1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
3 * hcd.c - DesignWare HS OTG Controller host-mode routines
5 * Copyright (C) 2004-2013 Synopsys, Inc.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. The names of the above-listed copyright holders may not be used
17 * to endorse or promote products derived from this software without
18 * specific prior written permission.
20 * ALTERNATIVELY, this software may be distributed under the terms of the
21 * GNU General Public License ("GPL") as published by the Free Software
22 * Foundation; either version 2 of the License, or (at your option) any
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 * This file contains the core HCD code, and implements the Linux hc_driver
42 #include <linux/kernel.h>
43 #include <linux/module.h>
44 #include <linux/spinlock.h>
45 #include <linux/interrupt.h>
46 #include <linux/platform_device.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/delay.h>
50 #include <linux/slab.h>
51 #include <linux/usb.h>
53 #include <linux/usb/hcd.h>
54 #include <linux/usb/ch11.h>
60 * =========================================================================
61 * Host Core Layer Functions
62 * =========================================================================
66 * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
67 * used in both device and host modes
69 * @hsotg: Programming view of the DWC_otg controller
71 static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
75 /* Clear any pending OTG Interrupts */
76 dwc2_writel(hsotg, 0xffffffff, GOTGINT);
78 /* Clear any pending interrupts */
79 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
81 /* Enable the interrupts in the GINTMSK */
82 intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
84 if (!hsotg->params.host_dma)
85 intmsk |= GINTSTS_RXFLVL;
86 if (!hsotg->params.external_id_pin_ctl)
87 intmsk |= GINTSTS_CONIDSTSCHNG;
89 intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
92 if (dwc2_is_device_mode(hsotg) && hsotg->params.lpm)
93 intmsk |= GINTSTS_LPMTRANRCVD;
95 dwc2_writel(hsotg, intmsk, GINTMSK);
98 static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
100 u32 ahbcfg = dwc2_readl(hsotg, GAHBCFG);
102 switch (hsotg->hw_params.arch) {
103 case GHWCFG2_EXT_DMA_ARCH:
104 dev_err(hsotg->dev, "External DMA Mode not supported\n");
107 case GHWCFG2_INT_DMA_ARCH:
108 dev_dbg(hsotg->dev, "Internal DMA Mode\n");
109 if (hsotg->params.ahbcfg != -1) {
110 ahbcfg &= GAHBCFG_CTRL_MASK;
111 ahbcfg |= hsotg->params.ahbcfg &
116 case GHWCFG2_SLAVE_ONLY_ARCH:
118 dev_dbg(hsotg->dev, "Slave Only Mode\n");
122 if (hsotg->params.host_dma)
123 ahbcfg |= GAHBCFG_DMA_EN;
125 hsotg->params.dma_desc_enable = false;
127 dwc2_writel(hsotg, ahbcfg, GAHBCFG);
132 static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
136 usbcfg = dwc2_readl(hsotg, GUSBCFG);
137 usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
139 switch (hsotg->hw_params.op_mode) {
140 case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
141 if (hsotg->params.otg_cap ==
142 DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
143 usbcfg |= GUSBCFG_HNPCAP;
144 if (hsotg->params.otg_cap !=
145 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
146 usbcfg |= GUSBCFG_SRPCAP;
149 case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
150 case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
151 case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
152 if (hsotg->params.otg_cap !=
153 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
154 usbcfg |= GUSBCFG_SRPCAP;
157 case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
158 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
159 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
164 dwc2_writel(hsotg, usbcfg, GUSBCFG);
167 static int dwc2_vbus_supply_init(struct dwc2_hsotg *hsotg)
169 if (hsotg->vbus_supply)
170 return regulator_enable(hsotg->vbus_supply);
175 static int dwc2_vbus_supply_exit(struct dwc2_hsotg *hsotg)
177 if (hsotg->vbus_supply)
178 return regulator_disable(hsotg->vbus_supply);
184 * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
186 * @hsotg: Programming view of DWC_otg controller
188 static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
192 dev_dbg(hsotg->dev, "%s()\n", __func__);
194 /* Disable all interrupts */
195 dwc2_writel(hsotg, 0, GINTMSK);
196 dwc2_writel(hsotg, 0, HAINTMSK);
198 /* Enable the common interrupts */
199 dwc2_enable_common_interrupts(hsotg);
201 /* Enable host mode interrupts without disturbing common interrupts */
202 intmsk = dwc2_readl(hsotg, GINTMSK);
203 intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
204 dwc2_writel(hsotg, intmsk, GINTMSK);
208 * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
210 * @hsotg: Programming view of DWC_otg controller
212 static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
214 u32 intmsk = dwc2_readl(hsotg, GINTMSK);
216 /* Disable host mode interrupts without disturbing common interrupts */
217 intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
218 GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
219 dwc2_writel(hsotg, intmsk, GINTMSK);
223 * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
224 * For system that have a total fifo depth that is smaller than the default
227 * @hsotg: Programming view of DWC_otg controller
229 static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
231 struct dwc2_core_params *params = &hsotg->params;
232 struct dwc2_hw_params *hw = &hsotg->hw_params;
233 u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
235 total_fifo_size = hw->total_fifo_size;
236 rxfsiz = params->host_rx_fifo_size;
237 nptxfsiz = params->host_nperio_tx_fifo_size;
238 ptxfsiz = params->host_perio_tx_fifo_size;
241 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
242 * allocation with support for high bandwidth endpoints. Synopsys
243 * defines MPS(Max Packet size) for a periodic EP=1024, and for
244 * non-periodic as 512.
246 if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
248 * For Buffer DMA mode/Scatter Gather DMA mode
249 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
250 * with n = number of host channel.
251 * 2 * ((1024/4) + 2) = 516
253 rxfsiz = 516 + hw->host_channels;
256 * min non-periodic tx fifo depth
257 * 2 * (largest non-periodic USB packet used / 4)
263 * min periodic tx fifo depth
264 * (largest packet size*MC)/4
269 params->host_rx_fifo_size = rxfsiz;
270 params->host_nperio_tx_fifo_size = nptxfsiz;
271 params->host_perio_tx_fifo_size = ptxfsiz;
275 * If the summation of RX, NPTX and PTX fifo sizes is still
276 * bigger than the total_fifo_size, then we have a problem.
278 * We won't be able to allocate as many endpoints. Right now,
279 * we're just printing an error message, but ideally this FIFO
280 * allocation algorithm would be improved in the future.
282 * FIXME improve this FIFO allocation algorithm.
284 if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
285 dev_err(hsotg->dev, "invalid fifo sizes\n");
288 static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
290 struct dwc2_core_params *params = &hsotg->params;
291 u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
293 if (!params->enable_dynamic_fifo)
296 dwc2_calculate_dynamic_fifo(hsotg);
299 grxfsiz = dwc2_readl(hsotg, GRXFSIZ);
300 dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
301 grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
302 grxfsiz |= params->host_rx_fifo_size <<
303 GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
304 dwc2_writel(hsotg, grxfsiz, GRXFSIZ);
305 dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
306 dwc2_readl(hsotg, GRXFSIZ));
308 /* Non-periodic Tx FIFO */
309 dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
310 dwc2_readl(hsotg, GNPTXFSIZ));
311 nptxfsiz = params->host_nperio_tx_fifo_size <<
312 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
313 nptxfsiz |= params->host_rx_fifo_size <<
314 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
315 dwc2_writel(hsotg, nptxfsiz, GNPTXFSIZ);
316 dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
317 dwc2_readl(hsotg, GNPTXFSIZ));
319 /* Periodic Tx FIFO */
320 dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
321 dwc2_readl(hsotg, HPTXFSIZ));
322 hptxfsiz = params->host_perio_tx_fifo_size <<
323 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
324 hptxfsiz |= (params->host_rx_fifo_size +
325 params->host_nperio_tx_fifo_size) <<
326 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
327 dwc2_writel(hsotg, hptxfsiz, HPTXFSIZ);
328 dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
329 dwc2_readl(hsotg, HPTXFSIZ));
331 if (hsotg->params.en_multiple_tx_fifo &&
332 hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) {
334 * This feature was implemented in 2.91a version
335 * Global DFIFOCFG calculation for Host mode -
336 * include RxFIFO, NPTXFIFO and HPTXFIFO
338 dfifocfg = dwc2_readl(hsotg, GDFIFOCFG);
339 dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
340 dfifocfg |= (params->host_rx_fifo_size +
341 params->host_nperio_tx_fifo_size +
342 params->host_perio_tx_fifo_size) <<
343 GDFIFOCFG_EPINFOBASE_SHIFT &
344 GDFIFOCFG_EPINFOBASE_MASK;
345 dwc2_writel(hsotg, dfifocfg, GDFIFOCFG);
350 * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
351 * the HFIR register according to PHY type and speed
353 * @hsotg: Programming view of DWC_otg controller
355 * NOTE: The caller can modify the value of the HFIR register only after the
356 * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
359 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
363 int clock = 60; /* default value */
365 usbcfg = dwc2_readl(hsotg, GUSBCFG);
366 hprt0 = dwc2_readl(hsotg, HPRT0);
368 if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
369 !(usbcfg & GUSBCFG_PHYIF16))
371 if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
372 GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
374 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
375 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
377 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
378 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
380 if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
381 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
383 if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
384 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
386 if ((usbcfg & GUSBCFG_PHYSEL) &&
387 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
390 if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
391 /* High speed case */
392 return 125 * clock - 1;
395 return 1000 * clock - 1;
399 * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
402 * @hsotg: Programming view of DWC_otg controller
403 * @dest: Destination buffer for the packet
404 * @bytes: Number of bytes to copy to the destination
406 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
408 u32 *data_buf = (u32 *)dest;
409 int word_count = (bytes + 3) / 4;
413 * Todo: Account for the case where dest is not dword aligned. This
414 * requires reading data from the FIFO into a u32 temp buffer, then
415 * moving it into the data buffer.
418 dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
420 for (i = 0; i < word_count; i++, data_buf++)
421 *data_buf = dwc2_readl(hsotg, HCFIFO(0));
425 * dwc2_dump_channel_info() - Prints the state of a host channel
427 * @hsotg: Programming view of DWC_otg controller
428 * @chan: Pointer to the channel to dump
430 * Must be called with interrupt disabled and spinlock held
432 * NOTE: This function will be removed once the peripheral controller code
433 * is integrated and the driver is stable
435 static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
436 struct dwc2_host_chan *chan)
439 int num_channels = hsotg->params.host_channels;
450 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
451 hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
452 hctsiz = dwc2_readl(hsotg, HCTSIZ(chan->hc_num));
453 hc_dma = dwc2_readl(hsotg, HCDMA(chan->hc_num));
455 dev_dbg(hsotg->dev, " Assigned to channel %p:\n", chan);
456 dev_dbg(hsotg->dev, " hcchar 0x%08x, hcsplt 0x%08x\n",
458 dev_dbg(hsotg->dev, " hctsiz 0x%08x, hc_dma 0x%08x\n",
460 dev_dbg(hsotg->dev, " dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
461 chan->dev_addr, chan->ep_num, chan->ep_is_in);
462 dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type);
463 dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet);
464 dev_dbg(hsotg->dev, " data_pid_start: %d\n", chan->data_pid_start);
465 dev_dbg(hsotg->dev, " xfer_started: %d\n", chan->xfer_started);
466 dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status);
467 dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf);
468 dev_dbg(hsotg->dev, " xfer_dma: %08lx\n",
469 (unsigned long)chan->xfer_dma);
470 dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len);
471 dev_dbg(hsotg->dev, " qh: %p\n", chan->qh);
472 dev_dbg(hsotg->dev, " NP inactive sched:\n");
473 list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
475 dev_dbg(hsotg->dev, " %p\n", qh);
476 dev_dbg(hsotg->dev, " NP waiting sched:\n");
477 list_for_each_entry(qh, &hsotg->non_periodic_sched_waiting,
479 dev_dbg(hsotg->dev, " %p\n", qh);
480 dev_dbg(hsotg->dev, " NP active sched:\n");
481 list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
483 dev_dbg(hsotg->dev, " %p\n", qh);
484 dev_dbg(hsotg->dev, " Channels:\n");
485 for (i = 0; i < num_channels; i++) {
486 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
488 dev_dbg(hsotg->dev, " %2d: %p\n", i, chan);
490 #endif /* VERBOSE_DEBUG */
493 static int _dwc2_hcd_start(struct usb_hcd *hcd);
495 static void dwc2_host_start(struct dwc2_hsotg *hsotg)
497 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
499 hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
500 _dwc2_hcd_start(hcd);
503 static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
505 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
507 hcd->self.is_b_host = 0;
510 static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
511 int *hub_addr, int *hub_port)
513 struct urb *urb = context;
516 *hub_addr = urb->dev->tt->hub->devnum;
519 *hub_port = urb->dev->ttport;
523 * =========================================================================
524 * Low Level Host Channel Access Functions
525 * =========================================================================
528 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
529 struct dwc2_host_chan *chan)
531 u32 hcintmsk = HCINTMSK_CHHLTD;
533 switch (chan->ep_type) {
534 case USB_ENDPOINT_XFER_CONTROL:
535 case USB_ENDPOINT_XFER_BULK:
536 dev_vdbg(hsotg->dev, "control/bulk\n");
537 hcintmsk |= HCINTMSK_XFERCOMPL;
538 hcintmsk |= HCINTMSK_STALL;
539 hcintmsk |= HCINTMSK_XACTERR;
540 hcintmsk |= HCINTMSK_DATATGLERR;
541 if (chan->ep_is_in) {
542 hcintmsk |= HCINTMSK_BBLERR;
544 hcintmsk |= HCINTMSK_NAK;
545 hcintmsk |= HCINTMSK_NYET;
547 hcintmsk |= HCINTMSK_ACK;
550 if (chan->do_split) {
551 hcintmsk |= HCINTMSK_NAK;
552 if (chan->complete_split)
553 hcintmsk |= HCINTMSK_NYET;
555 hcintmsk |= HCINTMSK_ACK;
558 if (chan->error_state)
559 hcintmsk |= HCINTMSK_ACK;
562 case USB_ENDPOINT_XFER_INT:
564 dev_vdbg(hsotg->dev, "intr\n");
565 hcintmsk |= HCINTMSK_XFERCOMPL;
566 hcintmsk |= HCINTMSK_NAK;
567 hcintmsk |= HCINTMSK_STALL;
568 hcintmsk |= HCINTMSK_XACTERR;
569 hcintmsk |= HCINTMSK_DATATGLERR;
570 hcintmsk |= HCINTMSK_FRMOVRUN;
573 hcintmsk |= HCINTMSK_BBLERR;
574 if (chan->error_state)
575 hcintmsk |= HCINTMSK_ACK;
576 if (chan->do_split) {
577 if (chan->complete_split)
578 hcintmsk |= HCINTMSK_NYET;
580 hcintmsk |= HCINTMSK_ACK;
584 case USB_ENDPOINT_XFER_ISOC:
586 dev_vdbg(hsotg->dev, "isoc\n");
587 hcintmsk |= HCINTMSK_XFERCOMPL;
588 hcintmsk |= HCINTMSK_FRMOVRUN;
589 hcintmsk |= HCINTMSK_ACK;
591 if (chan->ep_is_in) {
592 hcintmsk |= HCINTMSK_XACTERR;
593 hcintmsk |= HCINTMSK_BBLERR;
597 dev_err(hsotg->dev, "## Unknown EP type ##\n");
601 dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
603 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
606 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
607 struct dwc2_host_chan *chan)
609 u32 hcintmsk = HCINTMSK_CHHLTD;
612 * For Descriptor DMA mode core halts the channel on AHB error.
613 * Interrupt is not required.
615 if (!hsotg->params.dma_desc_enable) {
617 dev_vdbg(hsotg->dev, "desc DMA disabled\n");
618 hcintmsk |= HCINTMSK_AHBERR;
621 dev_vdbg(hsotg->dev, "desc DMA enabled\n");
622 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
623 hcintmsk |= HCINTMSK_XFERCOMPL;
626 if (chan->error_state && !chan->do_split &&
627 chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
629 dev_vdbg(hsotg->dev, "setting ACK\n");
630 hcintmsk |= HCINTMSK_ACK;
631 if (chan->ep_is_in) {
632 hcintmsk |= HCINTMSK_DATATGLERR;
633 if (chan->ep_type != USB_ENDPOINT_XFER_INT)
634 hcintmsk |= HCINTMSK_NAK;
638 dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
640 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
643 static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
644 struct dwc2_host_chan *chan)
648 if (hsotg->params.host_dma) {
650 dev_vdbg(hsotg->dev, "DMA enabled\n");
651 dwc2_hc_enable_dma_ints(hsotg, chan);
654 dev_vdbg(hsotg->dev, "DMA disabled\n");
655 dwc2_hc_enable_slave_ints(hsotg, chan);
658 /* Enable the top level host channel interrupt */
659 intmsk = dwc2_readl(hsotg, HAINTMSK);
660 intmsk |= 1 << chan->hc_num;
661 dwc2_writel(hsotg, intmsk, HAINTMSK);
663 dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
665 /* Make sure host channel interrupts are enabled */
666 intmsk = dwc2_readl(hsotg, GINTMSK);
667 intmsk |= GINTSTS_HCHINT;
668 dwc2_writel(hsotg, intmsk, GINTMSK);
670 dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
674 * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
675 * a specific endpoint
677 * @hsotg: Programming view of DWC_otg controller
678 * @chan: Information needed to initialize the host channel
680 * The HCCHARn register is set up with the characteristics specified in chan.
681 * Host channel interrupts that may need to be serviced while this transfer is
682 * in progress are enabled.
684 static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
686 u8 hc_num = chan->hc_num;
692 dev_vdbg(hsotg->dev, "%s()\n", __func__);
694 /* Clear old interrupt conditions for this host channel */
695 hcintmsk = 0xffffffff;
696 hcintmsk &= ~HCINTMSK_RESERVED14_31;
697 dwc2_writel(hsotg, hcintmsk, HCINT(hc_num));
699 /* Enable channel interrupts required for this transfer */
700 dwc2_hc_enable_ints(hsotg, chan);
703 * Program the HCCHARn register with the endpoint characteristics for
704 * the current transfer
706 hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
707 hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
709 hcchar |= HCCHAR_EPDIR;
710 if (chan->speed == USB_SPEED_LOW)
711 hcchar |= HCCHAR_LSPDDEV;
712 hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
713 hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
714 dwc2_writel(hsotg, hcchar, HCCHAR(hc_num));
716 dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
719 dev_vdbg(hsotg->dev, "%s: Channel %d\n",
721 dev_vdbg(hsotg->dev, " Dev Addr: %d\n",
723 dev_vdbg(hsotg->dev, " Ep Num: %d\n",
725 dev_vdbg(hsotg->dev, " Is In: %d\n",
727 dev_vdbg(hsotg->dev, " Is Low Speed: %d\n",
728 chan->speed == USB_SPEED_LOW);
729 dev_vdbg(hsotg->dev, " Ep Type: %d\n",
731 dev_vdbg(hsotg->dev, " Max Pkt: %d\n",
735 /* Program the HCSPLT register for SPLITs */
736 if (chan->do_split) {
739 "Programming HC %d with split --> %s\n",
741 chan->complete_split ? "CSPLIT" : "SSPLIT");
742 if (chan->complete_split)
743 hcsplt |= HCSPLT_COMPSPLT;
744 hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
746 hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
748 hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
751 dev_vdbg(hsotg->dev, " comp split %d\n",
752 chan->complete_split);
753 dev_vdbg(hsotg->dev, " xact pos %d\n",
755 dev_vdbg(hsotg->dev, " hub addr %d\n",
757 dev_vdbg(hsotg->dev, " hub port %d\n",
759 dev_vdbg(hsotg->dev, " is_in %d\n",
761 dev_vdbg(hsotg->dev, " Max Pkt %d\n",
763 dev_vdbg(hsotg->dev, " xferlen %d\n",
768 dwc2_writel(hsotg, hcsplt, HCSPLT(hc_num));
772 * dwc2_hc_halt() - Attempts to halt a host channel
774 * @hsotg: Controller register interface
775 * @chan: Host channel to halt
776 * @halt_status: Reason for halting the channel
778 * This function should only be called in Slave mode or to abort a transfer in
779 * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
780 * controller halts the channel when the transfer is complete or a condition
781 * occurs that requires application intervention.
