[4], itd->index[5],
174 itd->index[6], itd->index[7]);
177 static int __maybe_unused
178 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
180 return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
181 label, label[0] ? " " : "", status,
182 (status & STS_ASS) ? " Async" : "",
183 (status & STS_PSS) ? " Periodic" : "",
184 (status & STS_RECL) ? " Recl" : "",
185 (status & STS_HALT) ? " Halt" : "",
186 (status & STS_IAA) ? " IAA" : "",
187 (status & STS_FATAL) ? " FATAL" : "",
188 (status & STS_FLR) ? " FLR" : "",
189 (status & STS_PCD) ? " PCD" : "",
190 (status & STS_ERR) ? " ERR" : "",
191 (status & STS_INT) ? " INT" : "");
194 static int __maybe_unused
195 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
197 return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
198 label, label[0] ? " " : "", enable,
199 (enable & STS_IAA) ? " IAA" : "",
200 (enable & STS_FATAL) ? " FATAL" : "",
201 (enable & STS_FLR) ? " FLR" : "",
202 (enable & STS_PCD) ? " PCD" : "",
203 (enable & STS_ERR) ? " ERR" : "",
204 (enable & STS_INT) ? " INT" : "");
207 static const char *const fls_strings[] = { "1024", "512", "256", "??" };
209 static int dbg_command_buf(char *buf, unsigned len, const char *label,
212 return scnprintf(buf, len,
213 "%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
214 label, label[0] ? " " : "", command,
215 (command & CMD_PARK) ? " park" : "(park)",
216 CMD_PARK_CNT(command),
217 (command >> 16) & 0x3f,
218 (command & CMD_IAAD) ? " IAAD" : "",
219 (command & CMD_ASE) ? " Async" : "",
220 (command & CMD_PSE) ? " Periodic" : "",
221 fls_strings[(command >> 2) & 0x3],
222 (command & CMD_RESET) ? " Reset" : "",
223 (command & CMD_RUN) ? "RUN" : "HALT");
226 static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port,
231 /* signaling state */
232 switch (status & (3 << 10)) {
238 break; /* low speed */
247 scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
248 label, label[0] ? " " : "", port, status,
249 status >> 25, /*device address */
251 (status & PORT_RESET) ? " RESET" : "",
252 (status & PORT_SUSPEND) ? " SUSPEND" : "",
253 (status & PORT_RESUME) ? " RESUME" : "",
254 (status & PORT_PEC) ? " PEC" : "",
255 (status & PORT_PE) ? " PE" : "",
256 (status & PORT_CSC) ? " CSC" : "",
257 (status & PORT_CONNECT) ? " CONNECT" : "");
262 /* functions have the "wrong" filename when they're output... */
263 #define dbg_status(fotg210, label, status) { \
265 dbg_status_buf(_buf, sizeof(_buf), label, status); \
266 fotg210_dbg(fotg210, "%s\n", _buf); \
269 #define dbg_cmd(fotg210, label, command) { \
271 dbg_command_buf(_buf, sizeof(_buf), label, command); \
272 fotg210_dbg(fotg210, "%s\n", _buf); \
275 #define dbg_port(fotg210, label, port, status) { \
277 fotg210_dbg(fotg210, "%s\n", \
278 dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
281 /* troubleshooting help: expose state in debugfs */
282 static int debug_async_open(struct inode *, struct file *);
283 static int debug_periodic_open(struct inode *, struct file *);
284 static int debug_registers_open(struct inode *, struct file *);
285 static int debug_async_open(struct inode *, struct file *);
287 static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
288 static int debug_close(struct inode *, struct file *);
290 static const struct file_operations debug_async_fops = {
291 .owner = THIS_MODULE,
292 .open = debug_async_open,
293 .read = debug_output,
294 .release = debug_close,
295 .llseek = default_llseek,
297 static const struct file_operations debug_periodic_fops = {
298 .owner = THIS_MODULE,
299 .open = debug_periodic_open,
300 .read = debug_output,
301 .release = debug_close,
302 .llseek = default_llseek,
304 static const struct file_operations debug_registers_fops = {
305 .owner = THIS_MODULE,
306 .open = debug_registers_open,
307 .read = debug_output,
308 .release = debug_close,
309 .llseek = default_llseek,
312 static struct dentry *fotg210_debug_root;
314 struct debug_buffer {
315 ssize_t (*fill_func)(struct debug_buffer *); /* fill method */
317 struct mutex mutex; /* protect filling of buffer */
318 size_t count; /* number of characters filled into buffer */
323 static inline char speed_char(u32 scratch)
325 switch (scratch & (3 << 12)) {
340 static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
342 __u32 v = hc32_to_cpu(fotg210, token);
344 if (v & QTD_STS_ACTIVE)
346 if (v & QTD_STS_HALT)
348 if (!IS_SHORT_READ(v))
350 /* tries to advance through hw_alt_next */
354 static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
355 char **nextp, unsigned *sizep)
359 struct fotg210_qtd *td;
361 unsigned size = *sizep;
364 __le32 list_end = FOTG210_LIST_END(fotg210);
365 struct fotg210_qh_hw *hw = qh->hw;
367 if (hw->hw_qtd_next == list_end) /* NEC does this */
370 mark = token_mark(fotg210, hw->hw_token);
371 if (mark == '/') { /* qh_alt_next controls qh advance? */
372 if ((hw->hw_alt_next & QTD_MASK(fotg210)) ==
373 fotg210->async->hw->hw_alt_next)
374 mark = '#'; /* blocked */
375 else if (hw->hw_alt_next == list_end)
376 mark = '.'; /* use hw_qtd_next */
377 /* else alt_next points to some other qtd */
379 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
380 hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
381 temp = scnprintf(next, size,
382 "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
383 qh, scratch & 0x007f,
385 (scratch >> 8) & 0x000f,
386 scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
387 hc32_to_cpup(fotg210, &hw->hw_token), mark,
388 (cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
390 (hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
394 /* hc may be modifying the list as we read it ... */
395 list_for_each_entry(td, &qh->qtd_list, qtd_list) {
396 scratch = hc32_to_cpup(fotg210, &td->hw_token);
398 if (hw_curr == td->qtd_dma)
400 else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
402 else if (QTD_LENGTH(scratch)) {
403 if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
405 else if (td->hw_alt_next != list_end)
408 temp = snprintf(next, size,
409 "\n\t%p%c%s len=%d %08x urb %p",
410 td, mark, ({ char *tmp;
411 switch ((scratch>>8)&0x03) {
425 (scratch >> 16) & 0x7fff,
436 temp = snprintf(next, size, "\n");
448 static ssize_t fill_async_buffer(struct debug_buffer *buf)
451 struct fotg210_hcd *fotg210;
455 struct fotg210_qh *qh;
457 hcd = bus_to_hcd(buf->bus);
458 fotg210 = hcd_to_fotg210(hcd);
459 next = buf->output_buf;
460 size = buf->alloc_size;
464 /* dumps a snapshot of the async schedule.
465 * usually empty except for long-term bulk reads, or head.
466 * one QH per line, and TDs we know about
468 spin_lock_irqsave(&fotg210->lock, flags);
469 for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
471 qh_lines(fotg210, qh, &next, &size);
472 if (fotg210->async_unlink && size > 0) {
473 temp = scnprintf(next, size, "\nunlink =\n");
477 for (qh = fotg210->async_unlink; size > 0 && qh;
478 qh = qh->unlink_next)
479 qh_lines(fotg210, qh, &next, &size);
481 spin_unlock_irqrestore(&fotg210->lock, flags);
483 return strlen(buf->output_buf);
486 /* count tds, get ep direction */
487 static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210,
488 struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size)
490 u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
491 struct fotg210_qtd *qtd;
495 /* count tds, get ep direction */
496 list_for_each_entry(qtd, &qh->qtd_list, qtd_list) {
498 switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) {
508 return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)",
509 speed_char(scratch), scratch & 0x007f,
510 (scratch >> 8) & 0x000f, type, qh->usecs,
511 qh->c_usecs, temp, (scratch >> 16) & 0x7ff);
514 #define DBG_SCHED_LIMIT 64
515 static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
518 struct fotg210_hcd *fotg210;
520 union fotg210_shadow p, *seen;
521 unsigned temp, size, seen_count;
526 seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC);
532 hcd = bus_to_hcd(buf->bus);
533 fotg210 = hcd_to_fotg210(hcd);
534 next = buf->output_buf;
535 size = buf->alloc_size;
537 temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
541 /* dump a snapshot of the periodic schedule.
542 * iso changes, interrupt usually doesn't.
544 spin_lock_irqsave(&fotg210->lock, flags);
545 for (i = 0; i < fotg210->periodic_size; i++) {
546 p = fotg210->pshadow[i];
550 tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
552 temp = scnprintf(next, size, "%4d: ", i);
557 struct fotg210_qh_hw *hw;
559 switch (hc32_to_cpu(fotg210, tag)) {
562 temp = scnprintf(next, size, " qh%d-%04x/%p",
564 hc32_to_cpup(fotg210,
567 & (QH_CMASK | QH_SMASK),
571 /* don't repeat what follows this qh */
572 for (temp = 0; temp < seen_count; temp++) {
573 if (seen[temp].ptr != p.ptr)
575 if (p.qh->qh_next.ptr) {
576 temp = scnprintf(next, size,
583 /* show more info the first time around */
584 if (temp == seen_count) {
585 temp = output_buf_tds_dir(next,
589 if (seen_count < DBG_SCHED_LIMIT)
590 seen[seen_count++].qh = p.qh;
593 tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
597 temp = scnprintf(next, size,
599 p.fstn->hw_prev, p.fstn);
600 tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
601 p = p.fstn->fstn_next;
604 temp = scnprintf(next, size,
606 tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
614 temp = scnprintf(next, size, "\n");
618 spin_unlock_irqrestore(&fotg210->lock, flags);
621 return buf->alloc_size - size;
623 #undef DBG_SCHED_LIMIT
625 static const char *rh_state_string(struct fotg210_hcd *fotg210)
627 switch (fotg210->rh_state) {
628 case FOTG210_RH_HALTED:
630 case FOTG210_RH_SUSPENDED:
632 case FOTG210_RH_RUNNING:
634 case FOTG210_RH_STOPPING:
640 static ssize_t fill_registers_buffer(struct debug_buffer *buf)
643 struct fotg210_hcd *fotg210;
645 unsigned temp, size, i;
646 char *next, scratch[80];
647 static const char fmt[] = "%*s\n";
648 static const char label[] = "";
650 hcd = bus_to_hcd(buf->bus);
651 fotg210 = hcd_to_fotg210(hcd);
652 next = buf->output_buf;
653 size = buf->alloc_size;
655 spin_lock_irqsave(&fotg210->lock, flags);
657 if (!HCD_HW_ACCESSIBLE(hcd)) {
658 size = scnprintf(next, size,
659 "bus %s, device %s\n"
661 "SUSPENDED(no register access)\n",
662 hcd->self.controller->bus->name,
663 dev_name(hcd->self.controller),
668 /* Capability Registers */
669 i = HC_VERSION(fotg210, fotg210_readl(fotg210,
670 &fotg210->caps->hc_capbase));
671 temp = scnprintf(next, size,
672 "bus %s, device %s\n"
674 "EHCI %x.%02x, rh state %s\n",
675 hcd->self.controller->bus->name,
676 dev_name(hcd->self.controller),
678 i >> 8, i & 0x0ff, rh_state_string(fotg210));
682 /* FIXME interpret both types of params */
683 i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
684 temp = scnprintf(next, size, "structural params 0x%08x\n", i);
688 i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
689 temp = scnprintf(next, size, "capability params 0x%08x\n", i);
693 /* Operational Registers */
694 temp = dbg_status_buf(scratch, sizeof(scratch), label,
695 fotg210_readl(fotg210, &fotg210->regs->status));
696 temp = scnprintf(next, size, fmt, temp, scratch);
700 temp = dbg_command_buf(scratch, sizeof(scratch), label,
701 fotg210_readl(fotg210, &fotg210->regs->command));
702 temp = scnprintf(next, size, fmt, temp, scratch);
706 temp = dbg_intr_buf(scratch, sizeof(scratch), label,
707 fotg210_readl(fotg210, &fotg210->regs->intr_enable));
708 temp = scnprintf(next, size, fmt, temp, scratch);
712 temp = scnprintf(next, size, "uframe %04x\n",
713 fotg210_read_frame_index(fotg210));
717 if (fotg210->async_unlink) {
718 temp = scnprintf(next, size, "async unlink qh %p\n",
719 fotg210->async_unlink);
725 temp = scnprintf(next, size,
726 "irq normal %ld err %ld iaa %ld(lost %ld)\n",
727 fotg210->stats.normal, fotg210->stats.error,
728 fotg210->stats.iaa, fotg210->stats.lost_iaa);
732 temp = scnprintf(next, size, "complete %ld unlink %ld\n",
733 fotg210->stats.complete, fotg210->stats.unlink);
739 spin_unlock_irqrestore(&fotg210->lock, flags);
741 return buf->alloc_size - size;
744 static struct debug_buffer
745 *alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *))
747 struct debug_buffer *buf;
749 buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
753 buf->fill_func = fill_func;
754 mutex_init(&buf->mutex);
755 buf->alloc_size = PAGE_SIZE;
761 static int fill_buffer(struct debug_buffer *buf)
765 if (!buf->output_buf)
766 buf->output_buf = vmalloc(buf->alloc_size);
768 if (!buf->output_buf) {
773 ret = buf->fill_func(buf);
784 static ssize_t debug_output(struct file *file, char __user *user_buf,
785 size_t len, loff_t *offset)
787 struct debug_buffer *buf = file->private_data;
790 mutex_lock(&buf->mutex);
791 if (buf->count == 0) {
792 ret = fill_buffer(buf);
794 mutex_unlock(&buf->mutex);
798 mutex_unlock(&buf->mutex);
800 ret = simple_read_from_buffer(user_buf, len, offset,
801 buf->output_buf, buf->count);
808 static int debug_close(struct inode *inode, struct file *file)
810 struct debug_buffer *buf = file->private_data;
813 vfree(buf->output_buf);
819 static int debug_async_open(struct inode *inode, struct file *file)
821 file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
823 return file->private_data ? 0 : -ENOMEM;
826 static int debug_periodic_open(struct inode *inode, struct file *file)
828 struct debug_buffer *buf;
830 buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
834 buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
835 file->private_data = buf;
839 static int debug_registers_open(struct inode *inode, struct file *file)
841 file->private_data = alloc_buffer(inode->i_private,
842 fill_registers_buffer);
844 return file->private_data ? 0 : -ENOMEM;
847 static inline void create_debug_files(struct fotg210_hcd *fotg210)
849 struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
852 root = debugfs_create_dir(bus->bus_name, fotg210_debug_root);
854 debugfs_create_file("async", S_IRUGO, root, bus, &debug_async_fops);
855 debugfs_create_file("periodic", S_IRUGO, root, bus,
856 &debug_periodic_fops);
857 debugfs_create_file("registers", S_IRUGO, root, bus,
858 &debug_registers_fops);
861 static inline void remove_debug_files(struct fotg210_hcd *fotg210)
863 struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
865 debugfs_remove(debugfs_lookup(bus->bus_name, fotg210_debug_root));
868 /* handshake - spin reading hc until handshake completes or fails
869 * @ptr: address of hc register to be read
870 * @mask: bits to look at in result of read
871 * @done: value of those bits when handshake succeeds
872 * @usec: timeout in microseconds
874 * Returns negative errno, or zero on success
876 * Success happens when the "mask" bits have the specified value (hardware
877 * handshake done). There are two failure modes: "usec" have passed (major
878 * hardware flakeout), or the register reads as all-ones (hardware removed).
880 * That last failure should_only happen in cases like physical cardbus eject
881 * before driver shutdown. But it also seems to be caused by bugs in cardbus
882 * bridge shutdown: shutting down the bridge before the devices using it.
884 static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
885 u32 mask, u32 done, int usec)
890 ret = readl_poll_timeout_atomic(ptr, result,
891 ((result & mask) == done ||
892 result == U32_MAX), 1, usec);
893 if (result == U32_MAX) /* card removed */
899 /* Force HC to halt state from unknown (EHCI spec section 2.3).
900 * Must be called with interrupts enabled and the lock not held.
902 static int fotg210_halt(struct fotg210_hcd *fotg210)
906 spin_lock_irq(&fotg210->lock);
908 /* disable any irqs left enabled by previous code */
909 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
912 * This routine gets called during probe before fotg210->command
913 * has been initialized, so we can't rely on its value.
915 fotg210->command &= ~CMD_RUN;
916 temp = fotg210_readl(fotg210, &fotg210->regs->command);
917 temp &= ~(CMD_RUN | CMD_IAAD);
918 fotg210_writel(fotg210, temp, &fotg210->regs->command);
920 spin_unlock_irq(&fotg210->lock);
921 synchronize_irq(fotg210_to_hcd(fotg210)->irq);
923 return handshake(fotg210, &fotg210->regs->status,
924 STS_HALT, STS_HALT, 16 * 125);
927 /* Reset a non-running (STS_HALT == 1) controller.
928 * Must be called with interrupts enabled and the lock not held.
930 static int fotg210_reset(struct fotg210_hcd *fotg210)
933 u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
935 /* If the EHCI debug controller is active, special care must be
936 * taken before and after a host controller reset
938 if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
939 fotg210->debug = NULL;
941 command |= CMD_RESET;
942 dbg_cmd(fotg210, "reset", command);
943 fotg210_writel(fotg210, command, &fotg210->regs->command);
944 fotg210->rh_state = FOTG210_RH_HALTED;
945 fotg210->next_statechange = jiffies;
946 retval = handshake(fotg210, &fotg210->regs->command,
947 CMD_RESET, 0, 250 * 1000);
953 dbgp_external_startup(fotg210_to_hcd(fotg210));
955 fotg210->port_c_suspend = fotg210->suspended_ports =
956 fotg210->resuming_ports = 0;
960 /* Idle the controller (turn off the schedules).
961 * Must be called with interrupts enabled and the lock not held.
