Merge tag 'rdma-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/roland/infiniband
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / usb / core / hcd.c
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  * 
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24
25 #include <linux/module.h>
26 #include <linux/version.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/utsname.h>
31 #include <linux/mm.h>
32 #include <asm/io.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mutex.h>
36 #include <asm/irq.h>
37 #include <asm/byteorder.h>
38 #include <asm/unaligned.h>
39 #include <linux/platform_device.h>
40 #include <linux/workqueue.h>
41
42 #include <linux/usb.h>
43 #include <linux/usb/hcd.h>
44
45 #include "usb.h"
46
47
48 /*-------------------------------------------------------------------------*/
49
50 /*
51  * USB Host Controller Driver framework
52  *
53  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
54  * HCD-specific behaviors/bugs.
55  *
56  * This does error checks, tracks devices and urbs, and delegates to a
57  * "hc_driver" only for code (and data) that really needs to know about
58  * hardware differences.  That includes root hub registers, i/o queues,
59  * and so on ... but as little else as possible.
60  *
61  * Shared code includes most of the "root hub" code (these are emulated,
62  * though each HC's hardware works differently) and PCI glue, plus request
63  * tracking overhead.  The HCD code should only block on spinlocks or on
64  * hardware handshaking; blocking on software events (such as other kernel
65  * threads releasing resources, or completing actions) is all generic.
66  *
67  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
68  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
69  * only by the hub driver ... and that neither should be seen or used by
70  * usb client device drivers.
71  *
72  * Contributors of ideas or unattributed patches include: David Brownell,
73  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
74  *
75  * HISTORY:
76  * 2002-02-21   Pull in most of the usb_bus support from usb.c; some
77  *              associated cleanup.  "usb_hcd" still != "usb_bus".
78  * 2001-12-12   Initial patch version for Linux 2.5.1 kernel.
79  */
80
81 /*-------------------------------------------------------------------------*/
82
83 /* Keep track of which host controller drivers are loaded */
84 unsigned long usb_hcds_loaded;
85 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
86
87 /* host controllers we manage */
88 LIST_HEAD (usb_bus_list);
89 EXPORT_SYMBOL_GPL (usb_bus_list);
90
91 /* used when allocating bus numbers */
92 #define USB_MAXBUS              64
93 struct usb_busmap {
94         unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
95 };
96 static struct usb_busmap busmap;
97
98 /* used when updating list of hcds */
99 DEFINE_MUTEX(usb_bus_list_lock);        /* exported only for usbfs */
100 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
101
102 /* used for controlling access to virtual root hubs */
103 static DEFINE_SPINLOCK(hcd_root_hub_lock);
104
105 /* used when updating an endpoint's URB list */
106 static DEFINE_SPINLOCK(hcd_urb_list_lock);
107
108 /* used to protect against unlinking URBs after the device is gone */
109 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
110
111 /* wait queue for synchronous unlinks */
112 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
113
114 static inline int is_root_hub(struct usb_device *udev)
115 {
116         return (udev->parent == NULL);
117 }
118
119 /*-------------------------------------------------------------------------*/
120
121 /*
122  * Sharable chunks of root hub code.
123  */
124
125 /*-------------------------------------------------------------------------*/
126
127 #define KERNEL_REL      ((LINUX_VERSION_CODE >> 16) & 0x0ff)
128 #define KERNEL_VER      ((LINUX_VERSION_CODE >> 8) & 0x0ff)
129
130 /* usb 3.0 root hub device descriptor */
131 static const u8 usb3_rh_dev_descriptor[18] = {
132         0x12,       /*  __u8  bLength; */
133         0x01,       /*  __u8  bDescriptorType; Device */
134         0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
135
136         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
137         0x00,       /*  __u8  bDeviceSubClass; */
138         0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
139         0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
140
141         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
142         0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
143         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
144
145         0x03,       /*  __u8  iManufacturer; */
146         0x02,       /*  __u8  iProduct; */
147         0x01,       /*  __u8  iSerialNumber; */
148         0x01        /*  __u8  bNumConfigurations; */
149 };
150
151 /* usb 2.0 root hub device descriptor */
152 static const u8 usb2_rh_dev_descriptor [18] = {
153         0x12,       /*  __u8  bLength; */
154         0x01,       /*  __u8  bDescriptorType; Device */
155         0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
156
157         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
158         0x00,       /*  __u8  bDeviceSubClass; */
159         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
160         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
161
162         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
163         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
164         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
165
166         0x03,       /*  __u8  iManufacturer; */
167         0x02,       /*  __u8  iProduct; */
168         0x01,       /*  __u8  iSerialNumber; */
169         0x01        /*  __u8  bNumConfigurations; */
170 };
171
172 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
173
174 /* usb 1.1 root hub device descriptor */
175 static const u8 usb11_rh_dev_descriptor [18] = {
176         0x12,       /*  __u8  bLength; */
177         0x01,       /*  __u8  bDescriptorType; Device */
178         0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
179
180         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
181         0x00,       /*  __u8  bDeviceSubClass; */
182         0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
183         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
184
185         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
186         0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
187         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
188
189         0x03,       /*  __u8  iManufacturer; */
190         0x02,       /*  __u8  iProduct; */
191         0x01,       /*  __u8  iSerialNumber; */
192         0x01        /*  __u8  bNumConfigurations; */
193 };
194
195
196 /*-------------------------------------------------------------------------*/
197
198 /* Configuration descriptors for our root hubs */
199
200 static const u8 fs_rh_config_descriptor [] = {
201
202         /* one configuration */
203         0x09,       /*  __u8  bLength; */
204         0x02,       /*  __u8  bDescriptorType; Configuration */
205         0x19, 0x00, /*  __le16 wTotalLength; */
206         0x01,       /*  __u8  bNumInterfaces; (1) */
207         0x01,       /*  __u8  bConfigurationValue; */
208         0x00,       /*  __u8  iConfiguration; */
209         0xc0,       /*  __u8  bmAttributes; 
210                                  Bit 7: must be set,
211                                      6: Self-powered,
212                                      5: Remote wakeup,
213                                      4..0: resvd */
214         0x00,       /*  __u8  MaxPower; */
215       
216         /* USB 1.1:
217          * USB 2.0, single TT organization (mandatory):
218          *      one interface, protocol 0
219          *
220          * USB 2.0, multiple TT organization (optional):
221          *      two interfaces, protocols 1 (like single TT)
222          *      and 2 (multiple TT mode) ... config is
223          *      sometimes settable
224          *      NOT IMPLEMENTED
225          */
226
227         /* one interface */
228         0x09,       /*  __u8  if_bLength; */
229         0x04,       /*  __u8  if_bDescriptorType; Interface */
230         0x00,       /*  __u8  if_bInterfaceNumber; */
231         0x00,       /*  __u8  if_bAlternateSetting; */
232         0x01,       /*  __u8  if_bNumEndpoints; */
233         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
234         0x00,       /*  __u8  if_bInterfaceSubClass; */
235         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
236         0x00,       /*  __u8  if_iInterface; */
237      
238         /* one endpoint (status change endpoint) */
239         0x07,       /*  __u8  ep_bLength; */
240         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
241         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
242         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
243         0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
244         0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
245 };
246
247 static const u8 hs_rh_config_descriptor [] = {
248
249         /* one configuration */
250         0x09,       /*  __u8  bLength; */
251         0x02,       /*  __u8  bDescriptorType; Configuration */
252         0x19, 0x00, /*  __le16 wTotalLength; */
253         0x01,       /*  __u8  bNumInterfaces; (1) */
254         0x01,       /*  __u8  bConfigurationValue; */
255         0x00,       /*  __u8  iConfiguration; */
256         0xc0,       /*  __u8  bmAttributes; 
257                                  Bit 7: must be set,
258                                      6: Self-powered,
259                                      5: Remote wakeup,
260                                      4..0: resvd */
261         0x00,       /*  __u8  MaxPower; */
262       
263         /* USB 1.1:
264          * USB 2.0, single TT organization (mandatory):
265          *      one interface, protocol 0
266          *
267          * USB 2.0, multiple TT organization (optional):
268          *      two interfaces, protocols 1 (like single TT)
269          *      and 2 (multiple TT mode) ... config is
270          *      sometimes settable
271          *      NOT IMPLEMENTED
272          */
273
274         /* one interface */
275         0x09,       /*  __u8  if_bLength; */
276         0x04,       /*  __u8  if_bDescriptorType; Interface */
277         0x00,       /*  __u8  if_bInterfaceNumber; */
278         0x00,       /*  __u8  if_bAlternateSetting; */
279         0x01,       /*  __u8  if_bNumEndpoints; */
280         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
281         0x00,       /*  __u8  if_bInterfaceSubClass; */
282         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
283         0x00,       /*  __u8  if_iInterface; */
284      
285         /* one endpoint (status change endpoint) */
286         0x07,       /*  __u8  ep_bLength; */
287         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
288         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
289         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
290                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
291                      * see hub.c:hub_configure() for details. */
292         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
293         0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
294 };
295
296 static const u8 ss_rh_config_descriptor[] = {
297         /* one configuration */
298         0x09,       /*  __u8  bLength; */
299         0x02,       /*  __u8  bDescriptorType; Configuration */
300         0x1f, 0x00, /*  __le16 wTotalLength; */
301         0x01,       /*  __u8  bNumInterfaces; (1) */
302         0x01,       /*  __u8  bConfigurationValue; */
303         0x00,       /*  __u8  iConfiguration; */
304         0xc0,       /*  __u8  bmAttributes;
305                                  Bit 7: must be set,
306                                      6: Self-powered,
307                                      5: Remote wakeup,
308                                      4..0: resvd */
309         0x00,       /*  __u8  MaxPower; */
310
311         /* one interface */
312         0x09,       /*  __u8  if_bLength; */
313         0x04,       /*  __u8  if_bDescriptorType; Interface */
314         0x00,       /*  __u8  if_bInterfaceNumber; */
315         0x00,       /*  __u8  if_bAlternateSetting; */
316         0x01,       /*  __u8  if_bNumEndpoints; */
317         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
318         0x00,       /*  __u8  if_bInterfaceSubClass; */
319         0x00,       /*  __u8  if_bInterfaceProtocol; */
320         0x00,       /*  __u8  if_iInterface; */
321
322         /* one endpoint (status change endpoint) */
323         0x07,       /*  __u8  ep_bLength; */
324         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
325         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
326         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
327                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
328                      * see hub.c:hub_configure() for details. */
329         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
330         0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
331
332         /* one SuperSpeed endpoint companion descriptor */
333         0x06,        /* __u8 ss_bLength */
334         0x30,        /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
335         0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
336         0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
337         0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
338 };
339
340 /* authorized_default behaviour:
341  * -1 is authorized for all devices except wireless (old behaviour)
342  * 0 is unauthorized for all devices
343  * 1 is authorized for all devices
344  */
345 static int authorized_default = -1;
346 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
347 MODULE_PARM_DESC(authorized_default,
348                 "Default USB device authorization: 0 is not authorized, 1 is "
349                 "authorized, -1 is authorized except for wireless USB (default, "
350                 "old behaviour");
351 /*-------------------------------------------------------------------------*/
352
353 /**
354  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
355  * @s: Null-terminated ASCII (actually ISO-8859-1) string
356  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
357  * @len: Length (in bytes; may be odd) of descriptor buffer.