783 * In slave mode, checks for a free request queue entry, then sets the Channel
784 * Enable and Channel Disable bits of the Host Channel Characteristics
785 * register of the specified channel to intiate the halt. If there is no free
786 * request queue entry, sets only the Channel Disable bit of the HCCHARn
787 * register to flush requests for this channel. In the latter case, sets a
788 * flag to indicate that the host channel needs to be halted when a request
789 * queue slot is open.
791 * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
792 * HCCHARn register. The controller ensures there is space in the request
793 * queue before submitting the halt request.
795 * Some time may elapse before the core flushes any posted requests for this
796 * host channel and halts. The Channel Halted interrupt handler completes the
797 * deactivation of the host channel.
799 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
800 enum dwc2_halt_status halt_status)
802 u32 nptxsts, hptxsts, hcchar;
805 dev_vdbg(hsotg->dev, "%s()\n", __func__);
808 * In buffer DMA or external DMA mode channel can't be halted
809 * for non-split periodic channels. At the end of the next
810 * uframe/frame (in the worst case), the core generates a channel
811 * halted and disables the channel automatically.
813 if ((hsotg->params.g_dma && !hsotg->params.g_dma_desc) ||
814 hsotg->hw_params.arch == GHWCFG2_EXT_DMA_ARCH) {
815 if (!chan->do_split &&
816 (chan->ep_type == USB_ENDPOINT_XFER_ISOC ||
817 chan->ep_type == USB_ENDPOINT_XFER_INT)) {
818 dev_err(hsotg->dev, "%s() Channel can't be halted\n",
824 if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
825 dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
827 if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
828 halt_status == DWC2_HC_XFER_AHB_ERR) {
830 * Disable all channel interrupts except Ch Halted. The QTD
831 * and QH state associated with this transfer has been cleared
832 * (in the case of URB_DEQUEUE), so the channel needs to be
833 * shut down carefully to prevent crashes.
835 u32 hcintmsk = HCINTMSK_CHHLTD;
837 dev_vdbg(hsotg->dev, "dequeue/error\n");
838 dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
841 * Make sure no other interrupts besides halt are currently
842 * pending. Handling another interrupt could cause a crash due
843 * to the QTD and QH state.
845 dwc2_writel(hsotg, ~hcintmsk, HCINT(chan->hc_num));
848 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
849 * even if the channel was already halted for some other
852 chan->halt_status = halt_status;
854 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
855 if (!(hcchar & HCCHAR_CHENA)) {
857 * The channel is either already halted or it hasn't
858 * started yet. In DMA mode, the transfer may halt if
859 * it finishes normally or a condition occurs that
860 * requires driver intervention. Don't want to halt
861 * the channel again. In either Slave or DMA mode,
862 * it's possible that the transfer has been assigned
863 * to a channel, but not started yet when an URB is
864 * dequeued. Don't want to halt a channel that hasn't
870 if (chan->halt_pending) {
872 * A halt has already been issued for this channel. This might
873 * happen when a transfer is aborted by a higher level in
877 "*** %s: Channel %d, chan->halt_pending already set ***\n",
878 __func__, chan->hc_num);
882 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
884 /* No need to set the bit in DDMA for disabling the channel */
885 /* TODO check it everywhere channel is disabled */
886 if (!hsotg->params.dma_desc_enable) {
888 dev_vdbg(hsotg->dev, "desc DMA disabled\n");
889 hcchar |= HCCHAR_CHENA;
892 dev_dbg(hsotg->dev, "desc DMA enabled\n");
894 hcchar |= HCCHAR_CHDIS;
896 if (!hsotg->params.host_dma) {
898 dev_vdbg(hsotg->dev, "DMA not enabled\n");
899 hcchar |= HCCHAR_CHENA;
901 /* Check for space in the request queue to issue the halt */
902 if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
903 chan->ep_type == USB_ENDPOINT_XFER_BULK) {
904 dev_vdbg(hsotg->dev, "control/bulk\n");
905 nptxsts = dwc2_readl(hsotg, GNPTXSTS);
906 if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
907 dev_vdbg(hsotg->dev, "Disabling channel\n");
908 hcchar &= ~HCCHAR_CHENA;
912 dev_vdbg(hsotg->dev, "isoc/intr\n");
913 hptxsts = dwc2_readl(hsotg, HPTXSTS);
914 if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
915 hsotg->queuing_high_bandwidth) {
917 dev_vdbg(hsotg->dev, "Disabling channel\n");
918 hcchar &= ~HCCHAR_CHENA;
923 dev_vdbg(hsotg->dev, "DMA enabled\n");
926 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
927 chan->halt_status = halt_status;
929 if (hcchar & HCCHAR_CHENA) {
931 dev_vdbg(hsotg->dev, "Channel enabled\n");
932 chan->halt_pending = 1;
933 chan->halt_on_queue = 0;
936 dev_vdbg(hsotg->dev, "Channel disabled\n");
937 chan->halt_on_queue = 1;
941 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
943 dev_vdbg(hsotg->dev, " hcchar: 0x%08x\n",
945 dev_vdbg(hsotg->dev, " halt_pending: %d\n",
947 dev_vdbg(hsotg->dev, " halt_on_queue: %d\n",
948 chan->halt_on_queue);
949 dev_vdbg(hsotg->dev, " halt_status: %d\n",
955 * dwc2_hc_cleanup() - Clears the transfer state for a host channel
957 * @hsotg: Programming view of DWC_otg controller
958 * @chan: Identifies the host channel to clean up
960 * This function is normally called after a transfer is done and the host
961 * channel is being released
963 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
967 chan->xfer_started = 0;
969 list_del_init(&chan->split_order_list_entry);
972 * Clear channel interrupt enables and any unhandled channel interrupt
975 dwc2_writel(hsotg, 0, HCINTMSK(chan->hc_num));
976 hcintmsk = 0xffffffff;
977 hcintmsk &= ~HCINTMSK_RESERVED14_31;
978 dwc2_writel(hsotg, hcintmsk, HCINT(chan->hc_num));
982 * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
983 * which frame a periodic transfer should occur
985 * @hsotg: Programming view of DWC_otg controller
986 * @chan: Identifies the host channel to set up and its properties
987 * @hcchar: Current value of the HCCHAR register for the specified host channel
989 * This function has no effect on non-periodic transfers
991 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
992 struct dwc2_host_chan *chan, u32 *hcchar)
994 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
995 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1005 * Try to figure out if we're an even or odd frame. If we set
1006 * even and the current frame number is even the the transfer
1007 * will happen immediately. Similar if both are odd. If one is
1008 * even and the other is odd then the transfer will happen when
1009 * the frame number ticks.
1011 * There's a bit of a balancing act to get this right.
1012 * Sometimes we may want to send data in the current frame (AK
1013 * right away). We might want to do this if the frame number
1014 * _just_ ticked, but we might also want to do this in order
1015 * to continue a split transaction that happened late in a
1016 * microframe (so we didn't know to queue the next transfer
1017 * until the frame number had ticked). The problem is that we
1018 * need a lot of knowledge to know if there's actually still
1019 * time to send things or if it would be better to wait until
1022 * We can look at how much time is left in the current frame
1023 * and make a guess about whether we'll have time to transfer.
1027 /* Get speed host is running at */
1028 host_speed = (chan->speed != USB_SPEED_HIGH &&
1029 !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
1031 /* See how many bytes are in the periodic FIFO right now */
1032 fifo_space = (dwc2_readl(hsotg, HPTXSTS) &
1033 TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1034 bytes_in_fifo = sizeof(u32) *
1035 (hsotg->params.host_perio_tx_fifo_size -
1039 * Roughly estimate bus time for everything in the periodic
1040 * queue + our new transfer. This is "rough" because we're
1041 * using a function that makes takes into account IN/OUT
1042 * and INT/ISO and we're just slamming in one value for all
1043 * transfers. This should be an over-estimate and that should
1044 * be OK, but we can probably tighten it.
1046 xfer_ns = usb_calc_bus_time(host_speed, false, false,
1047 chan->xfer_len + bytes_in_fifo);
1048 xfer_us = NS_TO_US(xfer_ns);
1050 /* See what frame number we'll be at by the time we finish */
1051 frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1053 /* This is when we were scheduled to be on the wire */
1054 wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1057 * If we'd finish _after_ the frame we're scheduled in then
1058 * it's hopeless. Just schedule right away and hope for the
1059 * best. Note that it _might_ be wise to call back into the
1060 * scheduler to pick a better frame, but this is better than
1063 if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1064 dwc2_sch_vdbg(hsotg,
1065 "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1066 chan->qh, wire_frame, frame_number,
1067 dwc2_frame_num_dec(frame_number,
1069 wire_frame = frame_number;
1072 * We picked a different frame number; communicate this
1073 * back to the scheduler so it doesn't try to schedule
1074 * another in the same frame.
1076 * Remember that next_active_frame is 1 before the wire
1079 chan->qh->next_active_frame =
1080 dwc2_frame_num_dec(frame_number, 1);
1084 *hcchar |= HCCHAR_ODDFRM;
1086 *hcchar &= ~HCCHAR_ODDFRM;
1090 static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1092 /* Set up the initial PID for the transfer */
1093 if (chan->speed == USB_SPEED_HIGH) {
1094 if (chan->ep_is_in) {
1095 if (chan->multi_count == 1)
1096 chan->data_pid_start = DWC2_HC_PID_DATA0;
1097 else if (chan->multi_count == 2)
1098 chan->data_pid_start = DWC2_HC_PID_DATA1;
1100 chan->data_pid_start = DWC2_HC_PID_DATA2;
1102 if (chan->multi_count == 1)
1103 chan->data_pid_start = DWC2_HC_PID_DATA0;
1105 chan->data_pid_start = DWC2_HC_PID_MDATA;
1108 chan->data_pid_start = DWC2_HC_PID_DATA0;
1113 * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1116 * @hsotg: Programming view of DWC_otg controller
1117 * @chan: Information needed to initialize the host channel
1119 * This function should only be called in Slave mode. For a channel associated
1120 * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1121 * associated with a periodic EP, the periodic Tx FIFO is written.
1123 * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1124 * the number of bytes written to the Tx FIFO.
1126 static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1127 struct dwc2_host_chan *chan)
1130 u32 remaining_count;
1133 u32 *data_buf = (u32 *)chan->xfer_buf;
1136 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1138 remaining_count = chan->xfer_len - chan->xfer_count;
1139 if (remaining_count > chan->max_packet)
1140 byte_count = chan->max_packet;
1142 byte_count = remaining_count;
1144 dword_count = (byte_count + 3) / 4;
1146 if (((unsigned long)data_buf & 0x3) == 0) {
1147 /* xfer_buf is DWORD aligned */
1148 for (i = 0; i < dword_count; i++, data_buf++)
1149 dwc2_writel(hsotg, *data_buf, HCFIFO(chan->hc_num));
1151 /* xfer_buf is not DWORD aligned */
1152 for (i = 0; i < dword_count; i++, data_buf++) {
1153 u32 data = data_buf[0] | data_buf[1] << 8 |
1154 data_buf[2] << 16 | data_buf[3] << 24;
1155 dwc2_writel(hsotg, data, HCFIFO(chan->hc_num));
1159 chan->xfer_count += byte_count;
1160 chan->xfer_buf += byte_count;
1164 * dwc2_hc_do_ping() - Starts a PING transfer
1166 * @hsotg: Programming view of DWC_otg controller
1167 * @chan: Information needed to initialize the host channel
1169 * This function should only be called in Slave mode. The Do Ping bit is set in
1170 * the HCTSIZ register, then the channel is enabled.
1172 static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1173 struct dwc2_host_chan *chan)
1179 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1182 hctsiz = TSIZ_DOPNG;
1183 hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1184 dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1186 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1187 hcchar |= HCCHAR_CHENA;
1188 hcchar &= ~HCCHAR_CHDIS;
1189 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1193 * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1194 * channel and starts the transfer
1196 * @hsotg: Programming view of DWC_otg controller
1197 * @chan: Information needed to initialize the host channel. The xfer_len value
1198 * may be reduced to accommodate the max widths of the XferSize and
1199 * PktCnt fields in the HCTSIZn register. The multi_count value may be
1200 * changed to reflect the final xfer_len value.
1202 * This function may be called in either Slave mode or DMA mode. In Slave mode,
1203 * the caller must ensure that there is sufficient space in the request queue
1206 * For an OUT transfer in Slave mode, it loads a data packet into the
1207 * appropriate FIFO. If necessary, additional data packets are loaded in the
1210 * For an IN transfer in Slave mode, a data packet is requested. The data
1211 * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1212 * additional data packets are requested in the Host ISR.
1214 * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1215 * register along with a packet count of 1 and the channel is enabled. This
1216 * causes a single PING transaction to occur. Other fields in HCTSIZ are
1217 * simply set to 0 since no data transfer occurs in this case.
1219 * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1220 * all the information required to perform the subsequent data transfer. In
1221 * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1222 * controller performs the entire PING protocol, then starts the data
1225 static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1226 struct dwc2_host_chan *chan)
1228 u32 max_hc_xfer_size = hsotg->params.max_transfer_size;
1229 u16 max_hc_pkt_count = hsotg->params.max_packet_count;
1236 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1238 if (chan->do_ping) {
1239 if (!hsotg->params.host_dma) {
1241 dev_vdbg(hsotg->dev, "ping, no DMA\n");
1242 dwc2_hc_do_ping(hsotg, chan);
1243 chan->xfer_started = 1;
1248 dev_vdbg(hsotg->dev, "ping, DMA\n");
1250 hctsiz |= TSIZ_DOPNG;
1253 if (chan->do_split) {
1255 dev_vdbg(hsotg->dev, "split\n");
1258 if (chan->complete_split && !chan->ep_is_in)
1260 * For CSPLIT OUT Transfer, set the size to 0 so the
1261 * core doesn't expect any data written to the FIFO
1264 else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1265 chan->xfer_len = chan->max_packet;
1266 else if (!chan->ep_is_in && chan->xfer_len > 188)
1267 chan->xfer_len = 188;
1269 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1272 /* For split set ec_mc for immediate retries */
1273 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1274 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1280 dev_vdbg(hsotg->dev, "no split\n");
1282 * Ensure that the transfer length and packet count will fit
1283 * in the widths allocated for them in the HCTSIZn register
1285 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1286 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1288 * Make sure the transfer size is no larger than one
1289 * (micro)frame's worth of data. (A check was done
1290 * when the periodic transfer was accepted to ensure
1291 * that a (micro)frame's worth of data can be
1292 * programmed into a channel.)
1294 u32 max_periodic_len =
1295 chan->multi_count * chan->max_packet;
1297 if (chan->xfer_len > max_periodic_len)
1298 chan->xfer_len = max_periodic_len;
1299 } else if (chan->xfer_len > max_hc_xfer_size) {
1301 * Make sure that xfer_len is a multiple of max packet
1305 max_hc_xfer_size - chan->max_packet + 1;
1308 if (chan->xfer_len > 0) {
1309 num_packets = (chan->xfer_len + chan->max_packet - 1) /
1311 if (num_packets > max_hc_pkt_count) {
1312 num_packets = max_hc_pkt_count;
1313 chan->xfer_len = num_packets * chan->max_packet;
1314 } else if (chan->ep_is_in) {
1316 * Always program an integral # of max packets
1318 * Note: This assumes that the input buffer is
1319 * aligned and sized accordingly.
1321 chan->xfer_len = num_packets * chan->max_packet;
1324 /* Need 1 packet for transfer length of 0 */
1328 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1329 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1331 * Make sure that the multi_count field matches the
1332 * actual transfer length
1334 chan->multi_count = num_packets;
1336 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1337 dwc2_set_pid_isoc(chan);
1339 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1342 /* The ec_mc gets the multi_count for non-split */
1343 ec_mc = chan->multi_count;
1346 chan->start_pkt_count = num_packets;
1347 hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1348 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1349 TSIZ_SC_MC_PID_MASK;
1350 dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1352 dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1353 hctsiz, chan->hc_num);
1355 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1357 dev_vdbg(hsotg->dev, " Xfer Size: %d\n",
1358 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1359 TSIZ_XFERSIZE_SHIFT);
1360 dev_vdbg(hsotg->dev, " Num Pkts: %d\n",
1361 (hctsiz & TSIZ_PKTCNT_MASK) >>
1363 dev_vdbg(hsotg->dev, " Start PID: %d\n",
1364 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1365 TSIZ_SC_MC_PID_SHIFT);
1368 if (hsotg->params.host_dma) {
1369 dma_addr_t dma_addr;
1371 if (chan->align_buf) {
1373 dev_vdbg(hsotg->dev, "align_buf\n");
1374 dma_addr = chan->align_buf;
1376 dma_addr = chan->xfer_dma;
1378 dwc2_writel(hsotg, (u32)dma_addr, HCDMA(chan->hc_num));
1381 dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1382 (unsigned long)dma_addr, chan->hc_num);
1385 /* Start the split */
1386 if (chan->do_split) {
1387 u32 hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
1389 hcsplt |= HCSPLT_SPLTENA;
1390 dwc2_writel(hsotg, hcsplt, HCSPLT(chan->hc_num));
1393 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1394 hcchar &= ~HCCHAR_MULTICNT_MASK;
1395 hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1396 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1398 if (hcchar & HCCHAR_CHDIS)
1399 dev_warn(hsotg->dev,
1400 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1401 __func__, chan->hc_num, hcchar);
1403 /* Set host channel enable after all other setup is complete */
1404 hcchar |= HCCHAR_CHENA;
1405 hcchar &= ~HCCHAR_CHDIS;
1408 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
1409 (hcchar & HCCHAR_MULTICNT_MASK) >>
1410 HCCHAR_MULTICNT_SHIFT);
1412 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1414 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1417 chan->xfer_started = 1;
1420 if (!hsotg->params.host_dma &&
1421 !chan->ep_is_in && chan->xfer_len > 0)
1422 /* Load OUT packet into the appropriate Tx FIFO */
1423 dwc2_hc_write_packet(hsotg, chan);
1427 * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1428 * host channel and starts the transfer in Descriptor DMA mode
1430 * @hsotg: Programming view of DWC_otg controller
1431 * @chan: Information needed to initialize the host channel
1433 * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1434 * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1435 * with micro-frame bitmap.
1437 * Initializes HCDMA register with descriptor list address and CTD value then
1438 * starts the transfer via enabling the channel.
1440 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1441 struct dwc2_host_chan *chan)
1447 hctsiz |= TSIZ_DOPNG;
1449 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1450 dwc2_set_pid_isoc(chan);
1452 /* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1453 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1454 TSIZ_SC_MC_PID_MASK;
1456 /* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1457 hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1459 /* Non-zero only for high-speed interrupt endpoints */
1460 hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1463 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1465 dev_vdbg(hsotg->dev, " Start PID: %d\n",
1466 chan->data_pid_start);
1467 dev_vdbg(hsotg->dev, " NTD: %d\n", chan->ntd - 1);
1470 dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1472 dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1473 chan->desc_list_sz, DMA_TO_DEVICE);
1475 dwc2_writel(hsotg, chan->desc_list_addr, HCDMA(chan->hc_num));
1478 dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1479 &chan->desc_list_addr, chan->hc_num);
1481 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1482 hcchar &= ~HCCHAR_MULTICNT_MASK;
1483 hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1484 HCCHAR_MULTICNT_MASK;
1486 if (hcchar & HCCHAR_CHDIS)
1487 dev_warn(hsotg->dev,
1488 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1489 __func__, chan->hc_num, hcchar);
1491 /* Set host channel enable after all other setup is complete */
1492 hcchar |= HCCHAR_CHENA;
1493 hcchar &= ~HCCHAR_CHDIS;
1496 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
1497 (hcchar & HCCHAR_MULTICNT_MASK) >>
1498 HCCHAR_MULTICNT_SHIFT);
1500 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1502 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1505 chan->xfer_started = 1;
1510 * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1511 * a previous call to dwc2_hc_start_transfer()
1513 * @hsotg: Programming view of DWC_otg controller
1514 * @chan: Information needed to initialize the host channel
1516 * The caller must ensure there is sufficient space in the request queue and Tx
1517 * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1518 * the controller acts autonomously to complete transfers programmed to a host
1521 * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1522 * if there is any data remaining to be queued. For an IN transfer, another
1523 * data packet is always requested. For the SETUP phase of a control transfer,
1524 * this function does nothing.
