1 // SPDX-License-Identifier: GPL-2.0+
3 * Based on drivers/usb/gadget/omap1510_udc.c
4 * TI OMAP1510 USB bus interface driver
7 * Vipin Kumar, ST Micoelectronics, vipin.kumar@st.com.
13 #include <usbdevice.h>
15 #include <usb/designware_udc.h>
17 #include <asm/arch/hardware.h>
19 #define UDC_INIT_MDELAY 80 /* Device settle delay */
21 /* Some kind of debugging output... */
22 #ifndef DEBUG_DWUSBTTY
24 #define UDCDBGA(fmt, args...)
26 #define UDCDBG(str) serial_printf(str "\n")
27 #define UDCDBGA(fmt, args...) serial_printf(fmt "\n", ##args)
30 static struct urb *ep0_urb;
31 static struct usb_device_instance *udc_device;
33 static struct plug_regs *const plug_regs_p =
34 (struct plug_regs * const)CONFIG_SYS_PLUG_BASE;
35 static struct udc_regs *const udc_regs_p =
36 (struct udc_regs * const)CONFIG_SYS_USBD_BASE;
37 static struct udc_endp_regs *const outep_regs_p =
38 &((struct udc_regs * const)CONFIG_SYS_USBD_BASE)->out_regs[0];
39 static struct udc_endp_regs *const inep_regs_p =
40 &((struct udc_regs * const)CONFIG_SYS_USBD_BASE)->in_regs[0];
43 * udc_state_transition - Write the next packet to TxFIFO.
44 * @initial: Initial state.
45 * @final: Final state.
47 * Helper function to implement device state changes. The device states and
48 * the events that transition between them are:
53 * DEVICE_HUB_CONFIGURED DEVICE_HUB_RESET
59 * DEVICE_RESET DEVICE_POWER_INTERRUPTION
65 * DEVICE_ADDRESS_ASSIGNED DEVICE_RESET
71 * DEVICE_CONFIGURED DEVICE_DE_CONFIGURED
76 * udc_state_transition transitions up (in the direction from STATE_ATTACHED
77 * to STATE_CONFIGURED) from the specified initial state to the specified final
78 * state, passing through each intermediate state on the way. If the initial
79 * state is at or above (i.e. nearer to STATE_CONFIGURED) the final state, then
80 * no state transitions will take place.
82 * udc_state_transition also transitions down (in the direction from
83 * STATE_CONFIGURED to STATE_ATTACHED) from the specified initial state to the
84 * specified final state, passing through each intermediate state on the way.
85 * If the initial state is at or below (i.e. nearer to STATE_ATTACHED) the final
86 * state, then no state transitions will take place.
88 * This function must only be called with interrupts disabled.
90 static void udc_state_transition(usb_device_state_t initial,
91 usb_device_state_t final)
93 if (initial < final) {
96 usbd_device_event_irq(udc_device,
97 DEVICE_HUB_CONFIGURED, 0);
98 if (final == STATE_POWERED)
101 usbd_device_event_irq(udc_device, DEVICE_RESET, 0);
102 if (final == STATE_DEFAULT)
105 usbd_device_event_irq(udc_device,
106 DEVICE_ADDRESS_ASSIGNED, 0);
107 if (final == STATE_ADDRESSED)
109 case STATE_ADDRESSED:
110 usbd_device_event_irq(udc_device, DEVICE_CONFIGURED, 0);
111 case STATE_CONFIGURED:
116 } else if (initial > final) {
118 case STATE_CONFIGURED:
119 usbd_device_event_irq(udc_device,
120 DEVICE_DE_CONFIGURED, 0);
121 if (final == STATE_ADDRESSED)
123 case STATE_ADDRESSED:
124 usbd_device_event_irq(udc_device, DEVICE_RESET, 0);
125 if (final == STATE_DEFAULT)
128 usbd_device_event_irq(udc_device,
129 DEVICE_POWER_INTERRUPTION, 0);
130 if (final == STATE_POWERED)
