xhci: fix oops when xhci resumes from hibernate with hw lpm capable devices
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / usb / dwc2 / hcd.h
1 /*
2  * hcd.h - DesignWare HS OTG Controller host-mode declarations
3  *
4  * Copyright (C) 2004-2013 Synopsys, Inc.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The names of the above-listed copyright holders may not be used
16  *    to endorse or promote products derived from this software without
17  *    specific prior written permission.
18  *
19  * ALTERNATIVELY, this software may be distributed under the terms of the
20  * GNU General Public License ("GPL") as published by the Free Software
21  * Foundation; either version 2 of the License, or (at your option) any
22  * later version.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  */
36 #ifndef __DWC2_HCD_H__
37 #define __DWC2_HCD_H__
38
39 /*
40  * This file contains the structures, constants, and interfaces for the
41  * Host Contoller Driver (HCD)
42  *
43  * The Host Controller Driver (HCD) is responsible for translating requests
44  * from the USB Driver into the appropriate actions on the DWC_otg controller.
45  * It isolates the USBD from the specifics of the controller by providing an
46  * API to the USBD.
47  */
48
49 struct dwc2_qh;
50
51 /**
52  * struct dwc2_host_chan - Software host channel descriptor
53  *
54  * @hc_num:             Host channel number, used for register address lookup
55  * @dev_addr:           Address of the device
56  * @ep_num:             Endpoint of the device
57  * @ep_is_in:           Endpoint direction
58  * @speed:              Device speed. One of the following values:
59  *                       - USB_SPEED_LOW
60  *                       - USB_SPEED_FULL
61  *                       - USB_SPEED_HIGH
62  * @ep_type:            Endpoint type. One of the following values:
63  *                       - USB_ENDPOINT_XFER_CONTROL: 0
64  *                       - USB_ENDPOINT_XFER_ISOC:    1
65  *                       - USB_ENDPOINT_XFER_BULK:    2
66  *                       - USB_ENDPOINT_XFER_INTR:    3
67  * @max_packet:         Max packet size in bytes
68  * @data_pid_start:     PID for initial transaction.
69  *                       0: DATA0
70  *                       1: DATA2
71  *                       2: DATA1
72  *                       3: MDATA (non-Control EP),
73  *                          SETUP (Control EP)
74  * @multi_count:        Number of additional periodic transactions per
75  *                      (micro)frame
76  * @xfer_buf:           Pointer to current transfer buffer position
77  * @xfer_dma:           DMA address of xfer_buf
78  * @align_buf:          In Buffer DMA mode this will be used if xfer_buf is not
79  *                      DWORD aligned
80  * @xfer_len:           Total number of bytes to transfer
81  * @xfer_count:         Number of bytes transferred so far
82  * @start_pkt_count:    Packet count at start of transfer
83  * @xfer_started:       True if the transfer has been started
84  * @ping:               True if a PING request should be issued on this channel
85  * @error_state:        True if the error count for this transaction is non-zero
86  * @halt_on_queue:      True if this channel should be halted the next time a
87  *                      request is queued for the channel. This is necessary in
88  *                      slave mode if no request queue space is available when
89  *                      an attempt is made to halt the channel.
90  * @halt_pending:       True if the host channel has been halted, but the core
91  *                      is not finished flushing queued requests
92  * @do_split:           Enable split for the channel
93  * @complete_split:     Enable complete split
94  * @hub_addr:           Address of high speed hub for the split
95  * @hub_port:           Port of the low/full speed device for the split
96  * @xact_pos:           Split transaction position. One of the following values:
97  *                       - DWC2_HCSPLT_XACTPOS_MID
98  *                       - DWC2_HCSPLT_XACTPOS_BEGIN
99  *                       - DWC2_HCSPLT_XACTPOS_END
100  *                       - DWC2_HCSPLT_XACTPOS_ALL
101  * @requests:           Number of requests issued for this channel since it was
102  *                      assigned to the current transfer (not counting PINGs)
103  * @schinfo:            Scheduling micro-frame bitmap
104  * @ntd:                Number of transfer descriptors for the transfer
105  * @halt_status:        Reason for halting the host channel
106  * @hcint               Contents of the HCINT register when the interrupt came
107  * @qh:                 QH for the transfer being processed by this channel
108  * @hc_list_entry:      For linking to list of host channels
109  * @desc_list_addr:     Current QH's descriptor list DMA address
110  *
111  * This structure represents the state of a single host channel when acting in
112  * host mode. It contains the data items needed to transfer packets to an
113  * endpoint via a host channel.
