1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
6 * Copyright 2008 Openmoko, Inc.
7 * Copyright 2008 Simtec Electronics
8 * Ben Dooks <ben@simtec.co.uk>
9 * http://armlinux.simtec.co.uk/
11 * S3C USB2.0 High-speed / OtG driver
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/mutex.h>
21 #include <linux/seq_file.h>
22 #include <linux/delay.h>
24 #include <linux/slab.h>
25 #include <linux/of_platform.h>
26 #include <linux/extcon-provider.h>
28 #include <linux/usb/ch9.h>
29 #include <linux/usb/gadget.h>
30 #include <linux/usb/phy.h>
31 #include <linux/usb/composite.h>
37 /* conversion functions */
38 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
40 return container_of(req, struct dwc2_hsotg_req, req);
43 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
45 return container_of(ep, struct dwc2_hsotg_ep, ep);
48 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
50 return container_of(gadget, struct dwc2_hsotg, gadget);
53 static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
55 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset);
58 static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
60 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset);
63 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
64 u32 ep_index, u32 dir_in)
67 return hsotg->eps_in[ep_index];
69 return hsotg->eps_out[ep_index];
72 /* forward declaration of functions */
73 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
76 * using_dma - return the DMA status of the driver.
77 * @hsotg: The driver state.
79 * Return true if we're using DMA.
81 * Currently, we have the DMA support code worked into everywhere
82 * that needs it, but the AMBA DMA implementation in the hardware can
83 * only DMA from 32bit aligned addresses. This means that gadgets such
84 * as the CDC Ethernet cannot work as they often pass packets which are
87 * Unfortunately the choice to use DMA or not is global to the controller
88 * and seems to be only settable when the controller is being put through
89 * a core reset. This means we either need to fix the gadgets to take
90 * account of DMA alignment, or add bounce buffers (yuerk).
92 * g_using_dma is set depending on dts flag.
94 static inline bool using_dma(struct dwc2_hsotg *hsotg)
96 return hsotg->params.g_dma;
100 * using_desc_dma - return the descriptor DMA status of the driver.
101 * @hsotg: The driver state.
103 * Return true if we're using descriptor DMA.
105 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
107 return hsotg->params.g_dma_desc;
111 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
112 * @hs_ep: The endpoint
114 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
115 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
117 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
119 hs_ep->target_frame += hs_ep->interval;
120 if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
121 hs_ep->frame_overrun = true;
122 hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
124 hs_ep->frame_overrun = false;
129 * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number
131 * @hs_ep: The endpoint.
133 * This function used in service interval based scheduling flow to calculate
134 * descriptor frame number filed value. For service interval mode frame
135 * number in descriptor should point to last (u)frame in the interval.
138 static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep)
140 if (hs_ep->target_frame)
141 hs_ep->target_frame -= 1;
143 hs_ep->target_frame = DSTS_SOFFN_LIMIT;
147 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
148 * @hsotg: The device state
149 * @ints: A bitmask of the interrupts to enable
151 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
153 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
156 new_gsintmsk = gsintmsk | ints;
158 if (new_gsintmsk != gsintmsk) {
159 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
160 dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
165 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
166 * @hsotg: The device state
167 * @ints: A bitmask of the interrupts to enable
169 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
171 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
174 new_gsintmsk = gsintmsk & ~ints;
176 if (new_gsintmsk != gsintmsk)
177 dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
181 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
182 * @hsotg: The device state
183 * @ep: The endpoint index
184 * @dir_in: True if direction is in.
185 * @en: The enable value, true to enable
187 * Set or clear the mask for an individual endpoint's interrupt
190 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
191 unsigned int ep, unsigned int dir_in,
201 local_irq_save(flags);
202 daint = dwc2_readl(hsotg, DAINTMSK);
207 dwc2_writel(hsotg, daint, DAINTMSK);
208 local_irq_restore(flags);
212 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
214 * @hsotg: Programming view of the DWC_otg controller
216 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
218 if (hsotg->hw_params.en_multiple_tx_fifo)
219 /* In dedicated FIFO mode we need count of IN EPs */
220 return hsotg->hw_params.num_dev_in_eps;
222 /* In shared FIFO mode we need count of Periodic IN EPs */
223 return hsotg->hw_params.num_dev_perio_in_ep;
227 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
228 * device mode TX FIFOs
230 * @hsotg: Programming view of the DWC_otg controller
232 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
238 np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
239 hsotg->params.g_np_tx_fifo_size);
241 /* Get Endpoint Info Control block size in DWORDs. */
242 tx_addr_max = hsotg->hw_params.total_fifo_size;
244 addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
245 if (tx_addr_max <= addr)
248 return tx_addr_max - addr;
252 * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt
254 * @hsotg: Programming view of the DWC_otg controller
257 static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg)
262 gintsts2 = dwc2_readl(hsotg, GINTSTS2);
263 gintmsk2 = dwc2_readl(hsotg, GINTMSK2);
264 gintsts2 &= gintmsk2;
266 if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) {
267 dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__);
268 dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT);
269 dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG);
274 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
277 * @hsotg: Programming view of the DWC_otg controller
279 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
284 tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
286 tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
289 return tx_fifo_depth;
291 return tx_fifo_depth / tx_fifo_count;
295 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
296 * @hsotg: The device instance.
298 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
305 u32 *txfsz = hsotg->params.g_tx_fifo_size;
307 /* Reset fifo map if not correctly cleared during previous session */
308 WARN_ON(hsotg->fifo_map);
311 /* set RX/NPTX FIFO sizes */
312 dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ);
313 dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size <<
314 FIFOSIZE_STARTADDR_SHIFT) |
315 (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
319 * arange all the rest of the TX FIFOs, as some versions of this
320 * block have overlapping default addresses. This also ensures
321 * that if the settings have been changed, then they are set to
325 /* start at the end of the GNPTXFSIZ, rounded up */
326 addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
329 * Configure fifos sizes from provided configuration and assign
330 * them to endpoints dynamically according to maxpacket size value of
333 for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
337 val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
338 WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
339 "insufficient fifo memory");
342 dwc2_writel(hsotg, val, DPTXFSIZN(ep));
343 val = dwc2_readl(hsotg, DPTXFSIZN(ep));
346 dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size |
347 addr << GDFIFOCFG_EPINFOBASE_SHIFT,
350 * according to p428 of the design guide, we need to ensure that
351 * all fifos are flushed before continuing
354 dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
355 GRSTCTL_RXFFLSH, GRSTCTL);
357 /* wait until the fifos are both flushed */
360 val = dwc2_readl(hsotg, GRSTCTL);
362 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
365 if (--timeout == 0) {
367 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
375 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
379 * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure
380 * @ep: USB endpoint to allocate request for.
381 * @flags: Allocation flags
383 * Allocate a new USB request structure appropriate for the specified endpoint
385 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
388 struct dwc2_hsotg_req *req;
390 req = kzalloc(sizeof(*req), flags);
394 INIT_LIST_HEAD(&req->queue);
400 * is_ep_periodic - return true if the endpoint is in periodic mode.
401 * @hs_ep: The endpoint to query.
403 * Returns true if the endpoint is in periodic mode, meaning it is being
404 * used for an Interrupt or ISO transfer.
406 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
408 return hs_ep->periodic;
412 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
413 * @hsotg: The device state.
414 * @hs_ep: The endpoint for the request
415 * @hs_req: The request being processed.
417 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
418 * of a request to ensure the buffer is ready for access by the caller.
420 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
421 struct dwc2_hsotg_ep *hs_ep,
422 struct dwc2_hsotg_req *hs_req)
424 struct usb_request *req = &hs_req->req;
426 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
430 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
431 * for Control endpoint
432 * @hsotg: The device state.
434 * This function will allocate 4 descriptor chains for EP 0: 2 for
435 * Setup stage, per one for IN and OUT data/status transactions.
437 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
439 hsotg->setup_desc[0] =
440 dmam_alloc_coherent(hsotg->dev,
441 sizeof(struct dwc2_dma_desc),
442 &hsotg->setup_desc_dma[0],
444 if (!hsotg->setup_desc[0])
447 hsotg->setup_desc[1] =
448 dmam_alloc_coherent(hsotg->dev,
449 sizeof(struct dwc2_dma_desc),
450 &hsotg->setup_desc_dma[1],
452 if (!hsotg->setup_desc[1])
455 hsotg->ctrl_in_desc =
456 dmam_alloc_coherent(hsotg->dev,
457 sizeof(struct dwc2_dma_desc),
458 &hsotg->ctrl_in_desc_dma,
460 if (!hsotg->ctrl_in_desc)
463 hsotg->ctrl_out_desc =
464 dmam_alloc_coherent(hsotg->dev,
465 sizeof(struct dwc2_dma_desc),
466 &hsotg->ctrl_out_desc_dma,
468 if (!hsotg->ctrl_out_desc)
478 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
479 * @hsotg: The controller state.
480 * @hs_ep: The endpoint we're going to write for.
481 * @hs_req: The request to write data for.
483 * This is called when the TxFIFO has some space in it to hold a new
484 * transmission and we have something to give it. The actual setup of
485 * the data size is done elsewhere, so all we have to do is to actually
488 * The return value is zero if there is more space (or nothing was done)
489 * otherwise -ENOSPC is returned if the FIFO space was used up.
491 * This routine is only needed for PIO
493 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
494 struct dwc2_hsotg_ep *hs_ep,
495 struct dwc2_hsotg_req *hs_req)
497 bool periodic = is_ep_periodic(hs_ep);
498 u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS);
499 int buf_pos = hs_req->req.actual;
500 int to_write = hs_ep->size_loaded;
506 to_write -= (buf_pos - hs_ep->last_load);
508 /* if there's nothing to write, get out early */
512 if (periodic && !hsotg->dedicated_fifos) {
513 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
518 * work out how much data was loaded so we can calculate
519 * how much data is left in the fifo.
522 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
525 * if shared fifo, we cannot write anything until the
526 * previous data has been completely sent.
528 if (hs_ep->fifo_load != 0) {
529 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
533 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
535 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
537 /* how much of the data has moved */
538 size_done = hs_ep->size_loaded - size_left;
540 /* how much data is left in the fifo */
541 can_write = hs_ep->fifo_load - size_done;
542 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
543 __func__, can_write);
545 can_write = hs_ep->fifo_size - can_write;
546 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
547 __func__, can_write);
549 if (can_write <= 0) {
550 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
553 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
554 can_write = dwc2_readl(hsotg,
555 DTXFSTS(hs_ep->fifo_index));
560 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
562 "%s: no queue slots available (0x%08x)\n",
565 dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
569 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
570 can_write *= 4; /* fifo size is in 32bit quantities. */
573 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
575 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
576 __func__, gnptxsts, can_write, to_write, max_transfer);
579 * limit to 512 bytes of data, it seems at least on the non-periodic
580 * FIFO, requests of >512 cause the endpoint to get stuck with a
581 * fragment of the end of the transfer in it.
583 if (can_write > 512 && !periodic)
587 * limit the write to one max-packet size worth of data, but allow
588 * the transfer to return that it did not run out of fifo space
591 if (to_write > max_transfer) {
592 to_write = max_transfer;
594 /* it's needed only when we do not use dedicated fifos */
595 if (!hsotg->dedicated_fifos)
596 dwc2_hsotg_en_gsint(hsotg,
597 periodic ? GINTSTS_PTXFEMP :
601 /* see if we can write data */
603 if (to_write > can_write) {
604 to_write = can_write;
605 pkt_round = to_write % max_transfer;
608 * Round the write down to an
609 * exact number of packets.
611 * Note, we do not currently check to see if we can ever
612 * write a full packet or not to the FIFO.
616 to_write -= pkt_round;
619 * enable correct FIFO interrupt to alert us when there
623 /* it's needed only when we do not use dedicated fifos */
624 if (!hsotg->dedicated_fifos)
625 dwc2_hsotg_en_gsint(hsotg,
626 periodic ? GINTSTS_PTXFEMP :
630 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
631 to_write, hs_req->req.length, can_write, buf_pos);
636 hs_req->req.actual = buf_pos + to_write;
637 hs_ep->total_data += to_write;
640 hs_ep->fifo_load += to_write;
642 to_write = DIV_ROUND_UP(to_write, 4);
643 data = hs_req->req.buf + buf_pos;
645 dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write);
647 return (to_write >= can_write) ? -ENOSPC : 0;
651 * get_ep_limit - get the maximum data legnth for this endpoint
652 * @hs_ep: The endpoint
654 * Return the maximum data that can be queued in one go on a given endpoint
655 * so that transfers that are too long can be split.
657 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
659 int index = hs_ep->index;
660 unsigned int maxsize;
664 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
665 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
669 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
674 /* we made the constant loading easier above by using +1 */
679 * constrain by packet count if maxpkts*pktsize is greater
680 * than the length register size.
683 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
684 maxsize = maxpkt * hs_ep->ep.maxpacket;
690 * dwc2_hsotg_read_frameno - read current frame number
691 * @hsotg: The device instance
693 * Return the current frame number
695 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
699 dsts = dwc2_readl(hsotg, DSTS);
700 dsts &= DSTS_SOFFN_MASK;
701 dsts >>= DSTS_SOFFN_SHIFT;
707 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
708 * DMA descriptor chain prepared for specific endpoint
709 * @hs_ep: The endpoint
711 * Return the maximum data that can be queued in one go on a given endpoint
712 * depending on its descriptor chain capacity so that transfers that
713 * are too long can be split.
715 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
717 const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
718 int is_isoc = hs_ep->isochronous;
719 unsigned int maxsize;
720 u32 mps = hs_ep->ep.maxpacket;
721 int dir_in = hs_ep->dir_in;
724 maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
725 DEV_DMA_ISOC_RX_NBYTES_LIMIT) *
726 MAX_DMA_DESC_NUM_HS_ISOC;
728 maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC;
730 /* Interrupt OUT EP with mps not multiple of 4 */
732 if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
733 maxsize = mps * MAX_DMA_DESC_NUM_GENERIC;
739 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
740 * @hs_ep: The endpoint
741 * @mask: RX/TX bytes mask to be defined
743 * Returns maximum data payload for one descriptor after analyzing endpoint
745 * DMA descriptor transfer bytes limit depends on EP type:
747 * Isochronous - descriptor rx/tx bytes bitfield limit,
748 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
749 * have concatenations from various descriptors within one packet.
750 * Interrupt OUT - if mps not multiple of 4 then a single packet corresponds
751 * to a single descriptor.
753 * Selects corresponding mask for RX/TX bytes as well.