133 usbd_device_event_irq(udc_device, DEVICE_HUB_RESET, 0);
143 static void udc_stall_ep(u32 ep_num)
145 writel(readl(&inep_regs_p[ep_num].endp_cntl) | ENDP_CNTL_STALL,
146 &inep_regs_p[ep_num].endp_cntl);
148 writel(readl(&outep_regs_p[ep_num].endp_cntl) | ENDP_CNTL_STALL,
149 &outep_regs_p[ep_num].endp_cntl);
152 static void *get_fifo(int ep_num, int in)
154 u32 *fifo_ptr = (u32 *)CONFIG_SYS_FIFO_BASE;
158 fifo_ptr += readl(&inep_regs_p[1].endp_bsorfn);
159 /* break intentionally left out */
162 fifo_ptr += readl(&inep_regs_p[0].endp_bsorfn);
163 /* break intentionally left out */
169 readl(&outep_regs_p[2].endp_maxpacksize) >> 16;
170 /* break intentionally left out */
176 fifo_ptr += readl(&outep_regs_p[0].endp_maxpacksize) >> 16;
177 /* break intentionally left out */
180 return (void *)fifo_ptr;
183 static int usbgetpckfromfifo(int epNum, u8 *bufp, u32 len)
185 u8 *fifo_ptr = (u8 *)get_fifo(epNum, 0);
191 if (readl(&udc_regs_p->dev_stat) & DEV_STAT_RXFIFO_EMPTY)
194 nw = len / sizeof(u32);
195 nb = len % sizeof(u32);
197 /* use tmp buf if bufp is not word aligned */
199 wrdp = (u32 *)&tmp[0];
203 for (i = 0; i < nw; i++) {
204 writel(readl(fifo_ptr), wrdp);
209 for (i = 0; i < nb; i++) {
210 writeb(readb(fifo_ptr), bytp);
214 readl(&outep_regs_p[epNum].write_done);
216 /* copy back tmp buffer to bufp if bufp is not word aligned */
218 memcpy(bufp, tmp, len);
223 static void usbputpcktofifo(int epNum, u8 *bufp, u32 len)
228 u8 *fifo_ptr = get_fifo(epNum, 1);
230 nw = len / sizeof(int);
231 nb = len % sizeof(int);
233 for (i = 0; i < nw; i++) {
234 writel(*wrdp, fifo_ptr);
239 for (i = 0; i < nb; i++) {
240 writeb(*bytp, fifo_ptr);
247 * dw_write_noniso_tx_fifo - Write the next packet to TxFIFO.
248 * @endpoint: Endpoint pointer.
250 * If the endpoint has an active tx_urb, then the next packet of data from the
251 * URB is written to the tx FIFO. The total amount of data in the urb is given
252 * by urb->actual_length. The maximum amount of data that can be sent in any
253 * one packet is given by endpoint->tx_packetSize. The number of data bytes
254 * from this URB that have already been transmitted is given by endpoint->sent.
255 * endpoint->last is updated by this routine with the number of data bytes
256 * transmitted in this packet.
259 static void dw_write_noniso_tx_fifo(struct usb_endpoint_instance
262 struct urb *urb = endpoint->tx_urb;
268 UDCDBGA("urb->buffer %p, buffer_length %d, actual_length %d",
269 urb->buffer, urb->buffer_length, urb->actual_length);
271 last = min_t(u32, urb->actual_length - endpoint->sent,
272 endpoint->tx_packetSize);
275 u8 *cp = urb->buffer + endpoint->sent;
278 * This ensures that USBD packet fifo is accessed
279 * - through word aligned pointer or
280 * - through non word aligned pointer but only
281 * with a max length to make the next packet
285 align = ((ulong)cp % sizeof(int));
287 last = min(last, sizeof(int) - align);
289 UDCDBGA("endpoint->sent %d, tx_packetSize %d, last %d",
290 endpoint->sent, endpoint->tx_packetSize, last);
292 usbputpcktofifo(endpoint->endpoint_address &
293 USB_ENDPOINT_NUMBER_MASK, cp, last);
295 endpoint->last = last;
300 * Handle SETUP USB interrupt.