1526 * Return: 1 if a new request is queued, 0 if no more requests are required
1529 static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1530 struct dwc2_host_chan *chan)
1533 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1537 /* SPLITs always queue just once per channel */
1540 if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1541 /* SETUPs are queued only once since they can't be NAK'd */
1544 if (chan->ep_is_in) {
1546 * Always queue another request for other IN transfers. If
1547 * back-to-back INs are issued and NAKs are received for both,
1548 * the driver may still be processing the first NAK when the
1549 * second NAK is received. When the interrupt handler clears
1550 * the NAK interrupt for the first NAK, the second NAK will
1551 * not be seen. So we can't depend on the NAK interrupt
1552 * handler to requeue a NAK'd request. Instead, IN requests
1553 * are issued each time this function is called. When the
1554 * transfer completes, the extra requests for the channel will
1557 u32 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1559 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1560 hcchar |= HCCHAR_CHENA;
1561 hcchar &= ~HCCHAR_CHDIS;
1563 dev_vdbg(hsotg->dev, " IN xfer: hcchar = 0x%08x\n",
1565 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1572 if (chan->xfer_count < chan->xfer_len) {
1573 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1574 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1575 u32 hcchar = dwc2_readl(hsotg,
1576 HCCHAR(chan->hc_num));
1578 dwc2_hc_set_even_odd_frame(hsotg, chan,
1582 /* Load OUT packet into the appropriate Tx FIFO */
1583 dwc2_hc_write_packet(hsotg, chan);
1592 * =========================================================================
1594 * =========================================================================
1598 * Processes all the URBs in a single list of QHs. Completes them with
1599 * -ETIMEDOUT and frees the QTD.
1601 * Must be called with interrupt disabled and spinlock held
1603 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1604 struct list_head *qh_list)
1606 struct dwc2_qh *qh, *qh_tmp;
1607 struct dwc2_qtd *qtd, *qtd_tmp;
1609 list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1610 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1612 dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1613 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1618 static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1619 struct list_head *qh_list)
1621 struct dwc2_qtd *qtd, *qtd_tmp;
1622 struct dwc2_qh *qh, *qh_tmp;
1623 unsigned long flags;
1626 /* The list hasn't been initialized yet */
1629 spin_lock_irqsave(&hsotg->lock, flags);
1631 /* Ensure there are no QTDs or URBs left */
1632 dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1634 list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1635 dwc2_hcd_qh_unlink(hsotg, qh);
1637 /* Free each QTD in the QH's QTD list */
1638 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1640 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1642 if (qh->channel && qh->channel->qh == qh)
1643 qh->channel->qh = NULL;
1645 spin_unlock_irqrestore(&hsotg->lock, flags);
1646 dwc2_hcd_qh_free(hsotg, qh);
1647 spin_lock_irqsave(&hsotg->lock, flags);
1650 spin_unlock_irqrestore(&hsotg->lock, flags);
1654 * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1655 * and periodic schedules. The QTD associated with each URB is removed from
1656 * the schedule and freed. This function may be called when a disconnect is
1657 * detected or when the HCD is being stopped.
1659 * Must be called with interrupt disabled and spinlock held
1661 static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1663 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1664 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_waiting);
1665 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1666 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1667 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1668 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1669 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1673 * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1675 * @hsotg: Pointer to struct dwc2_hsotg
1677 void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1681 if (hsotg->op_state == OTG_STATE_B_HOST) {
1683 * Reset the port. During a HNP mode switch the reset
1684 * needs to occur within 1ms and have a duration of at
1687 hprt0 = dwc2_read_hprt0(hsotg);
1689 dwc2_writel(hsotg, hprt0, HPRT0);
1692 queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1693 msecs_to_jiffies(50));
1696 /* Must be called with interrupt disabled and spinlock held */
1697 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1699 int num_channels = hsotg->params.host_channels;
1700 struct dwc2_host_chan *channel;
1704 if (!hsotg->params.host_dma) {
1705 /* Flush out any channel requests in slave mode */
1706 for (i = 0; i < num_channels; i++) {
1707 channel = hsotg->hc_ptr_array[i];
1708 if (!list_empty(&channel->hc_list_entry))
1710 hcchar = dwc2_readl(hsotg, HCCHAR(i));
1711 if (hcchar & HCCHAR_CHENA) {
1712 hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1713 hcchar |= HCCHAR_CHDIS;
1714 dwc2_writel(hsotg, hcchar, HCCHAR(i));
1719 for (i = 0; i < num_channels; i++) {
1720 channel = hsotg->hc_ptr_array[i];
1721 if (!list_empty(&channel->hc_list_entry))
1723 hcchar = dwc2_readl(hsotg, HCCHAR(i));
1724 if (hcchar & HCCHAR_CHENA) {
1725 /* Halt the channel */
1726 hcchar |= HCCHAR_CHDIS;
1727 dwc2_writel(hsotg, hcchar, HCCHAR(i));
1730 dwc2_hc_cleanup(hsotg, channel);
1731 list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1733 * Added for Descriptor DMA to prevent channel double cleanup in
1734 * release_channel_ddma(), which is called from ep_disable when
1735 * device disconnects
1739 /* All channels have been freed, mark them available */
1740 if (hsotg->params.uframe_sched) {
1741 hsotg->available_host_channels =
1742 hsotg->params.host_channels;
1744 hsotg->non_periodic_channels = 0;
1745 hsotg->periodic_channels = 0;
1750 * dwc2_hcd_connect() - Handles connect of the HCD
1752 * @hsotg: Pointer to struct dwc2_hsotg
1754 * Must be called with interrupt disabled and spinlock held
1756 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1758 if (hsotg->lx_state != DWC2_L0)
1759 usb_hcd_resume_root_hub(hsotg->priv);
1761 hsotg->flags.b.port_connect_status_change = 1;
1762 hsotg->flags.b.port_connect_status = 1;
1766 * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1768 * @hsotg: Pointer to struct dwc2_hsotg
1769 * @force: If true, we won't try to reconnect even if we see device connected.
1771 * Must be called with interrupt disabled and spinlock held
1773 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1778 /* Set status flags for the hub driver */
1779 hsotg->flags.b.port_connect_status_change = 1;
1780 hsotg->flags.b.port_connect_status = 0;
1783 * Shutdown any transfers in process by clearing the Tx FIFO Empty
1784 * interrupt mask and status bits and disabling subsequent host
1785 * channel interrupts.
1787 intr = dwc2_readl(hsotg, GINTMSK);
1788 intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1789 dwc2_writel(hsotg, intr, GINTMSK);
1790 intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1791 dwc2_writel(hsotg, intr, GINTSTS);
1794 * Turn off the vbus power only if the core has transitioned to device
1795 * mode. If still in host mode, need to keep power on to detect a
1798 if (dwc2_is_device_mode(hsotg)) {
1799 if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
1800 dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
1801 dwc2_writel(hsotg, 0, HPRT0);
1804 dwc2_disable_host_interrupts(hsotg);
1807 /* Respond with an error status to all URBs in the schedule */
1808 dwc2_kill_all_urbs(hsotg);
1810 if (dwc2_is_host_mode(hsotg))
1811 /* Clean up any host channels that were in use */
1812 dwc2_hcd_cleanup_channels(hsotg);
1814 dwc2_host_disconnect(hsotg);
1817 * Add an extra check here to see if we're actually connected but
1818 * we don't have a detection interrupt pending. This can happen if:
1819 * 1. hardware sees connect
1820 * 2. hardware sees disconnect
1821 * 3. hardware sees connect
1822 * 4. dwc2_port_intr() - clears connect interrupt
1823 * 5. dwc2_handle_common_intr() - calls here
1825 * Without the extra check here we will end calling disconnect
1826 * and won't get any future interrupts to handle the connect.
1829 hprt0 = dwc2_readl(hsotg, HPRT0);
1830 if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
1831 dwc2_hcd_connect(hsotg);
1836 * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
1838 * @hsotg: Pointer to struct dwc2_hsotg
1840 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
1842 if (hsotg->bus_suspended) {
1843 hsotg->flags.b.port_suspend_change = 1;
1844 usb_hcd_resume_root_hub(hsotg->priv);
1847 if (hsotg->lx_state == DWC2_L1)
1848 hsotg->flags.b.port_l1_change = 1;
1852 * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
1854 * @hsotg: Pointer to struct dwc2_hsotg
1856 * Must be called with interrupt disabled and spinlock held
1858 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
1860 dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
1863 * The root hub should be disconnected before this function is called.
1864 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
1865 * and the QH lists (via ..._hcd_endpoint_disable).
1868 /* Turn off all host-specific interrupts */
1869 dwc2_disable_host_interrupts(hsotg);
1871 /* Turn off the vbus power */
1872 dev_dbg(hsotg->dev, "PortPower off\n");
1873 dwc2_writel(hsotg, 0, HPRT0);
1876 /* Caller must hold driver lock */
1877 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
1878 struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
1879 struct dwc2_qtd *qtd)
1885 if (!hsotg->flags.b.port_connect_status) {
1886 /* No longer connected */
1887 dev_err(hsotg->dev, "Not connected\n");
1891 dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
1893 /* Some configurations cannot support LS traffic on a FS root port */
1894 if ((dev_speed == USB_SPEED_LOW) &&
1895 (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
1896 (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
1897 u32 hprt0 = dwc2_readl(hsotg, HPRT0);
1898 u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
1900 if (prtspd == HPRT0_SPD_FULL_SPEED)
1907 dwc2_hcd_qtd_init(qtd, urb);
1908 retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
1911 "DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
1916 intr_mask = dwc2_readl(hsotg, GINTMSK);
1917 if (!(intr_mask & GINTSTS_SOF)) {
1918 enum dwc2_transaction_type tr_type;
1920 if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
1921 !(qtd->urb->flags & URB_GIVEBACK_ASAP))
1923 * Do not schedule SG transactions until qtd has
1924 * URB_GIVEBACK_ASAP set
1928 tr_type = dwc2_hcd_select_transactions(hsotg);
1929 if (tr_type != DWC2_TRANSACTION_NONE)
1930 dwc2_hcd_queue_transactions(hsotg, tr_type);
1936 /* Must be called with interrupt disabled and spinlock held */
1937 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
1938 struct dwc2_hcd_urb *urb)
1941 struct dwc2_qtd *urb_qtd;
1945 dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
1951 dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
1957 if (urb_qtd->in_process && qh->channel) {
1958 dwc2_dump_channel_info(hsotg, qh->channel);
1960 /* The QTD is in process (it has been assigned to a channel) */
1961 if (hsotg->flags.b.port_connect_status)
1963 * If still connected (i.e. in host mode), halt the
1964 * channel so it can be used for other transfers. If
1965 * no longer connected, the host registers can't be
1966 * written to halt the channel since the core is in
1969 dwc2_hc_halt(hsotg, qh->channel,
1970 DWC2_HC_XFER_URB_DEQUEUE);
1974 * Free the QTD and clean up the associated QH. Leave the QH in the
1975 * schedule if it has any remaining QTDs.
1977 if (!hsotg->params.dma_desc_enable) {
1978 u8 in_process = urb_qtd->in_process;
1980 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1982 dwc2_hcd_qh_deactivate(hsotg, qh, 0);
1984 } else if (list_empty(&qh->qtd_list)) {
1985 dwc2_hcd_qh_unlink(hsotg, qh);
1988 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1994 /* Must NOT be called with interrupt disabled or spinlock held */
1995 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
1996 struct usb_host_endpoint *ep, int retry)
1998 struct dwc2_qtd *qtd, *qtd_tmp;
2000 unsigned long flags;
2003 spin_lock_irqsave(&hsotg->lock, flags);
2011 while (!list_empty(&qh->qtd_list) && retry--) {
2014 "## timeout in dwc2_hcd_endpoint_disable() ##\n");
2019 spin_unlock_irqrestore(&hsotg->lock, flags);
2021 spin_lock_irqsave(&hsotg->lock, flags);
2029 dwc2_hcd_qh_unlink(hsotg, qh);
2031 /* Free each QTD in the QH's QTD list */
2032 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2033 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2037 if (qh->channel && qh->channel->qh == qh)
2038 qh->channel->qh = NULL;
2040 spin_unlock_irqrestore(&hsotg->lock, flags);
2042 dwc2_hcd_qh_free(hsotg, qh);
2048 spin_unlock_irqrestore(&hsotg->lock, flags);
2053 /* Must be called with interrupt disabled and spinlock held */
2054 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2055 struct usb_host_endpoint *ep)
2057 struct dwc2_qh *qh = ep->hcpriv;
2062 qh->data_toggle = DWC2_HC_PID_DATA0;
2068 * dwc2_core_init() - Initializes the DWC_otg controller registers and
2069 * prepares the core for device mode or host mode operation
2071 * @hsotg: Programming view of the DWC_otg controller
2072 * @initial_setup: If true then this is the first init for this instance.
2074 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2079 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2081 usbcfg = dwc2_readl(hsotg, GUSBCFG);
2083 /* Set ULPI External VBUS bit if needed */
2084 usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2085 if (hsotg->params.phy_ulpi_ext_vbus)
2086 usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2088 /* Set external TS Dline pulsing bit if needed */
2089 usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2090 if (hsotg->params.ts_dline)
2091 usbcfg |= GUSBCFG_TERMSELDLPULSE;
2093 dwc2_writel(hsotg, usbcfg, GUSBCFG);
2096 * Reset the Controller
2098 * We only need to reset the controller if this is a re-init.
2099 * For the first init we know for sure that earlier code reset us (it
2100 * needed to in order to properly detect various parameters).
2102 if (!initial_setup) {
2103 retval = dwc2_core_reset(hsotg, false);
2105 dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2112 * This needs to happen in FS mode before any other programming occurs
2114 retval = dwc2_phy_init(hsotg, initial_setup);
2118 /* Program the GAHBCFG Register */
2119 retval = dwc2_gahbcfg_init(hsotg);
2123 /* Program the GUSBCFG register */
2124 dwc2_gusbcfg_init(hsotg);
2126 /* Program the GOTGCTL register */
2127 otgctl = dwc2_readl(hsotg, GOTGCTL);
2128 otgctl &= ~GOTGCTL_OTGVER;
2129 dwc2_writel(hsotg, otgctl, GOTGCTL);
2131 /* Clear the SRP success bit for FS-I2c */
2132 hsotg->srp_success = 0;
2134 /* Enable common interrupts */
2135 dwc2_enable_common_interrupts(hsotg);
2138 * Do device or host initialization based on mode during PCD and
2139 * HCD initialization
2141 if (dwc2_is_host_mode(hsotg)) {
2142 dev_dbg(hsotg->dev, "Host Mode\n");
2143 hsotg->op_state = OTG_STATE_A_HOST;
2145 dev_dbg(hsotg->dev, "Device Mode\n");
2146 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2153 * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2156 * @hsotg: Programming view of DWC_otg controller
2158 * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2159 * request queues. Host channels are reset to ensure that they are ready for
2160 * performing transfers.
2162 static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2164 u32 hcfg, hfir, otgctl, usbcfg;
2166 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2168 /* Set HS/FS Timeout Calibration to 7 (max available value).
2169 * The number of PHY clocks that the application programs in
2170 * this field is added to the high/full speed interpacket timeout
2171 * duration in the core to account for any additional delays
2172 * introduced by the PHY. This can be required, because the delay
2173 * introduced by the PHY in generating the linestate condition
2174 * can vary from one PHY to another.
2176 usbcfg = dwc2_readl(hsotg, GUSBCFG);
2177 usbcfg |= GUSBCFG_TOUTCAL(7);
2178 dwc2_writel(hsotg, usbcfg, GUSBCFG);
2180 /* Restart the Phy Clock */
2181 dwc2_writel(hsotg, 0, PCGCTL);
2183 /* Initialize Host Configuration Register */
2184 dwc2_init_fs_ls_pclk_sel(hsotg);
2185 if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
2186 hsotg->params.speed == DWC2_SPEED_PARAM_LOW) {
2187 hcfg = dwc2_readl(hsotg, HCFG);
2188 hcfg |= HCFG_FSLSSUPP;
2189 dwc2_writel(hsotg, hcfg, HCFG);
2193 * This bit allows dynamic reloading of the HFIR register during
2194 * runtime. This bit needs to be programmed during initial configuration
2195 * and its value must not be changed during runtime.