358  *
359  * The return value is the number of bytes filled in: 2 + 2*strlen(s) or
360  * buflen, whichever is less.
361  *
362  * USB String descriptors can contain at most 126 characters; input
363  * strings longer than that are truncated.
364  */
365 static unsigned
366 ascii2desc(char const *s, u8 *buf, unsigned len)
367 {
368         unsigned n, t = 2 + 2*strlen(s);
369
370         if (t > 254)
371                 t = 254;        /* Longest possible UTF string descriptor */
372         if (len > t)
373                 len = t;
374
375         t += USB_DT_STRING << 8;        /* Now t is first 16 bits to store */
376
377         n = len;
378         while (n--) {
379                 *buf++ = t;
380                 if (!n--)
381                         break;
382                 *buf++ = t >> 8;
383                 t = (unsigned char)*s++;
384         }
385         return len;
386 }
387
388 /**
389  * rh_string() - provides string descriptors for root hub
390  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
391  * @hcd: the host controller for this root hub
392  * @data: buffer for output packet
393  * @len: length of the provided buffer
394  *
395  * Produces either a manufacturer, product or serial number string for the
396  * virtual root hub device.
397  * Returns the number of bytes filled in: the length of the descriptor or
398  * of the provided buffer, whichever is less.
399  */
400 static unsigned
401 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
402 {
403         char buf[100];
404         char const *s;
405         static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
406
407         // language ids
408         switch (id) {
409         case 0:
410                 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
411                 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
412                 if (len > 4)
413                         len = 4;
414                 memcpy(data, langids, len);
415                 return len;
416         case 1:
417                 /* Serial number */
418                 s = hcd->self.bus_name;
419                 break;
420         case 2:
421                 /* Product name */
422                 s = hcd->product_desc;
423                 break;
424         case 3:
425                 /* Manufacturer */
426                 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
427                         init_utsname()->release, hcd->driver->description);
428                 s = buf;
429                 break;
430         default:
431                 /* Can't happen; caller guarantees it */
432                 return 0;
433         }
434
435         return ascii2desc(s, data, len);
436 }
437
438
439 /* Root hub control transfers execute synchronously */
440 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
441 {
442         struct usb_ctrlrequest *cmd;
443         u16             typeReq, wValue, wIndex, wLength;
444         u8              *ubuf = urb->transfer_buffer;
445         /*
446          * tbuf should be as big as the BOS descriptor and
447          * the USB hub descriptor.
448          */
449         u8              tbuf[USB_DT_BOS_SIZE + USB_DT_USB_SS_CAP_SIZE]
450                 __attribute__((aligned(4)));
451         const u8        *bufp = tbuf;
452         unsigned        len = 0;
453         int             status;
454         u8              patch_wakeup = 0;
455         u8              patch_protocol = 0;
456
457         might_sleep();
458
459         spin_lock_irq(&hcd_root_hub_lock);
460         status = usb_hcd_link_urb_to_ep(hcd, urb);
461         spin_unlock_irq(&hcd_root_hub_lock);
462         if (status)
463                 return status;
464         urb->hcpriv = hcd;      /* Indicate it's queued */
465
466         cmd = (struct usb_ctrlrequest *) urb->setup_packet;
467         typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
468         wValue   = le16_to_cpu (cmd->wValue);
469         wIndex   = le16_to_cpu (cmd->wIndex);
470         wLength  = le16_to_cpu (cmd->wLength);
471
472         if (wLength > urb->transfer_buffer_length)
473                 goto error;
474
475         urb->actual_length = 0;
476         switch (typeReq) {
477
478         /* DEVICE REQUESTS */
479
480         /* The root hub's remote wakeup enable bit is implemented using
481          * driver model wakeup flags.  If this system supports wakeup
482          * through USB, userspace may change the default "allow wakeup"
483          * policy through sysfs or these calls.
484          *
485          * Most root hubs support wakeup from downstream devices, for
486          * runtime power management (disabling USB clocks and reducing
487          * VBUS power usage).  However, not all of them do so; silicon,
488          * board, and BIOS bugs here are not uncommon, so these can't
489          * be treated quite like external hubs.
490          *
491          * Likewise, not all root hubs will pass wakeup events upstream,
492          * to wake up the whole system.  So don't assume root hub and
493          * controller capabilities are identical.
494          */
495
496         case DeviceRequest | USB_REQ_GET_STATUS:
497                 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
498                                         << USB_DEVICE_REMOTE_WAKEUP)
499                                 | (1 << USB_DEVICE_SELF_POWERED);
500                 tbuf [1] = 0;
501                 len = 2;
502                 break;
503         case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
504                 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
505                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
506                 else
507                         goto error;
508                 break;
509         case DeviceOutRequest | USB_REQ_SET_FEATURE:
510                 if (device_can_wakeup(&hcd->self.root_hub->dev)
511                                 && wValue == USB_DEVICE_REMOTE_WAKEUP)
512                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
513                 else
514                         goto error;
515                 break;
516         case DeviceRequest | USB_REQ_GET_CONFIGURATION:
517                 tbuf [0] = 1;
518                 len = 1;
519                         /* FALLTHROUGH */
520         case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
521                 break;
522         case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
523                 switch (wValue & 0xff00) {
524                 case USB_DT_DEVICE << 8:
525                         switch (hcd->speed) {
526                         case HCD_USB3:
527                                 bufp = usb3_rh_dev_descriptor;
528                                 break;
529                         case HCD_USB2:
530                                 bufp = usb2_rh_dev_descriptor;
531                                 break;
532                         case HCD_USB11:
533                                 bufp = usb11_rh_dev_descriptor;
534                                 break;
535                         default:
536                                 goto error;
537                         }
538                         len = 18;
539                         if (hcd->has_tt)
540                                 patch_protocol = 1;
541                         break;
542                 case USB_DT_CONFIG << 8:
543                         switch (hcd->speed) {
544                         case HCD_USB3:
545                                 bufp = ss_rh_config_descriptor;
546                                 len = sizeof ss_rh_config_descriptor;
547                                 break;
548                         case HCD_USB2:
549                                 bufp = hs_rh_config_descriptor;
550                                 len = sizeof hs_rh_config_descriptor;
551                                 break;
552                         case HCD_USB11:
553                                 bufp = fs_rh_config_descriptor;
554                                 len = sizeof fs_rh_config_descriptor;
555                                 break;
556                         default:
557                                 goto error;
558                         }
559                         if (device_can_wakeup(&hcd->self.root_hub->dev))
560                                 patch_wakeup = 1;
561                         break;
562                 case USB_DT_STRING << 8:
563                         if ((wValue & 0xff) < 4)
564                                 urb->actual_length = rh_string(wValue & 0xff,
565                                                 hcd, ubuf, wLength);
566                         else /* unsupported IDs --> "protocol stall" */
567                                 goto error;
568                         break;
569                 case USB_DT_BOS << 8:
570                         goto nongeneric;
571                 default:
572                         goto error;
573                 }
574                 break;
575         case DeviceRequest | USB_REQ_GET_INTERFACE:
576                 tbuf [0] = 0;
577                 len = 1;
578                         /* FALLTHROUGH */
579         case DeviceOutRequest | USB_REQ_SET_INTERFACE:
580                 break;
581         case DeviceOutRequest | USB_REQ_SET_ADDRESS:
582                 // wValue == urb->dev->devaddr
583                 dev_dbg (hcd->self.controller, "root hub device address %d\n",
584                         wValue);
585                 break;
586
587         /* INTERFACE REQUESTS (no defined feature/status flags) */
588
589         /* ENDPOINT REQUESTS */
590
591         case EndpointRequest | USB_REQ_GET_STATUS:
592                 // ENDPOINT_HALT flag
593                 tbuf [0] = 0;
594                 tbuf [1] = 0;
595                 len = 2;
596                         /* FALLTHROUGH */
597         case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
598         case EndpointOutRequest | USB_REQ_SET_FEATURE:
599                 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
600                 break;
601
602         /* CLASS REQUESTS (and errors) */
603
604         default:
605 nongeneric:
606                 /* non-generic request */
607                 switch (typeReq) {
608                 case GetHubStatus:
609                 case GetPortStatus:
610                         len = 4;
611                         break;
612                 case GetHubDescriptor:
613                         len = sizeof (struct usb_hub_descriptor);
614                         break;
615                 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
616                         /* len is returned by hub_control */
617                         break;
618                 }
619                 status = hcd->driver->hub_control (hcd,
620                         typeReq, wValue, wIndex,
621                         tbuf, wLength);
622                 break;
623 error:
624                 /* "protocol stall" on error */
625                 status = -EPIPE;
626         }
627
628         if (status < 0) {
629                 len = 0;
630                 if (status != -EPIPE) {
631                         dev_dbg (hcd->self.controller,
632                                 "CTRL: TypeReq=0x%x val=0x%x "
633                                 "idx=0x%x len=%d ==> %d\n",
634                                 typeReq, wValue, wIndex,
635                                 wLength, status);
636                 }
637         } else if (status > 0) {
638                 /* hub_control may return the length of data copied. */
639                 len = status;
640                 status = 0;
641         }
642         if (len) {
643                 if (urb->transfer_buffer_length < len)
644                         len = urb->transfer_buffer_length;
645                 urb->actual_length = len;
646                 // always USB_DIR_IN, toward host
647                 memcpy (ubuf, bufp, len);
648
649                 /* report whether RH hardware supports remote wakeup */
650                 if (patch_wakeup &&
651                                 len > offsetof (struct usb_config_descriptor,
652                                                 bmAttributes))
653                         ((struct usb_config_descriptor *)ubuf)->bmAttributes
654                                 |= USB_CONFIG_ATT_WAKEUP;
655
656                 /* report whether RH hardware has an integrated TT */
657                 if (patch_protocol &&
658                                 len > offsetof(struct usb_device_descriptor,
659                                                 bDeviceProtocol))
660                         ((struct usb_device_descriptor *) ubuf)->
661                                 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
662         }
663
664         /* any errors get returned through the urb completion */
665         spin_lock_irq(&hcd_root_hub_lock);
666         usb_hcd_unlink_urb_from_ep(hcd, urb);
667
668         /* This peculiar use of spinlocks echoes what real HC drivers do.