963 static void fotg210_quiesce(struct fotg210_hcd *fotg210)
967 if (fotg210->rh_state != FOTG210_RH_RUNNING)
970 /* wait for any schedule enables/disables to take effect */
971 temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
972 handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
975 /* then disable anything that's still active */
976 spin_lock_irq(&fotg210->lock);
977 fotg210->command &= ~(CMD_ASE | CMD_PSE);
978 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
979 spin_unlock_irq(&fotg210->lock);
981 /* hardware can take 16 microframes to turn off ... */
982 handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
986 static void end_unlink_async(struct fotg210_hcd *fotg210);
987 static void unlink_empty_async(struct fotg210_hcd *fotg210);
988 static void fotg210_work(struct fotg210_hcd *fotg210);
989 static void start_unlink_intr(struct fotg210_hcd *fotg210,
990 struct fotg210_qh *qh);
991 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
993 /* Set a bit in the USBCMD register */
994 static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
996 fotg210->command |= bit;
997 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
999 /* unblock posted write */
1000 fotg210_readl(fotg210, &fotg210->regs->command);
1003 /* Clear a bit in the USBCMD register */
1004 static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1006 fotg210->command &= ~bit;
1007 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1009 /* unblock posted write */
1010 fotg210_readl(fotg210, &fotg210->regs->command);
1013 /* EHCI timer support... Now using hrtimers.
1015 * Lots of different events are triggered from fotg210->hrtimer. Whenever
1016 * the timer routine runs, it checks each possible event; events that are
1017 * currently enabled and whose expiration time has passed get handled.
1018 * The set of enabled events is stored as a collection of bitflags in
1019 * fotg210->enabled_hrtimer_events, and they are numbered in order of
1020 * increasing delay values (ranging between 1 ms and 100 ms).
1022 * Rather than implementing a sorted list or tree of all pending events,
1023 * we keep track only of the lowest-numbered pending event, in
1024 * fotg210->next_hrtimer_event. Whenever fotg210->hrtimer gets restarted, its
1025 * expiration time is set to the timeout value for this event.
1027 * As a result, events might not get handled right away; the actual delay
1028 * could be anywhere up to twice the requested delay. This doesn't
1029 * matter, because none of the events are especially time-critical. The
1030 * ones that matter most all have a delay of 1 ms, so they will be
1031 * handled after 2 ms at most, which is okay. In addition to this, we
1032 * allow for an expiration range of 1 ms.
1035 /* Delay lengths for the hrtimer event types.
1036 * Keep this list sorted by delay length, in the same order as
1037 * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1039 static unsigned event_delays_ns[] = {
1040 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_ASS */
1041 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_PSS */
1042 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_DEAD */
1043 1125 * NSEC_PER_USEC, /* FOTG210_HRTIMER_UNLINK_INTR */
1044 2 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_FREE_ITDS */
1045 6 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1046 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1047 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1048 15 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1049 100 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IO_WATCHDOG */
1052 /* Enable a pending hrtimer event */
1053 static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
1056 ktime_t *timeout = &fotg210->hr_timeouts[event];
1059 *timeout = ktime_add(ktime_get(), event_delays_ns[event]);
1060 fotg210->enabled_hrtimer_events |= (1 << event);
1062 /* Track only the lowest-numbered pending event */
1063 if (event < fotg210->next_hrtimer_event) {
1064 fotg210->next_hrtimer_event = event;
1065 hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
1066 NSEC_PER_MSEC, HRTIMER_MODE_ABS);
1071 /* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
1072 static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
1074 unsigned actual, want;
1076 /* Don't enable anything if the controller isn't running (e.g., died) */
1077 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1080 want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
1081 actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
1083 if (want != actual) {
1085 /* Poll again later, but give up after about 20 ms */
1086 if (fotg210->ASS_poll_count++ < 20) {
1087 fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
1091 fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
1094 fotg210->ASS_poll_count = 0;
1096 /* The status is up-to-date; restart or stop the schedule as needed */
1097 if (want == 0) { /* Stopped */
1098 if (fotg210->async_count > 0)
1099 fotg210_set_command_bit(fotg210, CMD_ASE);
1101 } else { /* Running */
1102 if (fotg210->async_count == 0) {
1104 /* Turn off the schedule after a while */
1105 fotg210_enable_event(fotg210,
1106 FOTG210_HRTIMER_DISABLE_ASYNC,
1112 /* Turn off the async schedule after a brief delay */
1113 static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
1115 fotg210_clear_command_bit(fotg210, CMD_ASE);
1119 /* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
1120 static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
1122 unsigned actual, want;
1124 /* Don't do anything if the controller isn't running (e.g., died) */
1125 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1128 want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
1129 actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
1131 if (want != actual) {
1133 /* Poll again later, but give up after about 20 ms */
1134 if (fotg210->PSS_poll_count++ < 20) {
1135 fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
1139 fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1142 fotg210->PSS_poll_count = 0;
1144 /* The status is up-to-date; restart or stop the schedule as needed */
1145 if (want == 0) { /* Stopped */
1146 if (fotg210->periodic_count > 0)
1147 fotg210_set_command_bit(fotg210, CMD_PSE);
1149 } else { /* Running */
1150 if (fotg210->periodic_count == 0) {
1152 /* Turn off the schedule after a while */
1153 fotg210_enable_event(fotg210,
1154 FOTG210_HRTIMER_DISABLE_PERIODIC,
1160 /* Turn off the periodic schedule after a brief delay */
1161 static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
1163 fotg210_clear_command_bit(fotg210, CMD_PSE);
1167 /* Poll the STS_HALT status bit; see when a dead controller stops */
1168 static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
1170 if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
1172 /* Give up after a few milliseconds */
1173 if (fotg210->died_poll_count++ < 5) {
1174 /* Try again later */
1175 fotg210_enable_event(fotg210,
1176 FOTG210_HRTIMER_POLL_DEAD, true);
1179 fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
1182 /* Clean up the mess */
1183 fotg210->rh_state = FOTG210_RH_HALTED;
1184 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1185 fotg210_work(fotg210);
1186 end_unlink_async(fotg210);
1188 /* Not in process context, so don't try to reset the controller */
1192 /* Handle unlinked interrupt QHs once they are gone from the hardware */
1193 static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
1195 bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
1198 * Process all the QHs on the intr_unlink list that were added
1199 * before the current unlink cycle began. The list is in
1200 * temporal order, so stop when we reach the first entry in the
1201 * current cycle. But if the root hub isn't running then
1202 * process all the QHs on the list.
1204 fotg210->intr_unlinking = true;
1205 while (fotg210->intr_unlink) {
1206 struct fotg210_qh *qh = fotg210->intr_unlink;
1208 if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
1210 fotg210->intr_unlink = qh->unlink_next;
1211 qh->unlink_next = NULL;
1212 end_unlink_intr(fotg210, qh);
1215 /* Handle remaining entries later */
1216 if (fotg210->intr_unlink) {
1217 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
1219 ++fotg210->intr_unlink_cycle;
1221 fotg210->intr_unlinking = false;
1225 /* Start another free-iTDs/siTDs cycle */
1226 static void start_free_itds(struct fotg210_hcd *fotg210)
1228 if (!(fotg210->enabled_hrtimer_events &
1229 BIT(FOTG210_HRTIMER_FREE_ITDS))) {
1230 fotg210->last_itd_to_free = list_entry(
1231 fotg210->cached_itd_list.prev,
1232 struct fotg210_itd, itd_list);
1233 fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
1237 /* Wait for controller to stop using old iTDs and siTDs */
1238 static void end_free_itds(struct fotg210_hcd *fotg210)
1240 struct fotg210_itd *itd, *n;
1242 if (fotg210->rh_state < FOTG210_RH_RUNNING)
1243 fotg210->last_itd_to_free = NULL;
1245 list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
1246 list_del(&itd->itd_list);
1247 dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
1248 if (itd == fotg210->last_itd_to_free)
1252 if (!list_empty(&fotg210->cached_itd_list))
1253 start_free_itds(fotg210);
1257 /* Handle lost (or very late) IAA interrupts */
1258 static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
1260 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1264 * Lost IAA irqs wedge things badly; seen first with a vt8235.
1265 * So we need this watchdog, but must protect it against both
1266 * (a) SMP races against real IAA firing and retriggering, and
1267 * (b) clean HC shutdown, when IAA watchdog was pending.
1269 if (fotg210->async_iaa) {
1272 /* If we get here, IAA is *REALLY* late. It's barely
1273 * conceivable that the system is so busy that CMD_IAAD
1274 * is still legitimately set, so let's be sure it's
1275 * clear before we read STS_IAA. (The HC should clear
1276 * CMD_IAAD when it sets STS_IAA.)
1278 cmd = fotg210_readl(fotg210, &fotg210->regs->command);
1281 * If IAA is set here it either legitimately triggered
1282 * after the watchdog timer expired (_way_ late, so we'll
1283 * still count it as lost) ... or a silicon erratum:
1284 * - VIA seems to set IAA without triggering the IRQ;
1285 * - IAAD potentially cleared without setting IAA.
1287 status = fotg210_readl(fotg210, &fotg210->regs->status);
1288 if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
1289 INCR(fotg210->stats.lost_iaa);
1290 fotg210_writel(fotg210, STS_IAA,
1291 &fotg210->regs->status);
1294 fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
1296 end_unlink_async(fotg210);
1301 /* Enable the I/O watchdog, if appropriate */
1302 static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
1304 /* Not needed if the controller isn't running or it's already enabled */
1305 if (fotg210->rh_state != FOTG210_RH_RUNNING ||
1306 (fotg210->enabled_hrtimer_events &
1307 BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
1311 * Isochronous transfers always need the watchdog.
1312 * For other sorts we use it only if the flag is set.
1314 if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
1315 fotg210->async_count + fotg210->intr_count > 0))
1316 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
1321 /* Handler functions for the hrtimer event types.
1322 * Keep this array in the same order as the event types indexed by
1323 * enum fotg210_hrtimer_event in fotg210.h.
1325 static void (*event_handlers[])(struct fotg210_hcd *) = {
1326 fotg210_poll_ASS, /* FOTG210_HRTIMER_POLL_ASS */
1327 fotg210_poll_PSS, /* FOTG210_HRTIMER_POLL_PSS */
1328 fotg210_handle_controller_death, /* FOTG210_HRTIMER_POLL_DEAD */
1329 fotg210_handle_intr_unlinks, /* FOTG210_HRTIMER_UNLINK_INTR */
1330 end_free_itds, /* FOTG210_HRTIMER_FREE_ITDS */
1331 unlink_empty_async, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1332 fotg210_iaa_watchdog, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1333 fotg210_disable_PSE, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1334 fotg210_disable_ASE, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1335 fotg210_work, /* FOTG210_HRTIMER_IO_WATCHDOG */
1338 static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
1340 struct fotg210_hcd *fotg210 =
1341 container_of(t, struct fotg210_hcd, hrtimer);
1343 unsigned long events;
1344 unsigned long flags;
1347 spin_lock_irqsave(&fotg210->lock, flags);
1349 events = fotg210->enabled_hrtimer_events;
1350 fotg210->enabled_hrtimer_events = 0;
1351 fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
1354 * Check each pending event. If its time has expired, handle
1355 * the event; otherwise re-enable it.
1358 for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
1359 if (ktime_compare(now, fotg210->hr_timeouts[e]) >= 0)
1360 event_handlers[e](fotg210);
1362 fotg210_enable_event(fotg210, e, false);
1365 spin_unlock_irqrestore(&fotg210->lock, flags);
1366 return HRTIMER_NORESTART;
1369 #define fotg210_bus_suspend NULL
1370 #define fotg210_bus_resume NULL
1372 static int check_reset_complete(struct fotg210_hcd *fotg210, int index,
1373 u32 __iomem *status_reg, int port_status)
1375 if (!(port_status & PORT_CONNECT))
1378 /* if reset finished and it's still not enabled -- handoff */
1379 if (!(port_status & PORT_PE))
1380 /* with integrated TT, there's nobody to hand it to! */
1381 fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n",
1384 fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
1391 /* build "status change" packet (one or two bytes) from HC registers */
1393 static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
1395 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1399 unsigned long flags;
1401 /* init status to no-changes */
1404 /* Inform the core about resumes-in-progress by returning
1405 * a non-zero value even if there are no status changes.
1407 status = fotg210->resuming_ports;
1409 mask = PORT_CSC | PORT_PEC;
1410 /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1412 /* no hub change reports (bit 0) for now (power, ...) */
1414 /* port N changes (bit N)? */
1415 spin_lock_irqsave(&fotg210->lock, flags);
1417 temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
1420 * Return status information even for ports with OWNER set.
1421 * Otherwise hub_wq wouldn't see the disconnect event when a
1422 * high-speed device is switched over to the companion
1423 * controller by the user.
1426 if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) ||
1427 (fotg210->reset_done[0] &&
1428 time_after_eq(jiffies, fotg210->reset_done[0]))) {
1432 /* FIXME autosuspend idle root hubs */
1433 spin_unlock_irqrestore(&fotg210->lock, flags);
1434 return status ? retval : 0;
1437 static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210,
1438 struct usb_hub_descriptor *desc)
1440 int ports = HCS_N_PORTS(fotg210->hcs_params);
1443 desc->bDescriptorType = USB_DT_HUB;
1444 desc->bPwrOn2PwrGood = 10; /* fotg210 1.0, 2.3.9 says 20ms max */
1445 desc->bHubContrCurrent = 0;
1447 desc->bNbrPorts = ports;
1448 temp = 1 + (ports / 8);
1449 desc->bDescLength = 7 + 2 * temp;
1451 /* two bitmaps: ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1452 memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
1453 memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
1455 temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */
1456 temp |= HUB_CHAR_NO_LPSM; /* no power switching */
1457 desc->wHubCharacteristics = cpu_to_le16(temp);
1460 static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
1461 u16 wIndex, char *buf, u16 wLength)
1463 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1464 int ports = HCS_N_PORTS(fotg210->hcs_params);
1465 u32 __iomem *status_reg = &fotg210->regs->port_status;
1466 u32 temp, temp1, status;
1467 unsigned long flags;
1472 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1473 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1474 * (track current state ourselves) ... blink for diagnostics,
1475 * power, "this is the one", etc. EHCI spec supports this.
1478 spin_lock_irqsave(&fotg210->lock, flags);
1480 case ClearHubFeature:
1482 case C_HUB_LOCAL_POWER:
1483 case C_HUB_OVER_CURRENT:
1484 /* no hub-wide feature/status flags */
1490 case ClearPortFeature:
1491 if (!wIndex || wIndex > ports)
1494 temp = fotg210_readl(fotg210, status_reg);
1495 temp &= ~PORT_RWC_BITS;
1498 * Even if OWNER is set, so the port is owned by the
1499 * companion controller, hub_wq needs to be able to clear
1500 * the port-change status bits (especially
1501 * USB_PORT_STAT_C_CONNECTION).
1505 case USB_PORT_FEAT_ENABLE:
1506 fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
1508 case USB_PORT_FEAT_C_ENABLE:
1509 fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
1511 case USB_PORT_FEAT_SUSPEND:
1512 if (temp & PORT_RESET)
1514 if (!(temp & PORT_SUSPEND))
1516 if ((temp & PORT_PE) == 0)
1519 /* resume signaling for 20 msec */
1520 fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
1521 fotg210->reset_done[wIndex] = jiffies
1522 + msecs_to_jiffies(USB_RESUME_TIMEOUT);
1524 case USB_PORT_FEAT_C_SUSPEND:
1525 clear_bit(wIndex, &fotg210->port_c_suspend);
1527 case USB_PORT_FEAT_C_CONNECTION:
1528 fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
1530 case USB_PORT_FEAT_C_OVER_CURRENT:
1531 fotg210_writel(fotg210, temp | OTGISR_OVC,
1532 &fotg210->regs->otgisr);
1534 case USB_PORT_FEAT_C_RESET:
1535 /* GetPortStatus clears reset */
1540 fotg210_readl(fotg210, &fotg210->regs->command);
1542 case GetHubDescriptor:
1543 fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
1547 /* no hub-wide feature/status flags */
1549 /*cpu_to_le32s ((u32 *) buf); */
1552 if (!wIndex || wIndex > ports)
1556 temp = fotg210_readl(fotg210, status_reg);
1558 /* wPortChange bits */
1559 if (temp & PORT_CSC)
1560 status |= USB_PORT_STAT_C_CONNECTION << 16;
1561 if (temp & PORT_PEC)
1562 status |= USB_PORT_STAT_C_ENABLE << 16;
1564 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1565 if (temp1 & OTGISR_OVC)
1566 status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1568 /* whoever resumes must GetPortStatus to complete it!! */
1569 if (temp & PORT_RESUME) {
1571 /* Remote Wakeup received? */
1572 if (!fotg210->reset_done[wIndex]) {
1573 /* resume signaling for 20 msec */
1574 fotg210->reset_done[wIndex] = jiffies
1575 + msecs_to_jiffies(20);
1576 /* check the port again */
1577 mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
1578 fotg210->reset_done[wIndex]);
1581 /* resume completed? */
1582 else if (time_after_eq(jiffies,
1583 fotg210->reset_done[wIndex])) {
1584 clear_bit(wIndex, &fotg210->suspended_ports);
1585 set_bit(wIndex, &fotg210->port_c_suspend);
1586 fotg210->reset_done[wIndex] = 0;
1588 /* stop resume signaling */
1589 temp = fotg210_readl(fotg210, status_reg);
1590 fotg210_writel(fotg210, temp &
1591 ~(PORT_RWC_BITS | PORT_RESUME),
1593 clear_bit(wIndex, &fotg210->resuming_ports);
1594 retval = handshake(fotg210, status_reg,
1595 PORT_RESUME, 0, 2000);/* 2ms */
1597 fotg210_err(fotg210,
1598 "port %d resume error %d\n",
1599 wIndex + 1, retval);
1602 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
1606 /* whoever resets must GetPortStatus to complete it!! */
1607 if ((temp & PORT_RESET) && time_after_eq(jiffies,
1608 fotg210->reset_done[wIndex])) {
1609 status |= USB_PORT_STAT_C_RESET << 16;
1610 fotg210->reset_done[wIndex] = 0;
1611 clear_bit(wIndex, &fotg210->resuming_ports);
1613 /* force reset to complete */
1614 fotg210_writel(fotg210,
1615 temp & ~(PORT_RWC_BITS | PORT_RESET),
1617 /* REVISIT: some hardware needs 550+ usec to clear
1618 * this bit; seems too long to spin routinely...
1620 retval = handshake(fotg210, status_reg,
1621 PORT_RESET, 0, 1000);
1623 fotg210_err(fotg210, "port %d reset error %d\n",
1624 wIndex + 1, retval);
1628 /* see what we found out */
1629 temp = check_reset_complete(fotg210, wIndex, status_reg,
1630 fotg210_readl(fotg210, status_reg));
1632 /* restart schedule */
1633 fotg210->command |= CMD_RUN;
1634 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1637 if (!(temp & (PORT_RESUME|PORT_RESET))) {
1638 fotg210->reset_done[wIndex] = 0;
1639 clear_bit(wIndex, &fotg210->resuming_ports);
1642 /* transfer dedicated ports to the companion hc */
1643 if ((temp & PORT_CONNECT) &&
1644 test_bit(wIndex, &fotg210->companion_ports)) {
1645 temp &= ~PORT_RWC_BITS;
1646 fotg210_writel(fotg210, temp, status_reg);
1647 fotg210_dbg(fotg210, "port %d --> companion\n",
1649 temp = fotg210_readl(fotg210, status_reg);
1653 * Even if OWNER is set, there's no harm letting hub_wq
1654 * see the wPortStatus values (they should all be 0 except
1655 * for PORT_POWER anyway).