301 * This function implements TRM Figure 14-14.
303 static void dw_udc_setup(struct usb_endpoint_instance *endpoint)
305 u8 *datap = (u8 *)&ep0_urb->device_request;
306 int ep_addr = endpoint->endpoint_address;
308 UDCDBG("-> Entering device setup");
309 usbgetpckfromfifo(ep_addr, datap, 8);
311 /* Try to process setup packet */
312 if (ep0_recv_setup(ep0_urb)) {
313 /* Not a setup packet, stall next EP0 transaction */
315 UDCDBG("can't parse setup packet, still waiting for setup");
319 /* Check direction */
320 if ((ep0_urb->device_request.bmRequestType & USB_REQ_DIRECTION_MASK)
321 == USB_REQ_HOST2DEVICE) {
322 UDCDBG("control write on EP0");
323 if (le16_to_cpu(ep0_urb->device_request.wLength)) {
324 /* Stall this request */
325 UDCDBG("Stalling unsupported EP0 control write data "
331 UDCDBG("control read on EP0");
333 * The ep0_recv_setup function has already placed our response
334 * packet data in ep0_urb->buffer and the packet length in
335 * ep0_urb->actual_length.
337 endpoint->tx_urb = ep0_urb;
340 * Write packet data to the FIFO. dw_write_noniso_tx_fifo
341 * will update endpoint->last with the number of bytes written
344 dw_write_noniso_tx_fifo(endpoint);
346 writel(0x0, &inep_regs_p[ep_addr].write_done);
349 udc_unset_nak(endpoint->endpoint_address);
351 UDCDBG("<- Leaving device setup");
355 * Handle endpoint 0 RX interrupt
357 static void dw_udc_ep0_rx(struct usb_endpoint_instance *endpoint)
363 /* Check direction */
364 if ((ep0_urb->device_request.bmRequestType
365 & USB_REQ_DIRECTION_MASK) == USB_REQ_HOST2DEVICE) {
367 * This rx interrupt must be for a control write data
370 * We don't support control write data stages.
371 * We should never end up here.
374 UDCDBG("Stalling unexpected EP0 control write "
375 "data stage packet");
379 * This rx interrupt must be for a control read status
382 UDCDBG("ACK on EP0 control read status stage packet");
383 u32 len = (readl(&outep_regs_p[0].endp_status) >> 11) & 0xfff;
384 usbgetpckfromfifo(0, dummy, len);
389 * Handle endpoint 0 TX interrupt
391 static void dw_udc_ep0_tx(struct usb_endpoint_instance *endpoint)
393 struct usb_device_request *request = &ep0_urb->device_request;
398 /* Check direction */
399 if ((request->bmRequestType & USB_REQ_DIRECTION_MASK) ==
400 USB_REQ_HOST2DEVICE) {
402 * This tx interrupt must be for a control write status
405 UDCDBG("ACK on EP0 control write status stage packet");
408 * This tx interrupt must be for a control read data
411 int wLength = le16_to_cpu(request->wLength);
414 * Update our count of bytes sent so far in this
417 endpoint->sent += endpoint->last;
420 * We are finished with this transfer if we have sent
421 * all of the bytes in our tx urb (urb->actual_length)
422 * unless we need a zero-length terminating packet. We
423 * need a zero-length terminating packet if we returned
424 * fewer bytes than were requested (wLength) by the host,
425 * and the number of bytes we returned is an exact
426 * multiple of the packet size endpoint->tx_packetSize.
428 if ((endpoint->sent == ep0_urb->actual_length) &&
429 ((ep0_urb->actual_length == wLength) ||
430 (endpoint->last != endpoint->tx_packetSize))) {
431 /* Done with control read data stage. */
432 UDCDBG("control read data stage complete");
435 * We still have another packet of data to send
436 * in this control read data stage or else we
437 * need a zero-length terminating packet.