755 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
757 const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
758 u32 mps = hs_ep->ep.maxpacket;
759 int dir_in = hs_ep->dir_in;
762 if (!hs_ep->index && !dir_in) {
764 *mask = DEV_DMA_NBYTES_MASK;
765 } else if (hs_ep->isochronous) {
767 desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
768 *mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
770 desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
771 *mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
774 desc_size = DEV_DMA_NBYTES_LIMIT;
775 *mask = DEV_DMA_NBYTES_MASK;
777 /* Round down desc_size to be mps multiple */
778 desc_size -= desc_size % mps;
781 /* Interrupt OUT EP with mps not multiple of 4 */
783 if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) {
785 *mask = DEV_DMA_NBYTES_MASK;
791 static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep,
792 struct dwc2_dma_desc **desc,
797 int dir_in = hs_ep->dir_in;
798 u32 mps = hs_ep->ep.maxpacket;
804 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
806 hs_ep->desc_count = (len / maxsize) +
807 ((len % maxsize) ? 1 : 0);
809 hs_ep->desc_count = 1;
811 for (i = 0; i < hs_ep->desc_count; ++i) {
813 (*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY
814 << DEV_DMA_BUFF_STS_SHIFT);
817 if (!hs_ep->index && !dir_in)
818 (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
821 maxsize << DEV_DMA_NBYTES_SHIFT & mask;
822 (*desc)->buf = dma_buff + offset;
828 (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
831 (*desc)->status |= (len % mps) ? DEV_DMA_SHORT :
832 ((hs_ep->send_zlp && true_last) ?
836 len << DEV_DMA_NBYTES_SHIFT & mask;
837 (*desc)->buf = dma_buff + offset;
840 (*desc)->status &= ~DEV_DMA_BUFF_STS_MASK;
841 (*desc)->status |= (DEV_DMA_BUFF_STS_HREADY
842 << DEV_DMA_BUFF_STS_SHIFT);
848 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
849 * @hs_ep: The endpoint
850 * @ureq: Request to transfer
851 * @offset: offset in bytes
852 * @len: Length of the transfer
854 * This function will iterate over descriptor chain and fill its entries
855 * with corresponding information based on transfer data.
857 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
861 struct usb_request *ureq = NULL;
862 struct dwc2_dma_desc *desc = hs_ep->desc_list;
863 struct scatterlist *sg;
868 ureq = &hs_ep->req->req;
870 /* non-DMA sg buffer */
871 if (!ureq || !ureq->num_sgs) {
872 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
873 dma_buff, len, true);
878 for_each_sg(ureq->sg, sg, ureq->num_sgs, i) {
879 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
880 sg_dma_address(sg) + sg->offset, sg_dma_len(sg),
882 desc_count += hs_ep->desc_count;
885 hs_ep->desc_count = desc_count;
889 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
890 * @hs_ep: The isochronous endpoint.
891 * @dma_buff: usb requests dma buffer.
892 * @len: usb request transfer length.
894 * Fills next free descriptor with the data of the arrived usb request,
895 * frame info, sets Last and IOC bits increments next_desc. If filled
896 * descriptor is not the first one, removes L bit from the previous descriptor
899 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
900 dma_addr_t dma_buff, unsigned int len)
902 struct dwc2_dma_desc *desc;
903 struct dwc2_hsotg *hsotg = hs_ep->parent;
908 dwc2_gadget_get_desc_params(hs_ep, &mask);
910 index = hs_ep->next_desc;
911 desc = &hs_ep->desc_list[index];
913 /* Check if descriptor chain full */
914 if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) ==
915 DEV_DMA_BUFF_STS_HREADY) {
916 dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
920 /* Clear L bit of previous desc if more than one entries in the chain */
921 if (hs_ep->next_desc)
922 hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
924 dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
925 __func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
928 desc->status |= (DEV_DMA_BUFF_STS_HBUSY << DEV_DMA_BUFF_STS_SHIFT);
930 desc->buf = dma_buff;
931 desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
932 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
936 pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket);
939 desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) &
940 DEV_DMA_ISOC_PID_MASK) |
941 ((len % hs_ep->ep.maxpacket) ?
943 ((hs_ep->target_frame <<
944 DEV_DMA_ISOC_FRNUM_SHIFT) &
945 DEV_DMA_ISOC_FRNUM_MASK);
948 desc->status &= ~DEV_DMA_BUFF_STS_MASK;
949 desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
951 /* Increment frame number by interval for IN */
953 dwc2_gadget_incr_frame_num(hs_ep);
955 /* Update index of last configured entry in the chain */
957 if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC)
958 hs_ep->next_desc = 0;
964 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
965 * @hs_ep: The isochronous endpoint.
967 * Prepare descriptor chain for isochronous endpoints. Afterwards
968 * write DMA address to HW and enable the endpoint.
970 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
972 struct dwc2_hsotg *hsotg = hs_ep->parent;
973 struct dwc2_hsotg_req *hs_req, *treq;
974 int index = hs_ep->index;
980 struct dwc2_dma_desc *desc;
982 if (list_empty(&hs_ep->queue)) {
983 hs_ep->target_frame = TARGET_FRAME_INITIAL;
984 dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
988 /* Initialize descriptor chain by Host Busy status */
989 for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) {
990 desc = &hs_ep->desc_list[i];
992 desc->status |= (DEV_DMA_BUFF_STS_HBUSY
993 << DEV_DMA_BUFF_STS_SHIFT);
996 hs_ep->next_desc = 0;
997 list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
998 dma_addr_t dma_addr = hs_req->req.dma;
1000 if (hs_req->req.num_sgs) {
1001 WARN_ON(hs_req->req.num_sgs > 1);
1002 dma_addr = sg_dma_address(hs_req->req.sg);
1004 ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1005 hs_req->req.length);
1010 hs_ep->compl_desc = 0;
1011 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1012 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
1014 /* write descriptor chain address to control register */
1015 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1017 ctrl = dwc2_readl(hsotg, depctl);
1018 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
1019 dwc2_writel(hsotg, ctrl, depctl);
1023 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
1024 * @hsotg: The controller state.
1025 * @hs_ep: The endpoint to process a request for
1026 * @hs_req: The request to start.
1027 * @continuing: True if we are doing more for the current request.
1029 * Start the given request running by setting the endpoint registers
1030 * appropriately, and writing any data to the FIFOs.
1032 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
1033 struct dwc2_hsotg_ep *hs_ep,
1034 struct dwc2_hsotg_req *hs_req,
1037 struct usb_request *ureq = &hs_req->req;
1038 int index = hs_ep->index;
1039 int dir_in = hs_ep->dir_in;
1044 unsigned int length;
1045 unsigned int packets;
1046 unsigned int maxreq;
1047 unsigned int dma_reg;
1050 if (hs_ep->req && !continuing) {
1051 dev_err(hsotg->dev, "%s: active request\n", __func__);
1054 } else if (hs_ep->req != hs_req && continuing) {
1056 "%s: continue different req\n", __func__);
1062 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
1063 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
1064 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1066 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1067 __func__, dwc2_readl(hsotg, epctrl_reg), index,
1068 hs_ep->dir_in ? "in" : "out");
1070 /* If endpoint is stalled, we will restart request later */
1071 ctrl = dwc2_readl(hsotg, epctrl_reg);
1073 if (index && ctrl & DXEPCTL_STALL) {
1074 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
1078 length = ureq->length - ureq->actual;
1079 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
1080 ureq->length, ureq->actual);
1082 if (!using_desc_dma(hsotg))
1083 maxreq = get_ep_limit(hs_ep);
1085 maxreq = dwc2_gadget_get_chain_limit(hs_ep);
1087 if (length > maxreq) {
1088 int round = maxreq % hs_ep->ep.maxpacket;
1090 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
1091 __func__, length, maxreq, round);
1093 /* round down to multiple of packets */
1101 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1103 packets = 1; /* send one packet if length is zero. */
1105 if (dir_in && index != 0)
1106 if (hs_ep->isochronous)
1107 epsize = DXEPTSIZ_MC(packets);
1109 epsize = DXEPTSIZ_MC(1);
1114 * zero length packet should be programmed on its own and should not
1115 * be counted in DIEPTSIZ.PktCnt with other packets.
1117 if (dir_in && ureq->zero && !continuing) {
1118 /* Test if zlp is actually required. */
1119 if ((ureq->length >= hs_ep->ep.maxpacket) &&
1120 !(ureq->length % hs_ep->ep.maxpacket))
1121 hs_ep->send_zlp = 1;
1124 epsize |= DXEPTSIZ_PKTCNT(packets);
1125 epsize |= DXEPTSIZ_XFERSIZE(length);
1127 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1128 __func__, packets, length, ureq->length, epsize, epsize_reg);
1130 /* store the request as the current one we're doing */
1131 hs_ep->req = hs_req;
1133 if (using_desc_dma(hsotg)) {
1135 u32 mps = hs_ep->ep.maxpacket;
1137 /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1141 else if (length % mps)
1142 length += (mps - (length % mps));
1146 offset = ureq->actual;
1148 /* Fill DDMA chain entries */
1149 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1152 /* write descriptor chain address to control register */
1153 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1155 dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1156 __func__, (u32)hs_ep->desc_list_dma, dma_reg);
1158 /* write size / packets */
1159 dwc2_writel(hsotg, epsize, epsize_reg);
1161 if (using_dma(hsotg) && !continuing && (length != 0)) {
1163 * write DMA address to control register, buffer
1164 * already synced by dwc2_hsotg_ep_queue().
1167 dwc2_writel(hsotg, ureq->dma, dma_reg);
1169 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1170 __func__, &ureq->dma, dma_reg);
1174 if (hs_ep->isochronous && hs_ep->interval == 1) {
1175 hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
1176 dwc2_gadget_incr_frame_num(hs_ep);
1178 if (hs_ep->target_frame & 0x1)
1179 ctrl |= DXEPCTL_SETODDFR;
1181 ctrl |= DXEPCTL_SETEVENFR;
1184 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1186 dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1188 /* For Setup request do not clear NAK */
1189 if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1190 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
1192 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1193 dwc2_writel(hsotg, ctrl, epctrl_reg);
1196 * set these, it seems that DMA support increments past the end
1197 * of the packet buffer so we need to calculate the length from
1200 hs_ep->size_loaded = length;
1201 hs_ep->last_load = ureq->actual;
1203 if (dir_in && !using_dma(hsotg)) {
1204 /* set these anyway, we may need them for non-periodic in */
1205 hs_ep->fifo_load = 0;
1207 dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1211 * Note, trying to clear the NAK here causes problems with transmit
1212 * on the S3C6400 ending up with the TXFIFO becoming full.
1215 /* check ep is enabled */
1216 if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA))
1218 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1219 index, dwc2_readl(hsotg, epctrl_reg));
1221 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1222 __func__, dwc2_readl(hsotg, epctrl_reg));
1224 /* enable ep interrupts */
1225 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1229 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1230 * @hsotg: The device state.
1231 * @hs_ep: The endpoint the request is on.
1232 * @req: The request being processed.
1234 * We've been asked to queue a request, so ensure that the memory buffer
1235 * is correctly setup for DMA. If we've been passed an extant DMA address
1236 * then ensure the buffer has been synced to memory. If our buffer has no
1237 * DMA memory, then we map the memory and mark our request to allow us to
1238 * cleanup on completion.
1240 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1241 struct dwc2_hsotg_ep *hs_ep,
1242 struct usb_request *req)
1246 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1253 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1254 __func__, req->buf, req->length);
1259 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1260 struct dwc2_hsotg_ep *hs_ep,
1261 struct dwc2_hsotg_req *hs_req)
1263 void *req_buf = hs_req->req.buf;
1265 /* If dma is not being used or buffer is aligned */
1266 if (!using_dma(hsotg) || !((long)req_buf & 3))
1269 WARN_ON(hs_req->saved_req_buf);
1271 dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1272 hs_ep->ep.name, req_buf, hs_req->req.length);
1274 hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1275 if (!hs_req->req.buf) {
1276 hs_req->req.buf = req_buf;
1278 "%s: unable to allocate memory for bounce buffer\n",
1283 /* Save actual buffer */
1284 hs_req->saved_req_buf = req_buf;
1287 memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1292 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1293 struct dwc2_hsotg_ep *hs_ep,
1294 struct dwc2_hsotg_req *hs_req)
1296 /* If dma is not being used or buffer was aligned */
1297 if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1300 dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1301 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1303 /* Copy data from bounce buffer on successful out transfer */
1304 if (!hs_ep->dir_in && !hs_req->req.status)
1305 memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1306 hs_req->req.actual);
1308 /* Free bounce buffer */
1309 kfree(hs_req->req.buf);
1311 hs_req->req.buf = hs_req->saved_req_buf;
1312 hs_req->saved_req_buf = NULL;
1316 * dwc2_gadget_target_frame_elapsed - Checks target frame
1317 * @hs_ep: The driver endpoint to check
1319 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1320 * corresponding transfer.
1322 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1324 struct dwc2_hsotg *hsotg = hs_ep->parent;
1325 u32 target_frame = hs_ep->target_frame;
1326 u32 current_frame = hsotg->frame_number;
1327 bool frame_overrun = hs_ep->frame_overrun;
1329 if (!frame_overrun && current_frame >= target_frame)
1332 if (frame_overrun && current_frame >= target_frame &&
1333 ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
1340 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1341 * @hsotg: The driver state
1342 * @hs_ep: the ep descriptor chain is for
1344 * Called to update EP0 structure's pointers depend on stage of
1347 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1348 struct dwc2_hsotg_ep *hs_ep)
1350 switch (hsotg->ep0_state) {
1351 case DWC2_EP0_SETUP:
1352 case DWC2_EP0_STATUS_OUT:
1353 hs_ep->desc_list = hsotg->setup_desc[0];
1354 hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1356 case DWC2_EP0_DATA_IN:
1357 case DWC2_EP0_STATUS_IN:
1358 hs_ep->desc_list = hsotg->ctrl_in_desc;
1359 hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1361 case DWC2_EP0_DATA_OUT:
1362 hs_ep->desc_list = hsotg->ctrl_out_desc;
1363 hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1366 dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1374 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1377 struct dwc2_hsotg_req *hs_req = our_req(req);
1378 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1379 struct dwc2_hsotg *hs = hs_ep->parent;
1386 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1387 ep->name, req, req->length, req->buf, req->no_interrupt,
1388 req->zero, req->short_not_ok);
1390 /* Prevent new request submission when controller is suspended */
1391 if (hs->lx_state != DWC2_L0) {
1392 dev_dbg(hs->dev, "%s: submit request only in active state\n",
1397 /* initialise status of the request */
1398 INIT_LIST_HEAD(&hs_req->queue);
1400 req->status = -EINPROGRESS;
1402 /* Don't queue ISOC request if length greater than mps*mc */
1403 if (hs_ep->isochronous &&
1404 req->length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1405 dev_err(hs->dev, "req length > maxpacket*mc\n");
1409 /* In DDMA mode for ISOC's don't queue request if length greater
1410 * than descriptor limits.
1412 if (using_desc_dma(hs) && hs_ep->isochronous) {
1413 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
1414 if (hs_ep->dir_in && req->length > maxsize) {
1415 dev_err(hs->dev, "wrong length %d (maxsize=%d)\n",
1416 req->length, maxsize);
1420 if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) {
1421 dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n",
1422 req->length, hs_ep->ep.maxpacket);
1427 ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1431 /* if we're using DMA, sync the buffers as necessary */
1432 if (using_dma(hs)) {
1433 ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1437 /* If using descriptor DMA configure EP0 descriptor chain pointers */
1438 if (using_desc_dma(hs) && !hs_ep->index) {
1439 ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1444 first = list_empty(&hs_ep->queue);
1445 list_add_tail(&hs_req->queue, &hs_ep->queue);
1448 * Handle DDMA isochronous transfers separately - just add new entry
1449 * to the descriptor chain.