1658 if (temp & PORT_CONNECT) {
1659 status |= USB_PORT_STAT_CONNECTION;
1660 status |= fotg210_port_speed(fotg210, temp);
1663 status |= USB_PORT_STAT_ENABLE;
1665 /* maybe the port was unsuspended without our knowledge */
1666 if (temp & (PORT_SUSPEND|PORT_RESUME)) {
1667 status |= USB_PORT_STAT_SUSPEND;
1668 } else if (test_bit(wIndex, &fotg210->suspended_ports)) {
1669 clear_bit(wIndex, &fotg210->suspended_ports);
1670 clear_bit(wIndex, &fotg210->resuming_ports);
1671 fotg210->reset_done[wIndex] = 0;
1673 set_bit(wIndex, &fotg210->port_c_suspend);
1676 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1677 if (temp1 & OTGISR_OVC)
1678 status |= USB_PORT_STAT_OVERCURRENT;
1679 if (temp & PORT_RESET)
1680 status |= USB_PORT_STAT_RESET;
1681 if (test_bit(wIndex, &fotg210->port_c_suspend))
1682 status |= USB_PORT_STAT_C_SUSPEND << 16;
1684 if (status & ~0xffff) /* only if wPortChange is interesting */
1685 dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
1686 put_unaligned_le32(status, buf);
1690 case C_HUB_LOCAL_POWER:
1691 case C_HUB_OVER_CURRENT:
1692 /* no hub-wide feature/status flags */
1698 case SetPortFeature:
1699 selector = wIndex >> 8;
1702 if (!wIndex || wIndex > ports)
1705 temp = fotg210_readl(fotg210, status_reg);
1706 temp &= ~PORT_RWC_BITS;
1708 case USB_PORT_FEAT_SUSPEND:
1709 if ((temp & PORT_PE) == 0
1710 || (temp & PORT_RESET) != 0)
1713 /* After above check the port must be connected.
1714 * Set appropriate bit thus could put phy into low power
1715 * mode if we have hostpc feature
1717 fotg210_writel(fotg210, temp | PORT_SUSPEND,
1719 set_bit(wIndex, &fotg210->suspended_ports);
1721 case USB_PORT_FEAT_RESET:
1722 if (temp & PORT_RESUME)
1724 /* line status bits may report this as low speed,
1725 * which can be fine if this root hub has a
1726 * transaction translator built in.
1728 fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
1733 * caller must wait, then call GetPortStatus
1734 * usb 2.0 spec says 50 ms resets on root
1736 fotg210->reset_done[wIndex] = jiffies
1737 + msecs_to_jiffies(50);
1738 fotg210_writel(fotg210, temp, status_reg);
1741 /* For downstream facing ports (these): one hub port is put
1742 * into test mode according to USB2 11.24.2.13, then the hub
1743 * must be reset (which for root hub now means rmmod+modprobe,
1744 * or else system reboot). See EHCI 2.3.9 and 4.14 for info
1745 * about the EHCI-specific stuff.
1747 case USB_PORT_FEAT_TEST:
1748 if (!selector || selector > 5)
1750 spin_unlock_irqrestore(&fotg210->lock, flags);
1751 fotg210_quiesce(fotg210);
1752 spin_lock_irqsave(&fotg210->lock, flags);
1754 /* Put all enabled ports into suspend */
1755 temp = fotg210_readl(fotg210, status_reg) &
1758 fotg210_writel(fotg210, temp | PORT_SUSPEND,
1761 spin_unlock_irqrestore(&fotg210->lock, flags);
1762 fotg210_halt(fotg210);
1763 spin_lock_irqsave(&fotg210->lock, flags);
1765 temp = fotg210_readl(fotg210, status_reg);
1766 temp |= selector << 16;
1767 fotg210_writel(fotg210, temp, status_reg);
1773 fotg210_readl(fotg210, &fotg210->regs->command);
1778 /* "stall" on error */
1781 spin_unlock_irqrestore(&fotg210->lock, flags);
1785 static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
1791 static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
1797 /* There's basically three types of memory:
1798 * - data used only by the HCD ... kmalloc is fine
1799 * - async and periodic schedules, shared by HC and HCD ... these
1800 * need to use dma_pool or dma_alloc_coherent
1801 * - driver buffers, read/written by HC ... single shot DMA mapped
1803 * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1804 * No memory seen by this driver is pageable.
1807 /* Allocate the key transfer structures from the previously allocated pool */
1808 static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
1809 struct fotg210_qtd *qtd, dma_addr_t dma)
1811 memset(qtd, 0, sizeof(*qtd));
1813 qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
1814 qtd->hw_next = FOTG210_LIST_END(fotg210);
1815 qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
1816 INIT_LIST_HEAD(&qtd->qtd_list);
1819 static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
1822 struct fotg210_qtd *qtd;
1825 qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
1827 fotg210_qtd_init(fotg210, qtd, dma);
1832 static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
1833 struct fotg210_qtd *qtd)
1835 dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
1839 static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
1841 /* clean qtds first, and know this is not linked */
1842 if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1843 fotg210_dbg(fotg210, "unused qh not empty!\n");
1847 fotg210_qtd_free(fotg210, qh->dummy);
1848 dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1852 static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
1855 struct fotg210_qh *qh;
1858 qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
1861 qh->hw = (struct fotg210_qh_hw *)
1862 dma_pool_alloc(fotg210->qh_pool, flags, &dma);
1865 memset(qh->hw, 0, sizeof(*qh->hw));
1867 INIT_LIST_HEAD(&qh->qtd_list);
1869 /* dummy td enables safe urb queuing */
1870 qh->dummy = fotg210_qtd_alloc(fotg210, flags);
1871 if (qh->dummy == NULL) {
1872 fotg210_dbg(fotg210, "no dummy td\n");
1878 dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1884 /* The queue heads and transfer descriptors are managed from pools tied
1885 * to each of the "per device" structures.
1886 * This is the initialisation and cleanup code.
1889 static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
1892 qh_destroy(fotg210, fotg210->async);
1893 fotg210->async = NULL;
1896 qh_destroy(fotg210, fotg210->dummy);
1897 fotg210->dummy = NULL;
1899 /* DMA consistent memory and pools */
1900 dma_pool_destroy(fotg210->qtd_pool);
1901 fotg210->qtd_pool = NULL;
1903 dma_pool_destroy(fotg210->qh_pool);
1904 fotg210->qh_pool = NULL;
1906 dma_pool_destroy(fotg210->itd_pool);
1907 fotg210->itd_pool = NULL;
1909 if (fotg210->periodic)
1910 dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
1911 fotg210->periodic_size * sizeof(u32),
1912 fotg210->periodic, fotg210->periodic_dma);
1913 fotg210->periodic = NULL;
1915 /* shadow periodic table */
1916 kfree(fotg210->pshadow);
1917 fotg210->pshadow = NULL;
1920 /* remember to add cleanup code (above) if you add anything here */
1921 static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
1925 /* QTDs for control/bulk/intr transfers */
1926 fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
1927 fotg210_to_hcd(fotg210)->self.controller,
1928 sizeof(struct fotg210_qtd),
1929 32 /* byte alignment (for hw parts) */,
1930 4096 /* can't cross 4K */);
1931 if (!fotg210->qtd_pool)
1934 /* QHs for control/bulk/intr transfers */
1935 fotg210->qh_pool = dma_pool_create("fotg210_qh",
1936 fotg210_to_hcd(fotg210)->self.controller,
1937 sizeof(struct fotg210_qh_hw),
1938 32 /* byte alignment (for hw parts) */,
1939 4096 /* can't cross 4K */);
1940 if (!fotg210->qh_pool)
1943 fotg210->async = fotg210_qh_alloc(fotg210, flags);
1944 if (!fotg210->async)
1947 /* ITD for high speed ISO transfers */
1948 fotg210->itd_pool = dma_pool_create("fotg210_itd",
1949 fotg210_to_hcd(fotg210)->self.controller,
1950 sizeof(struct fotg210_itd),
1951 64 /* byte alignment (for hw parts) */,
1952 4096 /* can't cross 4K */);
1953 if (!fotg210->itd_pool)
1956 /* Hardware periodic table */
1958 dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
1959 fotg210->periodic_size * sizeof(__le32),
1960 &fotg210->periodic_dma, 0);
1961 if (fotg210->periodic == NULL)
1964 for (i = 0; i < fotg210->periodic_size; i++)
1965 fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
1967 /* software shadow of hardware table */
1968 fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
1970 if (fotg210->pshadow != NULL)
1974 fotg210_dbg(fotg210, "couldn't init memory\n");
1975 fotg210_mem_cleanup(fotg210);
1978 /* EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
1980 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
1981 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
1982 * buffers needed for the larger number). We use one QH per endpoint, queue
1983 * multiple urbs (all three types) per endpoint. URBs may need several qtds.
1985 * ISO traffic uses "ISO TD" (itd) records, and (along with
1986 * interrupts) needs careful scheduling. Performance improvements can be
1987 * an ongoing challenge. That's in "ehci-sched.c".
1989 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
1990 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
1991 * (b) special fields in qh entries or (c) split iso entries. TTs will
1992 * buffer low/full speed data so the host collects it at high speed.
1995 /* fill a qtd, returning how much of the buffer we were able to queue up */
1996 static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd,
1997 dma_addr_t buf, size_t len, int token, int maxpacket)
2002 /* one buffer entry per 4K ... first might be short or unaligned */
2003 qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
2004 qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
2005 count = 0x1000 - (buf & 0x0fff); /* rest of that page */
2006 if (likely(len < count)) /* ... iff needed */
2012 /* per-qtd limit: from 16K to 20K (best alignment) */
2013 for (i = 1; count < len && i < 5; i++) {
2015 qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
2016 qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
2019 if ((count + 0x1000) < len)
2025 /* short packets may only terminate transfers */
2027 count -= (count % maxpacket);
2029 qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
2030 qtd->length = count;
2035 static inline void qh_update(struct fotg210_hcd *fotg210,
2036 struct fotg210_qh *qh, struct fotg210_qtd *qtd)
2038 struct fotg210_qh_hw *hw = qh->hw;
2040 /* writes to an active overlay are unsafe */
2041 BUG_ON(qh->qh_state != QH_STATE_IDLE);
2043 hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2044 hw->hw_alt_next = FOTG210_LIST_END(fotg210);
2046 /* Except for control endpoints, we make hardware maintain data
2047 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2048 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2051 if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
2052 unsigned is_out, epnum;
2054 is_out = qh->is_out;
2055 epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
2056 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
2057 hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
2058 usb_settoggle(qh->dev, epnum, is_out, 1);
2062 hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
2065 /* if it weren't for a common silicon quirk (writing the dummy into the qh
2066 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2067 * recovery (including urb dequeue) would need software changes to a QH...
2069 static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2071 struct fotg210_qtd *qtd;
2073 if (list_empty(&qh->qtd_list))
2076 qtd = list_entry(qh->qtd_list.next,
2077 struct fotg210_qtd, qtd_list);
2079 * first qtd may already be partially processed.
2080 * If we come here during unlink, the QH overlay region
2081 * might have reference to the just unlinked qtd. The
2082 * qtd is updated in qh_completions(). Update the QH
2085 if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
2086 qh->hw->hw_qtd_next = qtd->hw_next;
2092 qh_update(fotg210, qh, qtd);
2095 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2097 static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
2098 struct usb_host_endpoint *ep)
2100 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
2101 struct fotg210_qh *qh = ep->hcpriv;
2102 unsigned long flags;
2104 spin_lock_irqsave(&fotg210->lock, flags);
2105 qh->clearing_tt = 0;
2106 if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
2107 && fotg210->rh_state == FOTG210_RH_RUNNING)
2108 qh_link_async(fotg210, qh);
2109 spin_unlock_irqrestore(&fotg210->lock, flags);
2112 static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
2113 struct fotg210_qh *qh, struct urb *urb, u32 token)
2116 /* If an async split transaction gets an error or is unlinked,
2117 * the TT buffer may be left in an indeterminate state. We
2118 * have to clear the TT buffer.
2120 * Note: this routine is never called for Isochronous transfers.
2122 if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
2123 struct usb_device *tt = urb->dev->tt->hub;
2126 "clear tt buffer port %d, a%d ep%d t%08x\n",
2127 urb->dev->ttport, urb->dev->devnum,
2128 usb_pipeendpoint(urb->pipe), token);
2130 if (urb->dev->tt->hub !=
2131 fotg210_to_hcd(fotg210)->self.root_hub) {
2132 if (usb_hub_clear_tt_buffer(urb) == 0)
2133 qh->clearing_tt = 1;
2138 static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb,
2139 size_t length, u32 token)
2141 int status = -EINPROGRESS;
2143 /* count IN/OUT bytes, not SETUP (even short packets) */
2144 if (likely(QTD_PID(token) != 2))
2145 urb->actual_length += length - QTD_LENGTH(token);
2147 /* don't modify error codes */
2148 if (unlikely(urb->unlinked))
2151 /* force cleanup after short read; not always an error */
2152 if (unlikely(IS_SHORT_READ(token)))
2153 status = -EREMOTEIO;
2155 /* serious "can't proceed" faults reported by the hardware */
2156 if (token & QTD_STS_HALT) {
2157 if (token & QTD_STS_BABBLE) {
2158 /* FIXME "must" disable babbling device's port too */
2159 status = -EOVERFLOW;
2160 /* CERR nonzero + halt --> stall */
2161 } else if (QTD_CERR(token)) {
2164 /* In theory, more than one of the following bits can be set
2165 * since they are sticky and the transaction is retried.
2166 * Which to test first is rather arbitrary.
2168 } else if (token & QTD_STS_MMF) {
2169 /* fs/ls interrupt xfer missed the complete-split */
2171 } else if (token & QTD_STS_DBE) {
2172 status = (QTD_PID(token) == 1) /* IN ? */
2173 ? -ENOSR /* hc couldn't read data */
2174 : -ECOMM; /* hc couldn't write data */
2175 } else if (token & QTD_STS_XACT) {
2176 /* timeout, bad CRC, wrong PID, etc */
2177 fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
2179 usb_pipeendpoint(urb->pipe),
2180 usb_pipein(urb->pipe) ? "in" : "out");
2182 } else { /* unknown */
2186 fotg210_dbg(fotg210,
2187 "dev%d ep%d%s qtd token %08x --> status %d\n",
2188 usb_pipedevice(urb->pipe),
2189 usb_pipeendpoint(urb->pipe),
2190 usb_pipein(urb->pipe) ? "in" : "out",
2197 static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb,
2199 __releases(fotg210->lock)
2200 __acquires(fotg210->lock)
2202 if (likely(urb->hcpriv != NULL)) {
2203 struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
2205 /* S-mask in a QH means it's an interrupt urb */
2206 if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
2208 /* ... update hc-wide periodic stats (for usbfs) */
2209 fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
2213 if (unlikely(urb->unlinked)) {
2214 INCR(fotg210->stats.unlink);
2216 /* report non-error and short read status as zero */
2217 if (status == -EINPROGRESS || status == -EREMOTEIO)
2219 INCR(fotg210->stats.complete);
2222 #ifdef FOTG210_URB_TRACE
2223 fotg210_dbg(fotg210,
2224 "%s %s urb %p ep%d%s status %d len %d/%d\n",
2225 __func__, urb->dev->devpath, urb,
2226 usb_pipeendpoint(urb->pipe),
2227 usb_pipein(urb->pipe) ? "in" : "out",
2229 urb->actual_length, urb->transfer_buffer_length);
2232 /* complete() can reenter this HCD */
2233 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
2234 spin_unlock(&fotg210->lock);
2235 usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
2236 spin_lock(&fotg210->lock);
2239 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2241 /* Process and free completed qtds for a qh, returning URBs to drivers.
2242 * Chases up to qh->hw_current. Returns number of completions called,
2243 * indicating how much "real" work we did.
2245 static unsigned qh_completions(struct fotg210_hcd *fotg210,
2246 struct fotg210_qh *qh)
2248 struct fotg210_qtd *last, *end = qh->dummy;
2249 struct fotg210_qtd *qtd, *tmp;
2254 struct fotg210_qh_hw *hw = qh->hw;
2256 if (unlikely(list_empty(&qh->qtd_list)))
2259 /* completions (or tasks on other cpus) must never clobber HALT
2260 * till we've gone through and cleaned everything up, even when
2261 * they add urbs to this qh's queue or mark them for unlinking.
2263 * NOTE: unlinking expects to be done in queue order.
2265 * It's a bug for qh->qh_state to be anything other than
2266 * QH_STATE_IDLE, unless our caller is scan_async() or
2269 state = qh->qh_state;
2270 qh->qh_state = QH_STATE_COMPLETING;
2271 stopped = (state == QH_STATE_IDLE);
2275 last_status = -EINPROGRESS;
2276 qh->needs_rescan = 0;
2278 /* remove de-activated QTDs from front of queue.
2279 * after faults (including short reads), cleanup this urb
2280 * then let the queue advance.
2281 * if queue is stopped, handles unlinks.
2283 list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
2289 /* clean up any state from previous QTD ...*/
2291 if (likely(last->urb != urb)) {
2292 fotg210_urb_done(fotg210, last->urb,
2295 last_status = -EINPROGRESS;
2297 fotg210_qtd_free(fotg210, last);
2301 /* ignore urbs submitted during completions we reported */
2305 /* hardware copies qtd out of qh overlay */
2307 token = hc32_to_cpu(fotg210, qtd->hw_token);
2309 /* always clean up qtds the hc de-activated */
2311 if ((token & QTD_STS_ACTIVE) == 0) {
2313 /* Report Data Buffer Error: non-fatal but useful */
2314 if (token & QTD_STS_DBE)
2315 fotg210_dbg(fotg210,
2316 "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2317 urb, usb_endpoint_num(&urb->ep->desc),
2318 usb_endpoint_dir_in(&urb->ep->desc)
2320 urb->transfer_buffer_length, qtd, qh);
2322 /* on STALL, error, and short reads this urb must
2323 * complete and all its qtds must be recycled.