439 UDCDBG("ACK control read data stage packet");
440 dw_write_noniso_tx_fifo(endpoint);
442 ep_addr = endpoint->endpoint_address;
443 writel(0x0, &inep_regs_p[ep_addr].write_done);
448 static struct usb_endpoint_instance *dw_find_ep(int ep)
452 for (i = 0; i < udc_device->bus->max_endpoints; i++) {
453 if ((udc_device->bus->endpoint_array[i].endpoint_address &
454 USB_ENDPOINT_NUMBER_MASK) == ep)
455 return &udc_device->bus->endpoint_array[i];
461 * Handle RX transaction on non-ISO endpoint.
462 * The ep argument is a physical endpoint number for a non-ISO IN endpoint
463 * in the range 1 to 15.
465 static void dw_udc_epn_rx(int ep)
469 struct usb_endpoint_instance *endpoint = dw_find_ep(ep);
472 urb = endpoint->rcv_urb;
475 u8 *cp = urb->buffer + urb->actual_length;
477 nbytes = (readl(&outep_regs_p[ep].endp_status) >> 11) &
479 usbgetpckfromfifo(ep, cp, nbytes);
480 usbd_rcv_complete(endpoint, nbytes, 0);
486 * Handle TX transaction on non-ISO endpoint.
487 * The ep argument is a physical endpoint number for a non-ISO IN endpoint
488 * in the range 16 to 30.
490 static void dw_udc_epn_tx(int ep)
492 struct usb_endpoint_instance *endpoint = dw_find_ep(ep);
498 * We need to transmit a terminating zero-length packet now if
499 * we have sent all of the data in this URB and the transfer
500 * size was an exact multiple of the packet size.
502 if (endpoint->tx_urb &&
503 (endpoint->last == endpoint->tx_packetSize) &&
504 (endpoint->tx_urb->actual_length - endpoint->sent -
505 endpoint->last == 0)) {
506 /* handle zero length packet here */
507 writel(0x0, &inep_regs_p[ep].write_done);
511 if (endpoint->tx_urb && endpoint->tx_urb->actual_length) {
512 /* retire the data that was just sent */
513 usbd_tx_complete(endpoint);
515 * Check to see if we have more data ready to transmit
518 if (endpoint->tx_urb && endpoint->tx_urb->actual_length) {
519 /* write data to FIFO */
520 dw_write_noniso_tx_fifo(endpoint);
521 writel(0x0, &inep_regs_p[ep].write_done);
523 } else if (endpoint->tx_urb
524 && (endpoint->tx_urb->actual_length == 0)) {
525 /* udc_set_nak(ep); */
531 * Start of public functions.
534 /* Called to start packet transmission. */
535 int udc_endpoint_write(struct usb_endpoint_instance *endpoint)
537 udc_unset_nak(endpoint->endpoint_address & USB_ENDPOINT_NUMBER_MASK);
541 /* Start to initialize h/w stuff */
551 readl(&plug_regs_p->plug_pending);
553 for (i = 0; i < UDC_INIT_MDELAY; i++)
556 plug_st = readl(&plug_regs_p->plug_state);
557 writel(plug_st | PLUG_STATUS_EN, &plug_regs_p->plug_state);
559 writel(~0x0, &udc_regs_p->endp_int);
560 writel(~0x0, &udc_regs_p->dev_int_mask);
561 writel(~0x0, &udc_regs_p->endp_int_mask);
563 #ifndef CONFIG_USBD_HS
564 writel(DEV_CONF_FS_SPEED | DEV_CONF_REMWAKEUP | DEV_CONF_SELFPOW |
565 DEV_CONF_PHYINT_16, &udc_regs_p->dev_conf);
567 writel(DEV_CONF_HS_SPEED | DEV_CONF_REMWAKEUP | DEV_CONF_SELFPOW |
568 DEV_CONF_PHYINT_16, &udc_regs_p->dev_conf);