2197 if (hsotg->params.reload_ctl) {
2198 hfir = dwc2_readl(hsotg, HFIR);
2199 hfir |= HFIR_RLDCTRL;
2200 dwc2_writel(hsotg, hfir, HFIR);
2203 if (hsotg->params.dma_desc_enable) {
2204 u32 op_mode = hsotg->hw_params.op_mode;
2206 if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2207 !hsotg->hw_params.dma_desc_enable ||
2208 op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2209 op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2210 op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2212 "Hardware does not support descriptor DMA mode -\n");
2214 "falling back to buffer DMA mode.\n");
2215 hsotg->params.dma_desc_enable = false;
2217 hcfg = dwc2_readl(hsotg, HCFG);
2218 hcfg |= HCFG_DESCDMA;
2219 dwc2_writel(hsotg, hcfg, HCFG);
2223 /* Configure data FIFO sizes */
2224 dwc2_config_fifos(hsotg);
2226 /* TODO - check this */
2227 /* Clear Host Set HNP Enable in the OTG Control Register */
2228 otgctl = dwc2_readl(hsotg, GOTGCTL);
2229 otgctl &= ~GOTGCTL_HSTSETHNPEN;
2230 dwc2_writel(hsotg, otgctl, GOTGCTL);
2232 /* Make sure the FIFOs are flushed */
2233 dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2234 dwc2_flush_rx_fifo(hsotg);
2236 /* Clear Host Set HNP Enable in the OTG Control Register */
2237 otgctl = dwc2_readl(hsotg, GOTGCTL);
2238 otgctl &= ~GOTGCTL_HSTSETHNPEN;
2239 dwc2_writel(hsotg, otgctl, GOTGCTL);
2241 if (!hsotg->params.dma_desc_enable) {
2242 int num_channels, i;
2245 /* Flush out any leftover queued requests */
2246 num_channels = hsotg->params.host_channels;
2247 for (i = 0; i < num_channels; i++) {
2248 hcchar = dwc2_readl(hsotg, HCCHAR(i));
2249 if (hcchar & HCCHAR_CHENA) {
2250 hcchar &= ~HCCHAR_CHENA;
2251 hcchar |= HCCHAR_CHDIS;
2252 hcchar &= ~HCCHAR_EPDIR;
2253 dwc2_writel(hsotg, hcchar, HCCHAR(i));
2257 /* Halt all channels to put them into a known state */
2258 for (i = 0; i < num_channels; i++) {
2259 hcchar = dwc2_readl(hsotg, HCCHAR(i));
2260 if (hcchar & HCCHAR_CHENA) {
2261 hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2262 hcchar &= ~HCCHAR_EPDIR;
2263 dwc2_writel(hsotg, hcchar, HCCHAR(i));
2264 dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2267 if (dwc2_hsotg_wait_bit_clear(hsotg, HCCHAR(i),
2270 dev_warn(hsotg->dev,
2271 "Unable to clear enable on channel %d\n",
2278 /* Enable ACG feature in host mode, if supported */
2279 dwc2_enable_acg(hsotg);
2281 /* Turn on the vbus power */
2282 dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2283 if (hsotg->op_state == OTG_STATE_A_HOST) {
2284 u32 hprt0 = dwc2_read_hprt0(hsotg);
2286 dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2287 !!(hprt0 & HPRT0_PWR));
2288 if (!(hprt0 & HPRT0_PWR)) {
2290 dwc2_writel(hsotg, hprt0, HPRT0);
2294 dwc2_enable_host_interrupts(hsotg);
2298 * Initializes dynamic portions of the DWC_otg HCD state
2300 * Must be called with interrupt disabled and spinlock held
2302 static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2304 struct dwc2_host_chan *chan, *chan_tmp;
2308 hsotg->flags.d32 = 0;
2309 hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2311 if (hsotg->params.uframe_sched) {
2312 hsotg->available_host_channels =
2313 hsotg->params.host_channels;
2315 hsotg->non_periodic_channels = 0;
2316 hsotg->periodic_channels = 0;
2320 * Put all channels in the free channel list and clean up channel
2323 list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2325 list_del_init(&chan->hc_list_entry);
2327 num_channels = hsotg->params.host_channels;
2328 for (i = 0; i < num_channels; i++) {
2329 chan = hsotg->hc_ptr_array[i];
2330 list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2331 dwc2_hc_cleanup(hsotg, chan);
2334 /* Initialize the DWC core for host mode operation */
2335 dwc2_core_host_init(hsotg);
2338 static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2339 struct dwc2_host_chan *chan,
2340 struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2342 int hub_addr, hub_port;
2345 chan->xact_pos = qtd->isoc_split_pos;
2346 chan->complete_split = qtd->complete_split;
2347 dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2348 chan->hub_addr = (u8)hub_addr;
2349 chan->hub_port = (u8)hub_port;
2352 static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2353 struct dwc2_host_chan *chan,
2354 struct dwc2_qtd *qtd)
2356 struct dwc2_hcd_urb *urb = qtd->urb;
2357 struct dwc2_hcd_iso_packet_desc *frame_desc;
2359 switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2360 case USB_ENDPOINT_XFER_CONTROL:
2361 chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2363 switch (qtd->control_phase) {
2364 case DWC2_CONTROL_SETUP:
2365 dev_vdbg(hsotg->dev, " Control setup transaction\n");
2368 chan->data_pid_start = DWC2_HC_PID_SETUP;
2369 if (hsotg->params.host_dma)
2370 chan->xfer_dma = urb->setup_dma;
2372 chan->xfer_buf = urb->setup_packet;
2376 case DWC2_CONTROL_DATA:
2377 dev_vdbg(hsotg->dev, " Control data transaction\n");
2378 chan->data_pid_start = qtd->data_toggle;
2381 case DWC2_CONTROL_STATUS:
2383 * Direction is opposite of data direction or IN if no
2386 dev_vdbg(hsotg->dev, " Control status transaction\n");
2387 if (urb->length == 0)
2391 dwc2_hcd_is_pipe_out(&urb->pipe_info);
2394 chan->data_pid_start = DWC2_HC_PID_DATA1;
2396 if (hsotg->params.host_dma)
2397 chan->xfer_dma = hsotg->status_buf_dma;
2399 chan->xfer_buf = hsotg->status_buf;
2404 case USB_ENDPOINT_XFER_BULK:
2405 chan->ep_type = USB_ENDPOINT_XFER_BULK;
2408 case USB_ENDPOINT_XFER_INT:
2409 chan->ep_type = USB_ENDPOINT_XFER_INT;
2412 case USB_ENDPOINT_XFER_ISOC:
2413 chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2414 if (hsotg->params.dma_desc_enable)
2417 frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2418 frame_desc->status = 0;
2420 if (hsotg->params.host_dma) {
2421 chan->xfer_dma = urb->dma;
2422 chan->xfer_dma += frame_desc->offset +
2423 qtd->isoc_split_offset;
2425 chan->xfer_buf = urb->buf;
2426 chan->xfer_buf += frame_desc->offset +
2427 qtd->isoc_split_offset;
2430 chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2432 if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2433 if (chan->xfer_len <= 188)
2434 chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2436 chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2442 static int dwc2_alloc_split_dma_aligned_buf(struct dwc2_hsotg *hsotg,
2444 struct dwc2_host_chan *chan)
2446 if (!hsotg->unaligned_cache ||
2447 chan->max_packet > DWC2_KMEM_UNALIGNED_BUF_SIZE)
2450 if (!qh->dw_align_buf) {
2451 qh->dw_align_buf = kmem_cache_alloc(hsotg->unaligned_cache,
2452 GFP_ATOMIC | GFP_DMA);
2453 if (!qh->dw_align_buf)
2457 qh->dw_align_buf_dma = dma_map_single(hsotg->dev, qh->dw_align_buf,
2458 DWC2_KMEM_UNALIGNED_BUF_SIZE,
2461 if (dma_mapping_error(hsotg->dev, qh->dw_align_buf_dma)) {
2462 dev_err(hsotg->dev, "can't map align_buf\n");
2463 chan->align_buf = 0;
2467 chan->align_buf = qh->dw_align_buf_dma;
2471 #define DWC2_USB_DMA_ALIGN 4
2473 static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2475 void *stored_xfer_buffer;
2478 if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2481 /* Restore urb->transfer_buffer from the end of the allocated area */
2482 memcpy(&stored_xfer_buffer,
2483 PTR_ALIGN(urb->transfer_buffer + urb->transfer_buffer_length,
2484 dma_get_cache_alignment()),
2485 sizeof(urb->transfer_buffer));
2487 if (usb_urb_dir_in(urb)) {
2488 if (usb_pipeisoc(urb->pipe))
2489 length = urb->transfer_buffer_length;
2491 length = urb->actual_length;
2493 memcpy(stored_xfer_buffer, urb->transfer_buffer, length);
2495 kfree(urb->transfer_buffer);
2496 urb->transfer_buffer = stored_xfer_buffer;
2498 urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2501 static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2504 size_t kmalloc_size;
2506 if (urb->num_sgs || urb->sg ||
2507 urb->transfer_buffer_length == 0 ||
2508 !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2512 * Allocate a buffer with enough padding for original transfer_buffer
2513 * pointer. This allocation is guaranteed to be aligned properly for
2516 kmalloc_size = urb->transfer_buffer_length +
2517 (dma_get_cache_alignment() - 1) +
2518 sizeof(urb->transfer_buffer);
2520 kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2525 * Position value of original urb->transfer_buffer pointer to the end
2526 * of allocation for later referencing
2528 memcpy(PTR_ALIGN(kmalloc_ptr + urb->transfer_buffer_length,
2529 dma_get_cache_alignment()),
2530 &urb->transfer_buffer, sizeof(urb->transfer_buffer));
2532 if (usb_urb_dir_out(urb))
2533 memcpy(kmalloc_ptr, urb->transfer_buffer,
2534 urb->transfer_buffer_length);
2535 urb->transfer_buffer = kmalloc_ptr;
2537 urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2542 static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2547 /* We assume setup_dma is always aligned; warn if not */
2548 WARN_ON_ONCE(urb->setup_dma &&
2549 (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2551 ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2555 ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2557 dwc2_free_dma_aligned_buffer(urb);
2562 static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2564 usb_hcd_unmap_urb_for_dma(hcd, urb);
2565 dwc2_free_dma_aligned_buffer(urb);
2569 * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2570 * channel and initializes the host channel to perform the transactions. The
2571 * host channel is removed from the free list.
2573 * @hsotg: The HCD state structure
2574 * @qh: Transactions from the first QTD for this QH are selected and assigned
2575 * to a free host channel
2577 static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2579 struct dwc2_host_chan *chan;
2580 struct dwc2_hcd_urb *urb;
2581 struct dwc2_qtd *qtd;
2584 dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2586 if (list_empty(&qh->qtd_list)) {
2587 dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2591 if (list_empty(&hsotg->free_hc_list)) {
2592 dev_dbg(hsotg->dev, "No free channel to assign\n");
2596 chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2599 /* Remove host channel from free list */
2600 list_del_init(&chan->hc_list_entry);
2602 qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2605 qtd->in_process = 1;
2608 * Use usb_pipedevice to determine device address. This address is
2609 * 0 before the SET_ADDRESS command and the correct address afterward.
2611 chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2612 chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2613 chan->speed = qh->dev_speed;
2614 chan->max_packet = qh->maxp;
2616 chan->xfer_started = 0;
2617 chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2618 chan->error_state = (qtd->error_count > 0);
2619 chan->halt_on_queue = 0;
2620 chan->halt_pending = 0;
2624 * The following values may be modified in the transfer type section
2625 * below. The xfer_len value may be reduced when the transfer is
2626 * started to accommodate the max widths of the XferSize and PktCnt
2627 * fields in the HCTSIZn register.
2630 chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2634 chan->do_ping = qh->ping_state;
2636 chan->data_pid_start = qh->data_toggle;
2637 chan->multi_count = 1;
2639 if (urb->actual_length > urb->length &&
2640 !dwc2_hcd_is_pipe_in(&urb->pipe_info))
2641 urb->actual_length = urb->length;
2643 if (hsotg->params.host_dma)
2644 chan->xfer_dma = urb->dma + urb->actual_length;
2646 chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2648 chan->xfer_len = urb->length - urb->actual_length;
2649 chan->xfer_count = 0;
2651 /* Set the split attributes if required */
2653 dwc2_hc_init_split(hsotg, chan, qtd, urb);
2657 /* Set the transfer attributes */
2658 dwc2_hc_init_xfer(hsotg, chan, qtd);
2660 /* For non-dword aligned buffers */
2661 if (hsotg->params.host_dma && qh->do_split &&
2662 chan->ep_is_in && (chan->xfer_dma & 0x3)) {
2663 dev_vdbg(hsotg->dev, "Non-aligned buffer\n");
2664 if (dwc2_alloc_split_dma_aligned_buf(hsotg, qh, chan)) {
2666 "Failed to allocate memory to handle non-aligned buffer\n");
2667 /* Add channel back to free list */
2668 chan->align_buf = 0;
2669 chan->multi_count = 0;
2670 list_add_tail(&chan->hc_list_entry,
2671 &hsotg->free_hc_list);
2672 qtd->in_process = 0;
2678 * We assume that DMA is always aligned in non-split
2679 * case or split out case. Warn if not.
2681 WARN_ON_ONCE(hsotg->params.host_dma &&
2682 (chan->xfer_dma & 0x3));
2683 chan->align_buf = 0;
2686 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2687 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2689 * This value may be modified when the transfer is started
2690 * to reflect the actual transfer length
2692 chan->multi_count = qh->maxp_mult;
2694 if (hsotg->params.dma_desc_enable) {
2695 chan->desc_list_addr = qh->desc_list_dma;
2696 chan->desc_list_sz = qh->desc_list_sz;
2699 dwc2_hc_init(hsotg, chan);
2706 * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2707 * schedule and assigns them to available host channels. Called from the HCD
2708 * interrupt handler functions.
2710 * @hsotg: The HCD state structure
2712 * Return: The types of new transactions that were assigned to host channels
2714 enum dwc2_transaction_type dwc2_hcd_select_transactions(
2715 struct dwc2_hsotg *hsotg)
2717 enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2718 struct list_head *qh_ptr;
2722 #ifdef DWC2_DEBUG_SOF
2723 dev_vdbg(hsotg->dev, " Select Transactions\n");
2726 /* Process entries in the periodic ready list */
2727 qh_ptr = hsotg->periodic_sched_ready.next;
2728 while (qh_ptr != &hsotg->periodic_sched_ready) {
2729 if (list_empty(&hsotg->free_hc_list))
2731 if (hsotg->params.uframe_sched) {
2732 if (hsotg->available_host_channels <= 1)
2734 hsotg->available_host_channels--;
2736 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2737 if (dwc2_assign_and_init_hc(hsotg, qh))
2741 * Move the QH from the periodic ready schedule to the
2742 * periodic assigned schedule
2744 qh_ptr = qh_ptr->next;
2745 list_move_tail(&qh->qh_list_entry,
2746 &hsotg->periodic_sched_assigned);
2747 ret_val = DWC2_TRANSACTION_PERIODIC;
2751 * Process entries in the inactive portion of the non-periodic
2752 * schedule. Some free host channels may not be used if they are
2753 * reserved for periodic transfers.
2755 num_channels = hsotg->params.host_channels;
2756 qh_ptr = hsotg->non_periodic_sched_inactive.next;
2757 while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2758 if (!hsotg->params.uframe_sched &&
2759 hsotg->non_periodic_channels >= num_channels -
2760 hsotg->periodic_channels)
2762 if (list_empty(&hsotg->free_hc_list))
2764 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2765 if (hsotg->params.uframe_sched) {
2766 if (hsotg->available_host_channels < 1)
2768 hsotg->available_host_channels--;
2771 if (dwc2_assign_and_init_hc(hsotg, qh))
2775 * Move the QH from the non-periodic inactive schedule to the
2776 * non-periodic active schedule
2778 qh_ptr = qh_ptr->next;
2779 list_move_tail(&qh->qh_list_entry,
2780 &hsotg->non_periodic_sched_active);
2782 if (ret_val == DWC2_TRANSACTION_NONE)
2783 ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2785 ret_val = DWC2_TRANSACTION_ALL;
2787 if (!hsotg->params.uframe_sched)
2788 hsotg->non_periodic_channels++;
2795 * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2796 * a host channel associated with either a periodic or non-periodic transfer
2798 * @hsotg: The HCD state structure
2799 * @chan: Host channel descriptor associated with either a periodic or
2800 * non-periodic transfer
2801 * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2802 * for periodic transfers or the non-periodic Tx FIFO
2803 * for non-periodic transfers
2805 * Return: 1 if a request is queued and more requests may be needed to
2806 * complete the transfer, 0 if no more requests are required for this
2807 * transfer, -1 if there is insufficient space in the Tx FIFO
2809 * This function assumes that there is space available in the appropriate
2810 * request queue. For an OUT transfer or SETUP transaction in Slave mode,
2811 * it checks whether space is available in the appropriate Tx FIFO.
2813 * Must be called with interrupt disabled and spinlock held
2815 static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
2816 struct dwc2_host_chan *chan,
2817 u16 fifo_dwords_avail)
2822 /* Put ourselves on the list to keep order straight */
2823 list_move_tail(&chan->split_order_list_entry,
2824 &hsotg->split_order);
2826 if (hsotg->params.host_dma && chan->qh) {
2827 if (hsotg->params.dma_desc_enable) {
2828 if (!chan->xfer_started ||
2829 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2830 dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
2831 chan->qh->ping_state = 0;
2833 } else if (!chan->xfer_started) {
2834 dwc2_hc_start_transfer(hsotg, chan);
2835 chan->qh->ping_state = 0;
2837 } else if (chan->halt_pending) {
2838 /* Don't queue a request if the channel has been halted */
2839 } else if (chan->halt_on_queue) {
2840 dwc2_hc_halt(hsotg, chan, chan->halt_status);
2841 } else if (chan->do_ping) {
2842 if (!chan->xfer_started)
2843 dwc2_hc_start_transfer(hsotg, chan);
2844 } else if (!chan->ep_is_in ||
2845 chan->data_pid_start == DWC2_HC_PID_SETUP) {
2846 if ((fifo_dwords_avail * 4) >= chan->max_packet) {
2847 if (!chan->xfer_started) {
2848 dwc2_hc_start_transfer(hsotg, chan);
2851 retval = dwc2_hc_continue_transfer(hsotg, chan);
2857 if (!chan->xfer_started) {
2858 dwc2_hc_start_transfer(hsotg, chan);
2861 retval = dwc2_hc_continue_transfer(hsotg, chan);
2869 * Processes periodic channels for the next frame and queues transactions for
2870 * these channels to the DWC_otg controller. After queueing transactions, the
2871 * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
2872 * to queue as Periodic Tx FIFO or request queue space becomes available.
2873 * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
2875 * Must be called with interrupt disabled and spinlock held
2877 static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
2879 struct list_head *qh_ptr;
2885 bool no_queue_space = false;
2886 bool no_fifo_space = false;
2889 /* If empty list then just adjust interrupt enables */
2890 if (list_empty(&hsotg->periodic_sched_assigned))
2894 dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
2896 tx_status = dwc2_readl(hsotg, HPTXSTS);
2897 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2898 TXSTS_QSPCAVAIL_SHIFT;
2899 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2900 TXSTS_FSPCAVAIL_SHIFT;
2903 dev_vdbg(hsotg->dev, " P Tx Req Queue Space Avail (before queue): %d\n",
2905 dev_vdbg(hsotg->dev, " P Tx FIFO Space Avail (before queue): %d\n",
2909 qh_ptr = hsotg->periodic_sched_assigned.next;
2910 while (qh_ptr != &hsotg->periodic_sched_assigned) {
2911 tx_status = dwc2_readl(hsotg, HPTXSTS);
2912 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2913 TXSTS_QSPCAVAIL_SHIFT;
2914 if (qspcavail == 0) {
2915 no_queue_space = true;
2919 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2921 qh_ptr = qh_ptr->next;
2925 /* Make sure EP's TT buffer is clean before queueing qtds */
2926 if (qh->tt_buffer_dirty) {
2927 qh_ptr = qh_ptr->next;
2932 * Set a flag if we're queuing high-bandwidth in slave mode.
2933 * The flag prevents any halts to get into the request queue in
2934 * the middle of multiple high-bandwidth packets getting queued.
2936 if (!hsotg->params.host_dma &&
2937 qh->channel->multi_count > 1)
2938 hsotg->queuing_high_bandwidth = 1;
2940 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2941 TXSTS_FSPCAVAIL_SHIFT;
2942 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
2944 no_fifo_space = true;
2949 * In Slave mode, stay on the current transfer until there is
2950 * nothing more to do or the high-bandwidth request count is
2951 * reached. In DMA mode, only need to queue one request. The
2952 * controller automatically handles multiple packets for
2953 * high-bandwidth transfers.
2955 if (hsotg->params.host_dma || status == 0 ||
2956 qh->channel->requests == qh->channel->multi_count) {
2957 qh_ptr = qh_ptr->next;
2959 * Move the QH from the periodic assigned schedule to
2960 * the periodic queued schedule
2962 list_move_tail(&qh->qh_list_entry,
2963 &hsotg->periodic_sched_queued);
2965 /* done queuing high bandwidth */
2966 hsotg->queuing_high_bandwidth = 0;
2971 if (no_queue_space || no_fifo_space ||
2972 (!hsotg->params.host_dma &&
2973 !list_empty(&hsotg->periodic_sched_assigned))) {
2975 * May need to queue more transactions as the request
2976 * queue or Tx FIFO empties. Enable the periodic Tx
2977 * FIFO empty interrupt. (Always use the half-empty
2978 * level to ensure that new requests are loaded as
2979 * soon as possible.)
2981 gintmsk = dwc2_readl(hsotg, GINTMSK);
2982 if (!(gintmsk & GINTSTS_PTXFEMP)) {
2983 gintmsk |= GINTSTS_PTXFEMP;
2984 dwc2_writel(hsotg, gintmsk, GINTMSK);
2988 * Disable the Tx FIFO empty interrupt since there are
2989 * no more transactions that need to be queued right
2990 * now. This function is called from interrupt
2991 * handlers to queue more transactions as transfer
2994 gintmsk = dwc2_readl(hsotg, GINTMSK);
2995 if (gintmsk & GINTSTS_PTXFEMP) {
2996 gintmsk &= ~GINTSTS_PTXFEMP;
2997 dwc2_writel(hsotg, gintmsk, GINTMSK);
3003 * Processes active non-periodic channels and queues transactions for these
3004 * channels to the DWC_otg controller. After queueing transactions, the NP Tx
3005 * FIFO Empty interrupt is enabled if there are more transactions to queue as
3006 * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
3007 * FIFO Empty interrupt is disabled.