2325 if ((token & QTD_STS_HALT) != 0) {
2327 /* retry transaction errors until we
2328 * reach the software xacterr limit
2330 if ((token & QTD_STS_XACT) &&
2331 QTD_CERR(token) == 0 &&
2332 ++qh->xacterrs < QH_XACTERR_MAX &&
2334 fotg210_dbg(fotg210,
2335 "detected XactErr len %zu/%zu retry %d\n",
2336 qtd->length - QTD_LENGTH(token),
2340 /* reset the token in the qtd and the
2341 * qh overlay (which still contains
2342 * the qtd) so that we pick up from
2345 token &= ~QTD_STS_HALT;
2346 token |= QTD_STS_ACTIVE |
2347 (FOTG210_TUNE_CERR << 10);
2348 qtd->hw_token = cpu_to_hc32(fotg210,
2351 hw->hw_token = cpu_to_hc32(fotg210,
2357 /* magic dummy for some short reads; qh won't advance.
2358 * that silicon quirk can kick in with this dummy too.
2360 * other short reads won't stop the queue, including
2361 * control transfers (status stage handles that) or
2362 * most other single-qtd reads ... the queue stops if
2363 * URB_SHORT_NOT_OK was set so the driver submitting
2364 * the urbs could clean it up.
2366 } else if (IS_SHORT_READ(token) &&
2367 !(qtd->hw_alt_next &
2368 FOTG210_LIST_END(fotg210))) {
2372 /* stop scanning when we reach qtds the hc is using */
2373 } else if (likely(!stopped
2374 && fotg210->rh_state >= FOTG210_RH_RUNNING)) {
2377 /* scan the whole queue for unlinks whenever it stops */
2381 /* cancel everything if we halt, suspend, etc */
2382 if (fotg210->rh_state < FOTG210_RH_RUNNING)
2383 last_status = -ESHUTDOWN;
2385 /* this qtd is active; skip it unless a previous qtd
2386 * for its urb faulted, or its urb was canceled.
2388 else if (last_status == -EINPROGRESS && !urb->unlinked)
2391 /* qh unlinked; token in overlay may be most current */
2392 if (state == QH_STATE_IDLE &&
2393 cpu_to_hc32(fotg210, qtd->qtd_dma)
2394 == hw->hw_current) {
2395 token = hc32_to_cpu(fotg210, hw->hw_token);
2397 /* An unlink may leave an incomplete
2398 * async transaction in the TT buffer.
2399 * We have to clear it.
2401 fotg210_clear_tt_buffer(fotg210, qh, urb,
2406 /* unless we already know the urb's status, collect qtd status
2407 * and update count of bytes transferred. in common short read
2408 * cases with only one data qtd (including control transfers),
2409 * queue processing won't halt. but with two or more qtds (for
2410 * example, with a 32 KB transfer), when the first qtd gets a
2411 * short read the second must be removed by hand.
2413 if (last_status == -EINPROGRESS) {
2414 last_status = qtd_copy_status(fotg210, urb,
2415 qtd->length, token);
2416 if (last_status == -EREMOTEIO &&
2418 FOTG210_LIST_END(fotg210)))
2419 last_status = -EINPROGRESS;
2421 /* As part of low/full-speed endpoint-halt processing
2422 * we must clear the TT buffer (11.17.5).
2424 if (unlikely(last_status != -EINPROGRESS &&
2425 last_status != -EREMOTEIO)) {
2426 /* The TT's in some hubs malfunction when they
2427 * receive this request following a STALL (they
2428 * stop sending isochronous packets). Since a
2429 * STALL can't leave the TT buffer in a busy
2430 * state (if you believe Figures 11-48 - 11-51
2431 * in the USB 2.0 spec), we won't clear the TT
2432 * buffer in this case. Strictly speaking this
2433 * is a violation of the spec.
2435 if (last_status != -EPIPE)
2436 fotg210_clear_tt_buffer(fotg210, qh,
2441 /* if we're removing something not at the queue head,
2442 * patch the hardware queue pointer.
2444 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
2445 last = list_entry(qtd->qtd_list.prev,
2446 struct fotg210_qtd, qtd_list);
2447 last->hw_next = qtd->hw_next;
2450 /* remove qtd; it's recycled after possible urb completion */
2451 list_del(&qtd->qtd_list);
2454 /* reinit the xacterr counter for the next qtd */
2458 /* last urb's completion might still need calling */
2459 if (likely(last != NULL)) {
2460 fotg210_urb_done(fotg210, last->urb, last_status);
2462 fotg210_qtd_free(fotg210, last);
2465 /* Do we need to rescan for URBs dequeued during a giveback? */
2466 if (unlikely(qh->needs_rescan)) {
2467 /* If the QH is already unlinked, do the rescan now. */
2468 if (state == QH_STATE_IDLE)
2471 /* Otherwise we have to wait until the QH is fully unlinked.
2472 * Our caller will start an unlink if qh->needs_rescan is
2473 * set. But if an unlink has already started, nothing needs
2476 if (state != QH_STATE_LINKED)
2477 qh->needs_rescan = 0;
2480 /* restore original state; caller must unlink or relink */
2481 qh->qh_state = state;
2483 /* be sure the hardware's done with the qh before refreshing
2484 * it after fault cleanup, or recovering from silicon wrongly
2485 * overlaying the dummy qtd (which reduces DMA chatter).
2487 if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
2490 qh_refresh(fotg210, qh);
2492 case QH_STATE_LINKED:
2493 /* We won't refresh a QH that's linked (after the HC
2494 * stopped the queue). That avoids a race:
2495 * - HC reads first part of QH;
2496 * - CPU updates that first part and the token;
2497 * - HC reads rest of that QH, including token
2498 * Result: HC gets an inconsistent image, and then
2499 * DMAs to/from the wrong memory (corrupting it).
2501 * That should be rare for interrupt transfers,
2502 * except maybe high bandwidth ...
2505 /* Tell the caller to start an unlink */
2506 qh->needs_rescan = 1;
2508 /* otherwise, unlink already started */
2515 /* reverse of qh_urb_transaction: free a list of TDs.
2516 * used for cleanup after errors, before HC sees an URB's TDs.
2518 static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb,
2519 struct list_head *head)
2521 struct fotg210_qtd *qtd, *temp;
2523 list_for_each_entry_safe(qtd, temp, head, qtd_list) {
2524 list_del(&qtd->qtd_list);
2525 fotg210_qtd_free(fotg210, qtd);
2529 /* create a list of filled qtds for this URB; won't link into qh.
2531 static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210,
2532 struct urb *urb, struct list_head *head, gfp_t flags)
2534 struct fotg210_qtd *qtd, *qtd_prev;
2536 int len, this_sg_len, maxpacket;
2540 struct scatterlist *sg;
2543 * URBs map to sequences of QTDs: one logical transaction
2545 qtd = fotg210_qtd_alloc(fotg210, flags);
2548 list_add_tail(&qtd->qtd_list, head);
2551 token = QTD_STS_ACTIVE;
2552 token |= (FOTG210_TUNE_CERR << 10);
2553 /* for split transactions, SplitXState initialized to zero */
2555 len = urb->transfer_buffer_length;
2556 is_input = usb_pipein(urb->pipe);
2557 if (usb_pipecontrol(urb->pipe)) {
2559 qtd_fill(fotg210, qtd, urb->setup_dma,
2560 sizeof(struct usb_ctrlrequest),
2561 token | (2 /* "setup" */ << 8), 8);
2563 /* ... and always at least one more pid */
2564 token ^= QTD_TOGGLE;
2566 qtd = fotg210_qtd_alloc(fotg210, flags);
2570 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2571 list_add_tail(&qtd->qtd_list, head);
2573 /* for zero length DATA stages, STATUS is always IN */
2575 token |= (1 /* "in" */ << 8);
2579 * data transfer stage: buffer setup
2581 i = urb->num_mapped_sgs;
2582 if (len > 0 && i > 0) {
2584 buf = sg_dma_address(sg);
2586 /* urb->transfer_buffer_length may be smaller than the
2587 * size of the scatterlist (or vice versa)
2589 this_sg_len = min_t(int, sg_dma_len(sg), len);
2592 buf = urb->transfer_dma;
2597 token |= (1 /* "in" */ << 8);
2598 /* else it's already initted to "out" pid (0 << 8) */
2600 maxpacket = usb_maxpacket(urb->dev, urb->pipe, !is_input);
2603 * buffer gets wrapped in one or more qtds;
2604 * last one may be "short" (including zero len)
2605 * and may serve as a control status ack
2610 this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
2612 this_sg_len -= this_qtd_len;
2613 len -= this_qtd_len;
2614 buf += this_qtd_len;
2617 * short reads advance to a "magic" dummy instead of the next
2618 * qtd ... that forces the queue to stop, for manual cleanup.
2619 * (this will usually be overridden later.)
2622 qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
2624 /* qh makes control packets use qtd toggle; maybe switch it */
2625 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
2626 token ^= QTD_TOGGLE;
2628 if (likely(this_sg_len <= 0)) {
2629 if (--i <= 0 || len <= 0)
2632 buf = sg_dma_address(sg);
2633 this_sg_len = min_t(int, sg_dma_len(sg), len);
2637 qtd = fotg210_qtd_alloc(fotg210, flags);
2641 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2642 list_add_tail(&qtd->qtd_list, head);
2646 * unless the caller requires manual cleanup after short reads,
2647 * have the alt_next mechanism keep the queue running after the
2648 * last data qtd (the only one, for control and most other cases).
2650 if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 ||
2651 usb_pipecontrol(urb->pipe)))
2652 qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
2655 * control requests may need a terminating data "status" ack;
2656 * other OUT ones may need a terminating short packet
2659 if (likely(urb->transfer_buffer_length != 0)) {
2662 if (usb_pipecontrol(urb->pipe)) {
2664 token ^= 0x0100; /* "in" <--> "out" */
2665 token |= QTD_TOGGLE; /* force DATA1 */
2666 } else if (usb_pipeout(urb->pipe)
2667 && (urb->transfer_flags & URB_ZERO_PACKET)
2668 && !(urb->transfer_buffer_length % maxpacket)) {
2673 qtd = fotg210_qtd_alloc(fotg210, flags);
2677 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2678 list_add_tail(&qtd->qtd_list, head);
2680 /* never any data in such packets */
2681 qtd_fill(fotg210, qtd, 0, 0, token, 0);
2685 /* by default, enable interrupt on urb completion */
2686 if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
2687 qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
2691 qtd_list_free(fotg210, urb, head);
2695 /* Would be best to create all qh's from config descriptors,
2696 * when each interface/altsetting is established. Unlink
2697 * any previous qh and cancel its urbs first; endpoints are
2698 * implicitly reset then (data toggle too).
2699 * That'd mean updating how usbcore talks to HCDs. (2.7?)
2703 /* Each QH holds a qtd list; a QH is used for everything except iso.
2705 * For interrupt urbs, the scheduler must set the microframe scheduling
2706 * mask(s) each time the QH gets scheduled. For highspeed, that's
2707 * just one microframe in the s-mask. For split interrupt transactions
2708 * there are additional complications: c-mask, maybe FSTNs.
2710 static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb,
2713 struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags);
2714 struct usb_host_endpoint *ep;
2715 u32 info1 = 0, info2 = 0;
2719 struct usb_tt *tt = urb->dev->tt;
2720 struct fotg210_qh_hw *hw;
2726 * init endpoint/device data for this QH
2728 info1 |= usb_pipeendpoint(urb->pipe) << 8;
2729 info1 |= usb_pipedevice(urb->pipe) << 0;
2731 is_input = usb_pipein(urb->pipe);
2732 type = usb_pipetype(urb->pipe);
2733 ep = usb_pipe_endpoint(urb->dev, urb->pipe);
2734 maxp = usb_endpoint_maxp(&ep->desc);
2735 mult = usb_endpoint_maxp_mult(&ep->desc);
2737 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
2738 * acts like up to 3KB, but is built from smaller packets.
2741 fotg210_dbg(fotg210, "bogus qh maxpacket %d\n", maxp);
2745 /* Compute interrupt scheduling parameters just once, and save.
2746 * - allowing for high bandwidth, how many nsec/uframe are used?
2747 * - split transactions need a second CSPLIT uframe; same question
2748 * - splits also need a schedule gap (for full/low speed I/O)
2749 * - qh has a polling interval
2751 * For control/bulk requests, the HC or TT handles these.
2753 if (type == PIPE_INTERRUPT) {
2754 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
2755 is_input, 0, mult * maxp));
2756 qh->start = NO_FRAME;
2758 if (urb->dev->speed == USB_SPEED_HIGH) {
2762 qh->period = urb->interval >> 3;
2763 if (qh->period == 0 && urb->interval != 1) {
2764 /* NOTE interval 2 or 4 uframes could work.
2765 * But interval 1 scheduling is simpler, and
2766 * includes high bandwidth.
2769 } else if (qh->period > fotg210->periodic_size) {
2770 qh->period = fotg210->periodic_size;
2771 urb->interval = qh->period << 3;
2776 /* gap is f(FS/LS transfer times) */
2777 qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
2778 is_input, 0, maxp) / (125 * 1000);
2780 /* FIXME this just approximates SPLIT/CSPLIT times */
2781 if (is_input) { /* SPLIT, gap, CSPLIT+DATA */
2782 qh->c_usecs = qh->usecs + HS_USECS(0);
2783 qh->usecs = HS_USECS(1);
2784 } else { /* SPLIT+DATA, gap, CSPLIT */
2785 qh->usecs += HS_USECS(1);
2786 qh->c_usecs = HS_USECS(0);
2789 think_time = tt ? tt->think_time : 0;
2790 qh->tt_usecs = NS_TO_US(think_time +
2791 usb_calc_bus_time(urb->dev->speed,
2792 is_input, 0, maxp));
2793 qh->period = urb->interval;
2794 if (qh->period > fotg210->periodic_size) {
2795 qh->period = fotg210->periodic_size;
2796 urb->interval = qh->period;
2801 /* support for tt scheduling, and access to toggles */
2805 switch (urb->dev->speed) {
2807 info1 |= QH_LOW_SPEED;
2810 case USB_SPEED_FULL:
2811 /* EPS 0 means "full" */
2812 if (type != PIPE_INTERRUPT)
2813 info1 |= (FOTG210_TUNE_RL_TT << 28);
2814 if (type == PIPE_CONTROL) {
2815 info1 |= QH_CONTROL_EP; /* for TT */
2816 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
2818 info1 |= maxp << 16;
2820 info2 |= (FOTG210_TUNE_MULT_TT << 30);
2822 /* Some Freescale processors have an erratum in which the
2823 * port number in the queue head was 0..N-1 instead of 1..N.
2825 if (fotg210_has_fsl_portno_bug(fotg210))
2826 info2 |= (urb->dev->ttport-1) << 23;
2828 info2 |= urb->dev->ttport << 23;
2830 /* set the address of the TT; for TDI's integrated
2831 * root hub tt, leave it zeroed.
2833 if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
2834 info2 |= tt->hub->devnum << 16;
2836 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2840 case USB_SPEED_HIGH: /* no TT involved */
2841 info1 |= QH_HIGH_SPEED;
2842 if (type == PIPE_CONTROL) {
2843 info1 |= (FOTG210_TUNE_RL_HS << 28);
2844 info1 |= 64 << 16; /* usb2 fixed maxpacket */
2845 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
2846 info2 |= (FOTG210_TUNE_MULT_HS << 30);
2847 } else if (type == PIPE_BULK) {
2848 info1 |= (FOTG210_TUNE_RL_HS << 28);
2849 /* The USB spec says that high speed bulk endpoints
2850 * always use 512 byte maxpacket. But some device
2851 * vendors decided to ignore that, and MSFT is happy
2852 * to help them do so. So now people expect to use
2853 * such nonconformant devices with Linux too; sigh.
2855 info1 |= maxp << 16;
2856 info2 |= (FOTG210_TUNE_MULT_HS << 30);
2857 } else { /* PIPE_INTERRUPT */
2858 info1 |= maxp << 16;
2859 info2 |= mult << 30;
2863 fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
2866 qh_destroy(fotg210, qh);
2870 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2872 /* init as live, toggle clear, advance to dummy */
2873 qh->qh_state = QH_STATE_IDLE;
2875 hw->hw_info1 = cpu_to_hc32(fotg210, info1);
2876 hw->hw_info2 = cpu_to_hc32(fotg210, info2);
2877 qh->is_out = !is_input;
2878 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
2879 qh_refresh(fotg210, qh);
2883 static void enable_async(struct fotg210_hcd *fotg210)
2885 if (fotg210->async_count++)
2888 /* Stop waiting to turn off the async schedule */
2889 fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
2891 /* Don't start the schedule until ASS is 0 */
2892 fotg210_poll_ASS(fotg210);
2893 turn_on_io_watchdog(fotg210);
2896 static void disable_async(struct fotg210_hcd *fotg210)
2898 if (--fotg210->async_count)
2901 /* The async schedule and async_unlink list are supposed to be empty */
2902 WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
2904 /* Don't turn off the schedule until ASS is 1 */
2905 fotg210_poll_ASS(fotg210);
2908 /* move qh (and its qtds) onto async queue; maybe enable queue. */
2910 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2912 __hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
2913 struct fotg210_qh *head;
2915 /* Don't link a QH if there's a Clear-TT-Buffer pending */
2916 if (unlikely(qh->clearing_tt))
2919 WARN_ON(qh->qh_state != QH_STATE_IDLE);
2921 /* clear halt and/or toggle; and maybe recover from silicon quirk */
2922 qh_refresh(fotg210, qh);
2924 /* splice right after start */
2925 head = fotg210->async;
2926 qh->qh_next = head->qh_next;
2927 qh->hw->hw_next = head->hw->hw_next;
2930 head->qh_next.qh = qh;
2931 head->hw->hw_next = dma;
2934 qh->qh_state = QH_STATE_LINKED;
2935 /* qtd completions reported later by interrupt */
2937 enable_async(fotg210);
2940 /* For control/bulk/interrupt, return QH with these TDs appended.
2941 * Allocates and initializes the QH if necessary.
2942 * Returns null if it can't allocate a QH it needs to.
2943 * If the QH has TDs (urbs) already, that's great.
2945 static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210,
2946 struct urb *urb, struct list_head *qtd_list,
2947 int epnum, void **ptr)
2949 struct fotg210_qh *qh = NULL;
2950 __hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
2952 qh = (struct fotg210_qh *) *ptr;
2953 if (unlikely(qh == NULL)) {
2954 /* can't sleep here, we have fotg210->lock... */
2955 qh = qh_make(fotg210, urb, GFP_ATOMIC);
2958 if (likely(qh != NULL)) {
2959 struct fotg210_qtd *qtd;
2961 if (unlikely(list_empty(qtd_list)))
2964 qtd = list_entry(qtd_list->next, struct fotg210_qtd,
2967 /* control qh may need patching ... */
2968 if (unlikely(epnum == 0)) {
2969 /* usb_reset_device() briefly reverts to address 0 */
2970 if (usb_pipedevice(urb->pipe) == 0)
2971 qh->hw->hw_info1 &= ~qh_addr_mask;
2974 /* just one way to queue requests: swap with the dummy qtd.