114  */
115 struct dwc2_host_chan {
116         u8 hc_num;
117
118         unsigned dev_addr:7;
119         unsigned ep_num:4;
120         unsigned ep_is_in:1;
121         unsigned speed:4;
122         unsigned ep_type:2;
123         unsigned max_packet:11;
124         unsigned data_pid_start:2;
125 #define DWC2_HC_PID_DATA0       TSIZ_SC_MC_PID_DATA0
126 #define DWC2_HC_PID_DATA2       TSIZ_SC_MC_PID_DATA2
127 #define DWC2_HC_PID_DATA1       TSIZ_SC_MC_PID_DATA1
128 #define DWC2_HC_PID_MDATA       TSIZ_SC_MC_PID_MDATA
129 #define DWC2_HC_PID_SETUP       TSIZ_SC_MC_PID_SETUP
130
131         unsigned multi_count:2;
132
133         u8 *xfer_buf;
134         dma_addr_t xfer_dma;
135         dma_addr_t align_buf;
136         u32 xfer_len;
137         u32 xfer_count;
138         u16 start_pkt_count;
139         u8 xfer_started;
140         u8 do_ping;
141         u8 error_state;
142         u8 halt_on_queue;
143         u8 halt_pending;
144         u8 do_split;
145         u8 complete_split;
146         u8 hub_addr;
147         u8 hub_port;
148         u8 xact_pos;
149 #define DWC2_HCSPLT_XACTPOS_MID HCSPLT_XACTPOS_MID
150 #define DWC2_HCSPLT_XACTPOS_END HCSPLT_XACTPOS_END
151 #define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
152 #define DWC2_HCSPLT_XACTPOS_ALL HCSPLT_XACTPOS_ALL
153
154         u8 requests;
155         u8 schinfo;
156         u16 ntd;
157         enum dwc2_halt_status halt_status;
158         u32 hcint;
159         struct dwc2_qh *qh;
160         struct list_head hc_list_entry;
161         dma_addr_t desc_list_addr;
162 };
163
164 struct dwc2_hcd_pipe_info {
165         u8 dev_addr;
166         u8 ep_num;
167         u8 pipe_type;
168         u8 pipe_dir;
169         u16 mps;
170 };
171
172 struct dwc2_hcd_iso_packet_desc {
173         u32 offset;
174         u32 length;
175         u32 actual_length;
176         u32 status;
177 };
178
179 struct dwc2_qtd;
180
181 struct dwc2_hcd_urb {
182         void *priv;
183         struct dwc2_qtd *qtd;
184         void *buf;
185         dma_addr_t dma;
186         void *setup_packet;
187         dma_addr_t setup_dma;
188         u32 length;
189         u32 actual_length;
190         u32 status;
191         u32 error_count;
192         u32 packet_count;
193         u32 flags;
194         u16 interval;
195         struct dwc2_hcd_pipe_info pipe_info;
196         struct dwc2_hcd_iso_packet_desc iso_descs[0];
197 };
198
199 /* Phases for control transfers */
200 enum dwc2_control_phase {
201         DWC2_CONTROL_SETUP,
202         DWC2_CONTROL_DATA,
203         DWC2_CONTROL_STATUS,
204 };
205
206 /* Transaction types */
207 enum dwc2_transaction_type {
208         DWC2_TRANSACTION_NONE,
209         DWC2_TRANSACTION_PERIODIC,
210         DWC2_TRANSACTION_NON_PERIODIC,
211         DWC2_TRANSACTION_ALL,
212 };
213
214 /**
215  * struct dwc2_qh - Software queue head structure
216  *
217  * @ep_type:            Endpoint type. One of the following values:
218  *                       - USB_ENDPOINT_XFER_CONTROL
219  *                       - USB_ENDPOINT_XFER_BULK
220  *                       - USB_ENDPOINT_XFER_INT
221  *                       - USB_ENDPOINT_XFER_ISOC
222  * @ep_is_in:           Endpoint direction
223  * @maxp:               Value from wMaxPacketSize field of Endpoint Descriptor
224  * @dev_speed:          Device speed. One of the following values:
225  *                       - USB_SPEED_LOW
226  *                       - USB_SPEED_FULL
227  *                       - USB_SPEED_HIGH
228  * @data_toggle:        Determines the PID of the next data packet for
229  *                      non-controltransfers. Ignored for control transfers.