3009 * Must be called with interrupt disabled and spinlock held
3011 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
3013 struct list_head *orig_qh_ptr;
3020 int no_queue_space = 0;
3021 int no_fifo_space = 0;
3024 dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
3026 tx_status = dwc2_readl(hsotg, GNPTXSTS);
3027 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3028 TXSTS_QSPCAVAIL_SHIFT;
3029 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3030 TXSTS_FSPCAVAIL_SHIFT;
3031 dev_vdbg(hsotg->dev, " NP Tx Req Queue Space Avail (before queue): %d\n",
3033 dev_vdbg(hsotg->dev, " NP Tx FIFO Space Avail (before queue): %d\n",
3037 * Keep track of the starting point. Skip over the start-of-list
3040 if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3041 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3042 orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3045 * Process once through the active list or until no more space is
3046 * available in the request queue or the Tx FIFO
3049 tx_status = dwc2_readl(hsotg, GNPTXSTS);
3050 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3051 TXSTS_QSPCAVAIL_SHIFT;
3052 if (!hsotg->params.host_dma && qspcavail == 0) {
3057 qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3062 /* Make sure EP's TT buffer is clean before queueing qtds */
3063 if (qh->tt_buffer_dirty)
3066 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3067 TXSTS_FSPCAVAIL_SHIFT;
3068 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3072 } else if (status < 0) {
3077 /* Advance to next QH, skipping start-of-list entry */
3078 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3079 if (hsotg->non_periodic_qh_ptr ==
3080 &hsotg->non_periodic_sched_active)
3081 hsotg->non_periodic_qh_ptr =
3082 hsotg->non_periodic_qh_ptr->next;
3083 } while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3085 if (!hsotg->params.host_dma) {
3086 tx_status = dwc2_readl(hsotg, GNPTXSTS);
3087 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3088 TXSTS_QSPCAVAIL_SHIFT;
3089 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3090 TXSTS_FSPCAVAIL_SHIFT;
3091 dev_vdbg(hsotg->dev,
3092 " NP Tx Req Queue Space Avail (after queue): %d\n",
3094 dev_vdbg(hsotg->dev,
3095 " NP Tx FIFO Space Avail (after queue): %d\n",
3098 if (more_to_do || no_queue_space || no_fifo_space) {
3100 * May need to queue more transactions as the request
3101 * queue or Tx FIFO empties. Enable the non-periodic
3102 * Tx FIFO empty interrupt. (Always use the half-empty
3103 * level to ensure that new requests are loaded as
3104 * soon as possible.)
3106 gintmsk = dwc2_readl(hsotg, GINTMSK);
3107 gintmsk |= GINTSTS_NPTXFEMP;
3108 dwc2_writel(hsotg, gintmsk, GINTMSK);
3111 * Disable the Tx FIFO empty interrupt since there are
3112 * no more transactions that need to be queued right
3113 * now. This function is called from interrupt
3114 * handlers to queue more transactions as transfer
3117 gintmsk = dwc2_readl(hsotg, GINTMSK);
3118 gintmsk &= ~GINTSTS_NPTXFEMP;
3119 dwc2_writel(hsotg, gintmsk, GINTMSK);
3125 * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3126 * and queues transactions for these channels to the DWC_otg controller. Called
3127 * from the HCD interrupt handler functions.
3129 * @hsotg: The HCD state structure
3130 * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3133 * Must be called with interrupt disabled and spinlock held
3135 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3136 enum dwc2_transaction_type tr_type)
3138 #ifdef DWC2_DEBUG_SOF
3139 dev_vdbg(hsotg->dev, "Queue Transactions\n");
3141 /* Process host channels associated with periodic transfers */
3142 if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3143 tr_type == DWC2_TRANSACTION_ALL)
3144 dwc2_process_periodic_channels(hsotg);
3146 /* Process host channels associated with non-periodic transfers */
3147 if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3148 tr_type == DWC2_TRANSACTION_ALL) {
3149 if (!list_empty(&hsotg->non_periodic_sched_active)) {
3150 dwc2_process_non_periodic_channels(hsotg);
3153 * Ensure NP Tx FIFO empty interrupt is disabled when
3154 * there are no non-periodic transfers to process
3156 u32 gintmsk = dwc2_readl(hsotg, GINTMSK);
3158 gintmsk &= ~GINTSTS_NPTXFEMP;
3159 dwc2_writel(hsotg, gintmsk, GINTMSK);
3164 static void dwc2_conn_id_status_change(struct work_struct *work)
3166 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3170 unsigned long flags;
3172 dev_dbg(hsotg->dev, "%s()\n", __func__);
3174 gotgctl = dwc2_readl(hsotg, GOTGCTL);
3175 dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3176 dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3177 !!(gotgctl & GOTGCTL_CONID_B));
3179 /* B-Device connector (Device Mode) */
3180 if (gotgctl & GOTGCTL_CONID_B) {
3181 dwc2_vbus_supply_exit(hsotg);
3182 /* Wait for switch to device mode */
3183 dev_dbg(hsotg->dev, "connId B\n");
3184 if (hsotg->bus_suspended) {
3185 dev_info(hsotg->dev,
3186 "Do port resume before switching to device mode\n");
3187 dwc2_port_resume(hsotg);
3189 while (!dwc2_is_device_mode(hsotg)) {
3190 dev_info(hsotg->dev,
3191 "Waiting for Peripheral Mode, Mode=%s\n",
3192 dwc2_is_host_mode(hsotg) ? "Host" :
3196 * Sometimes the initial GOTGCTRL read is wrong, so
3197 * check it again and jump to host mode if that was
3200 gotgctl = dwc2_readl(hsotg, GOTGCTL);
3201 if (!(gotgctl & GOTGCTL_CONID_B))
3208 "Connection id status change timed out\n");
3211 * Exit Partial Power Down without restoring registers.
3212 * No need to check the return value as registers
3213 * are not being restored.
3215 if (hsotg->in_ppd && hsotg->lx_state == DWC2_L2)
3216 dwc2_exit_partial_power_down(hsotg, 0, false);
3218 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3219 dwc2_core_init(hsotg, false);
3220 dwc2_enable_global_interrupts(hsotg);
3221 spin_lock_irqsave(&hsotg->lock, flags);
3222 dwc2_hsotg_core_init_disconnected(hsotg, false);
3223 spin_unlock_irqrestore(&hsotg->lock, flags);
3224 /* Enable ACG feature in device mode,if supported */
3225 dwc2_enable_acg(hsotg);
3226 dwc2_hsotg_core_connect(hsotg);
3229 /* A-Device connector (Host Mode) */
3230 dev_dbg(hsotg->dev, "connId A\n");
3231 while (!dwc2_is_host_mode(hsotg)) {
3232 dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3233 dwc2_is_host_mode(hsotg) ?
3234 "Host" : "Peripheral");
3241 "Connection id status change timed out\n");
3243 spin_lock_irqsave(&hsotg->lock, flags);
3244 dwc2_hsotg_disconnect(hsotg);
3245 spin_unlock_irqrestore(&hsotg->lock, flags);
3247 hsotg->op_state = OTG_STATE_A_HOST;
3248 /* Initialize the Core for Host mode */
3249 dwc2_core_init(hsotg, false);
3250 dwc2_enable_global_interrupts(hsotg);
3251 dwc2_hcd_start(hsotg);
3255 static void dwc2_wakeup_detected(struct timer_list *t)
3257 struct dwc2_hsotg *hsotg = from_timer(hsotg, t, wkp_timer);
3260 dev_dbg(hsotg->dev, "%s()\n", __func__);
3263 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3264 * so that OPT tests pass with all PHYs.)
3266 hprt0 = dwc2_read_hprt0(hsotg);
3267 dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3268 hprt0 &= ~HPRT0_RES;
3269 dwc2_writel(hsotg, hprt0, HPRT0);
3270 dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3271 dwc2_readl(hsotg, HPRT0));
3273 dwc2_hcd_rem_wakeup(hsotg);
3274 hsotg->bus_suspended = false;
3276 /* Change to L0 state */
3277 hsotg->lx_state = DWC2_L0;
3280 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3282 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3284 return hcd->self.b_hnp_enable;
3288 * dwc2_port_suspend() - Put controller in suspend mode for host.
3290 * @hsotg: Programming view of the DWC_otg controller
3291 * @windex: The control request wIndex field
3293 * Return: non-zero if failed to enter suspend mode for host.
3295 * This function is for entering Host mode suspend.
3296 * Must NOT be called with interrupt disabled or spinlock held.
3298 int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3300 unsigned long flags;
3305 dev_dbg(hsotg->dev, "%s()\n", __func__);
3307 spin_lock_irqsave(&hsotg->lock, flags);
3309 if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3310 gotgctl = dwc2_readl(hsotg, GOTGCTL);
3311 gotgctl |= GOTGCTL_HSTSETHNPEN;
3312 dwc2_writel(hsotg, gotgctl, GOTGCTL);
3313 hsotg->op_state = OTG_STATE_A_SUSPEND;
3316 switch (hsotg->params.power_down) {
3317 case DWC2_POWER_DOWN_PARAM_PARTIAL:
3318 ret = dwc2_enter_partial_power_down(hsotg);
3321 "enter partial_power_down failed.\n");
3323 case DWC2_POWER_DOWN_PARAM_HIBERNATION:
3325 * Perform spin unlock and lock because in
3326 * "dwc2_host_enter_hibernation()" function there is a spinlock
3327 * logic which prevents servicing of any IRQ during entering
3330 spin_unlock_irqrestore(&hsotg->lock, flags);
3331 ret = dwc2_enter_hibernation(hsotg, 1);
3333 dev_err(hsotg->dev, "enter hibernation failed.\n");
3334 spin_lock_irqsave(&hsotg->lock, flags);
3336 case DWC2_POWER_DOWN_PARAM_NONE:
3338 * If not hibernation nor partial power down are supported,
3339 * clock gating is used to save power.
3341 if (!hsotg->params.no_clock_gating)
3342 dwc2_host_enter_clock_gating(hsotg);
3346 /* For HNP the bus must be suspended for at least 200ms */
3347 if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3348 pcgctl = dwc2_readl(hsotg, PCGCTL);
3349 pcgctl &= ~PCGCTL_STOPPCLK;
3350 dwc2_writel(hsotg, pcgctl, PCGCTL);
3352 spin_unlock_irqrestore(&hsotg->lock, flags);
3356 spin_unlock_irqrestore(&hsotg->lock, flags);
3363 * dwc2_port_resume() - Exit controller from suspend mode for host.
3365 * @hsotg: Programming view of the DWC_otg controller
3367 * Return: non-zero if failed to exit suspend mode for host.
3369 * This function is for exiting Host mode suspend.
3370 * Must NOT be called with interrupt disabled or spinlock held.
3372 int dwc2_port_resume(struct dwc2_hsotg *hsotg)
3374 unsigned long flags;
3377 spin_lock_irqsave(&hsotg->lock, flags);
3379 switch (hsotg->params.power_down) {
3380 case DWC2_POWER_DOWN_PARAM_PARTIAL:
3381 ret = dwc2_exit_partial_power_down(hsotg, 0, true);
3384 "exit partial_power_down failed.\n");
3386 case DWC2_POWER_DOWN_PARAM_HIBERNATION:
3387 /* Exit host hibernation. */
3388 ret = dwc2_exit_hibernation(hsotg, 0, 0, 1);
3390 dev_err(hsotg->dev, "exit hibernation failed.\n");
3392 case DWC2_POWER_DOWN_PARAM_NONE:
3394 * If not hibernation nor partial power down are supported,
3395 * port resume is done using the clock gating programming flow.
3397 spin_unlock_irqrestore(&hsotg->lock, flags);
3398 dwc2_host_exit_clock_gating(hsotg, 0);
3399 spin_lock_irqsave(&hsotg->lock, flags);
3403 spin_unlock_irqrestore(&hsotg->lock, flags);
3408 /* Handles hub class-specific requests */
3409 static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3410 u16 wvalue, u16 windex, char *buf, u16 wlength)
3412 struct usb_hub_descriptor *hub_desc;
3421 case ClearHubFeature:
3422 dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3425 case C_HUB_LOCAL_POWER:
3426 case C_HUB_OVER_CURRENT:
3427 /* Nothing required here */
3433 "ClearHubFeature request %1xh unknown\n",
3438 case ClearPortFeature:
3439 if (wvalue != USB_PORT_FEAT_L1)
3440 if (!windex || windex > 1)
3443 case USB_PORT_FEAT_ENABLE:
3445 "ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3446 hprt0 = dwc2_read_hprt0(hsotg);
3448 dwc2_writel(hsotg, hprt0, HPRT0);
3451 case USB_PORT_FEAT_SUSPEND:
3453 "ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3455 if (hsotg->bus_suspended)
3456 retval = dwc2_port_resume(hsotg);
3459 case USB_PORT_FEAT_POWER:
3461 "ClearPortFeature USB_PORT_FEAT_POWER\n");
3462 hprt0 = dwc2_read_hprt0(hsotg);
3463 pwr = hprt0 & HPRT0_PWR;
3464 hprt0 &= ~HPRT0_PWR;
3465 dwc2_writel(hsotg, hprt0, HPRT0);
3467 dwc2_vbus_supply_exit(hsotg);
3470 case USB_PORT_FEAT_INDICATOR:
3472 "ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3473 /* Port indicator not supported */
3476 case USB_PORT_FEAT_C_CONNECTION:
3478 * Clears driver's internal Connect Status Change flag
3481 "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3482 hsotg->flags.b.port_connect_status_change = 0;
3485 case USB_PORT_FEAT_C_RESET:
3486 /* Clears driver's internal Port Reset Change flag */
3488 "ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3489 hsotg->flags.b.port_reset_change = 0;
3492 case USB_PORT_FEAT_C_ENABLE:
3494 * Clears the driver's internal Port Enable/Disable
3498 "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3499 hsotg->flags.b.port_enable_change = 0;
3502 case USB_PORT_FEAT_C_SUSPEND:
3504 * Clears the driver's internal Port Suspend Change
3505 * flag, which is set when resume signaling on the host
3509 "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3510 hsotg->flags.b.port_suspend_change = 0;
3513 case USB_PORT_FEAT_C_PORT_L1:
3515 "ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3516 hsotg->flags.b.port_l1_change = 0;
3519 case USB_PORT_FEAT_C_OVER_CURRENT:
3521 "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3522 hsotg->flags.b.port_over_current_change = 0;
3528 "ClearPortFeature request %1xh unknown or unsupported\n",
3533 case GetHubDescriptor:
3534 dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3535 hub_desc = (struct usb_hub_descriptor *)buf;
3536 hub_desc->bDescLength = 9;
3537 hub_desc->bDescriptorType = USB_DT_HUB;
3538 hub_desc->bNbrPorts = 1;
3539 hub_desc->wHubCharacteristics =
3540 cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3541 HUB_CHAR_INDV_PORT_OCPM);
3542 hub_desc->bPwrOn2PwrGood = 1;
3543 hub_desc->bHubContrCurrent = 0;
3544 hub_desc->u.hs.DeviceRemovable[0] = 0;
3545 hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3549 dev_dbg(hsotg->dev, "GetHubStatus\n");
3554 dev_vdbg(hsotg->dev,
3555 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3557 if (!windex || windex > 1)
3561 if (hsotg->flags.b.port_connect_status_change)
3562 port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3563 if (hsotg->flags.b.port_enable_change)
3564 port_status |= USB_PORT_STAT_C_ENABLE << 16;
3565 if (hsotg->flags.b.port_suspend_change)
3566 port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3567 if (hsotg->flags.b.port_l1_change)
3568 port_status |= USB_PORT_STAT_C_L1 << 16;
3569 if (hsotg->flags.b.port_reset_change)
3570 port_status |= USB_PORT_STAT_C_RESET << 16;
3571 if (hsotg->flags.b.port_over_current_change) {
3572 dev_warn(hsotg->dev, "Overcurrent change detected\n");
3573 port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3576 if (!hsotg->flags.b.port_connect_status) {
3578 * The port is disconnected, which means the core is
3579 * either in device mode or it soon will be. Just
3580 * return 0's for the remainder of the port status
3581 * since the port register can't be read if the core
3582 * is in device mode.
3584 *(__le32 *)buf = cpu_to_le32(port_status);
3588 hprt0 = dwc2_readl(hsotg, HPRT0);
3589 dev_vdbg(hsotg->dev, " HPRT0: 0x%08x\n", hprt0);
3591 if (hprt0 & HPRT0_CONNSTS)
3592 port_status |= USB_PORT_STAT_CONNECTION;
3593 if (hprt0 & HPRT0_ENA)
3594 port_status |= USB_PORT_STAT_ENABLE;
3595 if (hprt0 & HPRT0_SUSP)
3596 port_status |= USB_PORT_STAT_SUSPEND;
3597 if (hprt0 & HPRT0_OVRCURRACT)
3598 port_status |= USB_PORT_STAT_OVERCURRENT;
3599 if (hprt0 & HPRT0_RST)
3600 port_status |= USB_PORT_STAT_RESET;
3601 if (hprt0 & HPRT0_PWR)
3602 port_status |= USB_PORT_STAT_POWER;
3604 speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3605 if (speed == HPRT0_SPD_HIGH_SPEED)
3606 port_status |= USB_PORT_STAT_HIGH_SPEED;
3607 else if (speed == HPRT0_SPD_LOW_SPEED)
3608 port_status |= USB_PORT_STAT_LOW_SPEED;
3610 if (hprt0 & HPRT0_TSTCTL_MASK)
3611 port_status |= USB_PORT_STAT_TEST;
3612 /* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3614 if (hsotg->params.dma_desc_fs_enable) {
3616 * Enable descriptor DMA only if a full speed
3617 * device is connected.