1450 * Transfer will be started once SW gets either one of NAK or
1451 * OutTknEpDis interrupts.
1453 if (using_desc_dma(hs) && hs_ep->isochronous) {
1454 if (hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1455 dma_addr_t dma_addr = hs_req->req.dma;
1457 if (hs_req->req.num_sgs) {
1458 WARN_ON(hs_req->req.num_sgs > 1);
1459 dma_addr = sg_dma_address(hs_req->req.sg);
1461 dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1462 hs_req->req.length);
1467 /* Change EP direction if status phase request is after data out */
1468 if (!hs_ep->index && !req->length && !hs_ep->dir_in &&
1469 hs->ep0_state == DWC2_EP0_DATA_OUT)
1473 if (!hs_ep->isochronous) {
1474 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1478 /* Update current frame number value. */
1479 hs->frame_number = dwc2_hsotg_read_frameno(hs);
1480 while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
1481 dwc2_gadget_incr_frame_num(hs_ep);
1482 /* Update current frame number value once more as it
1485 hs->frame_number = dwc2_hsotg_read_frameno(hs);
1488 if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1489 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1494 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1497 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1498 struct dwc2_hsotg *hs = hs_ep->parent;
1499 unsigned long flags = 0;
1502 spin_lock_irqsave(&hs->lock, flags);
1503 ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1504 spin_unlock_irqrestore(&hs->lock, flags);
1509 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1510 struct usb_request *req)
1512 struct dwc2_hsotg_req *hs_req = our_req(req);
1518 * dwc2_hsotg_complete_oursetup - setup completion callback
1519 * @ep: The endpoint the request was on.
1520 * @req: The request completed.
1522 * Called on completion of any requests the driver itself
1523 * submitted that need cleaning up.
1525 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1526 struct usb_request *req)
1528 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1529 struct dwc2_hsotg *hsotg = hs_ep->parent;
1531 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1533 dwc2_hsotg_ep_free_request(ep, req);
1537 * ep_from_windex - convert control wIndex value to endpoint
1538 * @hsotg: The driver state.
1539 * @windex: The control request wIndex field (in host order).
1541 * Convert the given wIndex into a pointer to an driver endpoint
1542 * structure, or return NULL if it is not a valid endpoint.
1544 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1547 int dir = (windex & USB_DIR_IN) ? 1 : 0;
1548 int idx = windex & 0x7F;
1550 if (windex >= 0x100)
1553 if (idx > hsotg->num_of_eps)
1556 return index_to_ep(hsotg, idx, dir);
1560 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1561 * @hsotg: The driver state.
1562 * @testmode: requested usb test mode
1563 * Enable usb Test Mode requested by the Host.
1565 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1567 int dctl = dwc2_readl(hsotg, DCTL);
1569 dctl &= ~DCTL_TSTCTL_MASK;
1573 case USB_TEST_SE0_NAK:
1574 case USB_TEST_PACKET:
1575 case USB_TEST_FORCE_ENABLE:
1576 dctl |= testmode << DCTL_TSTCTL_SHIFT;
1581 dwc2_writel(hsotg, dctl, DCTL);
1586 * dwc2_hsotg_send_reply - send reply to control request
1587 * @hsotg: The device state
1589 * @buff: Buffer for request
1590 * @length: Length of reply.
1592 * Create a request and queue it on the given endpoint. This is useful as
1593 * an internal method of sending replies to certain control requests, etc.
1595 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1596 struct dwc2_hsotg_ep *ep,
1600 struct usb_request *req;
1603 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1605 req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1606 hsotg->ep0_reply = req;
1608 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1612 req->buf = hsotg->ep0_buff;
1613 req->length = length;
1615 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1619 req->complete = dwc2_hsotg_complete_oursetup;
1622 memcpy(req->buf, buff, length);
1624 ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1626 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1634 * dwc2_hsotg_process_req_status - process request GET_STATUS
1635 * @hsotg: The device state
1636 * @ctrl: USB control request
1638 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1639 struct usb_ctrlrequest *ctrl)
1641 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1642 struct dwc2_hsotg_ep *ep;
1647 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1650 dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1654 switch (ctrl->bRequestType & USB_RECIP_MASK) {
1655 case USB_RECIP_DEVICE:
1656 status = hsotg->gadget.is_selfpowered <<
1657 USB_DEVICE_SELF_POWERED;
1658 status |= hsotg->remote_wakeup_allowed <<
1659 USB_DEVICE_REMOTE_WAKEUP;
1660 reply = cpu_to_le16(status);
1663 case USB_RECIP_INTERFACE:
1664 /* currently, the data result should be zero */
1665 reply = cpu_to_le16(0);
1668 case USB_RECIP_ENDPOINT:
1669 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1673 reply = cpu_to_le16(ep->halted ? 1 : 0);
1680 if (le16_to_cpu(ctrl->wLength) != 2)
1683 ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1685 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1692 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1695 * get_ep_head - return the first request on the endpoint
1696 * @hs_ep: The controller endpoint to get
1698 * Get the first request on the endpoint.
1700 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1702 return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1707 * dwc2_gadget_start_next_request - Starts next request from ep queue
1708 * @hs_ep: Endpoint structure
1710 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1711 * in its handler. Hence we need to unmask it here to be able to do
1712 * resynchronization.
1714 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1717 struct dwc2_hsotg *hsotg = hs_ep->parent;
1718 int dir_in = hs_ep->dir_in;
1719 struct dwc2_hsotg_req *hs_req;
1720 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
1722 if (!list_empty(&hs_ep->queue)) {
1723 hs_req = get_ep_head(hs_ep);
1724 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1727 if (!hs_ep->isochronous)
1731 dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1734 dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1736 mask = dwc2_readl(hsotg, epmsk_reg);
1737 mask |= DOEPMSK_OUTTKNEPDISMSK;
1738 dwc2_writel(hsotg, mask, epmsk_reg);
1743 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1744 * @hsotg: The device state
1745 * @ctrl: USB control request
1747 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1748 struct usb_ctrlrequest *ctrl)
1750 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1751 struct dwc2_hsotg_req *hs_req;
1752 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1753 struct dwc2_hsotg_ep *ep;
1760 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1761 __func__, set ? "SET" : "CLEAR");
1763 wValue = le16_to_cpu(ctrl->wValue);
1764 wIndex = le16_to_cpu(ctrl->wIndex);
1765 recip = ctrl->bRequestType & USB_RECIP_MASK;
1768 case USB_RECIP_DEVICE:
1770 case USB_DEVICE_REMOTE_WAKEUP:
1772 hsotg->remote_wakeup_allowed = 1;
1774 hsotg->remote_wakeup_allowed = 0;
1777 case USB_DEVICE_TEST_MODE:
1778 if ((wIndex & 0xff) != 0)
1783 hsotg->test_mode = wIndex >> 8;
1789 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1792 "%s: failed to send reply\n", __func__);
1797 case USB_RECIP_ENDPOINT:
1798 ep = ep_from_windex(hsotg, wIndex);
1800 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1806 case USB_ENDPOINT_HALT:
1807 halted = ep->halted;
1809 dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1811 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1814 "%s: failed to send reply\n", __func__);
1819 * we have to complete all requests for ep if it was
1820 * halted, and the halt was cleared by CLEAR_FEATURE
1823 if (!set && halted) {
1825 * If we have request in progress,
1831 list_del_init(&hs_req->queue);
1832 if (hs_req->req.complete) {
1833 spin_unlock(&hsotg->lock);
1834 usb_gadget_giveback_request(
1835 &ep->ep, &hs_req->req);
1836 spin_lock(&hsotg->lock);
1840 /* If we have pending request, then start it */
1842 dwc2_gadget_start_next_request(ep);
1857 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1860 * dwc2_hsotg_stall_ep0 - stall ep0
1861 * @hsotg: The device state
1863 * Set stall for ep0 as response for setup request.
1865 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1867 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1871 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1872 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1875 * DxEPCTL_Stall will be cleared by EP once it has
1876 * taken effect, so no need to clear later.
1879 ctrl = dwc2_readl(hsotg, reg);
1880 ctrl |= DXEPCTL_STALL;
1881 ctrl |= DXEPCTL_CNAK;
1882 dwc2_writel(hsotg, ctrl, reg);
1885 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1886 ctrl, reg, dwc2_readl(hsotg, reg));
1889 * complete won't be called, so we enqueue
1890 * setup request here
1892 dwc2_hsotg_enqueue_setup(hsotg);
1896 * dwc2_hsotg_process_control - process a control request
1897 * @hsotg: The device state
1898 * @ctrl: The control request received
1900 * The controller has received the SETUP phase of a control request, and
1901 * needs to work out what to do next (and whether to pass it on to the
1904 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1905 struct usb_ctrlrequest *ctrl)
1907 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1912 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1913 ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1914 ctrl->wIndex, ctrl->wLength);
1916 if (ctrl->wLength == 0) {
1918 hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1919 } else if (ctrl->bRequestType & USB_DIR_IN) {
1921 hsotg->ep0_state = DWC2_EP0_DATA_IN;
1924 hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1927 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1928 switch (ctrl->bRequest) {
1929 case USB_REQ_SET_ADDRESS:
1930 hsotg->connected = 1;
1931 dcfg = dwc2_readl(hsotg, DCFG);
1932 dcfg &= ~DCFG_DEVADDR_MASK;
1933 dcfg |= (le16_to_cpu(ctrl->wValue) <<
1934 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1935 dwc2_writel(hsotg, dcfg, DCFG);
1937 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1939 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1942 case USB_REQ_GET_STATUS:
1943 ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1946 case USB_REQ_CLEAR_FEATURE:
1947 case USB_REQ_SET_FEATURE:
1948 ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1953 /* as a fallback, try delivering it to the driver to deal with */
1955 if (ret == 0 && hsotg->driver) {
1956 spin_unlock(&hsotg->lock);
1957 ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1958 spin_lock(&hsotg->lock);
1960 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1963 hsotg->delayed_status = false;
1964 if (ret == USB_GADGET_DELAYED_STATUS)
1965 hsotg->delayed_status = true;
1968 * the request is either unhandlable, or is not formatted correctly
1969 * so respond with a STALL for the status stage to indicate failure.
1973 dwc2_hsotg_stall_ep0(hsotg);
1977 * dwc2_hsotg_complete_setup - completion of a setup transfer
1978 * @ep: The endpoint the request was on.
1979 * @req: The request completed.
1981 * Called on completion of any requests the driver itself submitted for
1984 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1985 struct usb_request *req)
1987 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1988 struct dwc2_hsotg *hsotg = hs_ep->parent;
1990 if (req->status < 0) {
1991 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1995 spin_lock(&hsotg->lock);
1996 if (req->actual == 0)
1997 dwc2_hsotg_enqueue_setup(hsotg);
1999 dwc2_hsotg_process_control(hsotg, req->buf);
2000 spin_unlock(&hsotg->lock);
2004 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
2005 * @hsotg: The device state.
2007 * Enqueue a request on EP0 if necessary to received any SETUP packets
2008 * received from the host.
2010 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
2012 struct usb_request *req = hsotg->ctrl_req;
2013 struct dwc2_hsotg_req *hs_req = our_req(req);
2016 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
2020 req->buf = hsotg->ctrl_buff;
2021 req->complete = dwc2_hsotg_complete_setup;
2023 if (!list_empty(&hs_req->queue)) {
2024 dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
2028 hsotg->eps_out[0]->dir_in = 0;
2029 hsotg->eps_out[0]->send_zlp = 0;
2030 hsotg->ep0_state = DWC2_EP0_SETUP;
2032 ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
2034 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
2036 * Don't think there's much we can do other than watch the
2042 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
2043 struct dwc2_hsotg_ep *hs_ep)
2046 u8 index = hs_ep->index;
2047 u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2048 u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
2051 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
2054 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
2056 if (using_desc_dma(hsotg)) {
2057 /* Not specific buffer needed for ep0 ZLP */
2058 dma_addr_t dma = hs_ep->desc_list_dma;
2061 dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
2063 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
2065 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2066 DXEPTSIZ_XFERSIZE(0),
2070 ctrl = dwc2_readl(hsotg, epctl_reg);
2071 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
2072 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
2073 ctrl |= DXEPCTL_USBACTEP;
2074 dwc2_writel(hsotg, ctrl, epctl_reg);
2078 * dwc2_hsotg_complete_request - complete a request given to us
2079 * @hsotg: The device state.
2080 * @hs_ep: The endpoint the request was on.
2081 * @hs_req: The request to complete.
2082 * @result: The result code (0 => Ok, otherwise errno)
2084 * The given request has finished, so call the necessary completion
2085 * if it has one and then look to see if we can start a new request
2088 * Note, expects the ep to already be locked as appropriate.
2090 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
2091 struct dwc2_hsotg_ep *hs_ep,
2092 struct dwc2_hsotg_req *hs_req,
2096 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
2100 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
2101 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
2104 * only replace the status if we've not already set an error
2105 * from a previous transaction
2108 if (hs_req->req.status == -EINPROGRESS)
2109 hs_req->req.status = result;
2111 if (using_dma(hsotg))
2112 dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
2114 dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2117 list_del_init(&hs_req->queue);
2120 * call the complete request with the locks off, just in case the
2121 * request tries to queue more work for this endpoint.
2124 if (hs_req->req.complete) {
2125 spin_unlock(&hsotg->lock);
2126 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2127 spin_lock(&hsotg->lock);
2130 /* In DDMA don't need to proceed to starting of next ISOC request */
2131 if (using_desc_dma(hsotg) && hs_ep->isochronous)
2135 * Look to see if there is anything else to do. Note, the completion
2136 * of the previous request may have caused a new request to be started
2137 * so be careful when doing this.
2140 if (!hs_ep->req && result >= 0)
2141 dwc2_gadget_start_next_request(hs_ep);
2145 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2146 * @hs_ep: The endpoint the request was on.
2148 * Get first request from the ep queue, determine descriptor on which complete
2149 * happened. SW discovers which descriptor currently in use by HW, adjusts
2150 * dma_address and calculates index of completed descriptor based on the value
2151 * of DEPDMA register. Update actual length of request, giveback to gadget.
2153 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2155 struct dwc2_hsotg *hsotg = hs_ep->parent;
2156 struct dwc2_hsotg_req *hs_req;
2157 struct usb_request *ureq;
2161 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2163 /* Process only descriptors with buffer status set to DMA done */
2164 while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >>
2165 DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) {
2167 hs_req = get_ep_head(hs_ep);
2169 dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2172 ureq = &hs_req->req;
2174 /* Check completion status */
2175 if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT ==
2177 mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2178 DEV_DMA_ISOC_RX_NBYTES_MASK;
2179 ureq->actual = ureq->length - ((desc_sts & mask) >>
2180 DEV_DMA_ISOC_NBYTES_SHIFT);
2182 /* Adjust actual len for ISOC Out if len is
2185 if (!hs_ep->dir_in && ureq->length & 0x3)
2186 ureq->actual += 4 - (ureq->length & 0x3);
2188 /* Set actual frame number for completed transfers */
2189 ureq->frame_number =
2190 (desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >>
2191 DEV_DMA_ISOC_FRNUM_SHIFT;
2194 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2196 hs_ep->compl_desc++;
2197 if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1))
2198 hs_ep->compl_desc = 0;
2199 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2204 * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC.