571 writel(DEV_CNTL_SOFTDISCONNECT, &udc_regs_p->dev_cntl);
573 /* Clear all interrupts pending */
574 writel(DEV_INT_MSK, &udc_regs_p->dev_int);
579 int is_usbd_high_speed(void)
581 return (readl(&udc_regs_p->dev_stat) & DEV_STAT_ENUM) ? 0 : 1;
585 * udc_setup_ep - setup endpoint
586 * Associate a physical endpoint with endpoint_instance
588 void udc_setup_ep(struct usb_device_instance *device,
589 u32 ep, struct usb_endpoint_instance *endpoint)
591 UDCDBGA("setting up endpoint addr %x", endpoint->endpoint_address);
600 if ((ep != 0) && (udc_device->device_state < STATE_ADDRESSED))
603 tt = env_get("usbtty");
607 ep_addr = endpoint->endpoint_address;
608 ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK;
610 if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
612 packet_size = endpoint->tx_packetSize;
613 buffer_size = packet_size * 2;
614 attributes = endpoint->tx_attributes;
617 packet_size = endpoint->rcv_packetSize;
618 buffer_size = packet_size * 2;
619 attributes = endpoint->rcv_attributes;
622 switch (attributes & USB_ENDPOINT_XFERTYPE_MASK) {
623 case USB_ENDPOINT_XFER_CONTROL:
624 ep_type = ENDP_EPTYPE_CNTL;
626 case USB_ENDPOINT_XFER_BULK:
628 ep_type = ENDP_EPTYPE_BULK;
630 case USB_ENDPOINT_XFER_INT:
631 ep_type = ENDP_EPTYPE_INT;
633 case USB_ENDPOINT_XFER_ISOC:
634 ep_type = ENDP_EPTYPE_ISO;
638 struct udc_endp_regs *out_p = &outep_regs_p[ep_num];
639 struct udc_endp_regs *in_p = &inep_regs_p[ep_num];
642 /* Setup endpoint 0 */
643 buffer_size = packet_size;
645 writel(readl(&in_p->endp_cntl) | ENDP_CNTL_CNAK,
648 writel(readl(&out_p->endp_cntl) | ENDP_CNTL_CNAK,
651 writel(ENDP_CNTL_CONTROL | ENDP_CNTL_FLUSH, &in_p->endp_cntl);
653 writel(buffer_size / sizeof(int), &in_p->endp_bsorfn);
655 writel(packet_size, &in_p->endp_maxpacksize);
657 writel(ENDP_CNTL_CONTROL | ENDP_CNTL_RRDY, &out_p->endp_cntl);
659 writel(packet_size | ((buffer_size / sizeof(int)) << 16),
660 &out_p->endp_maxpacksize);
662 } else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
663 /* Setup the IN endpoint */
664 writel(0x0, &in_p->endp_status);
665 writel((ep_type << 4) | ENDP_CNTL_RRDY, &in_p->endp_cntl);
666 writel(buffer_size / sizeof(int), &in_p->endp_bsorfn);
667 writel(packet_size, &in_p->endp_maxpacksize);
669 if (!strcmp(tt, "cdc_acm")) {
670 if (ep_type == ENDP_EPTYPE_INT) {
671 /* Conf no. 1 Interface no. 0 */
672 writel((packet_size << 19) |
673 ENDP_EPDIR_IN | (1 << 7) |
674 (0 << 11) | (ep_type << 5) | ep_num,
675 &udc_regs_p->udc_endp_reg[ep_num]);
677 /* Conf no. 1 Interface no. 1 */
678 writel((packet_size << 19) |
679 ENDP_EPDIR_IN | (1 << 7) |
680 (1 << 11) | (ep_type << 5) | ep_num,
681 &udc_regs_p->udc_endp_reg[ep_num]);
684 /* Conf no. 1 Interface no. 0 */
685 writel((packet_size << 19) |
686 ENDP_EPDIR_IN | (1 << 7) |
687 (0 << 11) | (ep_type << 5) | ep_num,
688 &udc_regs_p->udc_endp_reg[ep_num]);
692 /* Setup the OUT endpoint */
693 writel(0x0, &out_p->endp_status);