669          * Avoiding calls to local_irq_disable/enable makes the code
670          * RT-friendly.
671          */
672         spin_unlock(&hcd_root_hub_lock);
673         usb_hcd_giveback_urb(hcd, urb, status);
674         spin_lock(&hcd_root_hub_lock);
675
676         spin_unlock_irq(&hcd_root_hub_lock);
677         return 0;
678 }
679
680 /*-------------------------------------------------------------------------*/
681
682 /*
683  * Root Hub interrupt transfers are polled using a timer if the
684  * driver requests it; otherwise the driver is responsible for
685  * calling usb_hcd_poll_rh_status() when an event occurs.
686  *
687  * Completions are called in_interrupt(), but they may or may not
688  * be in_irq().
689  */
690 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
691 {
692         struct urb      *urb;
693         int             length;
694         unsigned long   flags;
695         char            buffer[6];      /* Any root hubs with > 31 ports? */
696
697         if (unlikely(!hcd->rh_pollable))
698                 return;
699         if (!hcd->uses_new_polling && !hcd->status_urb)
700                 return;
701
702         length = hcd->driver->hub_status_data(hcd, buffer);
703         if (length > 0) {
704
705                 /* try to complete the status urb */
706                 spin_lock_irqsave(&hcd_root_hub_lock, flags);
707                 urb = hcd->status_urb;
708                 if (urb) {
709                         clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
710                         hcd->status_urb = NULL;
711                         urb->actual_length = length;
712                         memcpy(urb->transfer_buffer, buffer, length);
713
714                         usb_hcd_unlink_urb_from_ep(hcd, urb);
715                         spin_unlock(&hcd_root_hub_lock);
716                         usb_hcd_giveback_urb(hcd, urb, 0);
717                         spin_lock(&hcd_root_hub_lock);
718                 } else {
719                         length = 0;
720                         set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
721                 }
722                 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
723         }
724
725         /* The USB 2.0 spec says 256 ms.  This is close enough and won't
726          * exceed that limit if HZ is 100. The math is more clunky than
727          * maybe expected, this is to make sure that all timers for USB devices
728          * fire at the same time to give the CPU a break in between */
729         if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
730                         (length == 0 && hcd->status_urb != NULL))
731                 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
732 }
733 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
734
735 /* timer callback */
736 static void rh_timer_func (unsigned long _hcd)
737 {
738         usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
739 }
740
741 /*-------------------------------------------------------------------------*/
742
743 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
744 {
745         int             retval;
746         unsigned long   flags;
747         unsigned        len = 1 + (urb->dev->maxchild / 8);
748
749         spin_lock_irqsave (&hcd_root_hub_lock, flags);
750         if (hcd->status_urb || urb->transfer_buffer_length < len) {
751                 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
752                 retval = -EINVAL;
753                 goto done;
754         }
755
756         retval = usb_hcd_link_urb_to_ep(hcd, urb);
757         if (retval)
758                 goto done;
759
760         hcd->status_urb = urb;
761         urb->hcpriv = hcd;      /* indicate it's queued */
762         if (!hcd->uses_new_polling)
763                 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
764
765         /* If a status change has already occurred, report it ASAP */
766         else if (HCD_POLL_PENDING(hcd))
767                 mod_timer(&hcd->rh_timer, jiffies);
768         retval = 0;
769  done:
770         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
771         return retval;
772 }
773
774 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
775 {
776         if (usb_endpoint_xfer_int(&urb->ep->desc))
777                 return rh_queue_status (hcd, urb);
778         if (usb_endpoint_xfer_control(&urb->ep->desc))
779                 return rh_call_control (hcd, urb);
780         return -EINVAL;
781 }
782
783 /*-------------------------------------------------------------------------*/
784
785 /* Unlinks of root-hub control URBs are legal, but they don't do anything
786  * since these URBs always execute synchronously.
787  */
788 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
789 {
790         unsigned long   flags;
791         int             rc;
792
793         spin_lock_irqsave(&hcd_root_hub_lock, flags);
794         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
795         if (rc)
796                 goto done;
797
798         if (usb_endpoint_num(&urb->ep->desc) == 0) {    /* Control URB */
799                 ;       /* Do nothing */
800
801         } else {                                /* Status URB */
802                 if (!hcd->uses_new_polling)
803                         del_timer (&hcd->rh_timer);
804                 if (urb == hcd->status_urb) {
805                         hcd->status_urb = NULL;
806                         usb_hcd_unlink_urb_from_ep(hcd, urb);
807
808                         spin_unlock(&hcd_root_hub_lock);
809                         usb_hcd_giveback_urb(hcd, urb, status);
810                         spin_lock(&hcd_root_hub_lock);
811                 }
812         }
813  done:
814         spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
815         return rc;
816 }
817
818
819
820 /*
821  * Show & store the current value of authorized_default
822  */
823 static ssize_t usb_host_authorized_default_show(struct device *dev,
824                                                 struct device_attribute *attr,
825                                                 char *buf)
826 {
827         struct usb_device *rh_usb_dev = to_usb_device(dev);
828         struct usb_bus *usb_bus = rh_usb_dev->bus;
829         struct usb_hcd *usb_hcd;
830
831         if (usb_bus == NULL)    /* FIXME: not sure if this case is possible */
832                 return -ENODEV;
833         usb_hcd = bus_to_hcd(usb_bus);
834         return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
835 }
836
837 static ssize_t usb_host_authorized_default_store(struct device *dev,
838                                                  struct device_attribute *attr,
839                                                  const char *buf, size_t size)
840 {
841         ssize_t result;
842         unsigned val;
843         struct usb_device *rh_usb_dev = to_usb_device(dev);
844         struct usb_bus *usb_bus = rh_usb_dev->bus;
845         struct usb_hcd *usb_hcd;
846
847         if (usb_bus == NULL)    /* FIXME: not sure if this case is possible */
848                 return -ENODEV;
849         usb_hcd = bus_to_hcd(usb_bus);
850         result = sscanf(buf, "%u\n", &val);
851         if (result == 1) {
852                 usb_hcd->authorized_default = val? 1 : 0;
853                 result = size;
854         }
855         else
856                 result = -EINVAL;
857         return result;
858 }
859
860 static DEVICE_ATTR(authorized_default, 0644,
861             usb_host_authorized_default_show,
862             usb_host_authorized_default_store);
863
864
865 /* Group all the USB bus attributes */
866 static struct attribute *usb_bus_attrs[] = {
867                 &dev_attr_authorized_default.attr,
868                 NULL,
869 };
870
871 static struct attribute_group usb_bus_attr_group = {
872         .name = NULL,   /* we want them in the same directory */
873         .attrs = usb_bus_attrs,
874 };
875
876
877
878 /*-------------------------------------------------------------------------*/
879
880 /**
881  * usb_bus_init - shared initialization code
882  * @bus: the bus structure being initialized
883  *
884  * This code is used to initialize a usb_bus structure, memory for which is
885  * separately managed.
886  */
887 static void usb_bus_init (struct usb_bus *bus)
888 {
889         memset (&bus->devmap, 0, sizeof(struct usb_devmap));
890
891         bus->devnum_next = 1;
892
893         bus->root_hub = NULL;
894         bus->busnum = -1;
895         bus->bandwidth_allocated = 0;
896         bus->bandwidth_int_reqs  = 0;
897         bus->bandwidth_isoc_reqs = 0;
898
899         INIT_LIST_HEAD (&bus->bus_list);
900 }
901
902 /*-------------------------------------------------------------------------*/
903
904 /**
905  * usb_register_bus - registers the USB host controller with the usb core
906  * @bus: pointer to the bus to register
907  * Context: !in_interrupt()
908  *
909  * Assigns a bus number, and links the controller into usbcore data
910  * structures so that it can be seen by scanning the bus list.
911  */
912 static int usb_register_bus(struct usb_bus *bus)
913 {
914         int result = -E2BIG;
915         int busnum;
916
917         mutex_lock(&usb_bus_list_lock);
918         busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
919         if (busnum >= USB_MAXBUS) {
920                 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
921                 goto error_find_busnum;
922         }
923         set_bit (busnum, busmap.busmap);
924         bus->busnum = busnum;
925
926         /* Add it to the local list of buses */
927         list_add (&bus->bus_list, &usb_bus_list);
928         mutex_unlock(&usb_bus_list_lock);
929
930         usb_notify_add_bus(bus);
931
932         dev_info (bus->controller, "new USB bus registered, assigned bus "
933                   "number %d\n", bus->busnum);
934         return 0;
935
936 error_find_busnum:
937         mutex_unlock(&usb_bus_list_lock);
938         return result;
939 }
940
941 /**
942  * usb_deregister_bus - deregisters the USB host controller
943  * @bus: pointer to the bus to deregister
944  * Context: !in_interrupt()
945  *
946  * Recycles the bus number, and unlinks the controller from usbcore data
947  * structures so that it won't be seen by scanning the bus list.
948  */
949 static void usb_deregister_bus (struct usb_bus *bus)
950 {
951         dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
952
953         /*
954          * NOTE: make sure that all the devices are removed by the
955          * controller code, as well as having it call this when cleaning
956          * itself up
957          */
958         mutex_lock(&usb_bus_list_lock);
959         list_del (&bus->bus_list);
960         mutex_unlock(&usb_bus_list_lock);
961
962         usb_notify_remove_bus(bus);
963
964         clear_bit (bus->busnum, busmap.busmap);
965 }
966
967 /**
968  * register_root_hub - called by usb_add_hcd() to register a root hub
969  * @hcd: host controller for this root hub
970  *
971  * This function registers the root hub with the USB subsystem.  It sets up
972  * the device properly in the device tree and then calls usb_new_device()
973  * to register the usb device.  It also assigns the root hub's USB address
974  * (always 1).