2205 * @hs_ep: The isochronous endpoint.
2207 * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA
2208 * interrupt. Reset target frame and next_desc to allow to start
2209 * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS
2210 * interrupt for OUT direction.
2212 static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep)
2214 struct dwc2_hsotg *hsotg = hs_ep->parent;
2217 dwc2_flush_rx_fifo(hsotg);
2218 dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0);
2220 hs_ep->target_frame = TARGET_FRAME_INITIAL;
2221 hs_ep->next_desc = 0;
2222 hs_ep->compl_desc = 0;
2226 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2227 * @hsotg: The device state.
2228 * @ep_idx: The endpoint index for the data
2229 * @size: The size of data in the fifo, in bytes
2231 * The FIFO status shows there is data to read from the FIFO for a given
2232 * endpoint, so sort out whether we need to read the data into a request
2233 * that has been made for that endpoint.
2235 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2237 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2238 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2244 u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx));
2248 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2249 __func__, size, ep_idx, epctl);
2251 /* dump the data from the FIFO, we've nothing we can do */
2252 for (ptr = 0; ptr < size; ptr += 4)
2253 (void)dwc2_readl(hsotg, EPFIFO(ep_idx));
2259 read_ptr = hs_req->req.actual;
2260 max_req = hs_req->req.length - read_ptr;
2262 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2263 __func__, to_read, max_req, read_ptr, hs_req->req.length);
2265 if (to_read > max_req) {
2267 * more data appeared than we where willing
2268 * to deal with in this request.
2271 /* currently we don't deal this */
2275 hs_ep->total_data += to_read;
2276 hs_req->req.actual += to_read;
2277 to_read = DIV_ROUND_UP(to_read, 4);
2280 * note, we might over-write the buffer end by 3 bytes depending on
2281 * alignment of the data.
2283 dwc2_readl_rep(hsotg, EPFIFO(ep_idx),
2284 hs_req->req.buf + read_ptr, to_read);
2288 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2289 * @hsotg: The device instance
2290 * @dir_in: If IN zlp
2292 * Generate a zero-length IN packet request for terminating a SETUP
2295 * Note, since we don't write any data to the TxFIFO, then it is
2296 * currently believed that we do not need to wait for any space in
2299 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2301 /* eps_out[0] is used in both directions */
2302 hsotg->eps_out[0]->dir_in = dir_in;
2303 hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2305 dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2308 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2313 ctrl = dwc2_readl(hsotg, epctl_reg);
2314 if (ctrl & DXEPCTL_EOFRNUM)
2315 ctrl |= DXEPCTL_SETEVENFR;
2317 ctrl |= DXEPCTL_SETODDFR;
2318 dwc2_writel(hsotg, ctrl, epctl_reg);
2322 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2323 * @hs_ep - The endpoint on which transfer went
2325 * Iterate over endpoints descriptor chain and get info on bytes remained
2326 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2328 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2330 const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
2331 struct dwc2_hsotg *hsotg = hs_ep->parent;
2332 unsigned int bytes_rem = 0;
2333 unsigned int bytes_rem_correction = 0;
2334 struct dwc2_dma_desc *desc = hs_ep->desc_list;
2337 u32 mps = hs_ep->ep.maxpacket;
2338 int dir_in = hs_ep->dir_in;
2343 /* Interrupt OUT EP with mps not multiple of 4 */
2345 if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
2346 bytes_rem_correction = 4 - (mps % 4);
2348 for (i = 0; i < hs_ep->desc_count; ++i) {
2349 status = desc->status;
2350 bytes_rem += status & DEV_DMA_NBYTES_MASK;
2351 bytes_rem -= bytes_rem_correction;
2353 if (status & DEV_DMA_STS_MASK)
2354 dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2355 i, status & DEV_DMA_STS_MASK);
2357 if (status & DEV_DMA_L)
2367 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2368 * @hsotg: The device instance
2369 * @epnum: The endpoint received from
2371 * The RXFIFO has delivered an OutDone event, which means that the data
2372 * transfer for an OUT endpoint has been completed, either by a short
2373 * packet or by the finish of a transfer.
2375 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2377 u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum));
2378 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2379 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2380 struct usb_request *req = &hs_req->req;
2381 unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2385 dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2389 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2390 dev_dbg(hsotg->dev, "zlp packet received\n");
2391 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2392 dwc2_hsotg_enqueue_setup(hsotg);
2396 if (using_desc_dma(hsotg))
2397 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2399 if (using_dma(hsotg)) {
2400 unsigned int size_done;
2403 * Calculate the size of the transfer by checking how much
2404 * is left in the endpoint size register and then working it
2405 * out from the amount we loaded for the transfer.
2407 * We need to do this as DMA pointers are always 32bit aligned
2408 * so may overshoot/undershoot the transfer.
2411 size_done = hs_ep->size_loaded - size_left;
2412 size_done += hs_ep->last_load;
2414 req->actual = size_done;
2417 /* if there is more request to do, schedule new transfer */
2418 if (req->actual < req->length && size_left == 0) {
2419 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2423 if (req->actual < req->length && req->short_not_ok) {
2424 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2425 __func__, req->actual, req->length);
2428 * todo - what should we return here? there's no one else
2429 * even bothering to check the status.
2433 /* DDMA IN status phase will start from StsPhseRcvd interrupt */
2434 if (!using_desc_dma(hsotg) && epnum == 0 &&
2435 hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2436 /* Move to STATUS IN */
2437 if (!hsotg->delayed_status)
2438 dwc2_hsotg_ep0_zlp(hsotg, true);
2442 * Slave mode OUT transfers do not go through XferComplete so
2443 * adjust the ISOC parity here.
2445 if (!using_dma(hsotg)) {
2446 if (hs_ep->isochronous && hs_ep->interval == 1)
2447 dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2448 else if (hs_ep->isochronous && hs_ep->interval > 1)
2449 dwc2_gadget_incr_frame_num(hs_ep);
2452 /* Set actual frame number for completed transfers */
2453 if (!using_desc_dma(hsotg) && hs_ep->isochronous)
2454 req->frame_number = hsotg->frame_number;
2456 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2460 * dwc2_hsotg_handle_rx - RX FIFO has data
2461 * @hsotg: The device instance
2463 * The IRQ handler has detected that the RX FIFO has some data in it
2464 * that requires processing, so find out what is in there and do the
2467 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2468 * chunks, so if you have x packets received on an endpoint you'll get x
2469 * FIFO events delivered, each with a packet's worth of data in it.
2471 * When using DMA, we should not be processing events from the RXFIFO
2472 * as the actual data should be sent to the memory directly and we turn
2473 * on the completion interrupts to get notifications of transfer completion.
2475 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2477 u32 grxstsr = dwc2_readl(hsotg, GRXSTSP);
2478 u32 epnum, status, size;
2480 WARN_ON(using_dma(hsotg));
2482 epnum = grxstsr & GRXSTS_EPNUM_MASK;
2483 status = grxstsr & GRXSTS_PKTSTS_MASK;
2485 size = grxstsr & GRXSTS_BYTECNT_MASK;
2486 size >>= GRXSTS_BYTECNT_SHIFT;
2488 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2489 __func__, grxstsr, size, epnum);
2491 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2492 case GRXSTS_PKTSTS_GLOBALOUTNAK:
2493 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2496 case GRXSTS_PKTSTS_OUTDONE:
2497 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2498 dwc2_hsotg_read_frameno(hsotg));
2500 if (!using_dma(hsotg))
2501 dwc2_hsotg_handle_outdone(hsotg, epnum);
2504 case GRXSTS_PKTSTS_SETUPDONE:
2506 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2507 dwc2_hsotg_read_frameno(hsotg),
2508 dwc2_readl(hsotg, DOEPCTL(0)));
2510 * Call dwc2_hsotg_handle_outdone here if it was not called from
2511 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2512 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2514 if (hsotg->ep0_state == DWC2_EP0_SETUP)
2515 dwc2_hsotg_handle_outdone(hsotg, epnum);
2518 case GRXSTS_PKTSTS_OUTRX:
2519 dwc2_hsotg_rx_data(hsotg, epnum, size);
2522 case GRXSTS_PKTSTS_SETUPRX:
2524 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2525 dwc2_hsotg_read_frameno(hsotg),
2526 dwc2_readl(hsotg, DOEPCTL(0)));
2528 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2530 dwc2_hsotg_rx_data(hsotg, epnum, size);
2534 dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2537 dwc2_hsotg_dump(hsotg);
2543 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2544 * @mps: The maximum packet size in bytes.
2546 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2550 return D0EPCTL_MPS_64;
2552 return D0EPCTL_MPS_32;
2554 return D0EPCTL_MPS_16;
2556 return D0EPCTL_MPS_8;
2559 /* bad max packet size, warn and return invalid result */
2565 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2566 * @hsotg: The driver state.
2567 * @ep: The index number of the endpoint
2568 * @mps: The maximum packet size in bytes
2569 * @mc: The multicount value
2570 * @dir_in: True if direction is in.
2572 * Configure the maximum packet size for the given endpoint, updating
2573 * the hardware control registers to reflect this.
2575 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2576 unsigned int ep, unsigned int mps,
2577 unsigned int mc, unsigned int dir_in)
2579 struct dwc2_hsotg_ep *hs_ep;
2582 hs_ep = index_to_ep(hsotg, ep, dir_in);
2587 u32 mps_bytes = mps;
2589 /* EP0 is a special case */
2590 mps = dwc2_hsotg_ep0_mps(mps_bytes);
2593 hs_ep->ep.maxpacket = mps_bytes;
2601 hs_ep->ep.maxpacket = mps;
2605 reg = dwc2_readl(hsotg, DIEPCTL(ep));
2606 reg &= ~DXEPCTL_MPS_MASK;
2608 dwc2_writel(hsotg, reg, DIEPCTL(ep));
2610 reg = dwc2_readl(hsotg, DOEPCTL(ep));
2611 reg &= ~DXEPCTL_MPS_MASK;
2613 dwc2_writel(hsotg, reg, DOEPCTL(ep));
2619 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2623 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2624 * @hsotg: The driver state
2625 * @idx: The index for the endpoint (0..15)
2627 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2629 dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2632 /* wait until the fifo is flushed */
2633 if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
2634 dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2639 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2640 * @hsotg: The driver state
2641 * @hs_ep: The driver endpoint to check.
2643 * Check to see if there is a request that has data to send, and if so
2644 * make an attempt to write data into the FIFO.
2646 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2647 struct dwc2_hsotg_ep *hs_ep)
2649 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2651 if (!hs_ep->dir_in || !hs_req) {
2653 * if request is not enqueued, we disable interrupts
2654 * for endpoints, excepting ep0
2656 if (hs_ep->index != 0)
2657 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2662 if (hs_req->req.actual < hs_req->req.length) {
2663 dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2665 return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2672 * dwc2_hsotg_complete_in - complete IN transfer
2673 * @hsotg: The device state.
2674 * @hs_ep: The endpoint that has just completed.
2676 * An IN transfer has been completed, update the transfer's state and then
2677 * call the relevant completion routines.
2679 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2680 struct dwc2_hsotg_ep *hs_ep)
2682 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2683 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
2684 int size_left, size_done;
2687 dev_dbg(hsotg->dev, "XferCompl but no req\n");
2691 /* Finish ZLP handling for IN EP0 transactions */
2692 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2693 dev_dbg(hsotg->dev, "zlp packet sent\n");
2696 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2697 * changed to IN. Change back to complete OUT transfer request
2701 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2702 if (hsotg->test_mode) {
2705 ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2707 dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2709 dwc2_hsotg_stall_ep0(hsotg);
2713 dwc2_hsotg_enqueue_setup(hsotg);
2718 * Calculate the size of the transfer by checking how much is left
2719 * in the endpoint size register and then working it out from
2720 * the amount we loaded for the transfer.
2722 * We do this even for DMA, as the transfer may have incremented
2723 * past the end of the buffer (DMA transfers are always 32bit
2726 if (using_desc_dma(hsotg)) {
2727 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2729 dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2732 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2735 size_done = hs_ep->size_loaded - size_left;
2736 size_done += hs_ep->last_load;
2738 if (hs_req->req.actual != size_done)
2739 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2740 __func__, hs_req->req.actual, size_done);
2742 hs_req->req.actual = size_done;
2743 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2744 hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2746 if (!size_left && hs_req->req.actual < hs_req->req.length) {
2747 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2748 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2752 /* Zlp for all endpoints, for ep0 only in DATA IN stage */
2753 if (hs_ep->send_zlp) {
2754 dwc2_hsotg_program_zlp(hsotg, hs_ep);
2755 hs_ep->send_zlp = 0;
2756 /* transfer will be completed on next complete interrupt */
2760 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2761 /* Move to STATUS OUT */
2762 dwc2_hsotg_ep0_zlp(hsotg, false);
2766 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2770 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2771 * @hsotg: The device state.
2772 * @idx: Index of ep.
2773 * @dir_in: Endpoint direction 1-in 0-out.
2775 * Reads for endpoint with given index and direction, by masking
2776 * epint_reg with coresponding mask.
2778 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2779 unsigned int idx, int dir_in)
2781 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2782 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2787 mask = dwc2_readl(hsotg, epmsk_reg);
2788 diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK);
2789 mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2790 mask |= DXEPINT_SETUP_RCVD;
2792 ints = dwc2_readl(hsotg, epint_reg);
2798 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2799 * @hs_ep: The endpoint on which interrupt is asserted.
2801 * This interrupt indicates that the endpoint has been disabled per the
2802 * application's request.
2804 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2805 * in case of ISOC completes current request.
2807 * For ISOC-OUT endpoints completes expired requests. If there is remaining
2808 * request starts it.
2810 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2812 struct dwc2_hsotg *hsotg = hs_ep->parent;
2813 struct dwc2_hsotg_req *hs_req;
2814 unsigned char idx = hs_ep->index;
2815 int dir_in = hs_ep->dir_in;
2816 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2817 int dctl = dwc2_readl(hsotg, DCTL);
2819 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2822 int epctl = dwc2_readl(hsotg, epctl_reg);
2824 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2826 if (hs_ep->isochronous) {
2827 dwc2_hsotg_complete_in(hsotg, hs_ep);
2831 if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2832 int dctl = dwc2_readl(hsotg, DCTL);
2834 dctl |= DCTL_CGNPINNAK;
2835 dwc2_writel(hsotg, dctl, DCTL);
2840 if (dctl & DCTL_GOUTNAKSTS) {
2841 dctl |= DCTL_CGOUTNAK;
2842 dwc2_writel(hsotg, dctl, DCTL);
2845 if (!hs_ep->isochronous)
2848 if (list_empty(&hs_ep->queue)) {
2849 dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2855 hs_req = get_ep_head(hs_ep);
2857 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2859 dwc2_gadget_incr_frame_num(hs_ep);
2860 /* Update current frame number value. */
2861 hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2862 } while (dwc2_gadget_target_frame_elapsed(hs_ep));
2864 dwc2_gadget_start_next_request(hs_ep);
2868 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2869 * @ep: The endpoint on which interrupt is asserted.