694 writel((ep_type << 4) | ENDP_CNTL_RRDY, &out_p->endp_cntl);
695 writel(packet_size | ((buffer_size / sizeof(int)) << 16),
696 &out_p->endp_maxpacksize);
698 if (!strcmp(tt, "cdc_acm")) {
699 writel((packet_size << 19) |
700 ENDP_EPDIR_OUT | (1 << 7) |
701 (1 << 11) | (ep_type << 5) | ep_num,
702 &udc_regs_p->udc_endp_reg[ep_num]);
704 writel((packet_size << 19) |
705 ENDP_EPDIR_OUT | (1 << 7) |
706 (0 << 11) | (ep_type << 5) | ep_num,
707 &udc_regs_p->udc_endp_reg[ep_num]);
712 endp_intmask = readl(&udc_regs_p->endp_int_mask);
713 endp_intmask &= ~((1 << ep_num) | 0x10000 << ep_num);
714 writel(endp_intmask, &udc_regs_p->endp_int_mask);
717 /* Turn on the USB connection by enabling the pullup resistor */
718 void udc_connect(void)
720 u32 plug_st, dev_cntl;
722 dev_cntl = readl(&udc_regs_p->dev_cntl);
723 dev_cntl |= DEV_CNTL_SOFTDISCONNECT;
724 writel(dev_cntl, &udc_regs_p->dev_cntl);
728 dev_cntl = readl(&udc_regs_p->dev_cntl);
729 dev_cntl &= ~DEV_CNTL_SOFTDISCONNECT;
730 writel(dev_cntl, &udc_regs_p->dev_cntl);
732 plug_st = readl(&plug_regs_p->plug_state);
733 plug_st &= ~(PLUG_STATUS_PHY_RESET | PLUG_STATUS_PHY_MODE);
734 writel(plug_st, &plug_regs_p->plug_state);
737 /* Turn off the USB connection by disabling the pullup resistor */
738 void udc_disconnect(void)
742 writel(DEV_CNTL_SOFTDISCONNECT, &udc_regs_p->dev_cntl);
744 plug_st = readl(&plug_regs_p->plug_state);
745 plug_st |= (PLUG_STATUS_PHY_RESET | PLUG_STATUS_PHY_MODE);
746 writel(plug_st, &plug_regs_p->plug_state);
749 /* Switch on the UDC */
750 void udc_enable(struct usb_device_instance *device)
752 UDCDBGA("enable device %p, status %d", device, device->status);
754 /* Save the device structure pointer */
760 usbd_alloc_urb(udc_device, udc_device->bus->endpoint_array);
762 serial_printf("udc_enable: ep0_urb already allocated %p\n",
766 writel(DEV_INT_SOF, &udc_regs_p->dev_int_mask);
770 * udc_startup - allow udc code to do any additional startup
772 void udc_startup_events(struct usb_device_instance *device)
774 /* The DEVICE_INIT event puts the USB device in the state STATE_INIT. */
775 usbd_device_event_irq(device, DEVICE_INIT, 0);
778 * The DEVICE_CREATE event puts the USB device in the state
781 usbd_device_event_irq(device, DEVICE_CREATE, 0);
784 * Some USB controller driver implementations signal
785 * DEVICE_HUB_CONFIGURED and DEVICE_RESET events here.
786 * DEVICE_HUB_CONFIGURED causes a transition to the state STATE_POWERED,
787 * and DEVICE_RESET causes a transition to the state STATE_DEFAULT.
788 * The DW USB client controller has the capability to detect when the
789 * USB cable is connected to a powered USB bus, so we will defer the
790 * DEVICE_HUB_CONFIGURED and DEVICE_RESET events until later.
797 * Plug detection interrupt handling
799 static void dw_udc_plug_irq(void)
801 if (readl(&plug_regs_p->plug_state) & PLUG_STATUS_ATTACHED) {
804 * Turn off PHY reset bit (PLUG detect).