3619 if (hsotg->new_connection &&
3621 (USB_PORT_STAT_CONNECTION |
3622 USB_PORT_STAT_HIGH_SPEED |
3623 USB_PORT_STAT_LOW_SPEED)) ==
3624 USB_PORT_STAT_CONNECTION)) {
3627 dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3628 hsotg->params.dma_desc_enable = true;
3629 hcfg = dwc2_readl(hsotg, HCFG);
3630 hcfg |= HCFG_DESCDMA;
3631 dwc2_writel(hsotg, hcfg, HCFG);
3632 hsotg->new_connection = false;
3636 dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3637 *(__le32 *)buf = cpu_to_le32(port_status);
3641 dev_dbg(hsotg->dev, "SetHubFeature\n");
3642 /* No HUB features supported */
3645 case SetPortFeature:
3646 dev_dbg(hsotg->dev, "SetPortFeature\n");
3647 if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3650 if (!hsotg->flags.b.port_connect_status) {
3652 * The port is disconnected, which means the core is
3653 * either in device mode or it soon will be. Just
3654 * return without doing anything since the port
3655 * register can't be written if the core is in device
3662 case USB_PORT_FEAT_SUSPEND:
3664 "SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3665 if (windex != hsotg->otg_port)
3667 if (!hsotg->bus_suspended)
3668 retval = dwc2_port_suspend(hsotg, windex);
3671 case USB_PORT_FEAT_POWER:
3673 "SetPortFeature - USB_PORT_FEAT_POWER\n");
3674 hprt0 = dwc2_read_hprt0(hsotg);
3675 pwr = hprt0 & HPRT0_PWR;
3677 dwc2_writel(hsotg, hprt0, HPRT0);
3679 dwc2_vbus_supply_init(hsotg);
3682 case USB_PORT_FEAT_RESET:
3684 "SetPortFeature - USB_PORT_FEAT_RESET\n");
3686 hprt0 = dwc2_read_hprt0(hsotg);
3688 if (hsotg->hibernated) {
3689 retval = dwc2_exit_hibernation(hsotg, 0, 1, 1);
3692 "exit hibernation failed\n");
3695 if (hsotg->in_ppd) {
3696 retval = dwc2_exit_partial_power_down(hsotg, 1,
3700 "exit partial_power_down failed\n");
3703 if (hsotg->params.power_down ==
3704 DWC2_POWER_DOWN_PARAM_NONE && hsotg->bus_suspended)
3705 dwc2_host_exit_clock_gating(hsotg, 0);
3707 pcgctl = dwc2_readl(hsotg, PCGCTL);
3708 pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3709 dwc2_writel(hsotg, pcgctl, PCGCTL);
3710 /* ??? Original driver does this */
3711 dwc2_writel(hsotg, 0, PCGCTL);
3713 hprt0 = dwc2_read_hprt0(hsotg);
3714 pwr = hprt0 & HPRT0_PWR;
3715 /* Clear suspend bit if resetting from suspend state */
3716 hprt0 &= ~HPRT0_SUSP;
3719 * When B-Host the Port reset bit is set in the Start
3720 * HCD Callback function, so that the reset is started
3721 * within 1ms of the HNP success interrupt
3723 if (!dwc2_hcd_is_b_host(hsotg)) {
3724 hprt0 |= HPRT0_PWR | HPRT0_RST;
3726 "In host mode, hprt0=%08x\n", hprt0);
3727 dwc2_writel(hsotg, hprt0, HPRT0);
3729 dwc2_vbus_supply_init(hsotg);
3732 /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3734 hprt0 &= ~HPRT0_RST;
3735 dwc2_writel(hsotg, hprt0, HPRT0);
3736 hsotg->lx_state = DWC2_L0; /* Now back to On state */
3739 case USB_PORT_FEAT_INDICATOR:
3741 "SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3745 case USB_PORT_FEAT_TEST:
3746 hprt0 = dwc2_read_hprt0(hsotg);
3748 "SetPortFeature - USB_PORT_FEAT_TEST\n");
3749 hprt0 &= ~HPRT0_TSTCTL_MASK;
3750 hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3751 dwc2_writel(hsotg, hprt0, HPRT0);
3757 "SetPortFeature %1xh unknown or unsupported\n",
3767 "Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3768 typereq, windex, wvalue);
3775 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3782 retval = (hsotg->flags.b.port_connect_status_change ||
3783 hsotg->flags.b.port_reset_change ||
3784 hsotg->flags.b.port_enable_change ||
3785 hsotg->flags.b.port_suspend_change ||
3786 hsotg->flags.b.port_over_current_change);
3790 "DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3791 dev_dbg(hsotg->dev, " port_connect_status_change: %d\n",
3792 hsotg->flags.b.port_connect_status_change);
3793 dev_dbg(hsotg->dev, " port_reset_change: %d\n",
3794 hsotg->flags.b.port_reset_change);
3795 dev_dbg(hsotg->dev, " port_enable_change: %d\n",
3796 hsotg->flags.b.port_enable_change);
3797 dev_dbg(hsotg->dev, " port_suspend_change: %d\n",
3798 hsotg->flags.b.port_suspend_change);
3799 dev_dbg(hsotg->dev, " port_over_current_change: %d\n",
3800 hsotg->flags.b.port_over_current_change);
3806 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3808 u32 hfnum = dwc2_readl(hsotg, HFNUM);
3810 #ifdef DWC2_DEBUG_SOF
3811 dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3812 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3814 return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3817 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3819 u32 hprt = dwc2_readl(hsotg, HPRT0);
3820 u32 hfir = dwc2_readl(hsotg, HFIR);
3821 u32 hfnum = dwc2_readl(hsotg, HFNUM);
3822 unsigned int us_per_frame;
3823 unsigned int frame_number;
3824 unsigned int remaining;
3825 unsigned int interval;
3826 unsigned int phy_clks;
3828 /* High speed has 125 us per (micro) frame; others are 1 ms per */
3829 us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3831 /* Extract fields */
3832 frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3833 remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3834 interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3837 * Number of phy clocks since the last tick of the frame number after
3840 phy_clks = (interval - remaining) +
3841 DIV_ROUND_UP(interval * us, us_per_frame);
3843 return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3846 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3848 return hsotg->op_state == OTG_STATE_B_HOST;
3851 static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3855 struct dwc2_hcd_urb *urb;
3857 urb = kzalloc(struct_size(urb, iso_descs, iso_desc_count), mem_flags);
3859 urb->packet_count = iso_desc_count;
3863 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3864 struct dwc2_hcd_urb *urb, u8 dev_addr,
3865 u8 ep_num, u8 ep_type, u8 ep_dir,
3866 u16 maxp, u16 maxp_mult)
3869 ep_type == USB_ENDPOINT_XFER_BULK ||
3870 ep_type == USB_ENDPOINT_XFER_CONTROL)
3871 dev_vdbg(hsotg->dev,
3872 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, maxp=%d (%d mult)\n",
3873 dev_addr, ep_num, ep_dir, ep_type, maxp, maxp_mult);
3874 urb->pipe_info.dev_addr = dev_addr;
3875 urb->pipe_info.ep_num = ep_num;
3876 urb->pipe_info.pipe_type = ep_type;
3877 urb->pipe_info.pipe_dir = ep_dir;
3878 urb->pipe_info.maxp = maxp;
3879 urb->pipe_info.maxp_mult = maxp_mult;
3883 * NOTE: This function will be removed once the peripheral controller code
3884 * is integrated and the driver is stable
3886 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
3889 struct dwc2_host_chan *chan;
3890 struct dwc2_hcd_urb *urb;
3891 struct dwc2_qtd *qtd;
3897 num_channels = hsotg->params.host_channels;
3898 dev_dbg(hsotg->dev, "\n");
3900 "************************************************************\n");
3901 dev_dbg(hsotg->dev, "HCD State:\n");
3902 dev_dbg(hsotg->dev, " Num channels: %d\n", num_channels);
3904 for (i = 0; i < num_channels; i++) {
3905 chan = hsotg->hc_ptr_array[i];
3906 dev_dbg(hsotg->dev, " Channel %d:\n", i);
3908 " dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
3909 chan->dev_addr, chan->ep_num, chan->ep_is_in);
3910 dev_dbg(hsotg->dev, " speed: %d\n", chan->speed);
3911 dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type);
3912 dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet);
3913 dev_dbg(hsotg->dev, " data_pid_start: %d\n",
3914 chan->data_pid_start);
3915 dev_dbg(hsotg->dev, " multi_count: %d\n", chan->multi_count);
3916 dev_dbg(hsotg->dev, " xfer_started: %d\n",
3917 chan->xfer_started);
3918 dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf);
3919 dev_dbg(hsotg->dev, " xfer_dma: %08lx\n",
3920 (unsigned long)chan->xfer_dma);
3921 dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len);
3922 dev_dbg(hsotg->dev, " xfer_count: %d\n", chan->xfer_count);
3923 dev_dbg(hsotg->dev, " halt_on_queue: %d\n",
3924 chan->halt_on_queue);
3925 dev_dbg(hsotg->dev, " halt_pending: %d\n",
3926 chan->halt_pending);
3927 dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status);
3928 dev_dbg(hsotg->dev, " do_split: %d\n", chan->do_split);
3929 dev_dbg(hsotg->dev, " complete_split: %d\n",
3930 chan->complete_split);
3931 dev_dbg(hsotg->dev, " hub_addr: %d\n", chan->hub_addr);
3932 dev_dbg(hsotg->dev, " hub_port: %d\n", chan->hub_port);
3933 dev_dbg(hsotg->dev, " xact_pos: %d\n", chan->xact_pos);
3934 dev_dbg(hsotg->dev, " requests: %d\n", chan->requests);
3935 dev_dbg(hsotg->dev, " qh: %p\n", chan->qh);
3937 if (chan->xfer_started) {
3938 u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
3940 hfnum = dwc2_readl(hsotg, HFNUM);
3941 hcchar = dwc2_readl(hsotg, HCCHAR(i));
3942 hctsiz = dwc2_readl(hsotg, HCTSIZ(i));
3943 hcint = dwc2_readl(hsotg, HCINT(i));
3944 hcintmsk = dwc2_readl(hsotg, HCINTMSK(i));
3945 dev_dbg(hsotg->dev, " hfnum: 0x%08x\n", hfnum);
3946 dev_dbg(hsotg->dev, " hcchar: 0x%08x\n", hcchar);
3947 dev_dbg(hsotg->dev, " hctsiz: 0x%08x\n", hctsiz);
3948 dev_dbg(hsotg->dev, " hcint: 0x%08x\n", hcint);
3949 dev_dbg(hsotg->dev, " hcintmsk: 0x%08x\n", hcintmsk);
3952 if (!(chan->xfer_started && chan->qh))
3955 list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
3956 if (!qtd->in_process)
3959 dev_dbg(hsotg->dev, " URB Info:\n");
3960 dev_dbg(hsotg->dev, " qtd: %p, urb: %p\n",
3964 " Dev: %d, EP: %d %s\n",
3965 dwc2_hcd_get_dev_addr(&urb->pipe_info),
3966 dwc2_hcd_get_ep_num(&urb->pipe_info),
3967 dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
3970 " Max packet size: %d (%d mult)\n",
3971 dwc2_hcd_get_maxp(&urb->pipe_info),
3972 dwc2_hcd_get_maxp_mult(&urb->pipe_info));
3974 " transfer_buffer: %p\n",
3977 " transfer_dma: %08lx\n",
3978 (unsigned long)urb->dma);
3980 " transfer_buffer_length: %d\n",
3982 dev_dbg(hsotg->dev, " actual_length: %d\n",
3983 urb->actual_length);
3988 dev_dbg(hsotg->dev, " non_periodic_channels: %d\n",
3989 hsotg->non_periodic_channels);
3990 dev_dbg(hsotg->dev, " periodic_channels: %d\n",
3991 hsotg->periodic_channels);
3992 dev_dbg(hsotg->dev, " periodic_usecs: %d\n", hsotg->periodic_usecs);
3993 np_tx_status = dwc2_readl(hsotg, GNPTXSTS);
3994 dev_dbg(hsotg->dev, " NP Tx Req Queue Space Avail: %d\n",
3995 (np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3996 dev_dbg(hsotg->dev, " NP Tx FIFO Space Avail: %d\n",
3997 (np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3998 p_tx_status = dwc2_readl(hsotg, HPTXSTS);
3999 dev_dbg(hsotg->dev, " P Tx Req Queue Space Avail: %d\n",
4000 (p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
4001 dev_dbg(hsotg->dev, " P Tx FIFO Space Avail: %d\n",
4002 (p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
4003 dwc2_dump_global_registers(hsotg);
4004 dwc2_dump_host_registers(hsotg);
4006 "************************************************************\n");
4007 dev_dbg(hsotg->dev, "\n");
4011 struct wrapper_priv_data {
4012 struct dwc2_hsotg *hsotg;
4015 /* Gets the dwc2_hsotg from a usb_hcd */
4016 static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
4018 struct wrapper_priv_data *p;
4020 p = (struct wrapper_priv_data *)&hcd->hcd_priv;
4025 * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
4027 * This will get the dwc2_tt structure (and ttport) associated with the given
4028 * context (which is really just a struct urb pointer).
4030 * The first time this is called for a given TT we allocate memory for our
4031 * structure. When everyone is done and has called dwc2_host_put_tt_info()
4032 * then the refcount for the structure will go to 0 and we'll free it.
4034 * @hsotg: The HCD state structure for the DWC OTG controller.
4035 * @context: The priv pointer from a struct dwc2_hcd_urb.
4036 * @mem_flags: Flags for allocating memory.
4037 * @ttport: We'll return this device's port number here. That's used to
4038 * reference into the bitmap if we're on a multi_tt hub.
4040 * Return: a pointer to a struct dwc2_tt. Don't forget to call
4041 * dwc2_host_put_tt_info()! Returns NULL upon memory alloc failure.
4044 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
4045 gfp_t mem_flags, int *ttport)
4047 struct urb *urb = context;
4048 struct dwc2_tt *dwc_tt = NULL;
4051 *ttport = urb->dev->ttport;
4053 dwc_tt = urb->dev->tt->hcpriv;
4058 * For single_tt we need one schedule. For multi_tt
4059 * we need one per port.
4061 bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4062 sizeof(dwc_tt->periodic_bitmaps[0]);
4063 if (urb->dev->tt->multi)
4064 bitmap_size *= urb->dev->tt->hub->maxchild;
4066 dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4071 dwc_tt->usb_tt = urb->dev->tt;
4072 dwc_tt->usb_tt->hcpriv = dwc_tt;
4082 * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4084 * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4085 * of the structure are done.
4087 * It's OK to call this with NULL.
4089 * @hsotg: The HCD state structure for the DWC OTG controller.
4090 * @dwc_tt: The pointer returned by dwc2_host_get_tt_info.
4092 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4094 /* Model kfree and make put of NULL a no-op */
4098 WARN_ON(dwc_tt->refcount < 1);
4101 if (!dwc_tt->refcount) {
4102 dwc_tt->usb_tt->hcpriv = NULL;
4107 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4109 struct urb *urb = context;
4111 return urb->dev->speed;
4114 static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4117 struct usb_bus *bus = hcd_to_bus(hcd);
4120 bus->bandwidth_allocated += bw / urb->interval;
4121 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4122 bus->bandwidth_isoc_reqs++;
4124 bus->bandwidth_int_reqs++;
4127 static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4130 struct usb_bus *bus = hcd_to_bus(hcd);
4133 bus->bandwidth_allocated -= bw / urb->interval;
4134 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4135 bus->bandwidth_isoc_reqs--;
4137 bus->bandwidth_int_reqs--;
4141 * Sets the final status of an URB and returns it to the upper layer. Any
4142 * required cleanup of the URB is performed.
4144 * Must be called with interrupt disabled and spinlock held
4146 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4153 dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4158 dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4162 urb = qtd->urb->priv;
4164 dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4168 urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4171 dev_vdbg(hsotg->dev,
4172 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4173 __func__, urb, usb_pipedevice(urb->pipe),
4174 usb_pipeendpoint(urb->pipe),
4175 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4176 urb->actual_length);
4178 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4179 urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4180 for (i = 0; i < urb->number_of_packets; ++i) {
4181 urb->iso_frame_desc[i].actual_length =
4182 dwc2_hcd_urb_get_iso_desc_actual_length(
4184 urb->iso_frame_desc[i].status =
4185 dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4189 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4190 for (i = 0; i < urb->number_of_packets; i++)
4191 dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4192 i, urb->iso_frame_desc[i].status);
4195 urb->status = status;
4197 if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4198 urb->actual_length < urb->transfer_buffer_length)
4199 urb->status = -EREMOTEIO;
4202 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4203 usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4204 struct usb_host_endpoint *ep = urb->ep;
4207 dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4208 dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4212 usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4217 usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4221 * Work queue function for starting the HCD when A-Cable is connected
4223 static void dwc2_hcd_start_func(struct work_struct *work)
4225 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4228 dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4229 dwc2_host_start(hsotg);
4233 * Reset work queue function
4235 static void dwc2_hcd_reset_func(struct work_struct *work)
4237 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4239 unsigned long flags;
4242 dev_dbg(hsotg->dev, "USB RESET function called\n");
4244 spin_lock_irqsave(&hsotg->lock, flags);
4246 hprt0 = dwc2_read_hprt0(hsotg);
4247 hprt0 &= ~HPRT0_RST;
4248 dwc2_writel(hsotg, hprt0, HPRT0);
4249 hsotg->flags.b.port_reset_change = 1;
4251 spin_unlock_irqrestore(&hsotg->lock, flags);
4254 static void dwc2_hcd_phy_reset_func(struct work_struct *work)
4256 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4260 ret = phy_reset(hsotg->phy);
4262 dev_warn(hsotg->dev, "PHY reset failed\n");
4266 * =========================================================================
4267 * Linux HC Driver Functions
4268 * =========================================================================
4272 * Initializes the DWC_otg controller and its root hub and prepares it for host
4273 * mode operation. Activates the root port. Returns 0 on success and a negative
4274 * error code on failure.
4276 static int _dwc2_hcd_start(struct usb_hcd *hcd)
4278 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4279 struct usb_bus *bus = hcd_to_bus(hcd);
4280 unsigned long flags;
4284 dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4286 spin_lock_irqsave(&hsotg->lock, flags);
4287 hsotg->lx_state = DWC2_L0;
4288 hcd->state = HC_STATE_RUNNING;
4289 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4291 if (dwc2_is_device_mode(hsotg)) {
4292 spin_unlock_irqrestore(&hsotg->lock, flags);
4293 return 0; /* why 0 ?? */
4296 dwc2_hcd_reinit(hsotg);
4298 hprt0 = dwc2_read_hprt0(hsotg);
4299 /* Has vbus power been turned on in dwc2_core_host_init ? */
4300 if (hprt0 & HPRT0_PWR) {
4301 /* Enable external vbus supply before resuming root hub */
4302 spin_unlock_irqrestore(&hsotg->lock, flags);
4303 ret = dwc2_vbus_supply_init(hsotg);
4306 spin_lock_irqsave(&hsotg->lock, flags);
4309 /* Initialize and connect root hub if one is not already attached */
4310 if (bus->root_hub) {
4311 dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4312 /* Inform the HUB driver to resume */
4313 usb_hcd_resume_root_hub(hcd);
4316 spin_unlock_irqrestore(&hsotg->lock, flags);
4322 * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4325 static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4327 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4328 unsigned long flags;
4331 /* Turn off all host-specific interrupts */
4332 dwc2_disable_host_interrupts(hsotg);
4334 /* Wait for interrupt processing to finish */
4335 synchronize_irq(hcd->irq);
4337 spin_lock_irqsave(&hsotg->lock, flags);
4338 hprt0 = dwc2_read_hprt0(hsotg);
4339 /* Ensure hcd is disconnected */
4340 dwc2_hcd_disconnect(hsotg, true);
4341 dwc2_hcd_stop(hsotg);
4342 hsotg->lx_state = DWC2_L3;
4343 hcd->state = HC_STATE_HALT;
4344 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4345 spin_unlock_irqrestore(&hsotg->lock, flags);
4347 /* keep balanced supply init/exit by checking HPRT0_PWR */
4348 if (hprt0 & HPRT0_PWR)
4349 dwc2_vbus_supply_exit(hsotg);
4351 usleep_range(1000, 3000);
4354 static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4356 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4357 unsigned long flags;
4360 spin_lock_irqsave(&hsotg->lock, flags);
4362 if (dwc2_is_device_mode(hsotg))
4365 if (hsotg->lx_state != DWC2_L0)
4368 if (!HCD_HW_ACCESSIBLE(hcd))
4371 if (hsotg->op_state == OTG_STATE_B_PERIPHERAL)
4374 if (hsotg->bus_suspended)
4375 goto skip_power_saving;
4377 if (hsotg->flags.b.port_connect_status == 0)
4378 goto skip_power_saving;
4380 switch (hsotg->params.power_down) {
4381 case DWC2_POWER_DOWN_PARAM_PARTIAL:
4382 /* Enter partial_power_down */
4383 ret = dwc2_enter_partial_power_down(hsotg);
4386 "enter partial_power_down failed\n");
4387 /* After entering suspend, hardware is not accessible */
4388 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4390 case DWC2_POWER_DOWN_PARAM_HIBERNATION:
4391 /* Enter hibernation */
4392 spin_unlock_irqrestore(&hsotg->lock, flags);
4393 ret = dwc2_enter_hibernation(hsotg, 1);
4395 dev_err(hsotg->dev, "enter hibernation failed\n");
4396 spin_lock_irqsave(&hsotg->lock, flags);
4398 /* After entering suspend, hardware is not accessible */
4399 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4401 case DWC2_POWER_DOWN_PARAM_NONE:
4403 * If not hibernation nor partial power down are supported,
4404 * clock gating is used to save power.