2871 * This is starting point for ISOC-OUT transfer, synchronization done with
2872 * first out token received from host while corresponding EP is disabled.
2874 * Device does not know initial frame in which out token will come. For this
2875 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2876 * getting this interrupt SW starts calculation for next transfer frame.
2878 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2880 struct dwc2_hsotg *hsotg = ep->parent;
2881 int dir_in = ep->dir_in;
2884 if (dir_in || !ep->isochronous)
2887 if (using_desc_dma(hsotg)) {
2888 if (ep->target_frame == TARGET_FRAME_INITIAL) {
2889 /* Start first ISO Out */
2890 ep->target_frame = hsotg->frame_number;
2891 dwc2_gadget_start_isoc_ddma(ep);
2896 if (ep->interval > 1 &&
2897 ep->target_frame == TARGET_FRAME_INITIAL) {
2900 ep->target_frame = hsotg->frame_number;
2901 dwc2_gadget_incr_frame_num(ep);
2903 ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index));
2904 if (ep->target_frame & 0x1)
2905 ctrl |= DXEPCTL_SETODDFR;
2907 ctrl |= DXEPCTL_SETEVENFR;
2909 dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index));
2912 dwc2_gadget_start_next_request(ep);
2913 doepmsk = dwc2_readl(hsotg, DOEPMSK);
2914 doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
2915 dwc2_writel(hsotg, doepmsk, DOEPMSK);
2919 * dwc2_gadget_handle_nak - handle NAK interrupt
2920 * @hs_ep: The endpoint on which interrupt is asserted.
2922 * This is starting point for ISOC-IN transfer, synchronization done with
2923 * first IN token received from host while corresponding EP is disabled.
2925 * Device does not know when first one token will arrive from host. On first
2926 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2927 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2928 * sent in response to that as there was no data in FIFO. SW is basing on this
2929 * interrupt to obtain frame in which token has come and then based on the
2930 * interval calculates next frame for transfer.
2932 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2934 struct dwc2_hsotg *hsotg = hs_ep->parent;
2935 int dir_in = hs_ep->dir_in;
2937 if (!dir_in || !hs_ep->isochronous)
2940 if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2942 if (using_desc_dma(hsotg)) {
2943 hs_ep->target_frame = hsotg->frame_number;
2944 dwc2_gadget_incr_frame_num(hs_ep);
2946 /* In service interval mode target_frame must
2947 * be set to last (u)frame of the service interval.
2949 if (hsotg->params.service_interval) {
2950 /* Set target_frame to the first (u)frame of
2951 * the service interval
2953 hs_ep->target_frame &= ~hs_ep->interval + 1;
2955 /* Set target_frame to the last (u)frame of
2956 * the service interval
2958 dwc2_gadget_incr_frame_num(hs_ep);
2959 dwc2_gadget_dec_frame_num_by_one(hs_ep);
2962 dwc2_gadget_start_isoc_ddma(hs_ep);
2966 hs_ep->target_frame = hsotg->frame_number;
2967 if (hs_ep->interval > 1) {
2968 u32 ctrl = dwc2_readl(hsotg,
2969 DIEPCTL(hs_ep->index));
2970 if (hs_ep->target_frame & 0x1)
2971 ctrl |= DXEPCTL_SETODDFR;
2973 ctrl |= DXEPCTL_SETEVENFR;
2975 dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index));
2978 dwc2_hsotg_complete_request(hsotg, hs_ep,
2979 get_ep_head(hs_ep), 0);
2982 if (!using_desc_dma(hsotg))
2983 dwc2_gadget_incr_frame_num(hs_ep);
2987 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2988 * @hsotg: The driver state
2989 * @idx: The index for the endpoint (0..15)
2990 * @dir_in: Set if this is an IN endpoint
2992 * Process and clear any interrupt pending for an individual endpoint
2994 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2997 struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2998 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2999 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
3000 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
3003 ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
3005 /* Clear endpoint interrupts */
3006 dwc2_writel(hsotg, ints, epint_reg);
3009 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
3010 __func__, idx, dir_in ? "in" : "out");
3014 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
3015 __func__, idx, dir_in ? "in" : "out", ints);
3017 /* Don't process XferCompl interrupt if it is a setup packet */
3018 if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
3019 ints &= ~DXEPINT_XFERCOMPL;
3022 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
3023 * stage and xfercomplete was generated without SETUP phase done
3024 * interrupt. SW should parse received setup packet only after host's
3025 * exit from setup phase of control transfer.
3027 if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
3028 hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
3029 ints &= ~DXEPINT_XFERCOMPL;
3031 if (ints & DXEPINT_XFERCOMPL) {
3033 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
3034 __func__, dwc2_readl(hsotg, epctl_reg),
3035 dwc2_readl(hsotg, epsiz_reg));
3037 /* In DDMA handle isochronous requests separately */
3038 if (using_desc_dma(hsotg) && hs_ep->isochronous) {
3039 /* XferCompl set along with BNA */
3040 if (!(ints & DXEPINT_BNAINTR))
3041 dwc2_gadget_complete_isoc_request_ddma(hs_ep);
3042 } else if (dir_in) {
3044 * We get OutDone from the FIFO, so we only
3045 * need to look at completing IN requests here
3046 * if operating slave mode
3048 if (hs_ep->isochronous && hs_ep->interval > 1)
3049 dwc2_gadget_incr_frame_num(hs_ep);
3051 dwc2_hsotg_complete_in(hsotg, hs_ep);
3052 if (ints & DXEPINT_NAKINTRPT)
3053 ints &= ~DXEPINT_NAKINTRPT;
3055 if (idx == 0 && !hs_ep->req)
3056 dwc2_hsotg_enqueue_setup(hsotg);
3057 } else if (using_dma(hsotg)) {
3059 * We're using DMA, we need to fire an OutDone here
3060 * as we ignore the RXFIFO.
3062 if (hs_ep->isochronous && hs_ep->interval > 1)
3063 dwc2_gadget_incr_frame_num(hs_ep);
3065 dwc2_hsotg_handle_outdone(hsotg, idx);
3069 if (ints & DXEPINT_EPDISBLD)
3070 dwc2_gadget_handle_ep_disabled(hs_ep);
3072 if (ints & DXEPINT_OUTTKNEPDIS)
3073 dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
3075 if (ints & DXEPINT_NAKINTRPT)
3076 dwc2_gadget_handle_nak(hs_ep);
3078 if (ints & DXEPINT_AHBERR)
3079 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
3081 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */
3082 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
3084 if (using_dma(hsotg) && idx == 0) {
3086 * this is the notification we've received a
3087 * setup packet. In non-DMA mode we'd get this
3088 * from the RXFIFO, instead we need to process
3095 dwc2_hsotg_handle_outdone(hsotg, 0);
3099 if (ints & DXEPINT_STSPHSERCVD) {
3100 dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
3102 /* Safety check EP0 state when STSPHSERCVD asserted */
3103 if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
3104 /* Move to STATUS IN for DDMA */
3105 if (using_desc_dma(hsotg)) {
3106 if (!hsotg->delayed_status)
3107 dwc2_hsotg_ep0_zlp(hsotg, true);
3109 /* In case of 3 stage Control Write with delayed
3110 * status, when Status IN transfer started
3111 * before STSPHSERCVD asserted, NAKSTS bit not
3112 * cleared by CNAK in dwc2_hsotg_start_req()
3113 * function. Clear now NAKSTS to allow complete
3116 dwc2_set_bit(hsotg, DIEPCTL(0),
3123 if (ints & DXEPINT_BACK2BACKSETUP)
3124 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
3126 if (ints & DXEPINT_BNAINTR) {
3127 dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
3128 if (hs_ep->isochronous)
3129 dwc2_gadget_handle_isoc_bna(hs_ep);
3132 if (dir_in && !hs_ep->isochronous) {
3133 /* not sure if this is important, but we'll clear it anyway */
3134 if (ints & DXEPINT_INTKNTXFEMP) {
3135 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
3139 /* this probably means something bad is happening */
3140 if (ints & DXEPINT_INTKNEPMIS) {
3141 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3145 /* FIFO has space or is empty (see GAHBCFG) */
3146 if (hsotg->dedicated_fifos &&
3147 ints & DXEPINT_TXFEMP) {
3148 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3150 if (!using_dma(hsotg))
3151 dwc2_hsotg_trytx(hsotg, hs_ep);
3157 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3158 * @hsotg: The device state.
3160 * Handle updating the device settings after the enumeration phase has
3163 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3165 u32 dsts = dwc2_readl(hsotg, DSTS);
3166 int ep0_mps = 0, ep_mps = 8;
3169 * This should signal the finish of the enumeration phase
3170 * of the USB handshaking, so we should now know what rate
3174 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3177 * note, since we're limited by the size of transfer on EP0, and
3178 * it seems IN transfers must be a even number of packets we do
3179 * not advertise a 64byte MPS on EP0.
3182 /* catch both EnumSpd_FS and EnumSpd_FS48 */
3183 switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3184 case DSTS_ENUMSPD_FS:
3185 case DSTS_ENUMSPD_FS48:
3186 hsotg->gadget.speed = USB_SPEED_FULL;
3187 ep0_mps = EP0_MPS_LIMIT;
3191 case DSTS_ENUMSPD_HS:
3192 hsotg->gadget.speed = USB_SPEED_HIGH;
3193 ep0_mps = EP0_MPS_LIMIT;
3197 case DSTS_ENUMSPD_LS:
3198 hsotg->gadget.speed = USB_SPEED_LOW;
3202 * note, we don't actually support LS in this driver at the
3203 * moment, and the documentation seems to imply that it isn't
3204 * supported by the PHYs on some of the devices.
3208 dev_info(hsotg->dev, "new device is %s\n",
3209 usb_speed_string(hsotg->gadget.speed));
3212 * we should now know the maximum packet size for an
3213 * endpoint, so set the endpoints to a default value.
3218 /* Initialize ep0 for both in and out directions */
3219 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3220 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3221 for (i = 1; i < hsotg->num_of_eps; i++) {
3222 if (hsotg->eps_in[i])
3223 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3225 if (hsotg->eps_out[i])
3226 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3231 /* ensure after enumeration our EP0 is active */
3233 dwc2_hsotg_enqueue_setup(hsotg);
3235 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3236 dwc2_readl(hsotg, DIEPCTL0),
3237 dwc2_readl(hsotg, DOEPCTL0));
3241 * kill_all_requests - remove all requests from the endpoint's queue
3242 * @hsotg: The device state.
3243 * @ep: The endpoint the requests may be on.
3244 * @result: The result code to use.
3246 * Go through the requests on the given endpoint and mark them
3247 * completed with the given result code.
3249 static void kill_all_requests(struct dwc2_hsotg *hsotg,
3250 struct dwc2_hsotg_ep *ep,
3257 while (!list_empty(&ep->queue)) {
3258 struct dwc2_hsotg_req *req = get_ep_head(ep);
3260 dwc2_hsotg_complete_request(hsotg, ep, req, result);
3263 if (!hsotg->dedicated_fifos)
3265 size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3266 if (size < ep->fifo_size)
3267 dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3271 * dwc2_hsotg_disconnect - disconnect service
3272 * @hsotg: The device state.
3274 * The device has been disconnected. Remove all current
3275 * transactions and signal the gadget driver that this
3278 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3282 if (!hsotg->connected)
3285 hsotg->connected = 0;
3286 hsotg->test_mode = 0;
3288 /* all endpoints should be shutdown */
3289 for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3290 if (hsotg->eps_in[ep])
3291 kill_all_requests(hsotg, hsotg->eps_in[ep],
3293 if (hsotg->eps_out[ep])
3294 kill_all_requests(hsotg, hsotg->eps_out[ep],
3298 call_gadget(hsotg, disconnect);
3299 hsotg->lx_state = DWC2_L3;
3301 usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3305 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3306 * @hsotg: The device state:
3307 * @periodic: True if this is a periodic FIFO interrupt
3309 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3311 struct dwc2_hsotg_ep *ep;
3314 /* look through for any more data to transmit */
3315 for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3316 ep = index_to_ep(hsotg, epno, 1);
3324 if ((periodic && !ep->periodic) ||
3325 (!periodic && ep->periodic))
3328 ret = dwc2_hsotg_trytx(hsotg, ep);
3334 /* IRQ flags which will trigger a retry around the IRQ loop */
3335 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3339 static int dwc2_hsotg_ep_disable(struct usb_ep *ep);
3341 * dwc2_hsotg_core_init - issue softreset to the core
3342 * @hsotg: The device state
3343 * @is_usb_reset: Usb resetting flag
3345 * Issue a soft reset to the core, and await the core finishing it.
3347 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3356 /* Kill any ep0 requests as controller will be reinitialized */
3357 kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3359 if (!is_usb_reset) {
3360 if (dwc2_core_reset(hsotg, true))
3363 /* all endpoints should be shutdown */
3364 for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3365 if (hsotg->eps_in[ep])
3366 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3367 if (hsotg->eps_out[ep])
3368 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3373 * we must now enable ep0 ready for host detection and then
3374 * set configuration.
3377 /* keep other bits untouched (so e.g. forced modes are not lost) */
3378 usbcfg = dwc2_readl(hsotg, GUSBCFG);
3379 usbcfg &= ~GUSBCFG_TOUTCAL_MASK;
3380 usbcfg |= GUSBCFG_TOUTCAL(7);
3382 /* remove the HNP/SRP and set the PHY */
3383 usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP);
3384 dwc2_writel(hsotg, usbcfg, GUSBCFG);
3386 dwc2_phy_init(hsotg, true);
3388 dwc2_hsotg_init_fifo(hsotg);
3391 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3393 dcfg |= DCFG_EPMISCNT(1);
3395 switch (hsotg->params.speed) {
3396 case DWC2_SPEED_PARAM_LOW:
3397 dcfg |= DCFG_DEVSPD_LS;
3399 case DWC2_SPEED_PARAM_FULL:
3400 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3401 dcfg |= DCFG_DEVSPD_FS48;
3403 dcfg |= DCFG_DEVSPD_FS;
3406 dcfg |= DCFG_DEVSPD_HS;
3409 if (hsotg->params.ipg_isoc_en)
3410 dcfg |= DCFG_IPG_ISOC_SUPPORDED;
3412 dwc2_writel(hsotg, dcfg, DCFG);
3414 /* Clear any pending OTG interrupts */
3415 dwc2_writel(hsotg, 0xffffffff, GOTGINT);
3417 /* Clear any pending interrupts */
3418 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
3419 intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3420 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3421 GINTSTS_USBRST | GINTSTS_RESETDET |
3422 GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3423 GINTSTS_USBSUSP | GINTSTS_WKUPINT |
3424 GINTSTS_LPMTRANRCVD;
3426 if (!using_desc_dma(hsotg))
3427 intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3429 if (!hsotg->params.external_id_pin_ctl)
3430 intmsk |= GINTSTS_CONIDSTSCHNG;
3432 dwc2_writel(hsotg, intmsk, GINTMSK);
3434 if (using_dma(hsotg)) {
3435 dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3436 hsotg->params.ahbcfg,
3439 /* Set DDMA mode support in the core if needed */
3440 if (using_desc_dma(hsotg))
3441 dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN);
3444 dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ?