805 * Switch PHY opmode to normal operation (PLUG detect).
808 writel(DEV_INT_SOF, &udc_regs_p->dev_int_mask);
810 UDCDBG("device attached and powered");
811 udc_state_transition(udc_device->device_state, STATE_POWERED);
813 writel(~0x0, &udc_regs_p->dev_int_mask);
815 UDCDBG("device detached or unpowered");
816 udc_state_transition(udc_device->device_state, STATE_ATTACHED);
821 * Device interrupt handling
823 static void dw_udc_dev_irq(void)
825 if (readl(&udc_regs_p->dev_int) & DEV_INT_USBRESET) {
826 writel(~0x0, &udc_regs_p->endp_int_mask);
828 writel(readl(&inep_regs_p[0].endp_cntl) | ENDP_CNTL_FLUSH,
829 &inep_regs_p[0].endp_cntl);
831 writel(DEV_INT_USBRESET, &udc_regs_p->dev_int);
834 * This endpoint0 specific register can be programmed only
835 * after the phy clock is initialized
837 writel((EP0_MAX_PACKET_SIZE << 19) | ENDP_EPTYPE_CNTL,
838 &udc_regs_p->udc_endp_reg[0]);
840 UDCDBG("device reset in progess");
841 udc_state_transition(udc_device->device_state, STATE_DEFAULT);
844 /* Device Enumeration completed */
845 if (readl(&udc_regs_p->dev_int) & DEV_INT_ENUM) {
846 writel(DEV_INT_ENUM, &udc_regs_p->dev_int);
848 /* Endpoint interrupt enabled for Ctrl IN & Ctrl OUT */
849 writel(readl(&udc_regs_p->endp_int_mask) & ~0x10001,
850 &udc_regs_p->endp_int_mask);
852 UDCDBG("default -> addressed");
853 udc_state_transition(udc_device->device_state, STATE_ADDRESSED);
856 /* The USB will be in SUSPEND in 3 ms */
857 if (readl(&udc_regs_p->dev_int) & DEV_INT_INACTIVE) {
858 writel(DEV_INT_INACTIVE, &udc_regs_p->dev_int);
860 UDCDBG("entering inactive state");
861 /* usbd_device_event_irq(udc_device, DEVICE_BUS_INACTIVE, 0); */
864 /* SetConfiguration command received */
865 if (readl(&udc_regs_p->dev_int) & DEV_INT_SETCFG) {
866 writel(DEV_INT_SETCFG, &udc_regs_p->dev_int);
868 UDCDBG("entering configured state");
869 udc_state_transition(udc_device->device_state,
873 /* SetInterface command received */
874 if (readl(&udc_regs_p->dev_int) & DEV_INT_SETINTF)
875 writel(DEV_INT_SETINTF, &udc_regs_p->dev_int);
877 /* USB Suspend detected on cable */
878 if (readl(&udc_regs_p->dev_int) & DEV_INT_SUSPUSB) {
879 writel(DEV_INT_SUSPUSB, &udc_regs_p->dev_int);
881 UDCDBG("entering suspended state");
882 usbd_device_event_irq(udc_device, DEVICE_BUS_INACTIVE, 0);
885 /* USB Start-Of-Frame detected on cable */
886 if (readl(&udc_regs_p->dev_int) & DEV_INT_SOF)
887 writel(DEV_INT_SOF, &udc_regs_p->dev_int);
891 * Endpoint interrupt handling
893 static void dw_udc_endpoint_irq(void)
895 while (readl(&udc_regs_p->endp_int) & ENDP0_INT_CTRLOUT) {
897 writel(ENDP0_INT_CTRLOUT, &udc_regs_p->endp_int);
899 if ((readl(&outep_regs_p[0].endp_status) & ENDP_STATUS_OUTMSK)