2975 * only hc or qh_refresh() ever modify the overlay.
2977 if (likely(qtd != NULL)) {
2978 struct fotg210_qtd *dummy;
2982 /* to avoid racing the HC, use the dummy td instead of
2983 * the first td of our list (becomes new dummy). both
2984 * tds stay deactivated until we're done, when the
2985 * HC is allowed to fetch the old dummy (4.10.2).
2987 token = qtd->hw_token;
2988 qtd->hw_token = HALT_BIT(fotg210);
2992 dma = dummy->qtd_dma;
2994 dummy->qtd_dma = dma;
2996 list_del(&qtd->qtd_list);
2997 list_add(&dummy->qtd_list, qtd_list);
2998 list_splice_tail(qtd_list, &qh->qtd_list);
3000 fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
3003 /* hc must see the new dummy at list end */
3005 qtd = list_entry(qh->qtd_list.prev,
3006 struct fotg210_qtd, qtd_list);
3007 qtd->hw_next = QTD_NEXT(fotg210, dma);
3009 /* let the hc process these next qtds */
3011 dummy->hw_token = token;
3019 static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb,
3020 struct list_head *qtd_list, gfp_t mem_flags)
3023 unsigned long flags;
3024 struct fotg210_qh *qh = NULL;
3027 epnum = urb->ep->desc.bEndpointAddress;
3029 #ifdef FOTG210_URB_TRACE
3031 struct fotg210_qtd *qtd;
3033 qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
3034 fotg210_dbg(fotg210,
3035 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3036 __func__, urb->dev->devpath, urb,
3037 epnum & 0x0f, (epnum & USB_DIR_IN)
3039 urb->transfer_buffer_length,
3040 qtd, urb->ep->hcpriv);
3044 spin_lock_irqsave(&fotg210->lock, flags);
3045 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3049 rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3053 qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3054 if (unlikely(qh == NULL)) {
3055 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3060 /* Control/bulk operations through TTs don't need scheduling,
3061 * the HC and TT handle it when the TT has a buffer ready.
3063 if (likely(qh->qh_state == QH_STATE_IDLE))
3064 qh_link_async(fotg210, qh);
3066 spin_unlock_irqrestore(&fotg210->lock, flags);
3067 if (unlikely(qh == NULL))
3068 qtd_list_free(fotg210, urb, qtd_list);
3072 static void single_unlink_async(struct fotg210_hcd *fotg210,
3073 struct fotg210_qh *qh)
3075 struct fotg210_qh *prev;
3077 /* Add to the end of the list of QHs waiting for the next IAAD */
3078 qh->qh_state = QH_STATE_UNLINK;
3079 if (fotg210->async_unlink)
3080 fotg210->async_unlink_last->unlink_next = qh;
3082 fotg210->async_unlink = qh;
3083 fotg210->async_unlink_last = qh;
3085 /* Unlink it from the schedule */
3086 prev = fotg210->async;
3087 while (prev->qh_next.qh != qh)
3088 prev = prev->qh_next.qh;
3090 prev->hw->hw_next = qh->hw->hw_next;
3091 prev->qh_next = qh->qh_next;
3092 if (fotg210->qh_scan_next == qh)
3093 fotg210->qh_scan_next = qh->qh_next.qh;
3096 static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
3099 * Do nothing if an IAA cycle is already running or
3100 * if one will be started shortly.
3102 if (fotg210->async_iaa || fotg210->async_unlinking)
3105 /* Do all the waiting QHs at once */
3106 fotg210->async_iaa = fotg210->async_unlink;
3107 fotg210->async_unlink = NULL;
3109 /* If the controller isn't running, we don't have to wait for it */
3110 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
3111 if (!nested) /* Avoid recursion */
3112 end_unlink_async(fotg210);
3114 /* Otherwise start a new IAA cycle */
3115 } else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
3116 /* Make sure the unlinks are all visible to the hardware */
3119 fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
3120 &fotg210->regs->command);
3121 fotg210_readl(fotg210, &fotg210->regs->command);
3122 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
3127 /* the async qh for the qtds being unlinked are now gone from the HC */
3129 static void end_unlink_async(struct fotg210_hcd *fotg210)
3131 struct fotg210_qh *qh;
3133 /* Process the idle QHs */
3135 fotg210->async_unlinking = true;
3136 while (fotg210->async_iaa) {
3137 qh = fotg210->async_iaa;
3138 fotg210->async_iaa = qh->unlink_next;
3139 qh->unlink_next = NULL;
3141 qh->qh_state = QH_STATE_IDLE;
3142 qh->qh_next.qh = NULL;
3144 qh_completions(fotg210, qh);
3145 if (!list_empty(&qh->qtd_list) &&
3146 fotg210->rh_state == FOTG210_RH_RUNNING)
3147 qh_link_async(fotg210, qh);
3148 disable_async(fotg210);
3150 fotg210->async_unlinking = false;
3152 /* Start a new IAA cycle if any QHs are waiting for it */
3153 if (fotg210->async_unlink) {
3154 start_iaa_cycle(fotg210, true);
3155 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
3160 static void unlink_empty_async(struct fotg210_hcd *fotg210)
3162 struct fotg210_qh *qh, *next;
3163 bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
3164 bool check_unlinks_later = false;
3166 /* Unlink all the async QHs that have been empty for a timer cycle */
3167 next = fotg210->async->qh_next.qh;
3170 next = qh->qh_next.qh;
3172 if (list_empty(&qh->qtd_list) &&
3173 qh->qh_state == QH_STATE_LINKED) {
3174 if (!stopped && qh->unlink_cycle ==
3175 fotg210->async_unlink_cycle)
3176 check_unlinks_later = true;
3178 single_unlink_async(fotg210, qh);
3182 /* Start a new IAA cycle if any QHs are waiting for it */
3183 if (fotg210->async_unlink)
3184 start_iaa_cycle(fotg210, false);
3186 /* QHs that haven't been empty for long enough will be handled later */
3187 if (check_unlinks_later) {
3188 fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
3190 ++fotg210->async_unlink_cycle;
3194 /* makes sure the async qh will become idle */
3195 /* caller must own fotg210->lock */
3197 static void start_unlink_async(struct fotg210_hcd *fotg210,
3198 struct fotg210_qh *qh)
3201 * If the QH isn't linked then there's nothing we can do
3202 * unless we were called during a giveback, in which case
3203 * qh_completions() has to deal with it.
3205 if (qh->qh_state != QH_STATE_LINKED) {
3206 if (qh->qh_state == QH_STATE_COMPLETING)
3207 qh->needs_rescan = 1;
3211 single_unlink_async(fotg210, qh);
3212 start_iaa_cycle(fotg210, false);
3215 static void scan_async(struct fotg210_hcd *fotg210)
3217 struct fotg210_qh *qh;
3218 bool check_unlinks_later = false;
3220 fotg210->qh_scan_next = fotg210->async->qh_next.qh;
3221 while (fotg210->qh_scan_next) {
3222 qh = fotg210->qh_scan_next;
3223 fotg210->qh_scan_next = qh->qh_next.qh;
3225 /* clean any finished work for this qh */
3226 if (!list_empty(&qh->qtd_list)) {
3230 * Unlinks could happen here; completion reporting
3231 * drops the lock. That's why fotg210->qh_scan_next
3232 * always holds the next qh to scan; if the next qh
3233 * gets unlinked then fotg210->qh_scan_next is adjusted
3234 * in single_unlink_async().
3236 temp = qh_completions(fotg210, qh);
3237 if (qh->needs_rescan) {
3238 start_unlink_async(fotg210, qh);
3239 } else if (list_empty(&qh->qtd_list)
3240 && qh->qh_state == QH_STATE_LINKED) {
3241 qh->unlink_cycle = fotg210->async_unlink_cycle;
3242 check_unlinks_later = true;
3243 } else if (temp != 0)
3249 * Unlink empty entries, reducing DMA usage as well
3250 * as HCD schedule-scanning costs. Delay for any qh
3251 * we just scanned, there's a not-unusual case that it
3252 * doesn't stay idle for long.
3254 if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
3255 !(fotg210->enabled_hrtimer_events &
3256 BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
3257 fotg210_enable_event(fotg210,
3258 FOTG210_HRTIMER_ASYNC_UNLINKS, true);
3259 ++fotg210->async_unlink_cycle;
3262 /* EHCI scheduled transaction support: interrupt, iso, split iso
3263 * These are called "periodic" transactions in the EHCI spec.
3265 * Note that for interrupt transfers, the QH/QTD manipulation is shared
3266 * with the "asynchronous" transaction support (control/bulk transfers).
3267 * The only real difference is in how interrupt transfers are scheduled.
3269 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3270 * It keeps track of every ITD (or SITD) that's linked, and holds enough
3271 * pre-calculated schedule data to make appending to the queue be quick.
3273 static int fotg210_get_frame(struct usb_hcd *hcd);
3275 /* periodic_next_shadow - return "next" pointer on shadow list
3276 * @periodic: host pointer to qh/itd
3277 * @tag: hardware tag for type of this record
3279 static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210,
3280 union fotg210_shadow *periodic, __hc32 tag)
3282 switch (hc32_to_cpu(fotg210, tag)) {
3284 return &periodic->qh->qh_next;
3286 return &periodic->fstn->fstn_next;
3288 return &periodic->itd->itd_next;
3292 static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210,
3293 union fotg210_shadow *periodic, __hc32 tag)
3295 switch (hc32_to_cpu(fotg210, tag)) {
3296 /* our fotg210_shadow.qh is actually software part */
3298 return &periodic->qh->hw->hw_next;
3299 /* others are hw parts */
3301 return periodic->hw_next;
3305 /* caller must hold fotg210->lock */
3306 static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
3309 union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
3310 __hc32 *hw_p = &fotg210->periodic[frame];
3311 union fotg210_shadow here = *prev_p;
3313 /* find predecessor of "ptr"; hw and shadow lists are in sync */
3314 while (here.ptr && here.ptr != ptr) {
3315 prev_p = periodic_next_shadow(fotg210, prev_p,
3316 Q_NEXT_TYPE(fotg210, *hw_p));
3317 hw_p = shadow_next_periodic(fotg210, &here,
3318 Q_NEXT_TYPE(fotg210, *hw_p));
3321 /* an interrupt entry (at list end) could have been shared */
3325 /* update shadow and hardware lists ... the old "next" pointers
3326 * from ptr may still be in use, the caller updates them.
3328 *prev_p = *periodic_next_shadow(fotg210, &here,
3329 Q_NEXT_TYPE(fotg210, *hw_p));
3331 *hw_p = *shadow_next_periodic(fotg210, &here,
3332 Q_NEXT_TYPE(fotg210, *hw_p));
3335 /* how many of the uframe's 125 usecs are allocated? */
3336 static unsigned short periodic_usecs(struct fotg210_hcd *fotg210,
3337 unsigned frame, unsigned uframe)
3339 __hc32 *hw_p = &fotg210->periodic[frame];
3340 union fotg210_shadow *q = &fotg210->pshadow[frame];
3342 struct fotg210_qh_hw *hw;
3345 switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
3348 /* is it in the S-mask? */
3349 if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
3350 usecs += q->qh->usecs;
3351 /* ... or C-mask? */
3352 if (hw->hw_info2 & cpu_to_hc32(fotg210,
3354 usecs += q->qh->c_usecs;
3355 hw_p = &hw->hw_next;
3356 q = &q->qh->qh_next;
3358 /* case Q_TYPE_FSTN: */
3360 /* for "save place" FSTNs, count the relevant INTR
3361 * bandwidth from the previous frame
3363 if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
3364 fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
3366 hw_p = &q->fstn->hw_next;
3367 q = &q->fstn->fstn_next;
3370 if (q->itd->hw_transaction[uframe])
3371 usecs += q->itd->stream->usecs;
3372 hw_p = &q->itd->hw_next;
3373 q = &q->itd->itd_next;
3377 if (usecs > fotg210->uframe_periodic_max)
3378 fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
3379 frame * 8 + uframe, usecs);
3383 static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
3385 if (!dev1->tt || !dev2->tt)
3387 if (dev1->tt != dev2->tt)
3389 if (dev1->tt->multi)
3390 return dev1->ttport == dev2->ttport;
3395 /* return true iff the device's transaction translator is available
3396 * for a periodic transfer starting at the specified frame, using
3397 * all the uframes in the mask.
3399 static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period,
3400 struct usb_device *dev, unsigned frame, u32 uf_mask)
3402 if (period == 0) /* error */
3405 /* note bandwidth wastage: split never follows csplit
3406 * (different dev or endpoint) until the next uframe.
3407 * calling convention doesn't make that distinction.
3409 for (; frame < fotg210->periodic_size; frame += period) {
3410 union fotg210_shadow here;
3412 struct fotg210_qh_hw *hw;
3414 here = fotg210->pshadow[frame];
3415 type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
3417 switch (hc32_to_cpu(fotg210, type)) {
3419 type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
3420 here = here.itd->itd_next;
3424 if (same_tt(dev, here.qh->dev)) {
3427 mask = hc32_to_cpu(fotg210,
3429 /* "knows" no gap is needed */
3434 type = Q_NEXT_TYPE(fotg210, hw->hw_next);
3435 here = here.qh->qh_next;
3437 /* case Q_TYPE_FSTN: */
3439 fotg210_dbg(fotg210,
3440 "periodic frame %d bogus type %d\n",
3444 /* collision or error */
3453 static void enable_periodic(struct fotg210_hcd *fotg210)
3455 if (fotg210->periodic_count++)
3458 /* Stop waiting to turn off the periodic schedule */
3459 fotg210->enabled_hrtimer_events &=
3460 ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
3462 /* Don't start the schedule until PSS is 0 */
3463 fotg210_poll_PSS(fotg210);
3464 turn_on_io_watchdog(fotg210);
3467 static void disable_periodic(struct fotg210_hcd *fotg210)
3469 if (--fotg210->periodic_count)
3472 /* Don't turn off the schedule until PSS is 1 */
3473 fotg210_poll_PSS(fotg210);
3476 /* periodic schedule slots have iso tds (normal or split) first, then a
3477 * sparse tree for active interrupt transfers.
3479 * this just links in a qh; caller guarantees uframe masks are set right.
3480 * no FSTN support (yet; fotg210 0.96+)
3482 static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3485 unsigned period = qh->period;
3487 dev_dbg(&qh->dev->dev,
3488 "link qh%d-%04x/%p start %d [%d/%d us]\n", period,
3489 hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3490 (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3493 /* high bandwidth, or otherwise every microframe */
3497 for (i = qh->start; i < fotg210->periodic_size; i += period) {
3498 union fotg210_shadow *prev = &fotg210->pshadow[i];
3499 __hc32 *hw_p = &fotg210->periodic[i];
3500 union fotg210_shadow here = *prev;
3503 /* skip the iso nodes at list head */
3505 type = Q_NEXT_TYPE(fotg210, *hw_p);
3506 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
3508 prev = periodic_next_shadow(fotg210, prev, type);
3509 hw_p = shadow_next_periodic(fotg210, &here, type);
3513 /* sorting each branch by period (slow-->fast)
3514 * enables sharing interior tree nodes
3516 while (here.ptr && qh != here.qh) {
3517 if (qh->period > here.qh->period)
3519 prev = &here.qh->qh_next;
3520 hw_p = &here.qh->hw->hw_next;
3523 /* link in this qh, unless some earlier pass did that */
3524 if (qh != here.qh) {
3527 qh->hw->hw_next = *hw_p;
3530 *hw_p = QH_NEXT(fotg210, qh->qh_dma);
3533 qh->qh_state = QH_STATE_LINKED;
3536 /* update per-qh bandwidth for usbfs */
3537 fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
3538 ? ((qh->usecs + qh->c_usecs) / qh->period)
3541 list_add(&qh->intr_node, &fotg210->intr_qh_list);
3543 /* maybe enable periodic schedule processing */
3544 ++fotg210->intr_count;
3545 enable_periodic(fotg210);
3548 static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
3549 struct fotg210_qh *qh)
3555 * If qh is for a low/full-speed device, simply unlinking it
3556 * could interfere with an ongoing split transaction. To unlink
3557 * it safely would require setting the QH_INACTIVATE bit and
3558 * waiting at least one frame, as described in EHCI 4.12.2.5.
3560 * We won't bother with any of this. Instead, we assume that the
3561 * only reason for unlinking an interrupt QH while the current URB
3562 * is still active is to dequeue all the URBs (flush the whole
3565 * If rebalancing the periodic schedule is ever implemented, this
3566 * approach will no longer be valid.
3569 /* high bandwidth, or otherwise part of every microframe */
3570 period = qh->period;
3574 for (i = qh->start; i < fotg210->periodic_size; i += period)
3575 periodic_unlink(fotg210, i, qh);
3577 /* update per-qh bandwidth for usbfs */
3578 fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
3579 ? ((qh->usecs + qh->c_usecs) / qh->period)
3582 dev_dbg(&qh->dev->dev,
3583 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3584 qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3585 (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3588 /* qh->qh_next still "live" to HC */
3589 qh->qh_state = QH_STATE_UNLINK;
3590 qh->qh_next.ptr = NULL;
3592 if (fotg210->qh_scan_next == qh)
3593 fotg210->qh_scan_next = list_entry(qh->intr_node.next,
3594 struct fotg210_qh, intr_node);
3595 list_del(&qh->intr_node);
3598 static void start_unlink_intr(struct fotg210_hcd *fotg210,
3599 struct fotg210_qh *qh)
3601 /* If the QH isn't linked then there's nothing we can do
3602 * unless we were called during a giveback, in which case
3603 * qh_completions() has to deal with it.
3605 if (qh->qh_state != QH_STATE_LINKED) {
3606 if (qh->qh_state == QH_STATE_COMPLETING)
3607 qh->needs_rescan = 1;
3611 qh_unlink_periodic(fotg210, qh);
3613 /* Make sure the unlinks are visible before starting the timer */
3617 * The EHCI spec doesn't say how long it takes the controller to
3618 * stop accessing an unlinked interrupt QH. The timer delay is
3619 * 9 uframes; presumably that will be long enough.