975  */
976 static int register_root_hub(struct usb_hcd *hcd)
977 {
978         struct device *parent_dev = hcd->self.controller;
979         struct usb_device *usb_dev = hcd->self.root_hub;
980         const int devnum = 1;
981         int retval;
982
983         usb_dev->devnum = devnum;
984         usb_dev->bus->devnum_next = devnum + 1;
985         memset (&usb_dev->bus->devmap.devicemap, 0,
986                         sizeof usb_dev->bus->devmap.devicemap);
987         set_bit (devnum, usb_dev->bus->devmap.devicemap);
988         usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
989
990         mutex_lock(&usb_bus_list_lock);
991
992         usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
993         retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
994         if (retval != sizeof usb_dev->descriptor) {
995                 mutex_unlock(&usb_bus_list_lock);
996                 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
997                                 dev_name(&usb_dev->dev), retval);
998                 return (retval < 0) ? retval : -EMSGSIZE;
999         }
1000         if (usb_dev->speed == USB_SPEED_SUPER) {
1001                 retval = usb_get_bos_descriptor(usb_dev);
1002                 if (retval < 0) {
1003                         mutex_unlock(&usb_bus_list_lock);
1004                         dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1005                                         dev_name(&usb_dev->dev), retval);
1006                         return retval;
1007                 }
1008         }
1009
1010         retval = usb_new_device (usb_dev);
1011         if (retval) {
1012                 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1013                                 dev_name(&usb_dev->dev), retval);
1014         }
1015         mutex_unlock(&usb_bus_list_lock);
1016
1017         if (retval == 0) {
1018                 spin_lock_irq (&hcd_root_hub_lock);
1019                 hcd->rh_registered = 1;
1020                 spin_unlock_irq (&hcd_root_hub_lock);
1021
1022                 /* Did the HC die before the root hub was registered? */
1023                 if (HCD_DEAD(hcd))
1024                         usb_hc_died (hcd);      /* This time clean up */
1025         }
1026
1027         return retval;
1028 }
1029
1030
1031 /*-------------------------------------------------------------------------*/
1032
1033 /**
1034  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1035  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1036  * @is_input: true iff the transaction sends data to the host
1037  * @isoc: true for isochronous transactions, false for interrupt ones
1038  * @bytecount: how many bytes in the transaction.
1039  *
1040  * Returns approximate bus time in nanoseconds for a periodic transaction.
1041  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1042  * scheduled in software, this function is only used for such scheduling.
1043  */
1044 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1045 {
1046         unsigned long   tmp;
1047
1048         switch (speed) {
1049         case USB_SPEED_LOW:     /* INTR only */
1050                 if (is_input) {
1051                         tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1052                         return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1053                 } else {
1054                         tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1055                         return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1056                 }
1057         case USB_SPEED_FULL:    /* ISOC or INTR */
1058                 if (isoc) {
1059                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1060                         return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
1061                 } else {
1062                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1063                         return (9107L + BW_HOST_DELAY + tmp);
1064                 }
1065         case USB_SPEED_HIGH:    /* ISOC or INTR */
1066                 // FIXME adjust for input vs output
1067                 if (isoc)
1068                         tmp = HS_NSECS_ISO (bytecount);
1069                 else
1070                         tmp = HS_NSECS (bytecount);
1071                 return tmp;
1072         default:
1073                 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1074                 return -1;
1075         }
1076 }
1077 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1078
1079
1080 /*-------------------------------------------------------------------------*/
1081
1082 /*
1083  * Generic HC operations.
1084  */
1085
1086 /*-------------------------------------------------------------------------*/
1087
1088 /**
1089  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1090  * @hcd: host controller to which @urb was submitted
1091  * @urb: URB being submitted
1092  *
1093  * Host controller drivers should call this routine in their enqueue()
1094  * method.  The HCD's private spinlock must be held and interrupts must
1095  * be disabled.  The actions carried out here are required for URB
1096  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1097  *
1098  * Returns 0 for no error, otherwise a negative error code (in which case
1099  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1100  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1101  * the private spinlock and returning.
1102  */
1103 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1104 {
1105         int             rc = 0;
1106
1107         spin_lock(&hcd_urb_list_lock);
1108
1109         /* Check that the URB isn't being killed */
1110         if (unlikely(atomic_read(&urb->reject))) {
1111                 rc = -EPERM;
1112                 goto done;
1113         }
1114
1115         if (unlikely(!urb->ep->enabled)) {
1116                 rc = -ENOENT;
1117                 goto done;
1118         }
1119
1120         if (unlikely(!urb->dev->can_submit)) {
1121                 rc = -EHOSTUNREACH;
1122                 goto done;
1123         }
1124
1125         /*
1126          * Check the host controller's state and add the URB to the
1127          * endpoint's queue.
1128          */
1129         if (HCD_RH_RUNNING(hcd)) {
1130                 urb->unlinked = 0;
1131                 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1132         } else {
1133                 rc = -ESHUTDOWN;
1134                 goto done;
1135         }
1136  done:
1137         spin_unlock(&hcd_urb_list_lock);
1138         return rc;
1139 }
1140 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1141
1142 /**
1143  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1144  * @hcd: host controller to which @urb was submitted
1145  * @urb: URB being checked for unlinkability
1146  * @status: error code to store in @urb if the unlink succeeds
1147  *
1148  * Host controller drivers should call this routine in their dequeue()
1149  * method.  The HCD's private spinlock must be held and interrupts must
1150  * be disabled.  The actions carried out here are required for making
1151  * sure than an unlink is valid.
1152  *
1153  * Returns 0 for no error, otherwise a negative error code (in which case
1154  * the dequeue() method must fail).  The possible error codes are:
1155  *
1156  *      -EIDRM: @urb was not submitted or has already completed.
1157  *              The completion function may not have been called yet.
1158  *
1159  *      -EBUSY: @urb has already been unlinked.
1160  */
1161 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1162                 int status)
1163 {
1164         struct list_head        *tmp;
1165
1166         /* insist the urb is still queued */
1167         list_for_each(tmp, &urb->ep->urb_list) {
1168                 if (tmp == &urb->urb_list)
1169                         break;
1170         }
1171         if (tmp != &urb->urb_list)
1172                 return -EIDRM;
1173
1174         /* Any status except -EINPROGRESS means something already started to
1175          * unlink this URB from the hardware.  So there's no more work to do.
1176          */
1177         if (urb->unlinked)
1178                 return -EBUSY;
1179         urb->unlinked = status;
1180         return 0;
1181 }
1182 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1183
1184 /**
1185  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1186  * @hcd: host controller to which @urb was submitted
1187  * @urb: URB being unlinked
1188  *
1189  * Host controller drivers should call this routine before calling
1190  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1191  * interrupts must be disabled.  The actions carried out here are required
1192  * for URB completion.
1193  */
1194 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1195 {
1196         /* clear all state linking urb to this dev (and hcd) */
1197         spin_lock(&hcd_urb_list_lock);
1198         list_del_init(&urb->urb_list);
1199         spin_unlock(&hcd_urb_list_lock);
1200 }
1201 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1202
1203 /*
1204  * Some usb host controllers can only perform dma using a small SRAM area.
1205  * The usb core itself is however optimized for host controllers that can dma
1206  * using regular system memory - like pci devices doing bus mastering.
1207  *
1208  * To support host controllers with limited dma capabilites we provide dma
1209  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1210  * For this to work properly the host controller code must first use the
1211  * function dma_declare_coherent_memory() to point out which memory area
1212  * that should be used for dma allocations.
1213  *
1214  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1215  * dma using dma_alloc_coherent() which in turn allocates from the memory
1216  * area pointed out with dma_declare_coherent_memory().
1217  *
1218  * So, to summarize...
1219  *
1220  * - We need "local" memory, canonical example being
1221  *   a small SRAM on a discrete controller being the
1222  *   only memory that the controller can read ...
1223  *   (a) "normal" kernel memory is no good, and
1224  *   (b) there's not enough to share
1225  *
1226  * - The only *portable* hook for such stuff in the
1227  *   DMA framework is dma_declare_coherent_memory()
1228  *
1229  * - So we use that, even though the primary requirement
1230  *   is that the memory be "local" (hence addressible
1231  *   by that device), not "coherent".
1232  *
1233  */
1234
1235 static int hcd_alloc_coherent(struct usb_bus *bus,
1236                               gfp_t mem_flags, dma_addr_t *dma_handle,
1237                               void **vaddr_handle, size_t size,
1238                               enum dma_data_direction dir)
1239 {
1240         unsigned char *vaddr;
1241
1242         if (*vaddr_handle == NULL) {
1243                 WARN_ON_ONCE(1);
1244                 return -EFAULT;
1245         }
1246
1247         vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1248                                  mem_flags, dma_handle);
1249         if (!vaddr)
1250                 return -ENOMEM;
1251
1252         /*
1253          * Store the virtual address of the buffer at the end
1254          * of the allocated dma buffer. The size of the buffer
1255          * may be uneven so use unaligned functions instead
1256          * of just rounding up. It makes sense to optimize for
1257          * memory footprint over access speed since the amount
1258          * of memory available for dma may be limited.