900 == ENDP_STATUS_OUT_SETUP) {
901 dw_udc_setup(udc_device->bus->endpoint_array + 0);
902 writel(ENDP_STATUS_OUT_SETUP,
903 &outep_regs_p[0].endp_status);
905 } else if ((readl(&outep_regs_p[0].endp_status) &
906 ENDP_STATUS_OUTMSK) == ENDP_STATUS_OUT_DATA) {
907 dw_udc_ep0_rx(udc_device->bus->endpoint_array + 0);
908 writel(ENDP_STATUS_OUT_DATA,
909 &outep_regs_p[0].endp_status);
911 } else if ((readl(&outep_regs_p[0].endp_status) &
912 ENDP_STATUS_OUTMSK) == ENDP_STATUS_OUT_NONE) {
916 writel(0x0, &outep_regs_p[0].endp_status);
919 if (readl(&udc_regs_p->endp_int) & ENDP0_INT_CTRLIN) {
920 dw_udc_ep0_tx(udc_device->bus->endpoint_array + 0);
922 writel(ENDP_STATUS_IN, &inep_regs_p[0].endp_status);
923 writel(ENDP0_INT_CTRLIN, &udc_regs_p->endp_int);
926 if (readl(&udc_regs_p->endp_int) & ENDP_INT_NONISOOUT_MSK) {
928 u32 ep_int = readl(&udc_regs_p->endp_int) &
929 ENDP_INT_NONISOOUT_MSK;
932 while (0x0 == (ep_int & 0x1)) {
937 writel((1 << 16) << epnum, &udc_regs_p->endp_int);
939 if ((readl(&outep_regs_p[epnum].endp_status) &
940 ENDP_STATUS_OUTMSK) == ENDP_STATUS_OUT_DATA) {
942 dw_udc_epn_rx(epnum);
943 writel(ENDP_STATUS_OUT_DATA,
944 &outep_regs_p[epnum].endp_status);
945 } else if ((readl(&outep_regs_p[epnum].endp_status) &
946 ENDP_STATUS_OUTMSK) == ENDP_STATUS_OUT_NONE) {
947 writel(0x0, &outep_regs_p[epnum].endp_status);
951 if (readl(&udc_regs_p->endp_int) & ENDP_INT_NONISOIN_MSK) {
953 u32 ep_int = readl(&udc_regs_p->endp_int) &
954 ENDP_INT_NONISOIN_MSK;
956 while (0x0 == (ep_int & 0x1)) {
961 if (readl(&inep_regs_p[epnum].endp_status) & ENDP_STATUS_IN) {
962 writel(ENDP_STATUS_IN,
963 &outep_regs_p[epnum].endp_status);
964 dw_udc_epn_tx(epnum);
966 writel(ENDP_STATUS_IN,
967 &outep_regs_p[epnum].endp_status);
970 writel((1 << epnum), &udc_regs_p->endp_int);
980 * Loop while we have interrupts.
981 * If we don't do this, the input chain
982 * polling delay is likely to miss
985 while (readl(&plug_regs_p->plug_pending))
988 while (readl(&udc_regs_p->dev_int))
991 if (readl(&udc_regs_p->endp_int))
992 dw_udc_endpoint_irq();
996 void udc_set_nak(int epid)
998 writel(readl(&inep_regs_p[epid].endp_cntl) | ENDP_CNTL_SNAK,
999 &inep_regs_p[epid].endp_cntl);
1001 writel(readl(&outep_regs_p[epid].endp_cntl) | ENDP_CNTL_SNAK,
1002 &outep_regs_p[epid].endp_cntl);
1005 void udc_unset_nak(int epid)
1009 val = readl(&inep_regs_p[epid].endp_cntl);
1010 val &= ~ENDP_CNTL_SNAK;
1011 val |= ENDP_CNTL_CNAK;
1012 writel(val, &inep_regs_p[epid].endp_cntl);
1014 val = readl(&outep_regs_p[epid].endp_cntl);
1015 val &= ~ENDP_CNTL_SNAK;
1016 val |= ENDP_CNTL_CNAK;
1017 writel(val, &outep_regs_p[epid].endp_cntl);