3621 qh->unlink_cycle = fotg210->intr_unlink_cycle;
3623 /* New entries go at the end of the intr_unlink list */
3624 if (fotg210->intr_unlink)
3625 fotg210->intr_unlink_last->unlink_next = qh;
3627 fotg210->intr_unlink = qh;
3628 fotg210->intr_unlink_last = qh;
3630 if (fotg210->intr_unlinking)
3631 ; /* Avoid recursive calls */
3632 else if (fotg210->rh_state < FOTG210_RH_RUNNING)
3633 fotg210_handle_intr_unlinks(fotg210);
3634 else if (fotg210->intr_unlink == qh) {
3635 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
3637 ++fotg210->intr_unlink_cycle;
3641 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3643 struct fotg210_qh_hw *hw = qh->hw;
3646 qh->qh_state = QH_STATE_IDLE;
3647 hw->hw_next = FOTG210_LIST_END(fotg210);
3649 qh_completions(fotg210, qh);
3651 /* reschedule QH iff another request is queued */
3652 if (!list_empty(&qh->qtd_list) &&
3653 fotg210->rh_state == FOTG210_RH_RUNNING) {
3654 rc = qh_schedule(fotg210, qh);
3656 /* An error here likely indicates handshake failure
3657 * or no space left in the schedule. Neither fault
3658 * should happen often ...
3660 * FIXME kill the now-dysfunctional queued urbs
3663 fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
3667 /* maybe turn off periodic schedule */
3668 --fotg210->intr_count;
3669 disable_periodic(fotg210);
3672 static int check_period(struct fotg210_hcd *fotg210, unsigned frame,
3673 unsigned uframe, unsigned period, unsigned usecs)
3677 /* complete split running into next frame?
3678 * given FSTN support, we could sometimes check...
3683 /* convert "usecs we need" to "max already claimed" */
3684 usecs = fotg210->uframe_periodic_max - usecs;
3686 /* we "know" 2 and 4 uframe intervals were rejected; so
3687 * for period 0, check _every_ microframe in the schedule.
3689 if (unlikely(period == 0)) {
3691 for (uframe = 0; uframe < 7; uframe++) {
3692 claimed = periodic_usecs(fotg210, frame,
3694 if (claimed > usecs)
3697 } while ((frame += 1) < fotg210->periodic_size);
3699 /* just check the specified uframe, at that period */
3702 claimed = periodic_usecs(fotg210, frame, uframe);
3703 if (claimed > usecs)
3705 } while ((frame += period) < fotg210->periodic_size);
3712 static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame,
3713 unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp)
3715 int retval = -ENOSPC;
3718 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
3721 if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
3729 /* Make sure this tt's buffer is also available for CSPLITs.
3730 * We pessimize a bit; probably the typical full speed case
3731 * doesn't need the second CSPLIT.
3733 * NOTE: both SPLIT and CSPLIT could be checked in just
3736 mask = 0x03 << (uframe + qh->gap_uf);
3737 *c_maskp = cpu_to_hc32(fotg210, mask << 8);
3739 mask |= 1 << uframe;
3740 if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
3741 if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
3742 qh->period, qh->c_usecs))
3744 if (!check_period(fotg210, frame, uframe + qh->gap_uf,
3745 qh->period, qh->c_usecs))
3753 /* "first fit" scheduling policy used the first time through,
3754 * or when the previous schedule slot can't be re-used.
3756 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3761 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
3762 struct fotg210_qh_hw *hw = qh->hw;
3764 qh_refresh(fotg210, qh);
3765 hw->hw_next = FOTG210_LIST_END(fotg210);
3768 /* reuse the previous schedule slots, if we can */
3769 if (frame < qh->period) {
3770 uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
3771 status = check_intr_schedule(fotg210, frame, --uframe,
3779 /* else scan the schedule to find a group of slots such that all
3780 * uframes have enough periodic bandwidth available.
3783 /* "normal" case, uframing flexible except with splits */
3787 for (i = qh->period; status && i > 0; --i) {
3788 frame = ++fotg210->random_frame % qh->period;
3789 for (uframe = 0; uframe < 8; uframe++) {
3790 status = check_intr_schedule(fotg210,
3798 /* qh->period == 0 means every uframe */
3801 status = check_intr_schedule(fotg210, 0, 0, qh,
3808 /* reset S-frame and (maybe) C-frame masks */
3809 hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
3810 hw->hw_info2 |= qh->period
3811 ? cpu_to_hc32(fotg210, 1 << uframe)
3812 : cpu_to_hc32(fotg210, QH_SMASK);
3813 hw->hw_info2 |= c_mask;
3815 fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
3817 /* stuff into the periodic schedule */
3818 qh_link_periodic(fotg210, qh);
3823 static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb,
3824 struct list_head *qtd_list, gfp_t mem_flags)
3827 unsigned long flags;
3828 struct fotg210_qh *qh;
3830 struct list_head empty;
3832 /* get endpoint and transfer/schedule data */
3833 epnum = urb->ep->desc.bEndpointAddress;
3835 spin_lock_irqsave(&fotg210->lock, flags);
3837 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3838 status = -ESHUTDOWN;
3839 goto done_not_linked;
3841 status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3842 if (unlikely(status))
3843 goto done_not_linked;
3845 /* get qh and force any scheduling errors */
3846 INIT_LIST_HEAD(&empty);
3847 qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
3852 if (qh->qh_state == QH_STATE_IDLE) {
3853 status = qh_schedule(fotg210, qh);
3858 /* then queue the urb's tds to the qh */
3859 qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3862 /* ... update usbfs periodic stats */
3863 fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
3866 if (unlikely(status))
3867 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3869 spin_unlock_irqrestore(&fotg210->lock, flags);
3871 qtd_list_free(fotg210, urb, qtd_list);
3876 static void scan_intr(struct fotg210_hcd *fotg210)
3878 struct fotg210_qh *qh;
3880 list_for_each_entry_safe(qh, fotg210->qh_scan_next,
3881 &fotg210->intr_qh_list, intr_node) {
3883 /* clean any finished work for this qh */
3884 if (!list_empty(&qh->qtd_list)) {
3888 * Unlinks could happen here; completion reporting
3889 * drops the lock. That's why fotg210->qh_scan_next
3890 * always holds the next qh to scan; if the next qh
3891 * gets unlinked then fotg210->qh_scan_next is adjusted
3892 * in qh_unlink_periodic().
3894 temp = qh_completions(fotg210, qh);
3895 if (unlikely(qh->needs_rescan ||
3896 (list_empty(&qh->qtd_list) &&
3897 qh->qh_state == QH_STATE_LINKED)))
3898 start_unlink_intr(fotg210, qh);
3905 /* fotg210_iso_stream ops work with both ITD and SITD */
3907 static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags)
3909 struct fotg210_iso_stream *stream;
3911 stream = kzalloc(sizeof(*stream), mem_flags);
3912 if (likely(stream != NULL)) {
3913 INIT_LIST_HEAD(&stream->td_list);
3914 INIT_LIST_HEAD(&stream->free_list);
3915 stream->next_uframe = -1;
3920 static void iso_stream_init(struct fotg210_hcd *fotg210,
3921 struct fotg210_iso_stream *stream, struct usb_device *dev,
3922 int pipe, unsigned interval)
3925 unsigned epnum, maxp;
3929 struct usb_host_endpoint *ep;
3932 * this might be a "high bandwidth" highspeed endpoint,
3933 * as encoded in the ep descriptor's wMaxPacket field
3935 epnum = usb_pipeendpoint(pipe);
3936 is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
3937 ep = usb_pipe_endpoint(dev, pipe);
3938 maxp = usb_endpoint_maxp(&ep->desc);
3944 multi = usb_endpoint_maxp_mult(&ep->desc);
3948 stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
3949 stream->buf1 = cpu_to_hc32(fotg210, buf1);
3950 stream->buf2 = cpu_to_hc32(fotg210, multi);
3952 /* usbfs wants to report the average usecs per frame tied up
3953 * when transfers on this endpoint are scheduled ...
3955 if (dev->speed == USB_SPEED_FULL) {
3957 stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
3958 is_input, 1, maxp));
3961 stream->highspeed = 1;
3962 stream->usecs = HS_USECS_ISO(maxp);
3964 bandwidth = stream->usecs * 8;
3965 bandwidth /= interval;
3967 stream->bandwidth = bandwidth;
3969 stream->bEndpointAddress = is_input | epnum;
3970 stream->interval = interval;
3971 stream->maxp = maxp;
3974 static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210,
3978 struct fotg210_iso_stream *stream;
3979 struct usb_host_endpoint *ep;
3980 unsigned long flags;
3982 epnum = usb_pipeendpoint(urb->pipe);
3983 if (usb_pipein(urb->pipe))
3984 ep = urb->dev->ep_in[epnum];
3986 ep = urb->dev->ep_out[epnum];
3988 spin_lock_irqsave(&fotg210->lock, flags);
3989 stream = ep->hcpriv;
3991 if (unlikely(stream == NULL)) {
3992 stream = iso_stream_alloc(GFP_ATOMIC);
3993 if (likely(stream != NULL)) {
3994 ep->hcpriv = stream;
3996 iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
4000 /* if dev->ep[epnum] is a QH, hw is set */
4001 } else if (unlikely(stream->hw != NULL)) {
4002 fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
4003 urb->dev->devpath, epnum,
4004 usb_pipein(urb->pipe) ? "in" : "out");
4008 spin_unlock_irqrestore(&fotg210->lock, flags);
4012 /* fotg210_iso_sched ops can be ITD-only or SITD-only */
4014 static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets,
4017 struct fotg210_iso_sched *iso_sched;
4018 int size = sizeof(*iso_sched);
4020 size += packets * sizeof(struct fotg210_iso_packet);
4021 iso_sched = kzalloc(size, mem_flags);
4022 if (likely(iso_sched != NULL))
4023 INIT_LIST_HEAD(&iso_sched->td_list);
4028 static inline void itd_sched_init(struct fotg210_hcd *fotg210,
4029 struct fotg210_iso_sched *iso_sched,
4030 struct fotg210_iso_stream *stream, struct urb *urb)
4033 dma_addr_t dma = urb->transfer_dma;
4035 /* how many uframes are needed for these transfers */
4036 iso_sched->span = urb->number_of_packets * stream->interval;
4038 /* figure out per-uframe itd fields that we'll need later
4039 * when we fit new itds into the schedule.
4041 for (i = 0; i < urb->number_of_packets; i++) {
4042 struct fotg210_iso_packet *uframe = &iso_sched->packet[i];
4047 length = urb->iso_frame_desc[i].length;
4048 buf = dma + urb->iso_frame_desc[i].offset;
4050 trans = FOTG210_ISOC_ACTIVE;
4051 trans |= buf & 0x0fff;
4052 if (unlikely(((i + 1) == urb->number_of_packets))
4053 && !(urb->transfer_flags & URB_NO_INTERRUPT))
4054 trans |= FOTG210_ITD_IOC;
4055 trans |= length << 16;
4056 uframe->transaction = cpu_to_hc32(fotg210, trans);
4058 /* might need to cross a buffer page within a uframe */
4059 uframe->bufp = (buf & ~(u64)0x0fff);
4061 if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
4066 static void iso_sched_free(struct fotg210_iso_stream *stream,
4067 struct fotg210_iso_sched *iso_sched)
4071 /* caller must hold fotg210->lock!*/
4072 list_splice(&iso_sched->td_list, &stream->free_list);
4076 static int itd_urb_transaction(struct fotg210_iso_stream *stream,
4077 struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags)
4079 struct fotg210_itd *itd;
4083 struct fotg210_iso_sched *sched;
4084 unsigned long flags;
4086 sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
4087 if (unlikely(sched == NULL))
4090 itd_sched_init(fotg210, sched, stream, urb);
4092 if (urb->interval < 8)
4093 num_itds = 1 + (sched->span + 7) / 8;
4095 num_itds = urb->number_of_packets;
4097 /* allocate/init ITDs */
4098 spin_lock_irqsave(&fotg210->lock, flags);
4099 for (i = 0; i < num_itds; i++) {
4102 * Use iTDs from the free list, but not iTDs that may
4103 * still be in use by the hardware.
4105 if (likely(!list_empty(&stream->free_list))) {
4106 itd = list_first_entry(&stream->free_list,
4107 struct fotg210_itd, itd_list);
4108 if (itd->frame == fotg210->now_frame)
4110 list_del(&itd->itd_list);
4111 itd_dma = itd->itd_dma;
4114 spin_unlock_irqrestore(&fotg210->lock, flags);
4115 itd = dma_pool_alloc(fotg210->itd_pool, mem_flags,
4117 spin_lock_irqsave(&fotg210->lock, flags);
4119 iso_sched_free(stream, sched);
4120 spin_unlock_irqrestore(&fotg210->lock, flags);
4125 memset(itd, 0, sizeof(*itd));
4126 itd->itd_dma = itd_dma;
4127 list_add(&itd->itd_list, &sched->td_list);
4129 spin_unlock_irqrestore(&fotg210->lock, flags);
4131 /* temporarily store schedule info in hcpriv */
4132 urb->hcpriv = sched;
4133 urb->error_count = 0;
4137 static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe,
4138 u8 usecs, u32 period)
4142 /* can't commit more than uframe_periodic_max usec */
4143 if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
4144 > (fotg210->uframe_periodic_max - usecs))
4147 /* we know urb->interval is 2^N uframes */
4149 } while (uframe < mod);
4153 /* This scheduler plans almost as far into the future as it has actual
4154 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to
4155 * "as small as possible" to be cache-friendlier.) That limits the size
4156 * transfers you can stream reliably; avoid more than 64 msec per urb.
4157 * Also avoid queue depths of less than fotg210's worst irq latency (affected
4158 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4159 * and other factors); or more than about 230 msec total (for portability,
4160 * given FOTG210_TUNE_FLS and the slop). Or, write a smarter scheduler!
4163 #define SCHEDULE_SLOP 80 /* microframes */
4165 static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb,
4166 struct fotg210_iso_stream *stream)
4168 u32 now, next, start, period, span;
4170 unsigned mod = fotg210->periodic_size << 3;
4171 struct fotg210_iso_sched *sched = urb->hcpriv;
4173 period = urb->interval;
4176 if (span > mod - SCHEDULE_SLOP) {
4177 fotg210_dbg(fotg210, "iso request %p too long\n", urb);
4182 now = fotg210_read_frame_index(fotg210) & (mod - 1);
4184 /* Typical case: reuse current schedule, stream is still active.
4185 * Hopefully there are no gaps from the host falling behind
4186 * (irq delays etc), but if there are we'll take the next
4187 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4189 if (likely(!list_empty(&stream->td_list))) {
4192 /* For high speed devices, allow scheduling within the
4193 * isochronous scheduling threshold. For full speed devices
4194 * and Intel PCI-based controllers, don't (work around for
4197 if (!stream->highspeed && fotg210->fs_i_thresh)
4198 next = now + fotg210->i_thresh;
4202 /* Fell behind (by up to twice the slop amount)?
4203 * We decide based on the time of the last currently-scheduled
4204 * slot, not the time of the next available slot.
4206 excess = (stream->next_uframe - period - next) & (mod - 1);
4207 if (excess >= mod - 2 * SCHEDULE_SLOP)
4208 start = next + excess - mod + period *
4209 DIV_ROUND_UP(mod - excess, period);
4211 start = next + excess + period;
4212 if (start - now >= mod) {
4213 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4214 urb, start - now - period, period,
4221 /* need to schedule; when's the next (u)frame we could start?
4222 * this is bigger than fotg210->i_thresh allows; scheduling itself
4223 * isn't free, the slop should handle reasonably slow cpus. it
4224 * can also help high bandwidth if the dma and irq loads don't
4225 * jump until after the queue is primed.
4230 start = SCHEDULE_SLOP + (now & ~0x07);
4232 /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */
4234 /* find a uframe slot with enough bandwidth.
4235 * Early uframes are more precious because full-speed
4236 * iso IN transfers can't use late uframes,
4237 * and therefore they should be allocated last.
4243 /* check schedule: enough space? */
4244 if (itd_slot_ok(fotg210, mod, start,
4245 stream->usecs, period))
4247 } while (start > next && !done);
4249 /* no room in the schedule */
4251 fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
4252 urb, now, now + mod);
4258 /* Tried to schedule too far into the future? */
4259 if (unlikely(start - now + span - period >=
4260 mod - 2 * SCHEDULE_SLOP)) {
4261 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4262 urb, start - now, span - period,
4263 mod - 2 * SCHEDULE_SLOP);
4268 stream->next_uframe = start & (mod - 1);
4270 /* report high speed start in uframes; full speed, in frames */
4271 urb->start_frame = stream->next_uframe;
4272 if (!stream->highspeed)
4273 urb->start_frame >>= 3;
4275 /* Make sure scan_isoc() sees these */
4276 if (fotg210->isoc_count == 0)
4277 fotg210->next_frame = now >> 3;
4281 iso_sched_free(stream, sched);
4286 static inline void itd_init(struct fotg210_hcd *fotg210,
4287 struct fotg210_iso_stream *stream, struct fotg210_itd *itd)
4291 /* it's been recently zeroed */
4292 itd->hw_next = FOTG210_LIST_END(fotg210);
4293 itd->hw_bufp[0] = stream->buf0;
4294 itd->hw_bufp[1] = stream->buf1;
4295 itd->hw_bufp[2] = stream->buf2;
4297 for (i = 0; i < 8; i++)
4300 /* All other fields are filled when scheduling */
4303 static inline void itd_patch(struct fotg210_hcd *fotg210,
4304 struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched,
4305 unsigned index, u16 uframe)
4307 struct fotg210_iso_packet *uf = &iso_sched->packet[index];
4308 unsigned pg = itd->pg;
4311 itd->index[uframe] = index;
4313 itd->hw_transaction[uframe] = uf->transaction;
4314 itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
4315 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
4316 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
4318 /* iso_frame_desc[].offset must be strictly increasing */
4319 if (unlikely(uf->cross)) {
4320 u64 bufp = uf->bufp + 4096;
4323 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
4324 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
4328 static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame,
4329 struct fotg210_itd *itd)
4331 union fotg210_shadow *prev = &fotg210->pshadow[frame];
4332 __hc32 *hw_p = &fotg210->periodic[frame];
4333 union fotg210_shadow here = *prev;
4336 /* skip any iso nodes which might belong to previous microframes */
4338 type = Q_NEXT_TYPE(fotg210, *hw_p);
4339 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
4341 prev = periodic_next_shadow(fotg210, prev, type);
4342 hw_p = shadow_next_periodic(fotg210, &here, type);
4346 itd->itd_next = here;
4347 itd->hw_next = *hw_p;
4351 *hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
4354 /* fit urb's itds into the selected schedule slot; activate as needed */
4355 static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb,
4356 unsigned mod, struct fotg210_iso_stream *stream)
4359 unsigned next_uframe, uframe, frame;
4360 struct fotg210_iso_sched *iso_sched = urb->hcpriv;
4361 struct fotg210_itd *itd;
4363 next_uframe = stream->next_uframe & (mod - 1);
4365 if (unlikely(list_empty(&stream->td_list))) {
4366 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4367 += stream->bandwidth;
4368 fotg210_dbg(fotg210,
4369 "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4370 urb->dev->devpath, stream->bEndpointAddress & 0x0f,
4371 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
4373 next_uframe >> 3, next_uframe & 0x7);
4376 /* fill iTDs uframe by uframe */
4377 for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
4379 /* ASSERT: we have all necessary itds */
4381 /* ASSERT: no itds for this endpoint in this uframe */
4383 itd = list_entry(iso_sched->td_list.next,
4384 struct fotg210_itd, itd_list);
4385 list_move_tail(&itd->itd_list, &stream->td_list);
4386 itd->stream = stream;
4388 itd_init(fotg210, stream, itd);
4391 uframe = next_uframe & 0x07;
4392 frame = next_uframe >> 3;
4394 itd_patch(fotg210, itd, iso_sched, packet, uframe);
4396 next_uframe += stream->interval;
4397 next_uframe &= mod - 1;
4400 /* link completed itds into the schedule */
4401 if (((next_uframe >> 3) != frame)
4402 || packet == urb->number_of_packets) {
4403 itd_link(fotg210, frame & (fotg210->periodic_size - 1),
4408 stream->next_uframe = next_uframe;
4410 /* don't need that schedule data any more */
4411 iso_sched_free(stream, iso_sched);
4414 ++fotg210->isoc_count;
4415 enable_periodic(fotg210);
4418 #define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4419 FOTG210_ISOC_XACTERR)
4421 /* Process and recycle a completed ITD. Return true iff its urb completed,
4422 * and hence its completion callback probably added things to the hardware
4425 * Note that we carefully avoid recycling this descriptor until after any
4426 * completion callback runs, so that it won't be reused quickly. That is,
4427 * assuming (a) no more than two urbs per frame on this endpoint, and also
4428 * (b) only this endpoint's completions submit URBs. It seems some silicon
4429 * corrupts things if you reuse completed descriptors very quickly...