1259          */
1260         put_unaligned((unsigned long)*vaddr_handle,
1261                       (unsigned long *)(vaddr + size));
1262
1263         if (dir == DMA_TO_DEVICE)
1264                 memcpy(vaddr, *vaddr_handle, size);
1265
1266         *vaddr_handle = vaddr;
1267         return 0;
1268 }
1269
1270 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1271                               void **vaddr_handle, size_t size,
1272                               enum dma_data_direction dir)
1273 {
1274         unsigned char *vaddr = *vaddr_handle;
1275
1276         vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1277
1278         if (dir == DMA_FROM_DEVICE)
1279                 memcpy(vaddr, *vaddr_handle, size);
1280
1281         hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1282
1283         *vaddr_handle = vaddr;
1284         *dma_handle = 0;
1285 }
1286
1287 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1288 {
1289         if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1290                 dma_unmap_single(hcd->self.controller,
1291                                 urb->setup_dma,
1292                                 sizeof(struct usb_ctrlrequest),
1293                                 DMA_TO_DEVICE);
1294         else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1295                 hcd_free_coherent(urb->dev->bus,
1296                                 &urb->setup_dma,
1297                                 (void **) &urb->setup_packet,
1298                                 sizeof(struct usb_ctrlrequest),
1299                                 DMA_TO_DEVICE);
1300
1301         /* Make it safe to call this routine more than once */
1302         urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1303 }
1304 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1305
1306 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1307 {
1308         if (hcd->driver->unmap_urb_for_dma)
1309                 hcd->driver->unmap_urb_for_dma(hcd, urb);
1310         else
1311                 usb_hcd_unmap_urb_for_dma(hcd, urb);
1312 }
1313
1314 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1315 {
1316         enum dma_data_direction dir;
1317
1318         usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1319
1320         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1321         if (urb->transfer_flags & URB_DMA_MAP_SG)
1322                 dma_unmap_sg(hcd->self.controller,
1323                                 urb->sg,
1324                                 urb->num_sgs,
1325                                 dir);
1326         else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1327                 dma_unmap_page(hcd->self.controller,
1328                                 urb->transfer_dma,
1329                                 urb->transfer_buffer_length,
1330                                 dir);
1331         else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1332                 dma_unmap_single(hcd->self.controller,
1333                                 urb->transfer_dma,
1334                                 urb->transfer_buffer_length,
1335                                 dir);
1336         else if (urb->transfer_flags & URB_MAP_LOCAL)
1337                 hcd_free_coherent(urb->dev->bus,
1338                                 &urb->transfer_dma,
1339                                 &urb->transfer_buffer,
1340                                 urb->transfer_buffer_length,
1341                                 dir);
1342
1343         /* Make it safe to call this routine more than once */
1344         urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1345                         URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1346 }
1347 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1348
1349 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1350                            gfp_t mem_flags)
1351 {
1352         if (hcd->driver->map_urb_for_dma)
1353                 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1354         else
1355                 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1356 }
1357
1358 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1359                             gfp_t mem_flags)
1360 {
1361         enum dma_data_direction dir;
1362         int ret = 0;
1363
1364         /* Map the URB's buffers for DMA access.
1365          * Lower level HCD code should use *_dma exclusively,
1366          * unless it uses pio or talks to another transport,
1367          * or uses the provided scatter gather list for bulk.
1368          */
1369
1370         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1371                 if (hcd->self.uses_pio_for_control)
1372                         return ret;
1373                 if (hcd->self.uses_dma) {
1374                         urb->setup_dma = dma_map_single(
1375                                         hcd->self.controller,
1376                                         urb->setup_packet,
1377                                         sizeof(struct usb_ctrlrequest),
1378                                         DMA_TO_DEVICE);
1379                         if (dma_mapping_error(hcd->self.controller,
1380                                                 urb->setup_dma))
1381                                 return -EAGAIN;
1382                         urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1383                 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1384                         ret = hcd_alloc_coherent(
1385                                         urb->dev->bus, mem_flags,
1386                                         &urb->setup_dma,
1387                                         (void **)&urb->setup_packet,
1388                                         sizeof(struct usb_ctrlrequest),
1389                                         DMA_TO_DEVICE);
1390                         if (ret)
1391                                 return ret;
1392                         urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1393                 }
1394         }
1395
1396         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1397         if (urb->transfer_buffer_length != 0
1398             && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1399                 if (hcd->self.uses_dma) {
1400                         if (urb->num_sgs) {
1401                                 int n = dma_map_sg(
1402                                                 hcd->self.controller,
1403                                                 urb->sg,
1404                                                 urb->num_sgs,
1405                                                 dir);
1406                                 if (n <= 0)
1407                                         ret = -EAGAIN;
1408                                 else
1409                                         urb->transfer_flags |= URB_DMA_MAP_SG;
1410                                 urb->num_mapped_sgs = n;
1411                                 if (n != urb->num_sgs)
1412                                         urb->transfer_flags |=
1413                                                         URB_DMA_SG_COMBINED;
1414                         } else if (urb->sg) {
1415                                 struct scatterlist *sg = urb->sg;
1416                                 urb->transfer_dma = dma_map_page(
1417                                                 hcd->self.controller,
1418                                                 sg_page(sg),
1419                                                 sg->offset,
1420                                                 urb->transfer_buffer_length,
1421                                                 dir);
1422                                 if (dma_mapping_error(hcd->self.controller,
1423                                                 urb->transfer_dma))
1424                                         ret = -EAGAIN;
1425                                 else
1426                                         urb->transfer_flags |= URB_DMA_MAP_PAGE;
1427                         } else {
1428                                 urb->transfer_dma = dma_map_single(
1429                                                 hcd->self.controller,
1430                                                 urb->transfer_buffer,
1431                                                 urb->transfer_buffer_length,
1432                                                 dir);
1433                                 if (dma_mapping_error(hcd->self.controller,
1434                                                 urb->transfer_dma))
1435                                         ret = -EAGAIN;
1436                                 else
1437                                         urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1438                         }
1439                 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1440                         ret = hcd_alloc_coherent(
1441                                         urb->dev->bus, mem_flags,
1442                                         &urb->transfer_dma,
1443                                         &urb->transfer_buffer,
1444                                         urb->transfer_buffer_length,
1445                                         dir);
1446                         if (ret == 0)
1447                                 urb->transfer_flags |= URB_MAP_LOCAL;
1448                 }
1449                 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1450                                 URB_SETUP_MAP_LOCAL)))
1451                         usb_hcd_unmap_urb_for_dma(hcd, urb);
1452         }
1453         return ret;
1454 }
1455 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1456
1457 /*-------------------------------------------------------------------------*/
1458
1459 /* may be called in any context with a valid urb->dev usecount
1460  * caller surrenders "ownership" of urb
1461  * expects usb_submit_urb() to have sanity checked and conditioned all
1462  * inputs in the urb
1463  */
1464 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1465 {
1466         int                     status;
1467         struct usb_hcd          *hcd = bus_to_hcd(urb->dev->bus);
1468
1469         /* increment urb's reference count as part of giving it to the HCD
1470          * (which will control it).  HCD guarantees that it either returns
1471          * an error or calls giveback(), but not both.
1472          */
1473         usb_get_urb(urb);
1474         atomic_inc(&urb->use_count);
1475         atomic_inc(&urb->dev->urbnum);
1476         usbmon_urb_submit(&hcd->self, urb);
1477
1478         /* NOTE requirements on root-hub callers (usbfs and the hub
1479          * driver, for now):  URBs' urb->transfer_buffer must be
1480          * valid and usb_buffer_{sync,unmap}() not be needed, since
1481          * they could clobber root hub response data.  Also, control
1482          * URBs must be submitted in process context with interrupts
1483          * enabled.
1484          */
1485
1486         if (is_root_hub(urb->dev)) {
1487                 status = rh_urb_enqueue(hcd, urb);
1488         } else {
1489                 status = map_urb_for_dma(hcd, urb, mem_flags);
1490                 if (likely(status == 0)) {
1491                         status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1492                         if (unlikely(status))
1493                                 unmap_urb_for_dma(hcd, urb);
1494                 }
1495         }
1496
1497         if (unlikely(status)) {
1498                 usbmon_urb_submit_error(&hcd->self, urb, status);
1499                 urb->hcpriv = NULL;
1500                 INIT_LIST_HEAD(&urb->urb_list);
1501                 atomic_dec(&urb->use_count);
1502                 atomic_dec(&urb->dev->urbnum);
1503                 if (atomic_read(&urb->reject))
1504                         wake_up(&usb_kill_urb_queue);
1505                 usb_put_urb(urb);
1506         }
1507         return status;
1508 }
1509
1510 /*-------------------------------------------------------------------------*/
1511
1512 /* this makes the hcd giveback() the urb more quickly, by kicking it
1513  * off hardware queues (which may take a while) and returning it as
1514  * soon as practical.  we've already set up the urb's return status,
1515  * but we can't know if the callback completed already.
1516  */
1517 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1518 {
1519         int             value;
1520
1521         if (is_root_hub(urb->dev))
1522                 value = usb_rh_urb_dequeue(hcd, urb, status);
1523         else {
1524
1525                 /* The only reason an HCD might fail this call is if
1526                  * it has not yet fully queued the urb to begin with.
1527                  * Such failures should be harmless. */
1528                 value = hcd->driver->urb_dequeue(hcd, urb, status);
1529         }
1530         return value;
1531 }
1532
1533 /*
1534  * called in any context
1535  *
1536  * caller guarantees urb won't be recycled till both unlink()
1537  * and the urb's completion function return
1538  */
1539 int usb_hcd_unlink_urb (struct urb *urb, int status)
1540 {
1541         struct usb_hcd          *hcd;
1542         int                     retval = -EIDRM;
1543         unsigned long           flags;
1544
1545         /* Prevent the device and bus from going away while
1546          * the unlink is carried out.  If they are already gone
1547          * then urb->use_count must be 0, since disconnected
1548          * devices can't have any active URBs.
1549          */
1550         spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1551         if (atomic_read(&urb->use_count) > 0) {
1552                 retval = 0;
1553                 usb_get_dev(urb->dev);
1554         }
1555         spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1556         if (retval == 0) {
1557                 hcd = bus_to_hcd(urb->dev->bus);
1558                 retval = unlink1(hcd, urb, status);
1559                 usb_put_dev(urb->dev);
1560         }
1561
1562         if (retval == 0)
1563                 retval = -EINPROGRESS;
1564         else if (retval != -EIDRM && retval != -EBUSY)
1565                 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1566                                 urb, retval);
1567         return retval;
1568 }
1569
1570 /*-------------------------------------------------------------------------*/
1571
1572 /**
1573  * usb_hcd_giveback_urb - return URB from HCD to device driver
1574  * @hcd: host controller returning the URB
1575  * @urb: urb being returned to the USB device driver.
1576  * @status: completion status code for the URB.
1577  * Context: in_interrupt()
1578  *
1579  * This hands the URB from HCD to its USB device driver, using its
1580  * completion function.  The HCD has freed all per-urb resources
1581  * (and is done using urb->hcpriv).  It also released all HCD locks;
1582  * the device driver won't cause problems if it frees, modifies,
1583  * or resubmits this URB.