230  *                      One of the following values:
231  *                       - DWC2_HC_PID_DATA0
232  *                       - DWC2_HC_PID_DATA1
233  * @ping_state:         Ping state
234  * @do_split:           Full/low speed endpoint on high-speed hub requires split
235  * @td_first:           Index of first activated isochronous transfer descriptor
236  * @td_last:            Index of last activated isochronous transfer descriptor
237  * @usecs:              Bandwidth in microseconds per (micro)frame
238  * @interval:           Interval between transfers in (micro)frames
239  * @sched_frame:        (Micro)frame to initialize a periodic transfer.
240  *                      The transfer executes in the following (micro)frame.
241  * @frame_usecs:        Internal variable used by the microframe scheduler
242  * @start_split_frame:  (Micro)frame at which last start split was initialized
243  * @ntd:                Actual number of transfer descriptors in a list
244  * @dw_align_buf:       Used instead of original buffer if its physical address
245  *                      is not dword-aligned
246  * @dw_align_buf_dma:   DMA address for align_buf
247  * @qtd_list:           List of QTDs for this QH
248  * @channel:            Host channel currently processing transfers for this QH
249  * @qh_list_entry:      Entry for QH in either the periodic or non-periodic
250  *                      schedule
251  * @desc_list:          List of transfer descriptors
252  * @desc_list_dma:      Physical address of desc_list
253  * @n_bytes:            Xfer Bytes array. Each element corresponds to a transfer
254  *                      descriptor and indicates original XferSize value for the
255  *                      descriptor
256  * @tt_buffer_dirty     True if clear_tt_buffer_complete is pending
257  *
258  * A Queue Head (QH) holds the static characteristics of an endpoint and
259  * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
260  * be entered in either the non-periodic or periodic schedule.
261  */
262 struct dwc2_qh {
263         u8 ep_type;
264         u8 ep_is_in;
265         u16 maxp;
266         u8 dev_speed;
267         u8 data_toggle;
268         u8 ping_state;
269         u8 do_split;
270         u8 td_first;
271         u8 td_last;
272         u16 usecs;
273         u16 interval;
274         u16 sched_frame;
275         u16 frame_usecs[8];
276         u16 start_split_frame;
277         u16 ntd;
278         u8 *dw_align_buf;
279         dma_addr_t dw_align_buf_dma;
280         struct list_head qtd_list;
281         struct dwc2_host_chan *channel;
282         struct list_head qh_list_entry;
283         struct dwc2_hcd_dma_desc *desc_list;
284         dma_addr_t desc_list_dma;
285         u32 *n_bytes;
286         unsigned tt_buffer_dirty:1;
287 };
288
289 /**
290  * struct dwc2_qtd - Software queue transfer descriptor (QTD)
291  *
292  * @control_phase:      Current phase for control transfers (Setup, Data, or
293  *                      Status)
294  * @in_process:         Indicates if this QTD is currently processed by HW
295  * @data_toggle:        Determines the PID of the next data packet for the
296  *                      data phase of control transfers. Ignored for other
297  *                      transfer types. One of the following values:
298  *                       - DWC2_HC_PID_DATA0
299  *                       - DWC2_HC_PID_DATA1
300  * @complete_split:     Keeps track of the current split type for FS/LS
301  *                      endpoints on a HS Hub
302  * @isoc_split_pos:     Position of the ISOC split in full/low speed
303  * @isoc_frame_index:   Index of the next frame descriptor for an isochronous
304  *                      transfer. A frame descriptor describes the buffer
305  *                      position and length of the data to be transferred in the
306  *                      next scheduled (micro)frame of an isochronous transfer.
307  *                      It also holds status for that transaction. The frame
308  *                      index starts at 0.