4431 static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
4433 struct urb *urb = itd->urb;
4434 struct usb_iso_packet_descriptor *desc;
4438 struct fotg210_iso_stream *stream = itd->stream;
4439 struct usb_device *dev;
4440 bool retval = false;
4442 /* for each uframe with a packet */
4443 for (uframe = 0; uframe < 8; uframe++) {
4444 if (likely(itd->index[uframe] == -1))
4446 urb_index = itd->index[uframe];
4447 desc = &urb->iso_frame_desc[urb_index];
4449 t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
4450 itd->hw_transaction[uframe] = 0;
4452 /* report transfer status */
4453 if (unlikely(t & ISO_ERRS)) {
4455 if (t & FOTG210_ISOC_BUF_ERR)
4456 desc->status = usb_pipein(urb->pipe)
4457 ? -ENOSR /* hc couldn't read */
4458 : -ECOMM; /* hc couldn't write */
4459 else if (t & FOTG210_ISOC_BABBLE)
4460 desc->status = -EOVERFLOW;
4461 else /* (t & FOTG210_ISOC_XACTERR) */
4462 desc->status = -EPROTO;
4464 /* HC need not update length with this error */
4465 if (!(t & FOTG210_ISOC_BABBLE)) {
4466 desc->actual_length = FOTG210_ITD_LENGTH(t);
4467 urb->actual_length += desc->actual_length;
4469 } else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
4471 desc->actual_length = FOTG210_ITD_LENGTH(t);
4472 urb->actual_length += desc->actual_length;
4474 /* URB was too late */
4475 desc->status = -EXDEV;
4479 /* handle completion now? */
4480 if (likely((urb_index + 1) != urb->number_of_packets))
4483 /* ASSERT: it's really the last itd for this urb
4484 * list_for_each_entry (itd, &stream->td_list, itd_list)
4485 * BUG_ON (itd->urb == urb);
4488 /* give urb back to the driver; completion often (re)submits */
4490 fotg210_urb_done(fotg210, urb, 0);
4494 --fotg210->isoc_count;
4495 disable_periodic(fotg210);
4497 if (unlikely(list_is_singular(&stream->td_list))) {
4498 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4499 -= stream->bandwidth;
4500 fotg210_dbg(fotg210,
4501 "deschedule devp %s ep%d%s-iso\n",
4502 dev->devpath, stream->bEndpointAddress & 0x0f,
4503 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
4509 /* Add to the end of the free list for later reuse */
4510 list_move_tail(&itd->itd_list, &stream->free_list);
4512 /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4513 if (list_empty(&stream->td_list)) {
4514 list_splice_tail_init(&stream->free_list,
4515 &fotg210->cached_itd_list);
4516 start_free_itds(fotg210);
4522 static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
4525 int status = -EINVAL;
4526 unsigned long flags;
4527 struct fotg210_iso_stream *stream;
4529 /* Get iso_stream head */
4530 stream = iso_stream_find(fotg210, urb);
4531 if (unlikely(stream == NULL)) {
4532 fotg210_dbg(fotg210, "can't get iso stream\n");
4535 if (unlikely(urb->interval != stream->interval &&
4536 fotg210_port_speed(fotg210, 0) ==
4537 USB_PORT_STAT_HIGH_SPEED)) {
4538 fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
4539 stream->interval, urb->interval);
4543 #ifdef FOTG210_URB_TRACE
4544 fotg210_dbg(fotg210,
4545 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4546 __func__, urb->dev->devpath, urb,
4547 usb_pipeendpoint(urb->pipe),
4548 usb_pipein(urb->pipe) ? "in" : "out",
4549 urb->transfer_buffer_length,
4550 urb->number_of_packets, urb->interval,
4554 /* allocate ITDs w/o locking anything */
4555 status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
4556 if (unlikely(status < 0)) {
4557 fotg210_dbg(fotg210, "can't init itds\n");
4561 /* schedule ... need to lock */
4562 spin_lock_irqsave(&fotg210->lock, flags);
4563 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4564 status = -ESHUTDOWN;
4565 goto done_not_linked;
4567 status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4568 if (unlikely(status))
4569 goto done_not_linked;
4570 status = iso_stream_schedule(fotg210, urb, stream);
4571 if (likely(status == 0))
4572 itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
4574 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4576 spin_unlock_irqrestore(&fotg210->lock, flags);
4581 static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame,
4582 unsigned now_frame, bool live)
4586 union fotg210_shadow q, *q_p;
4589 /* scan each element in frame's queue for completions */
4590 q_p = &fotg210->pshadow[frame];
4591 hw_p = &fotg210->periodic[frame];
4593 type = Q_NEXT_TYPE(fotg210, *hw_p);
4597 switch (hc32_to_cpu(fotg210, type)) {
4599 /* If this ITD is still active, leave it for
4600 * later processing ... check the next entry.
4601 * No need to check for activity unless the
4604 if (frame == now_frame && live) {
4606 for (uf = 0; uf < 8; uf++) {
4607 if (q.itd->hw_transaction[uf] &
4608 ITD_ACTIVE(fotg210))
4612 q_p = &q.itd->itd_next;
4613 hw_p = &q.itd->hw_next;
4614 type = Q_NEXT_TYPE(fotg210,
4621 /* Take finished ITDs out of the schedule
4622 * and process them: recycle, maybe report
4623 * URB completion. HC won't cache the
4624 * pointer for much longer, if at all.
4626 *q_p = q.itd->itd_next;
4627 *hw_p = q.itd->hw_next;
4628 type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
4630 modified = itd_complete(fotg210, q.itd);
4634 fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
4635 type, frame, q.ptr);
4639 /* End of the iTDs and siTDs */
4644 /* assume completion callbacks modify the queue */
4645 if (unlikely(modified && fotg210->isoc_count > 0))
4651 static void scan_isoc(struct fotg210_hcd *fotg210)
4653 unsigned uf, now_frame, frame, ret;
4654 unsigned fmask = fotg210->periodic_size - 1;
4658 * When running, scan from last scan point up to "now"
4659 * else clean up by scanning everything that's left.
4660 * Touches as few pages as possible: cache-friendly.
4662 if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
4663 uf = fotg210_read_frame_index(fotg210);
4664 now_frame = (uf >> 3) & fmask;
4667 now_frame = (fotg210->next_frame - 1) & fmask;
4670 fotg210->now_frame = now_frame;
4672 frame = fotg210->next_frame;
4676 ret = scan_frame_queue(fotg210, frame,
4679 /* Stop when we have reached the current frame */
4680 if (frame == now_frame)
4682 frame = (frame + 1) & fmask;
4684 fotg210->next_frame = now_frame;
4687 /* Display / Set uframe_periodic_max
4689 static ssize_t uframe_periodic_max_show(struct device *dev,
4690 struct device_attribute *attr, char *buf)
4692 struct fotg210_hcd *fotg210;
4695 fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4696 n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max);
4701 static ssize_t uframe_periodic_max_store(struct device *dev,
4702 struct device_attribute *attr, const char *buf, size_t count)
4704 struct fotg210_hcd *fotg210;
4705 unsigned uframe_periodic_max;
4706 unsigned frame, uframe;
4707 unsigned short allocated_max;
4708 unsigned long flags;
4711 fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4712 if (kstrtouint(buf, 0, &uframe_periodic_max) < 0)
4715 if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
4716 fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
4717 uframe_periodic_max);
4724 * lock, so that our checking does not race with possible periodic
4725 * bandwidth allocation through submitting new urbs.
4727 spin_lock_irqsave(&fotg210->lock, flags);
4730 * for request to decrease max periodic bandwidth, we have to check
4731 * every microframe in the schedule to see whether the decrease is
4734 if (uframe_periodic_max < fotg210->uframe_periodic_max) {
4737 for (frame = 0; frame < fotg210->periodic_size; ++frame)
4738 for (uframe = 0; uframe < 7; ++uframe)
4739 allocated_max = max(allocated_max,
4740 periodic_usecs(fotg210, frame,
4743 if (allocated_max > uframe_periodic_max) {
4744 fotg210_info(fotg210,
4745 "cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
4746 allocated_max, uframe_periodic_max);
4751 /* increasing is always ok */
4753 fotg210_info(fotg210,
4754 "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4755 100 * uframe_periodic_max/125, uframe_periodic_max);
4757 if (uframe_periodic_max != 100)
4758 fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
4760 fotg210->uframe_periodic_max = uframe_periodic_max;
4764 spin_unlock_irqrestore(&fotg210->lock, flags);
4768 static DEVICE_ATTR_RW(uframe_periodic_max);
4770 static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
4772 struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4774 return device_create_file(controller, &dev_attr_uframe_periodic_max);
4777 static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
4779 struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4781 device_remove_file(controller, &dev_attr_uframe_periodic_max);
4783 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
4784 * The firmware seems to think that powering off is a wakeup event!
4785 * This routine turns off remote wakeup and everything else, on all ports.
4787 static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
4789 u32 __iomem *status_reg = &fotg210->regs->port_status;
4791 fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
4794 /* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
4795 * Must be called with interrupts enabled and the lock not held.
4797 static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
4799 fotg210_halt(fotg210);
4801 spin_lock_irq(&fotg210->lock);
4802 fotg210->rh_state = FOTG210_RH_HALTED;
4803 fotg210_turn_off_all_ports(fotg210);
4804 spin_unlock_irq(&fotg210->lock);
4807 /* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
4808 * This forcibly disables dma and IRQs, helping kexec and other cases
4809 * where the next system software may expect clean state.
4811 static void fotg210_shutdown(struct usb_hcd *hcd)
4813 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4815 spin_lock_irq(&fotg210->lock);
4816 fotg210->shutdown = true;
4817 fotg210->rh_state = FOTG210_RH_STOPPING;
4818 fotg210->enabled_hrtimer_events = 0;
4819 spin_unlock_irq(&fotg210->lock);
4821 fotg210_silence_controller(fotg210);
4823 hrtimer_cancel(&fotg210->hrtimer);
4826 /* fotg210_work is called from some interrupts, timers, and so on.
4827 * it calls driver completion functions, after dropping fotg210->lock.
4829 static void fotg210_work(struct fotg210_hcd *fotg210)
4831 /* another CPU may drop fotg210->lock during a schedule scan while
4832 * it reports urb completions. this flag guards against bogus
4833 * attempts at re-entrant schedule scanning.
4835 if (fotg210->scanning) {
4836 fotg210->need_rescan = true;
4839 fotg210->scanning = true;
4842 fotg210->need_rescan = false;
4843 if (fotg210->async_count)
4844 scan_async(fotg210);
4845 if (fotg210->intr_count > 0)
4847 if (fotg210->isoc_count > 0)
4849 if (fotg210->need_rescan)
4851 fotg210->scanning = false;
4853 /* the IO watchdog guards against hardware or driver bugs that
4854 * misplace IRQs, and should let us run completely without IRQs.
4855 * such lossage has been observed on both VT6202 and VT8235.
4857 turn_on_io_watchdog(fotg210);
4860 /* Called when the fotg210_hcd module is removed.
4862 static void fotg210_stop(struct usb_hcd *hcd)
4864 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4866 fotg210_dbg(fotg210, "stop\n");
4868 /* no more interrupts ... */
4870 spin_lock_irq(&fotg210->lock);
4871 fotg210->enabled_hrtimer_events = 0;
4872 spin_unlock_irq(&fotg210->lock);
4874 fotg210_quiesce(fotg210);
4875 fotg210_silence_controller(fotg210);
4876 fotg210_reset(fotg210);
4878 hrtimer_cancel(&fotg210->hrtimer);
4879 remove_sysfs_files(fotg210);
4880 remove_debug_files(fotg210);
4882 /* root hub is shut down separately (first, when possible) */
4883 spin_lock_irq(&fotg210->lock);
4884 end_free_itds(fotg210);
4885 spin_unlock_irq(&fotg210->lock);
4886 fotg210_mem_cleanup(fotg210);
4888 #ifdef FOTG210_STATS
4889 fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
4890 fotg210->stats.normal, fotg210->stats.error,
4891 fotg210->stats.iaa, fotg210->stats.lost_iaa);
4892 fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
4893 fotg210->stats.complete, fotg210->stats.unlink);
4896 dbg_status(fotg210, "fotg210_stop completed",
4897 fotg210_readl(fotg210, &fotg210->regs->status));
4900 /* one-time init, only for memory state */
4901 static int hcd_fotg210_init(struct usb_hcd *hcd)
4903 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4907 struct fotg210_qh_hw *hw;
4909 spin_lock_init(&fotg210->lock);
4912 * keep io watchdog by default, those good HCDs could turn off it later
4914 fotg210->need_io_watchdog = 1;
4916 hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
4917 fotg210->hrtimer.function = fotg210_hrtimer_func;
4918 fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
4920 hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
4923 * by default set standard 80% (== 100 usec/uframe) max periodic
4924 * bandwidth as required by USB 2.0
4926 fotg210->uframe_periodic_max = 100;
4929 * hw default: 1K periodic list heads, one per frame.
4930 * periodic_size can shrink by USBCMD update if hcc_params allows.
4932 fotg210->periodic_size = DEFAULT_I_TDPS;
4933 INIT_LIST_HEAD(&fotg210->intr_qh_list);
4934 INIT_LIST_HEAD(&fotg210->cached_itd_list);
4936 if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4937 /* periodic schedule size can be smaller than default */
4938 switch (FOTG210_TUNE_FLS) {
4940 fotg210->periodic_size = 1024;
4943 fotg210->periodic_size = 512;
4946 fotg210->periodic_size = 256;
4952 retval = fotg210_mem_init(fotg210, GFP_KERNEL);
4956 /* controllers may cache some of the periodic schedule ... */
4957 fotg210->i_thresh = 2;
4960 * dedicate a qh for the async ring head, since we couldn't unlink
4961 * a 'real' qh without stopping the async schedule [4.8]. use it
4962 * as the 'reclamation list head' too.
4963 * its dummy is used in hw_alt_next of many tds, to prevent the qh
4964 * from automatically advancing to the next td after short reads.
4966 fotg210->async->qh_next.qh = NULL;
4967 hw = fotg210->async->hw;
4968 hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
4969 hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
4970 hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
4971 hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
4972 fotg210->async->qh_state = QH_STATE_LINKED;
4973 hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
4975 /* clear interrupt enables, set irq latency */
4976 if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
4977 log2_irq_thresh = 0;
4978 temp = 1 << (16 + log2_irq_thresh);
4979 if (HCC_CANPARK(hcc_params)) {
4980 /* HW default park == 3, on hardware that supports it (like
4981 * NVidia and ALI silicon), maximizes throughput on the async
4982 * schedule by avoiding QH fetches between transfers.
4984 * With fast usb storage devices and NForce2, "park" seems to
4985 * make problems: throughput reduction (!), data errors...
4988 park = min_t(unsigned, park, 3);
4992 fotg210_dbg(fotg210, "park %d\n", park);
4994 if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4995 /* periodic schedule size can be smaller than default */
4997 temp |= (FOTG210_TUNE_FLS << 2);
4999 fotg210->command = temp;
5001 /* Accept arbitrarily long scatter-gather lists */
5002 if (!hcd->localmem_pool)
5003 hcd->self.sg_tablesize = ~0;
5007 /* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
5008 static int fotg210_run(struct usb_hcd *hcd)
5010 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5013 hcd->uses_new_polling = 1;
5015 /* EHCI spec section 4.1 */
5017 fotg210_writel(fotg210, fotg210->periodic_dma,
5018 &fotg210->regs->frame_list);
5019 fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
5020 &fotg210->regs->async_next);
5023 * hcc_params controls whether fotg210->regs->segment must (!!!)
5024 * be used; it constrains QH/ITD/SITD and QTD locations.
5025 * dma_pool consistent memory always uses segment zero.
5026 * streaming mappings for I/O buffers, like pci_map_single(),
5027 * can return segments above 4GB, if the device allows.
5029 * NOTE: the dma mask is visible through dev->dma_mask, so
5030 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5031 * Scsi_Host.highmem_io, and so forth. It's readonly to all
5032 * host side drivers though.
5034 fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5037 * Philips, Intel, and maybe others need CMD_RUN before the
5038 * root hub will detect new devices (why?); NEC doesn't
5040 fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
5041 fotg210->command |= CMD_RUN;
5042 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
5043 dbg_cmd(fotg210, "init", fotg210->command);
5046 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5047 * are explicitly handed to companion controller(s), so no TT is
5048 * involved with the root hub. (Except where one is integrated,
5049 * and there's no companion controller unless maybe for USB OTG.)