3445 (GAHBCFG_NP_TXF_EMP_LVL |
3446 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3447 GAHBCFG_GLBL_INTR_EN, GAHBCFG);
3451 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3452 * when we have no data to transfer. Otherwise we get being flooded by
3456 dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3457 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3458 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3459 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3463 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3464 * DMA mode we may need this and StsPhseRcvd.
3466 dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3467 DOEPMSK_STSPHSERCVDMSK) : 0) |
3468 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3472 /* Enable BNA interrupt for DDMA */
3473 if (using_desc_dma(hsotg)) {
3474 dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK);
3475 dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK);
3478 /* Enable Service Interval mode if supported */
3479 if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3480 dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED);
3482 dwc2_writel(hsotg, 0, DAINTMSK);
3484 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3485 dwc2_readl(hsotg, DIEPCTL0),
3486 dwc2_readl(hsotg, DOEPCTL0));
3488 /* enable in and out endpoint interrupts */
3489 dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3492 * Enable the RXFIFO when in slave mode, as this is how we collect
3493 * the data. In DMA mode, we get events from the FIFO but also
3494 * things we cannot process, so do not use it.
3496 if (!using_dma(hsotg))
3497 dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3499 /* Enable interrupts for EP0 in and out */
3500 dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3501 dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3503 if (!is_usb_reset) {
3504 dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3505 udelay(10); /* see openiboot */
3506 dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3509 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL));
3512 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3513 * writing to the EPCTL register..
3516 /* set to read 1 8byte packet */
3517 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3518 DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0);
3520 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3521 DXEPCTL_CNAK | DXEPCTL_EPENA |
3525 /* enable, but don't activate EP0in */
3526 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3527 DXEPCTL_USBACTEP, DIEPCTL0);
3529 /* clear global NAKs */
3530 val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3532 val |= DCTL_SFTDISCON;
3533 dwc2_set_bit(hsotg, DCTL, val);
3535 /* configure the core to support LPM */
3536 dwc2_gadget_init_lpm(hsotg);
3538 /* program GREFCLK register if needed */
3539 if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3540 dwc2_gadget_program_ref_clk(hsotg);
3542 /* must be at-least 3ms to allow bus to see disconnect */
3545 hsotg->lx_state = DWC2_L0;
3547 dwc2_hsotg_enqueue_setup(hsotg);
3549 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3550 dwc2_readl(hsotg, DIEPCTL0),
3551 dwc2_readl(hsotg, DOEPCTL0));
3554 void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3556 /* set the soft-disconnect bit */
3557 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3560 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3562 /* remove the soft-disconnect and let's go */
3563 dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON);
3567 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3568 * @hsotg: The device state:
3570 * This interrupt indicates one of the following conditions occurred while
3571 * transmitting an ISOC transaction.
3572 * - Corrupted IN Token for ISOC EP.
3573 * - Packet not complete in FIFO.
3575 * The following actions will be taken:
3576 * - Determine the EP
3577 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3579 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3581 struct dwc2_hsotg_ep *hs_ep;
3586 dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3588 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3590 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3591 hs_ep = hsotg->eps_in[idx];
3592 /* Proceed only unmasked ISOC EPs */
3593 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3596 epctrl = dwc2_readl(hsotg, DIEPCTL(idx));
3597 if ((epctrl & DXEPCTL_EPENA) &&
3598 dwc2_gadget_target_frame_elapsed(hs_ep)) {
3599 epctrl |= DXEPCTL_SNAK;
3600 epctrl |= DXEPCTL_EPDIS;
3601 dwc2_writel(hsotg, epctrl, DIEPCTL(idx));
3605 /* Clear interrupt */
3606 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS);
3610 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3611 * @hsotg: The device state:
3613 * This interrupt indicates one of the following conditions occurred while
3614 * transmitting an ISOC transaction.
3615 * - Corrupted OUT Token for ISOC EP.
3616 * - Packet not complete in FIFO.
3618 * The following actions will be taken:
3619 * - Determine the EP
3620 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3622 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3628 struct dwc2_hsotg_ep *hs_ep;
3631 dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3633 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3634 daintmsk >>= DAINT_OUTEP_SHIFT;
3636 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3637 hs_ep = hsotg->eps_out[idx];
3638 /* Proceed only unmasked ISOC EPs */
3639 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3642 epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3643 if ((epctrl & DXEPCTL_EPENA) &&
3644 dwc2_gadget_target_frame_elapsed(hs_ep)) {
3645 /* Unmask GOUTNAKEFF interrupt */
3646 gintmsk = dwc2_readl(hsotg, GINTMSK);
3647 gintmsk |= GINTSTS_GOUTNAKEFF;
3648 dwc2_writel(hsotg, gintmsk, GINTMSK);
3650 gintsts = dwc2_readl(hsotg, GINTSTS);
3651 if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3652 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3658 /* Clear interrupt */
3659 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS);
3663 * dwc2_hsotg_irq - handle device interrupt
3664 * @irq: The IRQ number triggered
3665 * @pw: The pw value when registered the handler.
3667 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3669 struct dwc2_hsotg *hsotg = pw;
3670 int retry_count = 8;
3674 if (!dwc2_is_device_mode(hsotg))
3677 spin_lock(&hsotg->lock);
3679 gintsts = dwc2_readl(hsotg, GINTSTS);
3680 gintmsk = dwc2_readl(hsotg, GINTMSK);
3682 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3683 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3687 if (gintsts & GINTSTS_RESETDET) {
3688 dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3690 dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS);
3692 /* This event must be used only if controller is suspended */
3693 if (hsotg->lx_state == DWC2_L2) {
3694 dwc2_exit_partial_power_down(hsotg, true);
3695 hsotg->lx_state = DWC2_L0;
3699 if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3700 u32 usb_status = dwc2_readl(hsotg, GOTGCTL);
3701 u32 connected = hsotg->connected;
3703 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3704 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3705 dwc2_readl(hsotg, GNPTXSTS));
3707 dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS);
3709 /* Report disconnection if it is not already done. */
3710 dwc2_hsotg_disconnect(hsotg);
3712 /* Reset device address to zero */
3713 dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
3715 if (usb_status & GOTGCTL_BSESVLD && connected)
3716 dwc2_hsotg_core_init_disconnected(hsotg, true);
3719 if (gintsts & GINTSTS_ENUMDONE) {
3720 dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS);
3722 dwc2_hsotg_irq_enumdone(hsotg);
3725 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3726 u32 daint = dwc2_readl(hsotg, DAINT);
3727 u32 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3728 u32 daint_out, daint_in;
3732 daint_out = daint >> DAINT_OUTEP_SHIFT;
3733 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3735 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3737 for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3738 ep++, daint_out >>= 1) {
3740 dwc2_hsotg_epint(hsotg, ep, 0);
3743 for (ep = 0; ep < hsotg->num_of_eps && daint_in;
3744 ep++, daint_in >>= 1) {
3746 dwc2_hsotg_epint(hsotg, ep, 1);
3750 /* check both FIFOs */
3752 if (gintsts & GINTSTS_NPTXFEMP) {
3753 dev_dbg(hsotg->dev, "NPTxFEmp\n");
3756 * Disable the interrupt to stop it happening again
3757 * unless one of these endpoint routines decides that
3758 * it needs re-enabling
3761 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3762 dwc2_hsotg_irq_fifoempty(hsotg, false);
3765 if (gintsts & GINTSTS_PTXFEMP) {
3766 dev_dbg(hsotg->dev, "PTxFEmp\n");
3768 /* See note in GINTSTS_NPTxFEmp */
3770 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3771 dwc2_hsotg_irq_fifoempty(hsotg, true);
3774 if (gintsts & GINTSTS_RXFLVL) {
3776 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3777 * we need to retry dwc2_hsotg_handle_rx if this is still
3781 dwc2_hsotg_handle_rx(hsotg);
3784 if (gintsts & GINTSTS_ERLYSUSP) {
3785 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3786 dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS);
3790 * these next two seem to crop-up occasionally causing the core
3791 * to shutdown the USB transfer, so try clearing them and logging
3795 if (gintsts & GINTSTS_GOUTNAKEFF) {
3800 struct dwc2_hsotg_ep *hs_ep;
3802 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3803 daintmsk >>= DAINT_OUTEP_SHIFT;
3804 /* Mask this interrupt */
3805 gintmsk = dwc2_readl(hsotg, GINTMSK);
3806 gintmsk &= ~GINTSTS_GOUTNAKEFF;
3807 dwc2_writel(hsotg, gintmsk, GINTMSK);
3809 dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3810 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3811 hs_ep = hsotg->eps_out[idx];
3812 /* Proceed only unmasked ISOC EPs */
3813 if (BIT(idx) & ~daintmsk)
3816 epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3819 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
3820 epctrl |= DXEPCTL_SNAK;
3821 epctrl |= DXEPCTL_EPDIS;
3822 dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3827 if (hs_ep->halted) {
3828 if (!(epctrl & DXEPCTL_EPENA))
3829 epctrl |= DXEPCTL_EPENA;
3830 epctrl |= DXEPCTL_EPDIS;
3831 epctrl |= DXEPCTL_STALL;
3832 dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3836 /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3839 if (gintsts & GINTSTS_GINNAKEFF) {
3840 dev_info(hsotg->dev, "GINNakEff triggered\n");
3842 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3844 dwc2_hsotg_dump(hsotg);
3847 if (gintsts & GINTSTS_INCOMPL_SOIN)
3848 dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3850 if (gintsts & GINTSTS_INCOMPL_SOOUT)
3851 dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3854 * if we've had fifo events, we should try and go around the
3855 * loop again to see if there's any point in returning yet.
3858 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3861 /* Check WKUP_ALERT interrupt*/
3862 if (hsotg->params.service_interval)
3863 dwc2_gadget_wkup_alert_handler(hsotg);
3865 spin_unlock(&hsotg->lock);
3870 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3871 struct dwc2_hsotg_ep *hs_ep)
3876 epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3877 DOEPCTL(hs_ep->index);
3878 epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3879 DOEPINT(hs_ep->index);
3881 dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3884 if (hs_ep->dir_in) {
3885 if (hsotg->dedicated_fifos || hs_ep->periodic) {
3886 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK);
3887 /* Wait for Nak effect */
3888 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3889 DXEPINT_INEPNAKEFF, 100))
3890 dev_warn(hsotg->dev,
3891 "%s: timeout DIEPINT.NAKEFF\n",
3894 dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK);
3895 /* Wait for Nak effect */
3896 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3897 GINTSTS_GINNAKEFF, 100))
3898 dev_warn(hsotg->dev,
3899 "%s: timeout GINTSTS.GINNAKEFF\n",
3903 if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF))
3904 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3906 /* Wait for global nak to take effect */
3907 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3908 GINTSTS_GOUTNAKEFF, 100))
3909 dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3914 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3916 /* Wait for ep to be disabled */
3917 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3918 dev_warn(hsotg->dev,
3919 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3921 /* Clear EPDISBLD interrupt */
3922 dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD);
3924 if (hs_ep->dir_in) {
3925 unsigned short fifo_index;
3927 if (hsotg->dedicated_fifos || hs_ep->periodic)
3928 fifo_index = hs_ep->fifo_index;
3933 dwc2_flush_tx_fifo(hsotg, fifo_index);
3935 /* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3936 if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3937 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3940 /* Remove global NAKs */
3941 dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK);
3946 * dwc2_hsotg_ep_enable - enable the given endpoint
3947 * @ep: The USB endpint to configure
3948 * @desc: The USB endpoint descriptor to configure with.
3950 * This is called from the USB gadget code's usb_ep_enable().
3952 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3953 const struct usb_endpoint_descriptor *desc)
3955 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3956 struct dwc2_hsotg *hsotg = hs_ep->parent;
3957 unsigned long flags;
3958 unsigned int index = hs_ep->index;
3964 unsigned int dir_in;
3965 unsigned int i, val, size;
3967 unsigned char ep_type;
3971 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
3972 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
3973 desc->wMaxPacketSize, desc->bInterval);
3975 /* not to be called for EP0 */
3977 dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
3981 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
3982 if (dir_in != hs_ep->dir_in) {
3983 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
3987 ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
3988 mps = usb_endpoint_maxp(desc);
3989 mc = usb_endpoint_maxp_mult(desc);
3991 /* ISOC IN in DDMA supported bInterval up to 10 */
3992 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
3993 dir_in && desc->bInterval > 10) {
3995 "%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__);
3999 /* High bandwidth ISOC OUT in DDMA not supported */
4000 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
4001 !dir_in && mc > 1) {
4003 "%s: ISOC OUT, DDMA: HB not supported!\n", __func__);
4007 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
4009 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4010 epctrl = dwc2_readl(hsotg, epctrl_reg);
4012 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
4013 __func__, epctrl, epctrl_reg);
4015 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC)
4016 desc_num = MAX_DMA_DESC_NUM_HS_ISOC;
4018 desc_num = MAX_DMA_DESC_NUM_GENERIC;
4020 /* Allocate DMA descriptor chain for non-ctrl endpoints */
4021 if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
4022 hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
4023 desc_num * sizeof(struct dwc2_dma_desc),
4024 &hs_ep->desc_list_dma, GFP_ATOMIC);
4025 if (!hs_ep->desc_list) {
4031 spin_lock_irqsave(&hsotg->lock, flags);
4033 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
4034 epctrl |= DXEPCTL_MPS(mps);
4037 * mark the endpoint as active, otherwise the core may ignore
4038 * transactions entirely for this endpoint
4040 epctrl |= DXEPCTL_USBACTEP;
4042 /* update the endpoint state */
4043 dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
4045 /* default, set to non-periodic */
4046 hs_ep->isochronous = 0;
4047 hs_ep->periodic = 0;
4049 hs_ep->interval = desc->bInterval;
4052 case USB_ENDPOINT_XFER_ISOC:
4053 epctrl |= DXEPCTL_EPTYPE_ISO;
4054 epctrl |= DXEPCTL_SETEVENFR;
4055 hs_ep->isochronous = 1;
4056 hs_ep->interval = 1 << (desc->bInterval - 1);
4057 hs_ep->target_frame = TARGET_FRAME_INITIAL;
4058 hs_ep->next_desc = 0;
4059 hs_ep->compl_desc = 0;
4061 hs_ep->periodic = 1;
4062 mask = dwc2_readl(hsotg, DIEPMSK);
4063 mask |= DIEPMSK_NAKMSK;
4064 dwc2_writel(hsotg, mask, DIEPMSK);
4066 mask = dwc2_readl(hsotg, DOEPMSK);
4067 mask |= DOEPMSK_OUTTKNEPDISMSK;
4068 dwc2_writel(hsotg, mask, DOEPMSK);
4072 case USB_ENDPOINT_XFER_BULK:
4073 epctrl |= DXEPCTL_EPTYPE_BULK;
4076 case USB_ENDPOINT_XFER_INT:
4078 hs_ep->periodic = 1;
4080 if (hsotg->gadget.speed == USB_SPEED_HIGH)
4081 hs_ep->interval = 1 << (desc->bInterval - 1);
4083 epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
4086 case USB_ENDPOINT_XFER_CONTROL:
4087 epctrl |= DXEPCTL_EPTYPE_CONTROL;
4092 * if the hardware has dedicated fifos, we must give each IN EP
4093 * a unique tx-fifo even if it is non-periodic.