309  * @isoc_split_offset:  Position of the ISOC split in the buffer for the
310  *                      current frame
311  * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
312  * @error_count:        Holds the number of bus errors that have occurred for
313  *                      a transaction within this transfer
314  * @n_desc:             Number of DMA descriptors for this QTD
315  * @isoc_frame_index_last: Last activated frame (packet) index, used in
316  *                      descriptor DMA mode only
317  * @urb:                URB for this transfer
318  * @qh:                 Queue head for this QTD
319  * @qtd_list_entry:     For linking to the QH's list of QTDs
320  *
321  * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
322  * interrupt, or isochronous transfer. A single QTD is created for each URB
323  * (of one of these types) submitted to the HCD. The transfer associated with
324  * a QTD may require one or multiple transactions.
325  *
326  * A QTD is linked to a Queue Head, which is entered in either the
327  * non-periodic or periodic schedule for execution. When a QTD is chosen for
328  * execution, some or all of its transactions may be executed. After
329  * execution, the state of the QTD is updated. The QTD may be retired if all
330  * its transactions are complete or if an error occurred. Otherwise, it
331  * remains in the schedule so more transactions can be executed later.
332  */
333 struct dwc2_qtd {
334         enum dwc2_control_phase control_phase;
335         u8 in_process;
336         u8 data_toggle;
337         u8 complete_split;
338         u8 isoc_split_pos;
339         u16 isoc_frame_index;
340         u16 isoc_split_offset;
341         u32 ssplit_out_xfer_count;
342         u8 error_count;
343         u8 n_desc;
344         u16 isoc_frame_index_last;
345         struct dwc2_hcd_urb *urb;
346         struct dwc2_qh *qh;
347         struct list_head qtd_list_entry;
348 };
349
350 #ifdef DEBUG
351 struct hc_xfer_info {
352         struct dwc2_hsotg *hsotg;
353         struct dwc2_host_chan *chan;
354 };
355 #endif
356
357 /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
358 static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
359 {
360         return (struct usb_hcd *)hsotg->priv;
361 }
362
363 /*
364  * Inline used to disable one channel interrupt. Channel interrupts are
365  * disabled when the channel is halted or released by the interrupt handler.
366  * There is no need to handle further interrupts of that type until the
367  * channel is re-assigned. In fact, subsequent handling may cause crashes
368  * because the channel structures are cleaned up when the channel is released.
369  */
370 static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
371 {
372         u32 mask = readl(hsotg->regs + HCINTMSK(chnum));
373
374         mask &= ~intr;
375         writel(mask, hsotg->regs + HCINTMSK(chnum));
376 }
377
378 /*
379  * Returns the mode of operation, host or device
380  */
381 static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
382 {
383         return (readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
384 }
385 static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
386 {
387         return (readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
388 }
389
390 /*
391  * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
392  * are read as 1, they won't clear when written back.
393  */
394 static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
395 {
396         u32 hprt0 = readl(hsotg->regs + HPRT0);
397
398         hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
399         return hprt0;
400 }
401
402 static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
403 {
404         return pipe->ep_num;
405 }
406
407 static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
408 {
409         return pipe->pipe_type;
410 }
411
412 static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
413 {
414         return pipe->mps;
415 }
416
417 static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
418 {
419         return pipe->dev_addr;
420 }
421
422 static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
423 {
424         return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
425 }
426
427 static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
428 {
429         return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
430 }
431
432 static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
433 {
434         return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
435 }
436
437 static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
438 {
439         return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
440 }
441
442 static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
443 {
444         return pipe->pipe_dir == USB_DIR_IN;
445 }
446
447 static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
448 {
449         return !dwc2_hcd_is_pipe_in(pipe);
450 }
451
452 extern int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq,
453                          const struct dwc2_core_params *params);
454 extern void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
455 extern void dwc2_set_parameters(struct dwc2_hsotg *hsotg,
456                                 const struct dwc2_core_params *params);
457 extern void dwc2_set_all_params(struct dwc2_core_params *params, int value);
458 extern int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
459
460 /* Transaction Execution Functions */
461 extern enum dwc2_transaction_type dwc2_hcd_select_transactions(
462                                                 struct dwc2_hsotg *hsotg);
463 extern void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
464                                         enum dwc2_transaction_type tr_type);
465
466 /* Schedule Queue Functions */
467 /* Implemented in hcd_queue.c */