5051 * Turning on the CF flag will transfer ownership of all ports
5052 * from the companions to the EHCI controller. If any of the
5053 * companions are in the middle of a port reset at the time, it
5054 * could cause trouble. Write-locking ehci_cf_port_reset_rwsem
5055 * guarantees that no resets are in progress. After we set CF,
5056 * a short delay lets the hardware catch up; new resets shouldn't
5057 * be started before the port switching actions could complete.
5059 down_write(&ehci_cf_port_reset_rwsem);
5060 fotg210->rh_state = FOTG210_RH_RUNNING;
5061 /* unblock posted writes */
5062 fotg210_readl(fotg210, &fotg210->regs->command);
5063 usleep_range(5000, 10000);
5064 up_write(&ehci_cf_port_reset_rwsem);
5065 fotg210->last_periodic_enable = ktime_get_real();
5067 temp = HC_VERSION(fotg210,
5068 fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5069 fotg210_info(fotg210,
5070 "USB %x.%x started, EHCI %x.%02x\n",
5071 ((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f),
5072 temp >> 8, temp & 0xff);
5074 fotg210_writel(fotg210, INTR_MASK,
5075 &fotg210->regs->intr_enable); /* Turn On Interrupts */
5077 /* GRR this is run-once init(), being done every time the HC starts.
5078 * So long as they're part of class devices, we can't do it init()
5079 * since the class device isn't created that early.
5081 create_debug_files(fotg210);
5082 create_sysfs_files(fotg210);
5087 static int fotg210_setup(struct usb_hcd *hcd)
5089 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5092 fotg210->regs = (void __iomem *)fotg210->caps +
5094 fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5095 dbg_hcs_params(fotg210, "reset");
5096 dbg_hcc_params(fotg210, "reset");
5098 /* cache this readonly data; minimize chip reads */
5099 fotg210->hcs_params = fotg210_readl(fotg210,
5100 &fotg210->caps->hcs_params);
5102 fotg210->sbrn = HCD_USB2;
5104 /* data structure init */
5105 retval = hcd_fotg210_init(hcd);
5109 retval = fotg210_halt(fotg210);
5113 fotg210_reset(fotg210);
5118 static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
5120 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5121 u32 status, masked_status, pcd_status = 0, cmd;
5124 spin_lock(&fotg210->lock);
5126 status = fotg210_readl(fotg210, &fotg210->regs->status);
5128 /* e.g. cardbus physical eject */
5129 if (status == ~(u32) 0) {
5130 fotg210_dbg(fotg210, "device removed\n");
5135 * We don't use STS_FLR, but some controllers don't like it to
5136 * remain on, so mask it out along with the other status bits.
5138 masked_status = status & (INTR_MASK | STS_FLR);
5141 if (!masked_status ||
5142 unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
5143 spin_unlock(&fotg210->lock);
5147 /* clear (just) interrupts */
5148 fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
5149 cmd = fotg210_readl(fotg210, &fotg210->regs->command);
5152 /* unrequested/ignored: Frame List Rollover */
5153 dbg_status(fotg210, "irq", status);
5155 /* INT, ERR, and IAA interrupt rates can be throttled */
5157 /* normal [4.15.1.2] or error [4.15.1.1] completion */
5158 if (likely((status & (STS_INT|STS_ERR)) != 0)) {
5159 if (likely((status & STS_ERR) == 0))
5160 INCR(fotg210->stats.normal);
5162 INCR(fotg210->stats.error);
5166 /* complete the unlinking of some qh [4.15.2.3] */
5167 if (status & STS_IAA) {
5169 /* Turn off the IAA watchdog */
5170 fotg210->enabled_hrtimer_events &=
5171 ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
5174 * Mild optimization: Allow another IAAD to reset the
5175 * hrtimer, if one occurs before the next expiration.
5176 * In theory we could always cancel the hrtimer, but
5177 * tests show that about half the time it will be reset
5178 * for some other event anyway.
5180 if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
5181 ++fotg210->next_hrtimer_event;
5183 /* guard against (alleged) silicon errata */
5185 fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
5186 if (fotg210->async_iaa) {
5187 INCR(fotg210->stats.iaa);
5188 end_unlink_async(fotg210);
5190 fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
5193 /* remote wakeup [4.3.1] */
5194 if (status & STS_PCD) {
5196 u32 __iomem *status_reg = &fotg210->regs->port_status;
5198 /* kick root hub later */
5199 pcd_status = status;
5201 /* resume root hub? */
5202 if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
5203 usb_hcd_resume_root_hub(hcd);
5205 pstatus = fotg210_readl(fotg210, status_reg);
5207 if (test_bit(0, &fotg210->suspended_ports) &&
5208 ((pstatus & PORT_RESUME) ||
5209 !(pstatus & PORT_SUSPEND)) &&
5210 (pstatus & PORT_PE) &&
5211 fotg210->reset_done[0] == 0) {
5213 /* start 20 msec resume signaling from this port,
5214 * and make hub_wq collect PORT_STAT_C_SUSPEND to
5215 * stop that signaling. Use 5 ms extra for safety,
5216 * like usb_port_resume() does.
5218 fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
5219 set_bit(0, &fotg210->resuming_ports);
5220 fotg210_dbg(fotg210, "port 1 remote wakeup\n");
5221 mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
5225 /* PCI errors [4.15.2.4] */
5226 if (unlikely((status & STS_FATAL) != 0)) {
5227 fotg210_err(fotg210, "fatal error\n");
5228 dbg_cmd(fotg210, "fatal", cmd);
5229 dbg_status(fotg210, "fatal", status);
5233 /* Don't let the controller do anything more */
5234 fotg210->shutdown = true;
5235 fotg210->rh_state = FOTG210_RH_STOPPING;
5236 fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
5237 fotg210_writel(fotg210, fotg210->command,
5238 &fotg210->regs->command);
5239 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
5240 fotg210_handle_controller_death(fotg210);
5242 /* Handle completions when the controller stops */
5247 fotg210_work(fotg210);
5248 spin_unlock(&fotg210->lock);
5250 usb_hcd_poll_rh_status(hcd);
5254 /* non-error returns are a promise to giveback() the urb later
5255 * we drop ownership so next owner (or urb unlink) can get it
5257 * urb + dev is in hcd.self.controller.urb_list
5258 * we're queueing TDs onto software and hardware lists
5260 * hcd-specific init for hcpriv hasn't been done yet
5262 * NOTE: control, bulk, and interrupt share the same code to append TDs
5263 * to a (possibly active) QH, and the same QH scanning code.
5265 static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
5268 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5269 struct list_head qtd_list;
5271 INIT_LIST_HEAD(&qtd_list);
5273 switch (usb_pipetype(urb->pipe)) {
5275 /* qh_completions() code doesn't handle all the fault cases
5276 * in multi-TD control transfers. Even 1KB is rare anyway.
5278 if (urb->transfer_buffer_length > (16 * 1024))
5281 /* case PIPE_BULK: */
5283 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5285 return submit_async(fotg210, urb, &qtd_list, mem_flags);
5287 case PIPE_INTERRUPT:
5288 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5290 return intr_submit(fotg210, urb, &qtd_list, mem_flags);
5292 case PIPE_ISOCHRONOUS:
5293 return itd_submit(fotg210, urb, mem_flags);
5297 /* remove from hardware lists
5298 * completions normally happen asynchronously
5301 static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
5303 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5304 struct fotg210_qh *qh;
5305 unsigned long flags;
5308 spin_lock_irqsave(&fotg210->lock, flags);
5309 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
5313 switch (usb_pipetype(urb->pipe)) {
5314 /* case PIPE_CONTROL: */
5315 /* case PIPE_BULK:*/
5317 qh = (struct fotg210_qh *) urb->hcpriv;
5320 switch (qh->qh_state) {
5321 case QH_STATE_LINKED:
5322 case QH_STATE_COMPLETING:
5323 start_unlink_async(fotg210, qh);
5325 case QH_STATE_UNLINK:
5326 case QH_STATE_UNLINK_WAIT:
5327 /* already started */
5330 /* QH might be waiting for a Clear-TT-Buffer */
5331 qh_completions(fotg210, qh);
5336 case PIPE_INTERRUPT:
5337 qh = (struct fotg210_qh *) urb->hcpriv;
5340 switch (qh->qh_state) {
5341 case QH_STATE_LINKED:
5342 case QH_STATE_COMPLETING:
5343 start_unlink_intr(fotg210, qh);
5346 qh_completions(fotg210, qh);
5349 fotg210_dbg(fotg210, "bogus qh %p state %d\n",
5355 case PIPE_ISOCHRONOUS:
5358 /* wait till next completion, do it then. */
5359 /* completion irqs can wait up to 1024 msec, */
5363 spin_unlock_irqrestore(&fotg210->lock, flags);
5367 /* bulk qh holds the data toggle */
5369 static void fotg210_endpoint_disable(struct usb_hcd *hcd,
5370 struct usb_host_endpoint *ep)
5372 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5373 unsigned long flags;
5374 struct fotg210_qh *qh, *tmp;
5376 /* ASSERT: any requests/urbs are being unlinked */
5377 /* ASSERT: nobody can be submitting urbs for this any more */
5380 spin_lock_irqsave(&fotg210->lock, flags);
5385 /* endpoints can be iso streams. for now, we don't
5386 * accelerate iso completions ... so spin a while.
5388 if (qh->hw == NULL) {
5389 struct fotg210_iso_stream *stream = ep->hcpriv;
5391 if (!list_empty(&stream->td_list))
5394 /* BUG_ON(!list_empty(&stream->free_list)); */
5399 if (fotg210->rh_state < FOTG210_RH_RUNNING)
5400 qh->qh_state = QH_STATE_IDLE;
5401 switch (qh->qh_state) {
5402 case QH_STATE_LINKED:
5403 case QH_STATE_COMPLETING:
5404 for (tmp = fotg210->async->qh_next.qh;
5406 tmp = tmp->qh_next.qh)
5408 /* periodic qh self-unlinks on empty, and a COMPLETING qh
5409 * may already be unlinked.
5412 start_unlink_async(fotg210, qh);
5414 case QH_STATE_UNLINK: /* wait for hw to finish? */
5415 case QH_STATE_UNLINK_WAIT:
5417 spin_unlock_irqrestore(&fotg210->lock, flags);
5418 schedule_timeout_uninterruptible(1);
5420 case QH_STATE_IDLE: /* fully unlinked */
5421 if (qh->clearing_tt)
5423 if (list_empty(&qh->qtd_list)) {
5424 qh_destroy(fotg210, qh);
5429 /* caller was supposed to have unlinked any requests;
5430 * that's not our job. just leak this memory.
5432 fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
5433 qh, ep->desc.bEndpointAddress, qh->qh_state,
5434 list_empty(&qh->qtd_list) ? "" : "(has tds)");
5439 spin_unlock_irqrestore(&fotg210->lock, flags);
5442 static void fotg210_endpoint_reset(struct usb_hcd *hcd,
5443 struct usb_host_endpoint *ep)
5445 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5446 struct fotg210_qh *qh;
5447 int eptype = usb_endpoint_type(&ep->desc);
5448 int epnum = usb_endpoint_num(&ep->desc);
5449 int is_out = usb_endpoint_dir_out(&ep->desc);
5450 unsigned long flags;
5452 if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
5455 spin_lock_irqsave(&fotg210->lock, flags);
5458 /* For Bulk and Interrupt endpoints we maintain the toggle state
5459 * in the hardware; the toggle bits in udev aren't used at all.
5460 * When an endpoint is reset by usb_clear_halt() we must reset
5461 * the toggle bit in the QH.
5464 usb_settoggle(qh->dev, epnum, is_out, 0);
5465 if (!list_empty(&qh->qtd_list)) {
5466 WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5467 } else if (qh->qh_state == QH_STATE_LINKED ||
5468 qh->qh_state == QH_STATE_COMPLETING) {
5470 /* The toggle value in the QH can't be updated
5471 * while the QH is active. Unlink it now;
5472 * re-linking will call qh_refresh().
5474 if (eptype == USB_ENDPOINT_XFER_BULK)
5475 start_unlink_async(fotg210, qh);
5477 start_unlink_intr(fotg210, qh);
5480 spin_unlock_irqrestore(&fotg210->lock, flags);
5483 static int fotg210_get_frame(struct usb_hcd *hcd)
5485 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5487 return (fotg210_read_frame_index(fotg210) >> 3) %
5488 fotg210->periodic_size;
5491 /* The EHCI in ChipIdea HDRC cannot be a separate module or device,
5492 * because its registers (and irq) are shared between host/gadget/otg
5493 * functions and in order to facilitate role switching we cannot
5494 * give the fotg210 driver exclusive access to those.
5496 MODULE_DESCRIPTION(DRIVER_DESC);
5497 MODULE_AUTHOR(DRIVER_AUTHOR);
5498 MODULE_LICENSE("GPL");
5500 static const struct hc_driver fotg210_fotg210_hc_driver = {
5501 .description = hcd_name,
5502 .product_desc = "Faraday USB2.0 Host Controller",
5503 .hcd_priv_size = sizeof(struct fotg210_hcd),
5506 * generic hardware linkage
5509 .flags = HCD_MEMORY | HCD_DMA | HCD_USB2,
5512 * basic lifecycle operations
5514 .reset = hcd_fotg210_init,
5515 .start = fotg210_run,
5516 .stop = fotg210_stop,
5517 .shutdown = fotg210_shutdown,
5520 * managing i/o requests and associated device resources
5522 .urb_enqueue = fotg210_urb_enqueue,
5523 .urb_dequeue = fotg210_urb_dequeue,
5524 .endpoint_disable = fotg210_endpoint_disable,
5525 .endpoint_reset = fotg210_endpoint_reset,
5528 * scheduling support
5530 .get_frame_number = fotg210_get_frame,
5535 .hub_status_data = fotg210_hub_status_data,
5536 .hub_control = fotg210_hub_control,
5537 .bus_suspend = fotg210_bus_suspend,
5538 .bus_resume = fotg210_bus_resume,
5540 .relinquish_port = fotg210_relinquish_port,
5541 .port_handed_over = fotg210_port_handed_over,
5543 .clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
5546 static void fotg210_init(struct fotg210_hcd *fotg210)
5550 iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
5551 &fotg210->regs->gmir);
5553 value = ioread32(&fotg210->regs->otgcsr);
5554 value &= ~OTGCSR_A_BUS_DROP;
5555 value |= OTGCSR_A_BUS_REQ;
5556 iowrite32(value, &fotg210->regs->otgcsr);
5560 * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5562 * Allocates basic resources for this USB host controller, and
5563 * then invokes the start() method for the HCD associated with it
5564 * through the hotplug entry's driver_data.
5566 static int fotg210_hcd_probe(struct platform_device *pdev)
5568 struct device *dev = &pdev->dev;
5569 struct usb_hcd *hcd;
5570 struct resource *res;
5573 struct fotg210_hcd *fotg210;
5578 pdev->dev.power.power_state = PMSG_ON;
5580 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
5582 dev_err(dev, "Found HC with no IRQ. Check %s setup!\n",
5589 hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
5592 dev_err(dev, "failed to create hcd\n");
5594 goto fail_create_hcd;
5599 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5600 hcd->regs = devm_ioremap_resource(&pdev->dev, res);
5601 if (IS_ERR(hcd->regs)) {
5602 retval = PTR_ERR(hcd->regs);
5603 goto failed_put_hcd;
5606 hcd->rsrc_start = res->start;
5607 hcd->rsrc_len = resource_size(res);
5609 fotg210 = hcd_to_fotg210(hcd);
5611 fotg210->caps = hcd->regs;
5613 /* It's OK not to supply this clock */
5614 fotg210->pclk = clk_get(dev, "PCLK");
5615 if (!IS_ERR(fotg210->pclk)) {
5616 retval = clk_prepare_enable(fotg210->pclk);
5618 dev_err(dev, "failed to enable PCLK\n");
5619 goto failed_put_hcd;
5621 } else if (PTR_ERR(fotg210->pclk) == -EPROBE_DEFER) {
5623 * Percolate deferrals, for anything else,
5624 * just live without the clocking.
5626 retval = PTR_ERR(fotg210->pclk);
5627 goto failed_dis_clk;
5630 retval = fotg210_setup(hcd);
5632 goto failed_dis_clk;
5634 fotg210_init(fotg210);
5636 retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5638 dev_err(dev, "failed to add hcd with err %d\n", retval);
5639 goto failed_dis_clk;
5641 device_wakeup_enable(hcd->self.controller);
5642 platform_set_drvdata(pdev, hcd);
5647 if (!IS_ERR(fotg210->pclk)) {
5648 clk_disable_unprepare(fotg210->pclk);
5649 clk_put(fotg210->pclk);
5654 dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval);
5659 * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5660 * @dev: USB Host Controller being removed
5663 static int fotg210_hcd_remove(struct platform_device *pdev)
5665 struct usb_hcd *hcd = platform_get_drvdata(pdev);
5666 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5668 if (!IS_ERR(fotg210->pclk)) {
5669 clk_disable_unprepare(fotg210->pclk);
5670 clk_put(fotg210->pclk);
5673 usb_remove_hcd(hcd);
5680 static const struct of_device_id fotg210_of_match[] = {
5681 { .compatible = "faraday,fotg210" },
5684 MODULE_DEVICE_TABLE(of, fotg210_of_match);
5687 static struct platform_driver fotg210_hcd_driver = {
5689 .name = "fotg210-hcd",
5690 .of_match_table = of_match_ptr(fotg210_of_match),
5692 .probe = fotg210_hcd_probe,
5693 .remove = fotg210_hcd_remove,
5696 static int __init fotg210_hcd_init(void)
5703 pr_info("%s: " DRIVER_DESC "\n", hcd_name);
5704 set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5705 if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
5706 test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
5707 pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5709 pr_debug("%s: block sizes: qh %zd qtd %zd itd %zd\n",
5710 hcd_name, sizeof(struct fotg210_qh),
5711 sizeof(struct fotg210_qtd),
5712 sizeof(struct fotg210_itd));
5714 fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
5716 retval = platform_driver_register(&fotg210_hcd_driver);
5722 debugfs_remove(fotg210_debug_root);
5723 fotg210_debug_root = NULL;
5725 clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5728 module_init(fotg210_hcd_init);
5730 static void __exit fotg210_hcd_cleanup(void)
5732 platform_driver_unregister(&fotg210_hcd_driver);
5733 debugfs_remove(fotg210_debug_root);
5734 clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5736 module_exit(fotg210_hcd_cleanup);