1584  *
1585  * If @urb was unlinked, the value of @status will be overridden by
1586  * @urb->unlinked.  Erroneous short transfers are detected in case
1587  * the HCD hasn't checked for them.
1588  */
1589 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1590 {
1591         urb->hcpriv = NULL;
1592         if (unlikely(urb->unlinked))
1593                 status = urb->unlinked;
1594         else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1595                         urb->actual_length < urb->transfer_buffer_length &&
1596                         !status))
1597                 status = -EREMOTEIO;
1598
1599         unmap_urb_for_dma(hcd, urb);
1600         usbmon_urb_complete(&hcd->self, urb, status);
1601         usb_unanchor_urb(urb);
1602
1603         /* pass ownership to the completion handler */
1604         urb->status = status;
1605         urb->complete (urb);
1606         atomic_dec (&urb->use_count);
1607         if (unlikely(atomic_read(&urb->reject)))
1608                 wake_up (&usb_kill_urb_queue);
1609         usb_put_urb (urb);
1610 }
1611 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1612
1613 /*-------------------------------------------------------------------------*/
1614
1615 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1616  * queue to drain completely.  The caller must first insure that no more
1617  * URBs can be submitted for this endpoint.
1618  */
1619 void usb_hcd_flush_endpoint(struct usb_device *udev,
1620                 struct usb_host_endpoint *ep)
1621 {
1622         struct usb_hcd          *hcd;
1623         struct urb              *urb;
1624
1625         if (!ep)
1626                 return;
1627         might_sleep();
1628         hcd = bus_to_hcd(udev->bus);
1629
1630         /* No more submits can occur */
1631         spin_lock_irq(&hcd_urb_list_lock);
1632 rescan:
1633         list_for_each_entry (urb, &ep->urb_list, urb_list) {
1634                 int     is_in;
1635
1636                 if (urb->unlinked)
1637                         continue;
1638                 usb_get_urb (urb);
1639                 is_in = usb_urb_dir_in(urb);
1640                 spin_unlock(&hcd_urb_list_lock);
1641
1642                 /* kick hcd */
1643                 unlink1(hcd, urb, -ESHUTDOWN);
1644                 dev_dbg (hcd->self.controller,
1645                         "shutdown urb %p ep%d%s%s\n",
1646                         urb, usb_endpoint_num(&ep->desc),
1647                         is_in ? "in" : "out",
1648                         ({      char *s;
1649
1650                                  switch (usb_endpoint_type(&ep->desc)) {
1651                                  case USB_ENDPOINT_XFER_CONTROL:
1652                                         s = ""; break;
1653                                  case USB_ENDPOINT_XFER_BULK:
1654                                         s = "-bulk"; break;
1655                                  case USB_ENDPOINT_XFER_INT:
1656                                         s = "-intr"; break;
1657                                  default:
1658                                         s = "-iso"; break;
1659                                 };
1660                                 s;
1661                         }));
1662                 usb_put_urb (urb);
1663
1664                 /* list contents may have changed */
1665                 spin_lock(&hcd_urb_list_lock);
1666                 goto rescan;
1667         }
1668         spin_unlock_irq(&hcd_urb_list_lock);
1669
1670         /* Wait until the endpoint queue is completely empty */
1671         while (!list_empty (&ep->urb_list)) {
1672                 spin_lock_irq(&hcd_urb_list_lock);
1673
1674                 /* The list may have changed while we acquired the spinlock */
1675                 urb = NULL;
1676                 if (!list_empty (&ep->urb_list)) {
1677                         urb = list_entry (ep->urb_list.prev, struct urb,
1678                                         urb_list);
1679                         usb_get_urb (urb);
1680                 }
1681                 spin_unlock_irq(&hcd_urb_list_lock);
1682
1683                 if (urb) {
1684                         usb_kill_urb (urb);
1685                         usb_put_urb (urb);
1686                 }
1687         }
1688 }
1689
1690 /**
1691  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1692  *                              the bus bandwidth
1693  * @udev: target &usb_device
1694  * @new_config: new configuration to install
1695  * @cur_alt: the current alternate interface setting
1696  * @new_alt: alternate interface setting that is being installed
1697  *
1698  * To change configurations, pass in the new configuration in new_config,
1699  * and pass NULL for cur_alt and new_alt.
1700  *
1701  * To reset a device's configuration (put the device in the ADDRESSED state),
1702  * pass in NULL for new_config, cur_alt, and new_alt.
1703  *
1704  * To change alternate interface settings, pass in NULL for new_config,
1705  * pass in the current alternate interface setting in cur_alt,
1706  * and pass in the new alternate interface setting in new_alt.
1707  *
1708  * Returns an error if the requested bandwidth change exceeds the
1709  * bus bandwidth or host controller internal resources.
1710  */
1711 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1712                 struct usb_host_config *new_config,
1713                 struct usb_host_interface *cur_alt,
1714                 struct usb_host_interface *new_alt)
1715 {
1716         int num_intfs, i, j;
1717         struct usb_host_interface *alt = NULL;
1718         int ret = 0;
1719         struct usb_hcd *hcd;
1720         struct usb_host_endpoint *ep;
1721
1722         hcd = bus_to_hcd(udev->bus);
1723         if (!hcd->driver->check_bandwidth)
1724                 return 0;
1725
1726         /* Configuration is being removed - set configuration 0 */
1727         if (!new_config && !cur_alt) {
1728                 for (i = 1; i < 16; ++i) {
1729                         ep = udev->ep_out[i];
1730                         if (ep)
1731                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1732                         ep = udev->ep_in[i];
1733                         if (ep)
1734                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1735                 }
1736                 hcd->driver->check_bandwidth(hcd, udev);
1737                 return 0;
1738         }
1739         /* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1740          * each interface's alt setting 0 and ask the HCD to check the bandwidth
1741          * of the bus.  There will always be bandwidth for endpoint 0, so it's
1742          * ok to exclude it.
1743          */
1744         if (new_config) {
1745                 num_intfs = new_config->desc.bNumInterfaces;
1746                 /* Remove endpoints (except endpoint 0, which is always on the
1747                  * schedule) from the old config from the schedule
1748                  */
1749                 for (i = 1; i < 16; ++i) {
1750                         ep = udev->ep_out[i];
1751                         if (ep) {
1752                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1753                                 if (ret < 0)
1754                                         goto reset;
1755                         }
1756                         ep = udev->ep_in[i];
1757                         if (ep) {
1758                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1759                                 if (ret < 0)
1760                                         goto reset;
1761                         }
1762                 }
1763                 for (i = 0; i < num_intfs; ++i) {
1764                         struct usb_host_interface *first_alt;
1765                         int iface_num;
1766
1767                         first_alt = &new_config->intf_cache[i]->altsetting[0];
1768                         iface_num = first_alt->desc.bInterfaceNumber;
1769                         /* Set up endpoints for alternate interface setting 0 */
1770                         alt = usb_find_alt_setting(new_config, iface_num, 0);
1771                         if (!alt)
1772                                 /* No alt setting 0? Pick the first setting. */
1773                                 alt = first_alt;
1774
1775                         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1776                                 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1777                                 if (ret < 0)
1778                                         goto reset;
1779                         }
1780                 }
1781         }
1782         if (cur_alt && new_alt) {
1783                 struct usb_interface *iface = usb_ifnum_to_if(udev,
1784                                 cur_alt->desc.bInterfaceNumber);
1785
1786                 if (!iface)
1787                         return -EINVAL;
1788                 if (iface->resetting_device) {
1789                         /*
1790                          * The USB core just reset the device, so the xHCI host
1791                          * and the device will think alt setting 0 is installed.
1792                          * However, the USB core will pass in the alternate
1793                          * setting installed before the reset as cur_alt.  Dig
1794                          * out the alternate setting 0 structure, or the first
1795                          * alternate setting if a broken device doesn't have alt
1796                          * setting 0.
1797                          */
1798                         cur_alt = usb_altnum_to_altsetting(iface, 0);
1799                         if (!cur_alt)
1800                                 cur_alt = &iface->altsetting[0];
1801                 }
1802
1803                 /* Drop all the endpoints in the current alt setting */
1804                 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1805                         ret = hcd->driver->drop_endpoint(hcd, udev,
1806                                         &cur_alt->endpoint[i]);
1807                         if (ret < 0)
1808                                 goto reset;
1809                 }
1810                 /* Add all the endpoints in the new alt setting */
1811                 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1812                         ret = hcd->driver->add_endpoint(hcd, udev,
1813                                         &new_alt->endpoint[i]);
1814                         if (ret < 0)
1815                                 goto reset;
1816                 }
1817         }
1818         ret = hcd->driver->check_bandwidth(hcd, udev);
1819 reset:
1820         if (ret < 0)
1821                 hcd->driver->reset_bandwidth(hcd, udev);
1822         return ret;
1823 }
1824
1825 /* Disables the endpoint: synchronizes with the hcd to make sure all
1826  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1827  * have been called previously.  Use for set_configuration, set_interface,
1828  * driver removal, physical disconnect.
1829  *
1830  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1831  * type, maxpacket size, toggle, halt status, and scheduling.
1832  */
1833 void usb_hcd_disable_endpoint(struct usb_device *udev,
1834                 struct usb_host_endpoint *ep)
1835 {
1836         struct usb_hcd          *hcd;
1837
1838         might_sleep();
1839         hcd = bus_to_hcd(udev->bus);
1840         if (hcd->driver->endpoint_disable)
1841                 hcd->driver->endpoint_disable(hcd, ep);
1842 }
1843
1844 /**
1845  * usb_hcd_reset_endpoint - reset host endpoint state
1846  * @udev: USB device.
1847  * @ep:   the endpoint to reset.
1848  *
1849  * Resets any host endpoint state such as the toggle bit, sequence
1850  * number and current window.
1851  */
1852 void usb_hcd_reset_endpoint(struct usb_device *udev,
1853                             struct usb_host_endpoint *ep)
1854 {
1855         struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1856
1857         if (hcd->driver->endpoint_reset)
1858                 hcd->driver->endpoint_reset(hcd, ep);
1859         else {
1860                 int epnum = usb_endpoint_num(&ep->desc);
1861                 int is_out = usb_endpoint_dir_out(&ep->desc);
1862                 int is_control = usb_endpoint_xfer_control(&ep->desc);
1863
1864                 usb_settoggle(udev, epnum, is_out, 0);
1865                 if (is_control)
1866                         usb_settoggle(udev, epnum, !is_out, 0);
1867         }
1868 }
1869
1870 /**
1871  * usb_alloc_streams - allocate bulk endpoint stream IDs.