468 extern void dwc2_hcd_init_usecs(struct dwc2_hsotg *hsotg);
469 extern void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
470 extern int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
471 extern void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
472 extern void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
473                                    int sched_csplit);
474
475 extern void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
476 extern int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
477                             struct dwc2_qh **qh, gfp_t mem_flags);
478
479 /* Unlinks and frees a QTD */
480 static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
481                                                 struct dwc2_qtd *qtd,
482                                                 struct dwc2_qh *qh)
483 {
484         list_del(&qtd->qtd_list_entry);
485         kfree(qtd);
486 }
487
488 /* Descriptor DMA support functions */
489 extern void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
490                                      struct dwc2_qh *qh);
491 extern void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
492                                         struct dwc2_host_chan *chan, int chnum,
493                                         enum dwc2_halt_status halt_status);
494
495 extern int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
496                                  gfp_t mem_flags);
497 extern void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
498
499 /* Check if QH is non-periodic */
500 #define dwc2_qh_is_non_per(_qh_ptr_) \
501         ((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
502          (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
503
504 #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
505 static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
506 static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
507 static inline bool dbg_urb(struct urb *urb) { return true; }
508 static inline bool dbg_perio(void) { return true; }
509 #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
510 static inline bool dbg_hc(struct dwc2_host_chan *hc)
511 {
512         return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
513                hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
514 }
515
516 static inline bool dbg_qh(struct dwc2_qh *qh)
517 {
518         return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
519                qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
520 }
521
522 static inline bool dbg_urb(struct urb *urb)
523 {
524         return usb_pipetype(urb->pipe) == PIPE_BULK ||
525                usb_pipetype(urb->pipe) == PIPE_CONTROL;
526 }
527
528 static inline bool dbg_perio(void) { return false; }
529 #endif
530
531 /* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
532 #define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
533
534 /* Packet size for any kind of endpoint descriptor */
535 #define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
536
537 /*
538  * Returns true if frame1 is less than or equal to frame2. The comparison is
539  * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
540  * frame number when the max frame number is reached.
541  */
542 static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
543 {
544         return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
545 }
546
547 /*
548  * Returns true if frame1 is greater than frame2. The comparison is done
549  * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
550  * number when the max frame number is reached.
551  */
552 static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
553 {
554         return (frame1 != frame2) &&
555                ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
556 }
557
558 /*
559  * Increments frame by the amount specified by inc. The addition is done
560  * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
561  */
562 static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
563 {
564         return (frame + inc) & HFNUM_MAX_FRNUM;
565 }
566
567 static inline u16 dwc2_full_frame_num(u16 frame)
568 {
569         return (frame & HFNUM_MAX_FRNUM) >> 3;
570 }
571
572 static inline u16 dwc2_micro_frame_num(u16 frame)
573 {
574         return frame & 0x7;
575 }
576
577 /*
578  * Returns the Core Interrupt Status register contents, ANDed with the Core
579  * Interrupt Mask register contents
580  */
581 static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
582 {
583         return readl(hsotg->regs + GINTSTS) & readl(hsotg->regs + GINTMSK);
584 }
585
586 static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
587 {
588         return dwc2_urb->status;
589 }
590
591 static inline u32 dwc2_hcd_urb_get_actual_length(
592                 struct dwc2_hcd_urb *dwc2_urb)
593 {
594         return dwc2_urb->actual_length;
595 }
596
597 static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
598 {
599         return dwc2_urb->error_count;
600 }
601
602 static inline void dwc2_hcd_urb_set_iso_desc_params(
603                 struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
604                 u32 length)
605 {
606         dwc2_urb->iso_descs[desc_num].offset = offset;
607         dwc2_urb->iso_descs[desc_num].length = length;
608 }
609
610 static inline u32 dwc2_hcd_urb_get_iso_desc_status(
611                 struct dwc2_hcd_urb *dwc2_urb, int desc_num)
612 {
613         return dwc2_urb->iso_descs[desc_num].status;
614 }
615
616 static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
617                 struct dwc2_hcd_urb *dwc2_urb, int desc_num)
618 {
619         return dwc2_urb->iso_descs[desc_num].actual_length;
620 }
621
622 static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
623                                                   struct usb_host_endpoint *ep)
624 {
625         struct dwc2_qh *qh = ep->hcpriv;
626