4095 if (dir_in && hsotg->dedicated_fifos) {
4096 unsigned fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
4098 u32 fifo_size = UINT_MAX;
4100 size = hs_ep->ep.maxpacket * hs_ep->mc;
4101 for (i = 1; i <= fifo_count; ++i) {
4102 if (hsotg->fifo_map & (1 << i))
4104 val = dwc2_readl(hsotg, DPTXFSIZN(i));
4105 val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
4108 /* Search for smallest acceptable fifo */
4109 if (val < fifo_size) {
4116 "%s: No suitable fifo found\n", __func__);
4120 epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT);
4121 hsotg->fifo_map |= 1 << fifo_index;
4122 epctrl |= DXEPCTL_TXFNUM(fifo_index);
4123 hs_ep->fifo_index = fifo_index;
4124 hs_ep->fifo_size = fifo_size;
4127 /* for non control endpoints, set PID to D0 */
4128 if (index && !hs_ep->isochronous)
4129 epctrl |= DXEPCTL_SETD0PID;
4131 /* WA for Full speed ISOC IN in DDMA mode.
4132 * By Clear NAK status of EP, core will send ZLP
4133 * to IN token and assert NAK interrupt relying
4134 * on TxFIFO status only
4137 if (hsotg->gadget.speed == USB_SPEED_FULL &&
4138 hs_ep->isochronous && dir_in) {
4139 /* The WA applies only to core versions from 2.72a
4140 * to 4.00a (including both). Also for FS_IOT_1.00a
4143 u32 gsnpsid = dwc2_readl(hsotg, GSNPSID);
4145 if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
4146 gsnpsid <= DWC2_CORE_REV_4_00a) ||
4147 gsnpsid == DWC2_FS_IOT_REV_1_00a ||
4148 gsnpsid == DWC2_HS_IOT_REV_1_00a)
4149 epctrl |= DXEPCTL_CNAK;
4152 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
4155 dwc2_writel(hsotg, epctrl, epctrl_reg);
4156 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
4157 __func__, dwc2_readl(hsotg, epctrl_reg));
4159 /* enable the endpoint interrupt */
4160 dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
4163 spin_unlock_irqrestore(&hsotg->lock, flags);
4166 if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
4167 dmam_free_coherent(hsotg->dev, desc_num *
4168 sizeof(struct dwc2_dma_desc),
4169 hs_ep->desc_list, hs_ep->desc_list_dma);
4170 hs_ep->desc_list = NULL;
4177 * dwc2_hsotg_ep_disable - disable given endpoint
4178 * @ep: The endpoint to disable.
4180 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
4182 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4183 struct dwc2_hsotg *hsotg = hs_ep->parent;
4184 int dir_in = hs_ep->dir_in;
4185 int index = hs_ep->index;
4189 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
4191 if (ep == &hsotg->eps_out[0]->ep) {
4192 dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
4196 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4197 dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
4201 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4203 ctrl = dwc2_readl(hsotg, epctrl_reg);
4205 if (ctrl & DXEPCTL_EPENA)
4206 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4208 ctrl &= ~DXEPCTL_EPENA;
4209 ctrl &= ~DXEPCTL_USBACTEP;
4210 ctrl |= DXEPCTL_SNAK;
4212 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4213 dwc2_writel(hsotg, ctrl, epctrl_reg);
4215 /* disable endpoint interrupts */
4216 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4218 /* terminate all requests with shutdown */
4219 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4221 hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4222 hs_ep->fifo_index = 0;
4223 hs_ep->fifo_size = 0;
4228 static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep)
4230 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4231 struct dwc2_hsotg *hsotg = hs_ep->parent;
4232 unsigned long flags;
4235 spin_lock_irqsave(&hsotg->lock, flags);
4236 ret = dwc2_hsotg_ep_disable(ep);
4237 spin_unlock_irqrestore(&hsotg->lock, flags);
4242 * on_list - check request is on the given endpoint
4243 * @ep: The endpoint to check.
4244 * @test: The request to test if it is on the endpoint.
4246 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4248 struct dwc2_hsotg_req *req, *treq;
4250 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4259 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4260 * @ep: The endpoint to dequeue.
4261 * @req: The request to be removed from a queue.
4263 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4265 struct dwc2_hsotg_req *hs_req = our_req(req);
4266 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4267 struct dwc2_hsotg *hs = hs_ep->parent;
4268 unsigned long flags;
4270 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4272 spin_lock_irqsave(&hs->lock, flags);
4274 if (!on_list(hs_ep, hs_req)) {
4275 spin_unlock_irqrestore(&hs->lock, flags);
4279 /* Dequeue already started request */
4280 if (req == &hs_ep->req->req)
4281 dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4283 dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4284 spin_unlock_irqrestore(&hs->lock, flags);
4290 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4291 * @ep: The endpoint to set halt.
4292 * @value: Set or unset the halt.
4293 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4294 * the endpoint is busy processing requests.
4296 * We need to stall the endpoint immediately if request comes from set_feature
4297 * protocol command handler.
4299 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4301 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4302 struct dwc2_hsotg *hs = hs_ep->parent;
4303 int index = hs_ep->index;
4308 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4312 dwc2_hsotg_stall_ep0(hs);
4315 "%s: can't clear halt on ep0\n", __func__);
4319 if (hs_ep->isochronous) {
4320 dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4324 if (!now && value && !list_empty(&hs_ep->queue)) {
4325 dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4330 if (hs_ep->dir_in) {
4331 epreg = DIEPCTL(index);
4332 epctl = dwc2_readl(hs, epreg);
4335 epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4336 if (epctl & DXEPCTL_EPENA)
4337 epctl |= DXEPCTL_EPDIS;
4339 epctl &= ~DXEPCTL_STALL;
4340 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4341 if (xfertype == DXEPCTL_EPTYPE_BULK ||
4342 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4343 epctl |= DXEPCTL_SETD0PID;
4345 dwc2_writel(hs, epctl, epreg);
4347 epreg = DOEPCTL(index);
4348 epctl = dwc2_readl(hs, epreg);
4351 if (!(dwc2_readl(hs, GINTSTS) & GINTSTS_GOUTNAKEFF))
4352 dwc2_set_bit(hs, DCTL, DCTL_SGOUTNAK);
4353 // STALL bit will be set in GOUTNAKEFF interrupt handler
4355 epctl &= ~DXEPCTL_STALL;
4356 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4357 if (xfertype == DXEPCTL_EPTYPE_BULK ||
4358 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4359 epctl |= DXEPCTL_SETD0PID;
4360 dwc2_writel(hs, epctl, epreg);
4364 hs_ep->halted = value;
4369 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4370 * @ep: The endpoint to set halt.
4371 * @value: Set or unset the halt.
4373 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4375 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4376 struct dwc2_hsotg *hs = hs_ep->parent;
4377 unsigned long flags = 0;
4380 spin_lock_irqsave(&hs->lock, flags);
4381 ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4382 spin_unlock_irqrestore(&hs->lock, flags);
4387 static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4388 .enable = dwc2_hsotg_ep_enable,
4389 .disable = dwc2_hsotg_ep_disable_lock,
4390 .alloc_request = dwc2_hsotg_ep_alloc_request,
4391 .free_request = dwc2_hsotg_ep_free_request,
4392 .queue = dwc2_hsotg_ep_queue_lock,
4393 .dequeue = dwc2_hsotg_ep_dequeue,
4394 .set_halt = dwc2_hsotg_ep_sethalt_lock,
4395 /* note, don't believe we have any call for the fifo routines */
4399 * dwc2_hsotg_init - initialize the usb core
4400 * @hsotg: The driver state
4402 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4404 /* unmask subset of endpoint interrupts */
4406 dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4407 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4410 dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4411 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4414 dwc2_writel(hsotg, 0, DAINTMSK);
4416 /* Be in disconnected state until gadget is registered */
4417 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
4421 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4422 dwc2_readl(hsotg, GRXFSIZ),
4423 dwc2_readl(hsotg, GNPTXFSIZ));
4425 dwc2_hsotg_init_fifo(hsotg);
4427 if (using_dma(hsotg))
4428 dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN);
4432 * dwc2_hsotg_udc_start - prepare the udc for work
4433 * @gadget: The usb gadget state
4434 * @driver: The usb gadget driver
4436 * Perform initialization to prepare udc device and driver
4439 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4440 struct usb_gadget_driver *driver)
4442 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4443 unsigned long flags;
4447 pr_err("%s: called with no device\n", __func__);
4452 dev_err(hsotg->dev, "%s: no driver\n", __func__);
4456 if (driver->max_speed < USB_SPEED_FULL)
4457 dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4459 if (!driver->setup) {
4460 dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4464 WARN_ON(hsotg->driver);
4466 driver->driver.bus = NULL;
4467 hsotg->driver = driver;
4468 hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4469 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4471 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4472 ret = dwc2_lowlevel_hw_enable(hsotg);
4477 if (!IS_ERR_OR_NULL(hsotg->uphy))
4478 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4480 spin_lock_irqsave(&hsotg->lock, flags);
4481 if (dwc2_hw_is_device(hsotg)) {
4482 dwc2_hsotg_init(hsotg);
4483 dwc2_hsotg_core_init_disconnected(hsotg, false);
4487 spin_unlock_irqrestore(&hsotg->lock, flags);
4489 gadget->sg_supported = using_desc_dma(hsotg);
4490 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4495 hsotg->driver = NULL;
4500 * dwc2_hsotg_udc_stop - stop the udc
4501 * @gadget: The usb gadget state
4503 * Stop udc hw block and stay tunned for future transmissions
4505 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4507 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4508 unsigned long flags = 0;
4514 /* all endpoints should be shutdown */
4515 for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4516 if (hsotg->eps_in[ep])
4517 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4518 if (hsotg->eps_out[ep])
4519 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4522 spin_lock_irqsave(&hsotg->lock, flags);
4524 hsotg->driver = NULL;
4525 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4528 spin_unlock_irqrestore(&hsotg->lock, flags);
4530 if (!IS_ERR_OR_NULL(hsotg->uphy))
4531 otg_set_peripheral(hsotg->uphy->otg, NULL);
4533 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4534 dwc2_lowlevel_hw_disable(hsotg);
4540 * dwc2_hsotg_gadget_getframe - read the frame number
4541 * @gadget: The usb gadget state
4543 * Read the {micro} frame number
4545 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4547 return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4551 * dwc2_hsotg_set_selfpowered - set if device is self/bus powered
4552 * @gadget: The usb gadget state
4553 * @is_selfpowered: Whether the device is self-powered
4555 * Set if the device is self or bus powered.
4557 static int dwc2_hsotg_set_selfpowered(struct usb_gadget *gadget,
4560 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4561 unsigned long flags;
4563 spin_lock_irqsave(&hsotg->lock, flags);
4564 gadget->is_selfpowered = !!is_selfpowered;
4565 spin_unlock_irqrestore(&hsotg->lock, flags);
4571 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4572 * @gadget: The usb gadget state
4573 * @is_on: Current state of the USB PHY
4575 * Connect/Disconnect the USB PHY pullup
4577 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4579 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4580 unsigned long flags = 0;
4582 dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4585 /* Don't modify pullup state while in host mode */
4586 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4587 hsotg->enabled = is_on;
4591 spin_lock_irqsave(&hsotg->lock, flags);
4594 dwc2_hsotg_core_init_disconnected(hsotg, false);
4595 /* Enable ACG feature in device mode,if supported */
4596 dwc2_enable_acg(hsotg);
4597 dwc2_hsotg_core_connect(hsotg);
4599 dwc2_hsotg_core_disconnect(hsotg);
4600 dwc2_hsotg_disconnect(hsotg);
4604 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4605 spin_unlock_irqrestore(&hsotg->lock, flags);
4610 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4612 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4613 unsigned long flags;
4615 dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4616 spin_lock_irqsave(&hsotg->lock, flags);
4619 * If controller is hibernated, it must exit from power_down
4620 * before being initialized / de-initialized
4622 if (hsotg->lx_state == DWC2_L2)
4623 dwc2_exit_partial_power_down(hsotg, false);
4626 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4628 dwc2_hsotg_core_init_disconnected(hsotg, false);
4629 if (hsotg->enabled) {
4630 /* Enable ACG feature in device mode,if supported */
4631 dwc2_enable_acg(hsotg);
4632 dwc2_hsotg_core_connect(hsotg);
4635 dwc2_hsotg_core_disconnect(hsotg);
4636 dwc2_hsotg_disconnect(hsotg);
4639 spin_unlock_irqrestore(&hsotg->lock, flags);
4644 * dwc2_hsotg_vbus_draw - report bMaxPower field
4645 * @gadget: The usb gadget state
4646 * @mA: Amount of current
4648 * Report how much power the device may consume to the phy.
4650 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4652 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4654 if (IS_ERR_OR_NULL(hsotg->uphy))
4656 return usb_phy_set_power(hsotg->uphy, mA);
4659 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4660 .get_frame = dwc2_hsotg_gadget_getframe,
4661 .set_selfpowered = dwc2_hsotg_set_selfpowered,
4662 .udc_start = dwc2_hsotg_udc_start,
4663 .udc_stop = dwc2_hsotg_udc_stop,
4664 .pullup = dwc2_hsotg_pullup,
4665 .vbus_session = dwc2_hsotg_vbus_session,
4666 .vbus_draw = dwc2_hsotg_vbus_draw,
4670 * dwc2_hsotg_initep - initialise a single endpoint
4671 * @hsotg: The device state.
4672 * @hs_ep: The endpoint to be initialised.
4673 * @epnum: The endpoint number
4674 * @dir_in: True if direction is in.
4676 * Initialise the given endpoint (as part of the probe and device state
4677 * creation) to give to the gadget driver. Setup the endpoint name, any
4678 * direction information and other state that may be required.
4680 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4681 struct dwc2_hsotg_ep *hs_ep,
4694 hs_ep->dir_in = dir_in;
4695 hs_ep->index = epnum;
4697 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4699 INIT_LIST_HEAD(&hs_ep->queue);
4700 INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4702 /* add to the list of endpoints known by the gadget driver */
4704 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4706 hs_ep->parent = hsotg;
4707 hs_ep->ep.name = hs_ep->name;
4709 if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4710 usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4712 usb_ep_set_maxpacket_limit(&hs_ep->ep,
4713 epnum ? 1024 : EP0_MPS_LIMIT);
4714 hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4717 hs_ep->ep.caps.type_control = true;
4719 if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4720 hs_ep->ep.caps.type_iso = true;
4721 hs_ep->ep.caps.type_bulk = true;
4723 hs_ep->ep.caps.type_int = true;
4727 hs_ep->ep.caps.dir_in = true;
4729 hs_ep->ep.caps.dir_out = true;
4732 * if we're using dma, we need to set the next-endpoint pointer
4733 * to be something valid.