4406 if (!hsotg->params.no_clock_gating)
4407 dwc2_host_enter_clock_gating(hsotg);
4409 /* After entering suspend, hardware is not accessible */
4410 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4413 goto skip_power_saving;
4416 spin_unlock_irqrestore(&hsotg->lock, flags);
4417 dwc2_vbus_supply_exit(hsotg);
4418 spin_lock_irqsave(&hsotg->lock, flags);
4420 /* Ask phy to be suspended */
4421 if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4422 spin_unlock_irqrestore(&hsotg->lock, flags);
4423 usb_phy_set_suspend(hsotg->uphy, true);
4424 spin_lock_irqsave(&hsotg->lock, flags);
4428 hsotg->lx_state = DWC2_L2;
4430 spin_unlock_irqrestore(&hsotg->lock, flags);
4435 static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4437 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4438 unsigned long flags;
4442 spin_lock_irqsave(&hsotg->lock, flags);
4444 if (dwc2_is_device_mode(hsotg))
4447 if (hsotg->lx_state != DWC2_L2)
4450 hprt0 = dwc2_read_hprt0(hsotg);
4453 * Added port connection status checking which prevents exiting from
4454 * Partial Power Down mode from _dwc2_hcd_resume() if not in Partial
4457 if (hprt0 & HPRT0_CONNSTS) {
4458 hsotg->lx_state = DWC2_L0;
4462 switch (hsotg->params.power_down) {
4463 case DWC2_POWER_DOWN_PARAM_PARTIAL:
4464 ret = dwc2_exit_partial_power_down(hsotg, 0, true);
4467 "exit partial_power_down failed\n");
4469 * Set HW accessible bit before powering on the controller
4470 * since an interrupt may rise.
4472 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4474 case DWC2_POWER_DOWN_PARAM_HIBERNATION:
4475 ret = dwc2_exit_hibernation(hsotg, 0, 0, 1);
4477 dev_err(hsotg->dev, "exit hibernation failed.\n");
4480 * Set HW accessible bit before powering on the controller
4481 * since an interrupt may rise.
4483 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4485 case DWC2_POWER_DOWN_PARAM_NONE:
4487 * If not hibernation nor partial power down are supported,
4488 * port resume is done using the clock gating programming flow.
4490 spin_unlock_irqrestore(&hsotg->lock, flags);
4491 dwc2_host_exit_clock_gating(hsotg, 0);
4494 * Initialize the Core for Host mode, as after system resume
4495 * the global interrupts are disabled.
4497 dwc2_core_init(hsotg, false);
4498 dwc2_enable_global_interrupts(hsotg);
4499 dwc2_hcd_reinit(hsotg);
4500 spin_lock_irqsave(&hsotg->lock, flags);
4503 * Set HW accessible bit before powering on the controller
4504 * since an interrupt may rise.
4506 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4509 hsotg->lx_state = DWC2_L0;
4513 /* Change Root port status, as port status change occurred after resume.*/
4514 hsotg->flags.b.port_suspend_change = 1;
4517 * Enable power if not already done.
4518 * This must not be spinlocked since duration
4519 * of this call is unknown.
4521 if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4522 spin_unlock_irqrestore(&hsotg->lock, flags);
4523 usb_phy_set_suspend(hsotg->uphy, false);
4524 spin_lock_irqsave(&hsotg->lock, flags);
4527 /* Enable external vbus supply after resuming the port. */
4528 spin_unlock_irqrestore(&hsotg->lock, flags);
4529 dwc2_vbus_supply_init(hsotg);
4531 /* Wait for controller to correctly update D+/D- level */
4532 usleep_range(3000, 5000);
4533 spin_lock_irqsave(&hsotg->lock, flags);
4536 * Clear Port Enable and Port Status changes.
4537 * Enable Port Power.
4539 dwc2_writel(hsotg, HPRT0_PWR | HPRT0_CONNDET |
4540 HPRT0_ENACHG, HPRT0);
4542 /* Wait for controller to detect Port Connect */
4543 spin_unlock_irqrestore(&hsotg->lock, flags);
4544 usleep_range(5000, 7000);
4545 spin_lock_irqsave(&hsotg->lock, flags);
4547 spin_unlock_irqrestore(&hsotg->lock, flags);
4552 /* Returns the current frame number */
4553 static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4555 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4557 return dwc2_hcd_get_frame_number(hsotg);
4560 static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4563 #ifdef VERBOSE_DEBUG
4564 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4565 char *pipetype = NULL;
4568 dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4569 dev_vdbg(hsotg->dev, " Device address: %d\n",
4570 usb_pipedevice(urb->pipe));
4571 dev_vdbg(hsotg->dev, " Endpoint: %d, %s\n",
4572 usb_pipeendpoint(urb->pipe),
4573 usb_pipein(urb->pipe) ? "IN" : "OUT");
4575 switch (usb_pipetype(urb->pipe)) {
4577 pipetype = "CONTROL";
4582 case PIPE_INTERRUPT:
4583 pipetype = "INTERRUPT";
4585 case PIPE_ISOCHRONOUS:
4586 pipetype = "ISOCHRONOUS";
4590 dev_vdbg(hsotg->dev, " Endpoint type: %s %s (%s)\n", pipetype,
4591 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4594 switch (urb->dev->speed) {
4595 case USB_SPEED_HIGH:
4598 case USB_SPEED_FULL:
4609 dev_vdbg(hsotg->dev, " Speed: %s\n", speed);
4610 dev_vdbg(hsotg->dev, " Max packet size: %d (%d mult)\n",
4611 usb_endpoint_maxp(&urb->ep->desc),
4612 usb_endpoint_maxp_mult(&urb->ep->desc));
4614 dev_vdbg(hsotg->dev, " Data buffer length: %d\n",
4615 urb->transfer_buffer_length);
4616 dev_vdbg(hsotg->dev, " Transfer buffer: %p, Transfer DMA: %08lx\n",
4617 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4618 dev_vdbg(hsotg->dev, " Setup buffer: %p, Setup DMA: %08lx\n",
4619 urb->setup_packet, (unsigned long)urb->setup_dma);
4620 dev_vdbg(hsotg->dev, " Interval: %d\n", urb->interval);
4622 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4625 for (i = 0; i < urb->number_of_packets; i++) {
4626 dev_vdbg(hsotg->dev, " ISO Desc %d:\n", i);
4627 dev_vdbg(hsotg->dev, " offset: %d, length %d\n",
4628 urb->iso_frame_desc[i].offset,
4629 urb->iso_frame_desc[i].length);
4636 * Starts processing a USB transfer request specified by a USB Request Block
4637 * (URB). mem_flags indicates the type of memory allocation to use while
4638 * processing this URB.
4640 static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4643 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4644 struct usb_host_endpoint *ep = urb->ep;
4645 struct dwc2_hcd_urb *dwc2_urb;
4648 int alloc_bandwidth = 0;
4652 unsigned long flags;
4654 bool qh_allocated = false;
4655 struct dwc2_qtd *qtd;
4656 struct dwc2_gregs_backup *gr;
4658 gr = &hsotg->gr_backup;
4661 dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4662 dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4665 if (hsotg->hibernated) {
4666 if (gr->gotgctl & GOTGCTL_CURMODE_HOST)
4667 retval = dwc2_exit_hibernation(hsotg, 0, 0, 1);
4669 retval = dwc2_exit_hibernation(hsotg, 0, 0, 0);
4673 "exit hibernation failed.\n");
4676 if (hsotg->in_ppd) {
4677 retval = dwc2_exit_partial_power_down(hsotg, 0, true);
4680 "exit partial_power_down failed\n");
4683 if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_NONE &&
4684 hsotg->bus_suspended) {
4685 if (dwc2_is_device_mode(hsotg))
4686 dwc2_gadget_exit_clock_gating(hsotg, 0);
4688 dwc2_host_exit_clock_gating(hsotg, 0);
4694 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4695 usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4696 spin_lock_irqsave(&hsotg->lock, flags);
4697 if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4698 alloc_bandwidth = 1;
4699 spin_unlock_irqrestore(&hsotg->lock, flags);
4702 switch (usb_pipetype(urb->pipe)) {
4704 ep_type = USB_ENDPOINT_XFER_CONTROL;
4706 case PIPE_ISOCHRONOUS:
4707 ep_type = USB_ENDPOINT_XFER_ISOC;
4710 ep_type = USB_ENDPOINT_XFER_BULK;
4712 case PIPE_INTERRUPT:
4713 ep_type = USB_ENDPOINT_XFER_INT;
4717 dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4722 dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4723 usb_pipeendpoint(urb->pipe), ep_type,
4724 usb_pipein(urb->pipe),
4725 usb_endpoint_maxp(&ep->desc),
4726 usb_endpoint_maxp_mult(&ep->desc));
4728 buf = urb->transfer_buffer;
4730 if (hcd_uses_dma(hcd)) {
4731 if (!buf && (urb->transfer_dma & 3)) {
4733 "%s: unaligned transfer with no transfer_buffer",
4740 if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4741 tflags |= URB_GIVEBACK_ASAP;
4742 if (urb->transfer_flags & URB_ZERO_PACKET)
4743 tflags |= URB_SEND_ZERO_PACKET;
4745 dwc2_urb->priv = urb;
4746 dwc2_urb->buf = buf;
4747 dwc2_urb->dma = urb->transfer_dma;
4748 dwc2_urb->length = urb->transfer_buffer_length;
4749 dwc2_urb->setup_packet = urb->setup_packet;
4750 dwc2_urb->setup_dma = urb->setup_dma;
4751 dwc2_urb->flags = tflags;
4752 dwc2_urb->interval = urb->interval;
4753 dwc2_urb->status = -EINPROGRESS;
4755 for (i = 0; i < urb->number_of_packets; ++i)
4756 dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4757 urb->iso_frame_desc[i].offset,
4758 urb->iso_frame_desc[i].length);
4760 urb->hcpriv = dwc2_urb;
4761 qh = (struct dwc2_qh *)ep->hcpriv;
4762 /* Create QH for the endpoint if it doesn't exist */
4764 qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4770 qh_allocated = true;
4773 qtd = kzalloc(sizeof(*qtd), mem_flags);
4779 spin_lock_irqsave(&hsotg->lock, flags);
4780 retval = usb_hcd_link_urb_to_ep(hcd, urb);
4784 retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4788 if (alloc_bandwidth) {
4789 dwc2_allocate_bus_bandwidth(hcd,
4790 dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4794 spin_unlock_irqrestore(&hsotg->lock, flags);
4799 dwc2_urb->priv = NULL;
4800 usb_hcd_unlink_urb_from_ep(hcd, urb);
4801 if (qh_allocated && qh->channel && qh->channel->qh == qh)
4802 qh->channel->qh = NULL;
4804 spin_unlock_irqrestore(&hsotg->lock, flags);
4809 struct dwc2_qtd *qtd2, *qtd2_tmp;
4812 dwc2_hcd_qh_unlink(hsotg, qh);
4813 /* Free each QTD in the QH's QTD list */
4814 list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4816 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4817 dwc2_hcd_qh_free(hsotg, qh);
4826 * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4828 static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4831 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4833 unsigned long flags;
4835 dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4836 dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4838 spin_lock_irqsave(&hsotg->lock, flags);
4840 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4845 dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4849 rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4851 usb_hcd_unlink_urb_from_ep(hcd, urb);
4856 /* Higher layer software sets URB status */
4857 spin_unlock(&hsotg->lock);
4858 usb_hcd_giveback_urb(hcd, urb, status);
4859 spin_lock(&hsotg->lock);
4861 dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4862 dev_dbg(hsotg->dev, " urb->status = %d\n", urb->status);
4864 spin_unlock_irqrestore(&hsotg->lock, flags);
4870 * Frees resources in the DWC_otg controller related to a given endpoint. Also
4871 * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4872 * must already be dequeued.
4874 static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4875 struct usb_host_endpoint *ep)
4877 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4880 "DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4881 ep->desc.bEndpointAddress, ep->hcpriv);
4882 dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4886 * Resets endpoint specific parameter values, in current version used to reset
4887 * the data toggle (as a WA). This function can be called from usb_clear_halt
4890 static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4891 struct usb_host_endpoint *ep)
4893 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4894 unsigned long flags;
4897 "DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4898 ep->desc.bEndpointAddress);
4900 spin_lock_irqsave(&hsotg->lock, flags);
4901 dwc2_hcd_endpoint_reset(hsotg, ep);
4902 spin_unlock_irqrestore(&hsotg->lock, flags);
4906 * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4907 * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4910 * This function is called by the USB core when an interrupt occurs
4912 static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4914 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4916 return dwc2_handle_hcd_intr(hsotg);
4920 * Creates Status Change bitmap for the root hub and root port. The bitmap is
4921 * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4922 * is the status change indicator for the single root port. Returns 1 if either
4923 * change indicator is 1, otherwise returns 0.
4925 static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4927 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4929 buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4933 /* Handles hub class-specific requests */
4934 static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4935 u16 windex, char *buf, u16 wlength)
4937 int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4938 wvalue, windex, buf, wlength);
4942 /* Handles hub TT buffer clear completions */
4943 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4944 struct usb_host_endpoint *ep)
4946 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4948 unsigned long flags;
4954 spin_lock_irqsave(&hsotg->lock, flags);
4955 qh->tt_buffer_dirty = 0;
4957 if (hsotg->flags.b.port_connect_status)
4958 dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4960 spin_unlock_irqrestore(&hsotg->lock, flags);
4964 * HPRT0_SPD_HIGH_SPEED: high speed
4965 * HPRT0_SPD_FULL_SPEED: full speed
4967 static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed)
4969 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4971 if (hsotg->params.speed == speed)
4974 hsotg->params.speed = speed;
4975 queue_work(hsotg->wq_otg, &hsotg->wf_otg);
4978 static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4980 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4982 if (!hsotg->params.change_speed_quirk)
4986 * On removal, set speed to default high-speed.
4988 if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN &&
4989 udev->parent->speed < USB_SPEED_HIGH) {
4990 dev_info(hsotg->dev, "Set speed to default high-speed\n");
4991 dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4995 static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
4997 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4999 if (!hsotg->params.change_speed_quirk)
5002 if (udev->speed == USB_SPEED_HIGH) {
5003 dev_info(hsotg->dev, "Set speed to high-speed\n");
5004 dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
5005 } else if ((udev->speed == USB_SPEED_FULL ||
5006 udev->speed == USB_SPEED_LOW)) {
5008 * Change speed setting to full-speed if there's
5009 * a full-speed or low-speed device plugged in.
5011 dev_info(hsotg->dev, "Set speed to full-speed\n");
5012 dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED);
5018 static struct hc_driver dwc2_hc_driver = {
5019 .description = "dwc2_hsotg",
5020 .product_desc = "DWC OTG Controller",
5021 .hcd_priv_size = sizeof(struct wrapper_priv_data),
5023 .irq = _dwc2_hcd_irq,
5024 .flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
5026 .start = _dwc2_hcd_start,
5027 .stop = _dwc2_hcd_stop,
5028 .urb_enqueue = _dwc2_hcd_urb_enqueue,
5029 .urb_dequeue = _dwc2_hcd_urb_dequeue,
5030 .endpoint_disable = _dwc2_hcd_endpoint_disable,
5031 .endpoint_reset = _dwc2_hcd_endpoint_reset,
5032 .get_frame_number = _dwc2_hcd_get_frame_number,
5034 .hub_status_data = _dwc2_hcd_hub_status_data,
5035 .hub_control = _dwc2_hcd_hub_control,
5036 .clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
5038 .bus_suspend = _dwc2_hcd_suspend,
5039 .bus_resume = _dwc2_hcd_resume,
5041 .map_urb_for_dma = dwc2_map_urb_for_dma,
5042 .unmap_urb_for_dma = dwc2_unmap_urb_for_dma,
5046 * Frees secondary storage associated with the dwc2_hsotg structure contained
5047 * in the struct usb_hcd field
5049 static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
5055 dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
5057 /* Free memory for QH/QTD lists */
5058 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
5059 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_waiting);
5060 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
5061 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
5062 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
5063 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
5064 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
5066 /* Free memory for the host channels */
5067 for (i = 0; i < MAX_EPS_CHANNELS; i++) {
5068 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
5071 dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
5073 hsotg->hc_ptr_array[i] = NULL;
5078 if (hsotg->params.host_dma) {
5079 if (hsotg->status_buf) {
5080 dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
5082 hsotg->status_buf_dma);
5083 hsotg->status_buf = NULL;
5086 kfree(hsotg->status_buf);
5087 hsotg->status_buf = NULL;
5090 ahbcfg = dwc2_readl(hsotg, GAHBCFG);
5092 /* Disable all interrupts */
5093 ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
5094 dwc2_writel(hsotg, ahbcfg, GAHBCFG);
5095 dwc2_writel(hsotg, 0, GINTMSK);
5097 if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
5098 dctl = dwc2_readl(hsotg, DCTL);
5099 dctl |= DCTL_SFTDISCON;
5100 dwc2_writel(hsotg, dctl, DCTL);
5103 if (hsotg->wq_otg) {
5104 if (!cancel_work_sync(&hsotg->wf_otg))
5105 flush_workqueue(hsotg->wq_otg);
5106 destroy_workqueue(hsotg->wq_otg);
5109 cancel_work_sync(&hsotg->phy_reset_work);
5111 del_timer(&hsotg->wkp_timer);
5114 static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
5116 /* Turn off all host-specific interrupts */
5117 dwc2_disable_host_interrupts(hsotg);
5119 dwc2_hcd_free(hsotg);
5123 * Initializes the HCD. This function allocates memory for and initializes the
5124 * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
5125 * USB bus with the core and calls the hc_driver->start() function. It returns
5126 * a negative error on failure.
5128 int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
5130 struct platform_device *pdev = to_platform_device(hsotg->dev);
5131 struct resource *res;
5132 struct usb_hcd *hcd;
5133 struct dwc2_host_chan *channel;
5135 int i, num_channels;
5141 dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
5145 hcfg = dwc2_readl(hsotg, HCFG);
5146 dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
5148 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5149 hsotg->frame_num_array = kcalloc(FRAME_NUM_ARRAY_SIZE,
5150 sizeof(*hsotg->frame_num_array),
5152 if (!hsotg->frame_num_array)
5154 hsotg->last_frame_num_array =
5155 kcalloc(FRAME_NUM_ARRAY_SIZE,
5156 sizeof(*hsotg->last_frame_num_array), GFP_KERNEL);
5157 if (!hsotg->last_frame_num_array)
5160 hsotg->last_frame_num = HFNUM_MAX_FRNUM;
5162 /* Check if the bus driver or platform code has setup a dma_mask */
5163 if (hsotg->params.host_dma &&
5164 !hsotg->dev->dma_mask) {
5165 dev_warn(hsotg->dev,
5166 "dma_mask not set, disabling DMA\n");
5167 hsotg->params.host_dma = false;
5168 hsotg->params.dma_desc_enable = false;
5171 /* Set device flags indicating whether the HCD supports DMA */
5172 if (hsotg->params.host_dma) {
5173 if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5174 dev_warn(hsotg->dev, "can't set DMA mask\n");
5175 if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5176 dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5179 if (hsotg->params.change_speed_quirk) {
5180 dwc2_hc_driver.free_dev = dwc2_free_dev;
5181 dwc2_hc_driver.reset_device = dwc2_reset_device;
5184 if (hsotg->params.host_dma)
5185 dwc2_hc_driver.flags |= HCD_DMA;
5187 hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5193 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5198 hcd->rsrc_start = res->start;
5199 hcd->rsrc_len = resource_size(res);
5201 ((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg;
5205 * Disable the global interrupt until all the interrupt handlers are
5208 dwc2_disable_global_interrupts(hsotg);
5210 /* Initialize the DWC_otg core, and select the Phy type */
5211 retval = dwc2_core_init(hsotg, true);
5215 /* Create new workqueue and init work */
5217 hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0);
5218 if (!hsotg->wq_otg) {
5219 dev_err(hsotg->dev, "Failed to create workqueue\n");
5222 INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5224 timer_setup(&hsotg->wkp_timer, dwc2_wakeup_detected, 0);
5226 /* Initialize the non-periodic schedule */
5227 INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5228 INIT_LIST_HEAD(&hsotg->non_periodic_sched_waiting);
5229 INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5231 /* Initialize the periodic schedule */
5232 INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5233 INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5234 INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5235 INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5237 INIT_LIST_HEAD(&hsotg->split_order);
5240 * Create a host channel descriptor for each host channel implemented
5241 * in the controller. Initialize the channel descriptor array.