627         if (qh && !list_empty(&qh->qh_list_entry))
628                 return 1;
629
630         return 0;
631 }
632
633 static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
634                                             struct usb_host_endpoint *ep)
635 {
636         struct dwc2_qh *qh = ep->hcpriv;
637
638         if (!qh) {
639                 WARN_ON(1);
640                 return 0;
641         }
642
643         return qh->usecs;
644 }
645
646 extern void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
647                                       struct dwc2_host_chan *chan, int chnum,
648                                       struct dwc2_qtd *qtd);
649
650 /* HCD Core API */
651
652 /**
653  * dwc2_handle_hcd_intr() - Called on every hardware interrupt
654  *
655  * @hsotg: The DWC2 HCD
656  *
657  * Returns IRQ_HANDLED if interrupt is handled
658  * Return IRQ_NONE if interrupt is not handled
659  */
660 extern irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
661
662 /**
663  * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
664  *
665  * @hsotg: The DWC2 HCD
666  */
667 extern void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
668
669 extern void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
670 extern void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg);
671
672 /**
673  * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
674  * and 0 otherwise
675  *
676  * @hsotg: The DWC2 HCD
677  */
678 extern int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
679
680 /**
681  * dwc2_hcd_get_frame_number() - Returns current frame number
682  *
683  * @hsotg: The DWC2 HCD
684  */
685 extern int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
686
687 /**
688  * dwc2_hcd_dump_state() - Dumps hsotg state
689  *
690  * @hsotg: The DWC2 HCD
691  *
692  * NOTE: This function will be removed once the peripheral controller code
693  * is integrated and the driver is stable
694  */
695 extern void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
696
697 /**
698  * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
699  *
700  * @hsotg: The DWC2 HCD
701  *
702  * This can be used to determine average interrupt latency. Frame remaining is
703  * also shown for start transfer and two additional sample points.
704  *
705  * NOTE: This function will be removed once the peripheral controller code
706  * is integrated and the driver is stable
707  */
708 extern void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg);
709
710 /* URB interface */
711
712 /* Transfer flags */
713 #define URB_GIVEBACK_ASAP       0x1
714 #define URB_SEND_ZERO_PACKET    0x2
715
716 /* Host driver callbacks */
717
718 extern void dwc2_host_start(struct dwc2_hsotg *hsotg);
719 extern void dwc2_host_disconnect(struct dwc2_hsotg *hsotg);
720 extern void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
721                                int *hub_addr, int *hub_port);
722 extern int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
723 extern void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
724                                int status);
725
726 #ifdef DEBUG
727 /*
728  * Macro to sample the remaining PHY clocks left in the current frame. This
729  * may be used during debugging to determine the average time it takes to
730  * execute sections of code. There are two possible sample points, "a" and
731  * "b", so the _letter_ argument must be one of these values.
732  *
733  * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
734  * example, "cat /sys/devices/lm0/hcd_frrem".
735  */
736 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_)                        \
737 do {                                                                    \
738         struct hfnum_data _hfnum_;                                      \
739         struct dwc2_qtd *_qtd_;                                         \
740                                                                         \
741         _qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd,      \
742                            qtd_list_entry);                             \
743         if (usb_pipeint(_qtd_->urb->pipe) &&                            \
744             (_qh_)->start_split_frame != 0 && !_qtd_->complete_split) { \
745                 _hfnum_.d32 = readl((_hcd_)->regs + HFNUM);             \
746                 switch (_hfnum_.b.frnum & 0x7) {                        \
747                 case 7:                                                 \
748                         (_hcd_)->hfnum_7_samples_##_letter_++;          \
749                         (_hcd_)->hfnum_7_frrem_accum_##_letter_ +=      \
750                                 _hfnum_.b.frrem;                        \
751                         break;                                          \
752                 case 0:                                                 \
753                         (_hcd_)->hfnum_0_samples_##_letter_++;          \
754                         (_hcd_)->hfnum_0_frrem_accum_##_letter_ +=      \
755                                 _hfnum_.b.frrem;                        \
756                         break;                                          \
757                 default:                                                \
758                         (_hcd_)->hfnum_other_samples_##_letter_++;      \
759                         (_hcd_)->hfnum_other_frrem_accum_##_letter_ +=  \
760                                 _hfnum_.b.frrem;                        \
761                         break;                                          \
762                 }                                                       \
763         }                                                               \
764 } while (0)
765 #else
766 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_)        do {} while (0)
767 #endif
768
769 #endif /* __DWC2_HCD_H__ */