1872  * @interface:          alternate setting that includes all endpoints.
1873  * @eps:                array of endpoints that need streams.
1874  * @num_eps:            number of endpoints in the array.
1875  * @num_streams:        number of streams to allocate.
1876  * @mem_flags:          flags hcd should use to allocate memory.
1877  *
1878  * Sets up a group of bulk endpoints to have num_streams stream IDs available.
1879  * Drivers may queue multiple transfers to different stream IDs, which may
1880  * complete in a different order than they were queued.
1881  */
1882 int usb_alloc_streams(struct usb_interface *interface,
1883                 struct usb_host_endpoint **eps, unsigned int num_eps,
1884                 unsigned int num_streams, gfp_t mem_flags)
1885 {
1886         struct usb_hcd *hcd;
1887         struct usb_device *dev;
1888         int i;
1889
1890         dev = interface_to_usbdev(interface);
1891         hcd = bus_to_hcd(dev->bus);
1892         if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
1893                 return -EINVAL;
1894         if (dev->speed != USB_SPEED_SUPER)
1895                 return -EINVAL;
1896
1897         /* Streams only apply to bulk endpoints. */
1898         for (i = 0; i < num_eps; i++)
1899                 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
1900                         return -EINVAL;
1901
1902         return hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
1903                         num_streams, mem_flags);
1904 }
1905 EXPORT_SYMBOL_GPL(usb_alloc_streams);
1906
1907 /**
1908  * usb_free_streams - free bulk endpoint stream IDs.
1909  * @interface:  alternate setting that includes all endpoints.
1910  * @eps:        array of endpoints to remove streams from.
1911  * @num_eps:    number of endpoints in the array.
1912  * @mem_flags:  flags hcd should use to allocate memory.
1913  *
1914  * Reverts a group of bulk endpoints back to not using stream IDs.
1915  * Can fail if we are given bad arguments, or HCD is broken.
1916  */
1917 void usb_free_streams(struct usb_interface *interface,
1918                 struct usb_host_endpoint **eps, unsigned int num_eps,
1919                 gfp_t mem_flags)
1920 {
1921         struct usb_hcd *hcd;
1922         struct usb_device *dev;
1923         int i;
1924
1925         dev = interface_to_usbdev(interface);
1926         hcd = bus_to_hcd(dev->bus);
1927         if (dev->speed != USB_SPEED_SUPER)
1928                 return;
1929
1930         /* Streams only apply to bulk endpoints. */
1931         for (i = 0; i < num_eps; i++)
1932                 if (!eps[i] || !usb_endpoint_xfer_bulk(&eps[i]->desc))
1933                         return;
1934
1935         hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
1936 }
1937 EXPORT_SYMBOL_GPL(usb_free_streams);
1938
1939 /* Protect against drivers that try to unlink URBs after the device
1940  * is gone, by waiting until all unlinks for @udev are finished.
1941  * Since we don't currently track URBs by device, simply wait until
1942  * nothing is running in the locked region of usb_hcd_unlink_urb().
1943  */
1944 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
1945 {
1946         spin_lock_irq(&hcd_urb_unlink_lock);
1947         spin_unlock_irq(&hcd_urb_unlink_lock);
1948 }
1949
1950 /*-------------------------------------------------------------------------*/
1951
1952 /* called in any context */
1953 int usb_hcd_get_frame_number (struct usb_device *udev)
1954 {
1955         struct usb_hcd  *hcd = bus_to_hcd(udev->bus);
1956
1957         if (!HCD_RH_RUNNING(hcd))
1958                 return -ESHUTDOWN;
1959         return hcd->driver->get_frame_number (hcd);
1960 }
1961
1962 /*-------------------------------------------------------------------------*/
1963
1964 #ifdef  CONFIG_PM
1965
1966 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
1967 {
1968         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1969         int             status;
1970         int             old_state = hcd->state;
1971
1972         dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
1973                         (PMSG_IS_AUTO(msg) ? "auto-" : ""),
1974                         rhdev->do_remote_wakeup);
1975         if (HCD_DEAD(hcd)) {
1976                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
1977                 return 0;
1978         }
1979
1980         if (!hcd->driver->bus_suspend) {
1981                 status = -ENOENT;
1982         } else {
1983                 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
1984                 hcd->state = HC_STATE_QUIESCING;
1985                 status = hcd->driver->bus_suspend(hcd);
1986         }
1987         if (status == 0) {
1988                 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1989                 hcd->state = HC_STATE_SUSPENDED;
1990
1991                 /* Did we race with a root-hub wakeup event? */
1992                 if (rhdev->do_remote_wakeup) {
1993                         char    buffer[6];
1994
1995                         status = hcd->driver->hub_status_data(hcd, buffer);
1996                         if (status != 0) {
1997                                 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
1998                                 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
1999                                 status = -EBUSY;
2000                         }
2001                 }
2002         } else {
2003                 spin_lock_irq(&hcd_root_hub_lock);
2004                 if (!HCD_DEAD(hcd)) {
2005                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2006                         hcd->state = old_state;
2007                 }
2008                 spin_unlock_irq(&hcd_root_hub_lock);
2009                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2010                                 "suspend", status);
2011         }
2012         return status;
2013 }
2014
2015 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2016 {
2017         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2018         int             status;
2019         int             old_state = hcd->state;
2020
2021         dev_dbg(&rhdev->dev, "usb %sresume\n",
2022                         (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2023         if (HCD_DEAD(hcd)) {
2024                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2025                 return 0;
2026         }
2027         if (!hcd->driver->bus_resume)
2028                 return -ENOENT;
2029         if (HCD_RH_RUNNING(hcd))
2030                 return 0;
2031
2032         hcd->state = HC_STATE_RESUMING;
2033         status = hcd->driver->bus_resume(hcd);
2034         clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2035         if (status == 0) {
2036                 /* TRSMRCY = 10 msec */
2037                 msleep(10);
2038                 spin_lock_irq(&hcd_root_hub_lock);
2039                 if (!HCD_DEAD(hcd)) {
2040                         usb_set_device_state(rhdev, rhdev->actconfig
2041                                         ? USB_STATE_CONFIGURED
2042                                         : USB_STATE_ADDRESS);
2043                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2044                         hcd->state = HC_STATE_RUNNING;
2045                 }
2046                 spin_unlock_irq(&hcd_root_hub_lock);
2047         } else {
2048                 hcd->state = old_state;
2049                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2050                                 "resume", status);
2051                 if (status != -ESHUTDOWN)
2052                         usb_hc_died(hcd);
2053         }
2054         return status;
2055 }
2056
2057 #endif  /* CONFIG_PM */
2058
2059 #ifdef  CONFIG_USB_SUSPEND
2060
2061 /* Workqueue routine for root-hub remote wakeup */
2062 static void hcd_resume_work(struct work_struct *work)
2063 {
2064         struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2065         struct usb_device *udev = hcd->self.root_hub;
2066
2067         usb_lock_device(udev);
2068         usb_remote_wakeup(udev);
2069         usb_unlock_device(udev);
2070 }
2071
2072 /**
2073  * usb_hcd_resume_root_hub - called by HCD to resume its root hub 
2074  * @hcd: host controller for this root hub
2075  *
2076  * The USB host controller calls this function when its root hub is
2077  * suspended (with the remote wakeup feature enabled) and a remote
2078  * wakeup request is received.  The routine submits a workqueue request
2079  * to resume the root hub (that is, manage its downstream ports again).
2080  */
2081 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2082 {
2083         unsigned long flags;
2084
2085         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2086         if (hcd->rh_registered) {
2087                 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2088                 queue_work(pm_wq, &hcd->wakeup_work);
2089         }
2090         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2091 }
2092 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2093
2094 #endif  /* CONFIG_USB_SUSPEND */
2095
2096 /*-------------------------------------------------------------------------*/
2097
2098 #ifdef  CONFIG_USB_OTG
2099
2100 /**
2101  * usb_bus_start_enum - start immediate enumeration (for OTG)
2102  * @bus: the bus (must use hcd framework)
2103  * @port_num: 1-based number of port; usually bus->otg_port
2104  * Context: in_interrupt()
2105  *
2106  * Starts enumeration, with an immediate reset followed later by
2107  * khubd identifying and possibly configuring the device.
2108  * This is needed by OTG controller drivers, where it helps meet
2109  * HNP protocol timing requirements for starting a port reset.
2110  */
2111 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2112 {
2113         struct usb_hcd          *hcd;
2114         int                     status = -EOPNOTSUPP;
2115
2116         /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2117          * boards with root hubs hooked up to internal devices (instead of
2118          * just the OTG port) may need more attention to resetting...
2119          */
2120         hcd = container_of (bus, struct usb_hcd, self);
2121         if (port_num && hcd->driver->start_port_reset)
2122                 status = hcd->driver->start_port_reset(hcd, port_num);
2123
2124         /* run khubd shortly after (first) root port reset finishes;
2125          * it may issue others, until at least 50 msecs have passed.
2126          */
2127         if (status == 0)
2128                 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2129         return status;
2130 }
2131 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2132
2133 #endif
2134
2135 /*-------------------------------------------------------------------------*/
2136
2137 /**
2138  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2139  * @irq: the IRQ being raised
2140  * @__hcd: pointer to the HCD whose IRQ is being signaled
2141  *
2142  * If the controller isn't HALTed, calls the driver's irq handler.
2143  * Checks whether the controller is now dead.
2144  */
2145 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2146 {
2147         struct usb_hcd          *hcd = __hcd;
2148         unsigned long           flags;
2149         irqreturn_t             rc;
2150
2151         /* IRQF_DISABLED doesn't work correctly with shared IRQs
2152          * when the first handler doesn't use it.  So let's just
2153          * assume it's never used.
2154          */
2155         local_irq_save(flags);
2156
2157         if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2158                 rc = IRQ_NONE;
2159         else if (hcd->driver->irq(hcd) == IRQ_NONE)
2160                 rc = IRQ_NONE;
2161         else
2162                 rc = IRQ_HANDLED;
2163
2164         local_irq_restore(flags);
2165         return rc;
2166 }
2167 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2168
2169 /*-------------------------------------------------------------------------*/
2170
2171 /**
2172  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2173  * @hcd: pointer to the HCD representing the controller
2174  *
2175  * This is called by bus glue to report a USB host controller that died
2176  * while operations may still have been pending.  It's called automatically
2177  * by the PCI glue, so only glue for non-PCI busses should need to call it.