5243 INIT_LIST_HEAD(&hsotg->free_hc_list);
5244 num_channels = hsotg->params.host_channels;
5245 memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5247 for (i = 0; i < num_channels; i++) {
5248 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5251 channel->hc_num = i;
5252 INIT_LIST_HEAD(&channel->split_order_list_entry);
5253 hsotg->hc_ptr_array[i] = channel;
5256 /* Initialize work */
5257 INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5258 INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5259 INIT_WORK(&hsotg->phy_reset_work, dwc2_hcd_phy_reset_func);
5262 * Allocate space for storing data on status transactions. Normally no
5263 * data is sent, but this space acts as a bit bucket. This must be
5264 * done after usb_add_hcd since that function allocates the DMA buffer
5267 if (hsotg->params.host_dma)
5268 hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5269 DWC2_HCD_STATUS_BUF_SIZE,
5270 &hsotg->status_buf_dma, GFP_KERNEL);
5272 hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5275 if (!hsotg->status_buf)
5279 * Create kmem caches to handle descriptor buffers in descriptor
5281 * Alignment must be set to 512 bytes.
5283 if (hsotg->params.dma_desc_enable ||
5284 hsotg->params.dma_desc_fs_enable) {
5285 hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5286 sizeof(struct dwc2_dma_desc) *
5287 MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5289 if (!hsotg->desc_gen_cache) {
5291 "unable to create dwc2 generic desc cache\n");
5294 * Disable descriptor dma mode since it will not be
5297 hsotg->params.dma_desc_enable = false;
5298 hsotg->params.dma_desc_fs_enable = false;
5301 hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5302 sizeof(struct dwc2_dma_desc) *
5303 MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5304 if (!hsotg->desc_hsisoc_cache) {
5306 "unable to create dwc2 hs isoc desc cache\n");
5308 kmem_cache_destroy(hsotg->desc_gen_cache);
5311 * Disable descriptor dma mode since it will not be
5314 hsotg->params.dma_desc_enable = false;
5315 hsotg->params.dma_desc_fs_enable = false;
5319 if (hsotg->params.host_dma) {
5321 * Create kmem caches to handle non-aligned buffer
5322 * in Buffer DMA mode.
5324 hsotg->unaligned_cache = kmem_cache_create("dwc2-unaligned-dma",
5325 DWC2_KMEM_UNALIGNED_BUF_SIZE, 4,
5326 SLAB_CACHE_DMA, NULL);
5327 if (!hsotg->unaligned_cache)
5329 "unable to create dwc2 unaligned cache\n");
5332 hsotg->otg_port = 1;
5333 hsotg->frame_list = NULL;
5334 hsotg->frame_list_dma = 0;
5335 hsotg->periodic_qh_count = 0;
5337 /* Initiate lx_state to L3 disconnected state */
5338 hsotg->lx_state = DWC2_L3;
5340 hcd->self.otg_port = hsotg->otg_port;
5342 /* Don't support SG list at this point */
5343 hcd->self.sg_tablesize = 0;
5345 if (!IS_ERR_OR_NULL(hsotg->uphy))
5346 otg_set_host(hsotg->uphy->otg, &hcd->self);
5349 * Finish generic HCD initialization and start the HCD. This function
5350 * allocates the DMA buffer pool, registers the USB bus, requests the
5351 * IRQ line, and calls hcd_start method.
5353 retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED);
5357 device_wakeup_enable(hcd->self.controller);
5359 dwc2_hcd_dump_state(hsotg);
5361 dwc2_enable_global_interrupts(hsotg);
5366 kmem_cache_destroy(hsotg->unaligned_cache);
5367 kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5368 kmem_cache_destroy(hsotg->desc_gen_cache);
5370 dwc2_hcd_release(hsotg);
5375 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5376 kfree(hsotg->last_frame_num_array);
5377 kfree(hsotg->frame_num_array);
5380 dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5386 * Frees memory and resources associated with the HCD and deregisters the bus.
5388 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5390 struct usb_hcd *hcd;
5392 dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5394 hcd = dwc2_hsotg_to_hcd(hsotg);
5395 dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5398 dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5403 if (!IS_ERR_OR_NULL(hsotg->uphy))
5404 otg_set_host(hsotg->uphy->otg, NULL);
5406 usb_remove_hcd(hcd);
5409 kmem_cache_destroy(hsotg->unaligned_cache);
5410 kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5411 kmem_cache_destroy(hsotg->desc_gen_cache);
5413 dwc2_hcd_release(hsotg);
5416 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5417 kfree(hsotg->last_frame_num_array);
5418 kfree(hsotg->frame_num_array);
5423 * dwc2_backup_host_registers() - Backup controller host registers.
5424 * When suspending usb bus, registers needs to be backuped
5425 * if controller power is disabled once suspended.
5427 * @hsotg: Programming view of the DWC_otg controller
5429 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5431 struct dwc2_hregs_backup *hr;
5434 dev_dbg(hsotg->dev, "%s\n", __func__);
5436 /* Backup Host regs */
5437 hr = &hsotg->hr_backup;
5438 hr->hcfg = dwc2_readl(hsotg, HCFG);
5439 hr->haintmsk = dwc2_readl(hsotg, HAINTMSK);
5440 for (i = 0; i < hsotg->params.host_channels; ++i)
5441 hr->hcintmsk[i] = dwc2_readl(hsotg, HCINTMSK(i));
5443 hr->hprt0 = dwc2_read_hprt0(hsotg);
5444 hr->hfir = dwc2_readl(hsotg, HFIR);
5445 hr->hptxfsiz = dwc2_readl(hsotg, HPTXFSIZ);
5452 * dwc2_restore_host_registers() - Restore controller host registers.
5453 * When resuming usb bus, device registers needs to be restored
5454 * if controller power were disabled.
5456 * @hsotg: Programming view of the DWC_otg controller
5458 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5460 struct dwc2_hregs_backup *hr;
5463 dev_dbg(hsotg->dev, "%s\n", __func__);
5465 /* Restore host regs */
5466 hr = &hsotg->hr_backup;
5468 dev_err(hsotg->dev, "%s: no host registers to restore\n",
5474 dwc2_writel(hsotg, hr->hcfg, HCFG);
5475 dwc2_writel(hsotg, hr->haintmsk, HAINTMSK);
5477 for (i = 0; i < hsotg->params.host_channels; ++i)
5478 dwc2_writel(hsotg, hr->hcintmsk[i], HCINTMSK(i));
5480 dwc2_writel(hsotg, hr->hprt0, HPRT0);
5481 dwc2_writel(hsotg, hr->hfir, HFIR);
5482 dwc2_writel(hsotg, hr->hptxfsiz, HPTXFSIZ);
5483 hsotg->frame_number = 0;
5489 * dwc2_host_enter_hibernation() - Put controller in Hibernation.
5491 * @hsotg: Programming view of the DWC_otg controller
5493 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
5495 unsigned long flags;
5502 dev_dbg(hsotg->dev, "Preparing host for hibernation\n");
5503 ret = dwc2_backup_global_registers(hsotg);
5505 dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5509 ret = dwc2_backup_host_registers(hsotg);
5511 dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5516 /* Enter USB Suspend Mode */
5517 hprt0 = dwc2_readl(hsotg, HPRT0);
5518 hprt0 |= HPRT0_SUSP;
5519 hprt0 &= ~HPRT0_ENA;
5520 dwc2_writel(hsotg, hprt0, HPRT0);
5522 /* Wait for the HPRT0.PrtSusp register field to be set */
5523 if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 5000))
5524 dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5527 * We need to disable interrupts to prevent servicing of any IRQ
5528 * during going to hibernation
5530 spin_lock_irqsave(&hsotg->lock, flags);
5531 hsotg->lx_state = DWC2_L2;
5533 gusbcfg = dwc2_readl(hsotg, GUSBCFG);
5534 if (gusbcfg & GUSBCFG_ULPI_UTMI_SEL) {
5535 /* ULPI interface */
5536 /* Suspend the Phy Clock */
5537 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5538 pcgcctl |= PCGCTL_STOPPCLK;
5539 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5542 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5543 gpwrdn |= GPWRDN_PMUACTV;
5544 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5547 /* UTMI+ Interface */
5548 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5549 gpwrdn |= GPWRDN_PMUACTV;
5550 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5553 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5554 pcgcctl |= PCGCTL_STOPPCLK;
5555 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5559 /* Enable interrupts from wake up logic */
5560 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5561 gpwrdn |= GPWRDN_PMUINTSEL;
5562 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5565 /* Unmask host mode interrupts in GPWRDN */
5566 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5567 gpwrdn |= GPWRDN_DISCONN_DET_MSK;
5568 gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5569 gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5570 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5573 /* Enable Power Down Clamp */
5574 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5575 gpwrdn |= GPWRDN_PWRDNCLMP;
5576 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5579 /* Switch off VDD */
5580 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5581 gpwrdn |= GPWRDN_PWRDNSWTCH;
5582 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5584 hsotg->hibernated = 1;
5585 hsotg->bus_suspended = 1;
5586 dev_dbg(hsotg->dev, "Host hibernation completed\n");
5587 spin_unlock_irqrestore(&hsotg->lock, flags);
5592 * dwc2_host_exit_hibernation()
5594 * @hsotg: Programming view of the DWC_otg controller
5595 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5596 * @param reset: indicates whether resume is initiated by Reset.
5598 * Return: non-zero if failed to enter to hibernation.
5600 * This function is for exiting from Host mode hibernation by
5601 * Host Initiated Resume/Reset and Device Initiated Remote-Wakeup.
5603 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
5609 struct dwc2_gregs_backup *gr;
5610 struct dwc2_hregs_backup *hr;
5612 gr = &hsotg->gr_backup;
5613 hr = &hsotg->hr_backup;
5616 "%s: called with rem_wakeup = %d reset = %d\n",
5617 __func__, rem_wakeup, reset);
5619 dwc2_hib_restore_common(hsotg, rem_wakeup, 1);
5620 hsotg->hibernated = 0;
5623 * This step is not described in functional spec but if not wait for
5624 * this delay, mismatch interrupts occurred because just after restore
5625 * core is in Device mode(gintsts.curmode == 0)
5629 /* Clear all pending interupts */
5630 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5632 /* De-assert Restore */
5633 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5634 gpwrdn &= ~GPWRDN_RESTORE;
5635 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5638 /* Restore GUSBCFG, HCFG */
5639 dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5640 dwc2_writel(hsotg, hr->hcfg, HCFG);
5642 /* De-assert Wakeup Logic */
5643 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5644 gpwrdn &= ~GPWRDN_PMUACTV;
5645 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5650 hprt0 &= ~HPRT0_ENA;
5651 hprt0 &= ~HPRT0_SUSP;
5652 dwc2_writel(hsotg, hprt0, HPRT0);
5656 hprt0 &= ~HPRT0_ENA;
5657 hprt0 &= ~HPRT0_SUSP;
5661 dwc2_writel(hsotg, hprt0, HPRT0);
5663 /* Wait for Resume time and then program HPRT again */
5665 hprt0 &= ~HPRT0_RST;
5666 dwc2_writel(hsotg, hprt0, HPRT0);
5669 dwc2_writel(hsotg, hprt0, HPRT0);
5671 /* Wait for Resume time and then program HPRT again */
5673 hprt0 &= ~HPRT0_RES;
5674 dwc2_writel(hsotg, hprt0, HPRT0);
5676 /* Clear all interrupt status */
5677 hprt0 = dwc2_readl(hsotg, HPRT0);
5678 hprt0 |= HPRT0_CONNDET;
5679 hprt0 |= HPRT0_ENACHG;
5680 hprt0 &= ~HPRT0_ENA;
5681 dwc2_writel(hsotg, hprt0, HPRT0);
5683 hprt0 = dwc2_readl(hsotg, HPRT0);
5685 /* Clear all pending interupts */
5686 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5688 /* Restore global registers */
5689 ret = dwc2_restore_global_registers(hsotg);
5691 dev_err(hsotg->dev, "%s: failed to restore registers\n",
5696 /* Restore host registers */
5697 ret = dwc2_restore_host_registers(hsotg);
5699 dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5705 dwc2_hcd_rem_wakeup(hsotg);
5707 * Change "port_connect_status_change" flag to re-enumerate,
5708 * because after exit from hibernation port connection status
5711 hsotg->flags.b.port_connect_status_change = 1;
5714 hsotg->hibernated = 0;
5715 hsotg->bus_suspended = 0;
5716 hsotg->lx_state = DWC2_L0;
5717 dev_dbg(hsotg->dev, "Host hibernation restore complete\n");
5721 bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2)
5723 struct usb_device *root_hub = dwc2_hsotg_to_hcd(dwc2)->self.root_hub;
5725 /* If the controller isn't allowed to wakeup then we can power off. */
5726 if (!device_may_wakeup(dwc2->dev))
5730 * We don't want to power off the PHY if something under the
5731 * root hub has wakeup enabled.
5733 if (usb_wakeup_enabled_descendants(root_hub))
5736 /* No reason to keep the PHY powered, so allow poweroff */
5741 * dwc2_host_enter_partial_power_down() - Put controller in partial
5744 * @hsotg: Programming view of the DWC_otg controller
5746 * Return: non-zero if failed to enter host partial power down.
5748 * This function is for entering Host mode partial power down.
5750 int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg)
5756 dev_dbg(hsotg->dev, "Entering host partial power down started.\n");
5758 /* Put this port in suspend mode. */
5759 hprt0 = dwc2_read_hprt0(hsotg);
5760 hprt0 |= HPRT0_SUSP;
5761 dwc2_writel(hsotg, hprt0, HPRT0);
5764 /* Wait for the HPRT0.PrtSusp register field to be set */
5765 if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 3000))
5766 dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5768 /* Backup all registers */
5769 ret = dwc2_backup_global_registers(hsotg);
5771 dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5776 ret = dwc2_backup_host_registers(hsotg);
5778 dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5784 * Clear any pending interrupts since dwc2 will not be able to
5785 * clear them after entering partial_power_down.
5787 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5789 /* Put the controller in low power state */
5790 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5792 pcgcctl |= PCGCTL_PWRCLMP;
5793 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5796 pcgcctl |= PCGCTL_RSTPDWNMODULE;
5797 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5800 pcgcctl |= PCGCTL_STOPPCLK;
5801 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5803 /* Set in_ppd flag to 1 as here core enters suspend. */
5805 hsotg->lx_state = DWC2_L2;
5806 hsotg->bus_suspended = true;
5808 dev_dbg(hsotg->dev, "Entering host partial power down completed.\n");
5814 * dwc2_host_exit_partial_power_down() - Exit controller from host partial
5817 * @hsotg: Programming view of the DWC_otg controller
5818 * @rem_wakeup: indicates whether resume is initiated by Reset.
5819 * @restore: indicates whether need to restore the registers or not.
5821 * Return: non-zero if failed to exit host partial power down.
5823 * This function is for exiting from Host mode partial power down.
5825 int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
5826 int rem_wakeup, bool restore)
5832 dev_dbg(hsotg->dev, "Exiting host partial power down started.\n");
5834 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5835 pcgcctl &= ~PCGCTL_STOPPCLK;
5836 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5839 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5840 pcgcctl &= ~PCGCTL_PWRCLMP;
5841 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5844 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5845 pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5846 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5850 ret = dwc2_restore_global_registers(hsotg);
5852 dev_err(hsotg->dev, "%s: failed to restore registers\n",
5857 ret = dwc2_restore_host_registers(hsotg);
5859 dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5865 /* Drive resume signaling and exit suspend mode on the port. */
5866 hprt0 = dwc2_read_hprt0(hsotg);
5868 hprt0 &= ~HPRT0_SUSP;
5869 dwc2_writel(hsotg, hprt0, HPRT0);
5873 /* Stop driveing resume signaling on the port. */
5874 hprt0 = dwc2_read_hprt0(hsotg);
5875 hprt0 &= ~HPRT0_RES;
5876 dwc2_writel(hsotg, hprt0, HPRT0);
5878 hsotg->bus_suspended = false;
5880 /* Turn on the port power bit. */
5881 hprt0 = dwc2_read_hprt0(hsotg);
5883 dwc2_writel(hsotg, hprt0, HPRT0);
5886 dwc2_hcd_connect(hsotg);
5888 mod_timer(&hsotg->wkp_timer,
5889 jiffies + msecs_to_jiffies(71));
5892 /* Set lx_state to and in_ppd to 0 as here core exits from suspend. */
5894 hsotg->lx_state = DWC2_L0;
5896 dev_dbg(hsotg->dev, "Exiting host partial power down completed.\n");
5901 * dwc2_host_enter_clock_gating() - Put controller in clock gating.
5903 * @hsotg: Programming view of the DWC_otg controller
5905 * This function is for entering Host mode clock gating.
5907 void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg)
5912 dev_dbg(hsotg->dev, "Entering host clock gating.\n");
5914 /* Put this port in suspend mode. */
5915 hprt0 = dwc2_read_hprt0(hsotg);
5916 hprt0 |= HPRT0_SUSP;
5917 dwc2_writel(hsotg, hprt0, HPRT0);
5919 /* Set the Phy Clock bit as suspend is received. */
5920 pcgctl = dwc2_readl(hsotg, PCGCTL);
5921 pcgctl |= PCGCTL_STOPPCLK;
5922 dwc2_writel(hsotg, pcgctl, PCGCTL);
5925 /* Set the Gate hclk as suspend is received. */
5926 pcgctl = dwc2_readl(hsotg, PCGCTL);
5927 pcgctl |= PCGCTL_GATEHCLK;
5928 dwc2_writel(hsotg, pcgctl, PCGCTL);
5931 hsotg->bus_suspended = true;
5932 hsotg->lx_state = DWC2_L2;
5936 * dwc2_host_exit_clock_gating() - Exit controller from clock gating.
5938 * @hsotg: Programming view of the DWC_otg controller
5939 * @rem_wakeup: indicates whether resume is initiated by remote wakeup
5941 * This function is for exiting Host mode clock gating.
5943 void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup)
5948 dev_dbg(hsotg->dev, "Exiting host clock gating.\n");
5950 /* Clear the Gate hclk. */
5951 pcgctl = dwc2_readl(hsotg, PCGCTL);
5952 pcgctl &= ~PCGCTL_GATEHCLK;
5953 dwc2_writel(hsotg, pcgctl, PCGCTL);
5956 /* Phy Clock bit. */
5957 pcgctl = dwc2_readl(hsotg, PCGCTL);
5958 pcgctl &= ~PCGCTL_STOPPCLK;
5959 dwc2_writel(hsotg, pcgctl, PCGCTL);
5962 /* Drive resume signaling and exit suspend mode on the port. */
5963 hprt0 = dwc2_read_hprt0(hsotg);
5965 hprt0 &= ~HPRT0_SUSP;
5966 dwc2_writel(hsotg, hprt0, HPRT0);
5970 /* In case of port resume need to wait for 40 ms */
5971 msleep(USB_RESUME_TIMEOUT);
5973 /* Stop driveing resume signaling on the port. */
5974 hprt0 = dwc2_read_hprt0(hsotg);
5975 hprt0 &= ~HPRT0_RES;
5976 dwc2_writel(hsotg, hprt0, HPRT0);
5978 hsotg->bus_suspended = false;
5979 hsotg->lx_state = DWC2_L0;
5981 mod_timer(&hsotg->wkp_timer,
5982 jiffies + msecs_to_jiffies(71));