4736 if (using_dma(hsotg)) {
4737 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4740 dwc2_writel(hsotg, next, DIEPCTL(epnum));
4742 dwc2_writel(hsotg, next, DOEPCTL(epnum));
4747 * dwc2_hsotg_hw_cfg - read HW configuration registers
4748 * @hsotg: Programming view of the DWC_otg controller
4750 * Read the USB core HW configuration registers
4752 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4758 /* check hardware configuration */
4760 hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4763 hsotg->num_of_eps++;
4765 hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4766 sizeof(struct dwc2_hsotg_ep),
4768 if (!hsotg->eps_in[0])
4770 /* Same dwc2_hsotg_ep is used in both directions for ep0 */
4771 hsotg->eps_out[0] = hsotg->eps_in[0];
4773 cfg = hsotg->hw_params.dev_ep_dirs;
4774 for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4776 /* Direction in or both */
4777 if (!(ep_type & 2)) {
4778 hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4779 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4780 if (!hsotg->eps_in[i])
4783 /* Direction out or both */
4784 if (!(ep_type & 1)) {
4785 hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4786 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4787 if (!hsotg->eps_out[i])
4792 hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4793 hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4795 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4797 hsotg->dedicated_fifos ? "dedicated" : "shared",
4803 * dwc2_hsotg_dump - dump state of the udc
4804 * @hsotg: Programming view of the DWC_otg controller
4807 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4810 struct device *dev = hsotg->dev;
4814 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4815 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL),
4816 dwc2_readl(hsotg, DIEPMSK));
4818 dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4819 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1));
4821 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4822 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ));
4824 /* show periodic fifo settings */
4826 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4827 val = dwc2_readl(hsotg, DPTXFSIZN(idx));
4828 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4829 val >> FIFOSIZE_DEPTH_SHIFT,
4830 val & FIFOSIZE_STARTADDR_MASK);
4833 for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4835 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4836 dwc2_readl(hsotg, DIEPCTL(idx)),
4837 dwc2_readl(hsotg, DIEPTSIZ(idx)),
4838 dwc2_readl(hsotg, DIEPDMA(idx)));
4840 val = dwc2_readl(hsotg, DOEPCTL(idx));
4842 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4843 idx, dwc2_readl(hsotg, DOEPCTL(idx)),
4844 dwc2_readl(hsotg, DOEPTSIZ(idx)),
4845 dwc2_readl(hsotg, DOEPDMA(idx)));
4848 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4849 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE));
4854 * dwc2_gadget_init - init function for gadget
4855 * @hsotg: Programming view of the DWC_otg controller
4858 int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4860 struct device *dev = hsotg->dev;
4864 /* Dump fifo information */
4865 dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4866 hsotg->params.g_np_tx_fifo_size);
4867 dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4869 hsotg->gadget.max_speed = USB_SPEED_HIGH;
4870 hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4871 hsotg->gadget.name = dev_name(dev);
4872 hsotg->remote_wakeup_allowed = 0;
4874 if (hsotg->params.lpm)
4875 hsotg->gadget.lpm_capable = true;
4877 if (hsotg->dr_mode == USB_DR_MODE_OTG)
4878 hsotg->gadget.is_otg = 1;
4879 else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4880 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4882 ret = dwc2_hsotg_hw_cfg(hsotg);
4884 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4888 hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4889 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4890 if (!hsotg->ctrl_buff)
4893 hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4894 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4895 if (!hsotg->ep0_buff)
4898 if (using_desc_dma(hsotg)) {
4899 ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
4904 ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
4905 IRQF_SHARED, dev_name(hsotg->dev), hsotg);
4907 dev_err(dev, "cannot claim IRQ for gadget\n");
4911 /* hsotg->num_of_eps holds number of EPs other than ep0 */
4913 if (hsotg->num_of_eps == 0) {
4914 dev_err(dev, "wrong number of EPs (zero)\n");
4918 /* setup endpoint information */
4920 INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4921 hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4923 /* allocate EP0 request */
4925 hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4927 if (!hsotg->ctrl_req) {
4928 dev_err(dev, "failed to allocate ctrl req\n");
4932 /* initialise the endpoints now the core has been initialised */
4933 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4934 if (hsotg->eps_in[epnum])
4935 dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4937 if (hsotg->eps_out[epnum])
4938 dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4942 hsotg->gadget.quirk_ep_out_aligned_size = true;
4943 dwc2_hsotg_dump(hsotg);
4945 #if IS_ENABLED(CONFIG_EXTCON)
4946 if (hsotg->params.g_extcon_always_on) {
4947 struct extcon_dev *edev;
4948 static const unsigned int supported_cable[] = {
4953 edev = devm_extcon_dev_allocate(dev, supported_cable);
4955 return PTR_ERR(edev);
4957 ret = devm_extcon_dev_register(dev, edev);
4961 extcon_set_state_sync(edev, EXTCON_USB, true);
4968 * dwc2_hsotg_remove - remove function for hsotg driver
4969 * @hsotg: Programming view of the DWC_otg controller
4972 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4974 usb_del_gadget_udc(&hsotg->gadget);
4975 dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req);
4980 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4982 unsigned long flags;
4984 if (hsotg->lx_state != DWC2_L0)
4987 if (hsotg->driver) {
4990 dev_info(hsotg->dev, "suspending usb gadget %s\n",
4991 hsotg->driver->driver.name);
4993 spin_lock_irqsave(&hsotg->lock, flags);
4995 dwc2_hsotg_core_disconnect(hsotg);
4996 dwc2_hsotg_disconnect(hsotg);
4997 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4998 spin_unlock_irqrestore(&hsotg->lock, flags);
5000 for (ep = 0; ep < hsotg->num_of_eps; ep++) {
5001 if (hsotg->eps_in[ep])
5002 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
5003 if (hsotg->eps_out[ep])
5004 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
5011 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
5013 unsigned long flags;
5015 if (hsotg->lx_state == DWC2_L2)
5018 if (hsotg->driver) {
5019 dev_info(hsotg->dev, "resuming usb gadget %s\n",
5020 hsotg->driver->driver.name);
5022 spin_lock_irqsave(&hsotg->lock, flags);
5023 dwc2_hsotg_core_init_disconnected(hsotg, false);
5024 if (hsotg->enabled) {
5025 /* Enable ACG feature in device mode,if supported */
5026 dwc2_enable_acg(hsotg);
5027 dwc2_hsotg_core_connect(hsotg);
5029 spin_unlock_irqrestore(&hsotg->lock, flags);
5036 * dwc2_backup_device_registers() - Backup controller device registers.
5037 * When suspending usb bus, registers needs to be backuped
5038 * if controller power is disabled once suspended.
5040 * @hsotg: Programming view of the DWC_otg controller
5042 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
5044 struct dwc2_dregs_backup *dr;
5047 dev_dbg(hsotg->dev, "%s\n", __func__);
5049 /* Backup dev regs */
5050 dr = &hsotg->dr_backup;
5052 dr->dcfg = dwc2_readl(hsotg, DCFG);
5053 dr->dctl = dwc2_readl(hsotg, DCTL);
5054 dr->daintmsk = dwc2_readl(hsotg, DAINTMSK);
5055 dr->diepmsk = dwc2_readl(hsotg, DIEPMSK);
5056 dr->doepmsk = dwc2_readl(hsotg, DOEPMSK);
5058 for (i = 0; i < hsotg->num_of_eps; i++) {
5060 dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i));
5062 /* Ensure DATA PID is correctly configured */
5063 if (dr->diepctl[i] & DXEPCTL_DPID)
5064 dr->diepctl[i] |= DXEPCTL_SETD1PID;
5066 dr->diepctl[i] |= DXEPCTL_SETD0PID;
5068 dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i));
5069 dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i));
5071 /* Backup OUT EPs */
5072 dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i));
5074 /* Ensure DATA PID is correctly configured */
5075 if (dr->doepctl[i] & DXEPCTL_DPID)
5076 dr->doepctl[i] |= DXEPCTL_SETD1PID;
5078 dr->doepctl[i] |= DXEPCTL_SETD0PID;
5080 dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i));
5081 dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i));
5082 dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i));
5089 * dwc2_restore_device_registers() - Restore controller device registers.
5090 * When resuming usb bus, device registers needs to be restored
5091 * if controller power were disabled.
5093 * @hsotg: Programming view of the DWC_otg controller
5094 * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
5096 * Return: 0 if successful, negative error code otherwise
5098 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
5100 struct dwc2_dregs_backup *dr;
5103 dev_dbg(hsotg->dev, "%s\n", __func__);
5105 /* Restore dev regs */
5106 dr = &hsotg->dr_backup;
5108 dev_err(hsotg->dev, "%s: no device registers to restore\n",
5115 dwc2_writel(hsotg, dr->dctl, DCTL);
5117 dwc2_writel(hsotg, dr->daintmsk, DAINTMSK);
5118 dwc2_writel(hsotg, dr->diepmsk, DIEPMSK);
5119 dwc2_writel(hsotg, dr->doepmsk, DOEPMSK);
5121 for (i = 0; i < hsotg->num_of_eps; i++) {
5122 /* Restore IN EPs */
5123 dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i));
5124 dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i));
5125 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5126 /** WA for enabled EPx's IN in DDMA mode. On entering to
5127 * hibernation wrong value read and saved from DIEPDMAx,
5128 * as result BNA interrupt asserted on hibernation exit
5129 * by restoring from saved area.
5131 if (hsotg->params.g_dma_desc &&
5132 (dr->diepctl[i] & DXEPCTL_EPENA))
5133 dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
5134 dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i));
5135 dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i));
5136 /* Restore OUT EPs */
5137 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5138 /* WA for enabled EPx's OUT in DDMA mode. On entering to
5139 * hibernation wrong value read and saved from DOEPDMAx,
5140 * as result BNA interrupt asserted on hibernation exit
5141 * by restoring from saved area.
5143 if (hsotg->params.g_dma_desc &&
5144 (dr->doepctl[i] & DXEPCTL_EPENA))
5145 dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
5146 dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i));
5147 dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i));
5154 * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
5156 * @hsotg: Programming view of DWC_otg controller
5159 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
5163 if (!hsotg->params.lpm)
5166 val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
5167 val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
5168 val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
5169 val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
5170 val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
5171 val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL;
5172 val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC;
5173 dwc2_writel(hsotg, val, GLPMCFG);
5174 dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG));
5176 /* Unmask WKUP_ALERT Interrupt */
5177 if (hsotg->params.service_interval)
5178 dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK);
5182 * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode
5184 * @hsotg: Programming view of DWC_otg controller
5187 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg)
5191 val |= GREFCLK_REF_CLK_MODE;
5192 val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT;
5193 val |= hsotg->params.sof_cnt_wkup_alert <<
5194 GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT;
5196 dwc2_writel(hsotg, val, GREFCLK);
5197 dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK));
5201 * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
5203 * @hsotg: Programming view of the DWC_otg controller
5205 * Return non-zero if failed to enter to hibernation.
5207 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
5212 /* Change to L2(suspend) state */
5213 hsotg->lx_state = DWC2_L2;
5214 dev_dbg(hsotg->dev, "Start of hibernation completed\n");
5215 ret = dwc2_backup_global_registers(hsotg);
5217 dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5221 ret = dwc2_backup_device_registers(hsotg);
5223 dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5228 gpwrdn = GPWRDN_PWRDNRSTN;
5229 gpwrdn |= GPWRDN_PMUACTV;
5230 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5233 /* Set flag to indicate that we are in hibernation */
5234 hsotg->hibernated = 1;
5236 /* Enable interrupts from wake up logic */
5237 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5238 gpwrdn |= GPWRDN_PMUINTSEL;
5239 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5242 /* Unmask device mode interrupts in GPWRDN */
5243 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5244 gpwrdn |= GPWRDN_RST_DET_MSK;
5245 gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5246 gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5247 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5250 /* Enable Power Down Clamp */
5251 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5252 gpwrdn |= GPWRDN_PWRDNCLMP;
5253 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5256 /* Switch off VDD */
5257 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5258 gpwrdn |= GPWRDN_PWRDNSWTCH;
5259 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5262 /* Save gpwrdn register for further usage if stschng interrupt */
5263 hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN);
5264 dev_dbg(hsotg->dev, "Hibernation completed\n");
5270 * dwc2_gadget_exit_hibernation()
5271 * This function is for exiting from Device mode hibernation by host initiated
5272 * resume/reset and device initiated remote-wakeup.
5274 * @hsotg: Programming view of the DWC_otg controller
5275 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5276 * @reset: indicates whether resume is initiated by Reset.
5278 * Return non-zero if failed to exit from hibernation.
5280 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
5281 int rem_wakeup, int reset)
5287 struct dwc2_gregs_backup *gr;
5288 struct dwc2_dregs_backup *dr;
5290 gr = &hsotg->gr_backup;
5291 dr = &hsotg->dr_backup;
5293 if (!hsotg->hibernated) {
5294 dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
5298 "%s: called with rem_wakeup = %d reset = %d\n",
5299 __func__, rem_wakeup, reset);
5301 dwc2_hib_restore_common(hsotg, rem_wakeup, 0);
5304 /* Clear all pending interupts */
5305 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5308 /* De-assert Restore */
5309 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5310 gpwrdn &= ~GPWRDN_RESTORE;
5311 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5315 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5316 pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5317 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5320 /* Restore GUSBCFG, DCFG and DCTL */
5321 dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5322 dwc2_writel(hsotg, dr->dcfg, DCFG);
5323 dwc2_writel(hsotg, dr->dctl, DCTL);
5325 /* De-assert Wakeup Logic */
5326 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5327 gpwrdn &= ~GPWRDN_PMUACTV;
5328 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5332 /* Start Remote Wakeup Signaling */
5333 dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL);
5336 /* Set Device programming done bit */
5337 dctl = dwc2_readl(hsotg, DCTL);
5338 dctl |= DCTL_PWRONPRGDONE;
5339 dwc2_writel(hsotg, dctl, DCTL);
5341 /* Wait for interrupts which must be cleared */
5343 /* Clear all pending interupts */
5344 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5346 /* Restore global registers */
5347 ret = dwc2_restore_global_registers(hsotg);
5349 dev_err(hsotg->dev, "%s: failed to restore registers\n",
5354 /* Restore device registers */
5355 ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
5357 dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5364 dctl = dwc2_readl(hsotg, DCTL);
5365 dctl &= ~DCTL_RMTWKUPSIG;
5366 dwc2_writel(hsotg, dctl, DCTL);
5369 hsotg->hibernated = 0;
5370 hsotg->lx_state = DWC2_L0;
5371 dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");