2178  *
2179  * Only call this function with the primary HCD.
2180  */
2181 void usb_hc_died (struct usb_hcd *hcd)
2182 {
2183         unsigned long flags;
2184
2185         dev_err (hcd->self.controller, "HC died; cleaning up\n");
2186
2187         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2188         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2189         set_bit(HCD_FLAG_DEAD, &hcd->flags);
2190         if (hcd->rh_registered) {
2191                 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2192
2193                 /* make khubd clean up old urbs and devices */
2194                 usb_set_device_state (hcd->self.root_hub,
2195                                 USB_STATE_NOTATTACHED);
2196                 usb_kick_khubd (hcd->self.root_hub);
2197         }
2198         if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2199                 hcd = hcd->shared_hcd;
2200                 if (hcd->rh_registered) {
2201                         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2202
2203                         /* make khubd clean up old urbs and devices */
2204                         usb_set_device_state(hcd->self.root_hub,
2205                                         USB_STATE_NOTATTACHED);
2206                         usb_kick_khubd(hcd->self.root_hub);
2207                 }
2208         }
2209         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2210         /* Make sure that the other roothub is also deallocated. */
2211 }
2212 EXPORT_SYMBOL_GPL (usb_hc_died);
2213
2214 /*-------------------------------------------------------------------------*/
2215
2216 /**
2217  * usb_create_shared_hcd - create and initialize an HCD structure
2218  * @driver: HC driver that will use this hcd
2219  * @dev: device for this HC, stored in hcd->self.controller
2220  * @bus_name: value to store in hcd->self.bus_name
2221  * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2222  *              PCI device.  Only allocate certain resources for the primary HCD
2223  * Context: !in_interrupt()
2224  *
2225  * Allocate a struct usb_hcd, with extra space at the end for the
2226  * HC driver's private data.  Initialize the generic members of the
2227  * hcd structure.
2228  *
2229  * If memory is unavailable, returns NULL.
2230  */
2231 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2232                 struct device *dev, const char *bus_name,
2233                 struct usb_hcd *primary_hcd)
2234 {
2235         struct usb_hcd *hcd;
2236
2237         hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2238         if (!hcd) {
2239                 dev_dbg (dev, "hcd alloc failed\n");
2240                 return NULL;
2241         }
2242         if (primary_hcd == NULL) {
2243                 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2244                                 GFP_KERNEL);
2245                 if (!hcd->bandwidth_mutex) {
2246                         kfree(hcd);
2247                         dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2248                         return NULL;
2249                 }
2250                 mutex_init(hcd->bandwidth_mutex);
2251                 dev_set_drvdata(dev, hcd);
2252         } else {
2253                 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2254                 hcd->primary_hcd = primary_hcd;
2255                 primary_hcd->primary_hcd = primary_hcd;
2256                 hcd->shared_hcd = primary_hcd;
2257                 primary_hcd->shared_hcd = hcd;
2258         }
2259
2260         kref_init(&hcd->kref);
2261
2262         usb_bus_init(&hcd->self);
2263         hcd->self.controller = dev;
2264         hcd->self.bus_name = bus_name;
2265         hcd->self.uses_dma = (dev->dma_mask != NULL);
2266
2267         init_timer(&hcd->rh_timer);
2268         hcd->rh_timer.function = rh_timer_func;
2269         hcd->rh_timer.data = (unsigned long) hcd;
2270 #ifdef CONFIG_USB_SUSPEND
2271         INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2272 #endif
2273
2274         hcd->driver = driver;
2275         hcd->speed = driver->flags & HCD_MASK;
2276         hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2277                         "USB Host Controller";
2278         return hcd;
2279 }
2280 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2281
2282 /**
2283  * usb_create_hcd - create and initialize an HCD structure
2284  * @driver: HC driver that will use this hcd
2285  * @dev: device for this HC, stored in hcd->self.controller
2286  * @bus_name: value to store in hcd->self.bus_name
2287  * Context: !in_interrupt()
2288  *
2289  * Allocate a struct usb_hcd, with extra space at the end for the
2290  * HC driver's private data.  Initialize the generic members of the
2291  * hcd structure.
2292  *
2293  * If memory is unavailable, returns NULL.
2294  */
2295 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2296                 struct device *dev, const char *bus_name)
2297 {
2298         return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2299 }
2300 EXPORT_SYMBOL_GPL(usb_create_hcd);
2301
2302 /*
2303  * Roothubs that share one PCI device must also share the bandwidth mutex.
2304  * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2305  * deallocated.
2306  *
2307  * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2308  * freed.  When hcd_release() is called for the non-primary HCD, set the
2309  * primary_hcd's shared_hcd pointer to null (since the non-primary HCD will be
2310  * freed shortly).
2311  */
2312 static void hcd_release (struct kref *kref)
2313 {
2314         struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2315
2316         if (usb_hcd_is_primary_hcd(hcd))
2317                 kfree(hcd->bandwidth_mutex);
2318         else
2319                 hcd->shared_hcd->shared_hcd = NULL;
2320         kfree(hcd);
2321 }
2322
2323 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2324 {
2325         if (hcd)
2326                 kref_get (&hcd->kref);
2327         return hcd;
2328 }
2329 EXPORT_SYMBOL_GPL(usb_get_hcd);
2330
2331 void usb_put_hcd (struct usb_hcd *hcd)
2332 {
2333         if (hcd)
2334                 kref_put (&hcd->kref, hcd_release);
2335 }
2336 EXPORT_SYMBOL_GPL(usb_put_hcd);
2337
2338 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2339 {
2340         if (!hcd->primary_hcd)
2341                 return 1;
2342         return hcd == hcd->primary_hcd;
2343 }
2344 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2345
2346 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2347                 unsigned int irqnum, unsigned long irqflags)
2348 {
2349         int retval;
2350
2351         if (hcd->driver->irq) {
2352
2353                 /* IRQF_DISABLED doesn't work as advertised when used together
2354                  * with IRQF_SHARED. As usb_hcd_irq() will always disable
2355                  * interrupts we can remove it here.
2356                  */
2357                 if (irqflags & IRQF_SHARED)
2358                         irqflags &= ~IRQF_DISABLED;
2359
2360                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2361                                 hcd->driver->description, hcd->self.busnum);
2362                 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2363                                 hcd->irq_descr, hcd);
2364                 if (retval != 0) {
2365                         dev_err(hcd->self.controller,
2366                                         "request interrupt %d failed\n",
2367                                         irqnum);
2368                         return retval;
2369                 }
2370                 hcd->irq = irqnum;
2371                 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2372                                 (hcd->driver->flags & HCD_MEMORY) ?
2373                                         "io mem" : "io base",
2374                                         (unsigned long long)hcd->rsrc_start);
2375         } else {
2376                 hcd->irq = 0;
2377                 if (hcd->rsrc_start)
2378                         dev_info(hcd->self.controller, "%s 0x%08llx\n",
2379                                         (hcd->driver->flags & HCD_MEMORY) ?
2380                                         "io mem" : "io base",
2381                                         (unsigned long long)hcd->rsrc_start);
2382         }
2383         return 0;
2384 }
2385
2386 /**
2387  * usb_add_hcd - finish generic HCD structure initialization and register
2388  * @hcd: the usb_hcd structure to initialize
2389  * @irqnum: Interrupt line to allocate
2390  * @irqflags: Interrupt type flags
2391  *
2392  * Finish the remaining parts of generic HCD initialization: allocate the
2393  * buffers of consistent memory, register the bus, request the IRQ line,
2394  * and call the driver's reset() and start() routines.
2395  */
2396 int usb_add_hcd(struct usb_hcd *hcd,
2397                 unsigned int irqnum, unsigned long irqflags)
2398 {
2399         int retval;
2400         struct usb_device *rhdev;
2401
2402         dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2403
2404         /* Keep old behaviour if authorized_default is not in [0, 1]. */
2405         if (authorized_default < 0 || authorized_default > 1)
2406                 hcd->authorized_default = hcd->wireless? 0 : 1;
2407         else
2408                 hcd->authorized_default = authorized_default;
2409         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2410
2411         /* HC is in reset state, but accessible.  Now do the one-time init,
2412          * bottom up so that hcds can customize the root hubs before khubd
2413          * starts talking to them.  (Note, bus id is assigned early too.)
2414          */
2415         if ((retval = hcd_buffer_create(hcd)) != 0) {
2416                 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2417                 return retval;
2418         }
2419
2420         if ((retval = usb_register_bus(&hcd->self)) < 0)
2421                 goto err_register_bus;
2422
2423         if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2424                 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2425                 retval = -ENOMEM;
2426                 goto err_allocate_root_hub;
2427         }
2428         hcd->self.root_hub = rhdev;
2429
2430         switch (hcd->speed) {
2431         case HCD_USB11:
2432                 rhdev->speed = USB_SPEED_FULL;
2433                 break;
2434         case HCD_USB2:
2435                 rhdev->speed = USB_SPEED_HIGH;
2436                 break;
2437         case HCD_USB3:
2438                 rhdev->speed = USB_SPEED_SUPER;
2439                 break;
2440         default:
2441                 retval = -EINVAL;
2442                 goto err_set_rh_speed;
2443         }
2444
2445         /* wakeup flag init defaults to "everything works" for root hubs,
2446          * but drivers can override it in reset() if needed, along with
2447          * recording the overall controller's system wakeup capability.
2448          */
2449         device_set_wakeup_capable(&rhdev->dev, 1);
2450
2451         /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2452          * registered.  But since the controller can die at any time,
2453          * let's initialize the flag before touching the hardware.
2454          */
2455         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2456
2457         /* "reset" is misnamed; its role is now one-time init. the controller
2458          * should already have been reset (and boot firmware kicked off etc).
2459          */
2460         if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2461                 dev_err(hcd->self.controller, "can't setup\n");
2462                 goto err_hcd_driver_setup;
2463         }
2464         hcd->rh_pollable = 1;
2465
2466         /* NOTE: root hub and controller capabilities may not be the same */
2467         if (device_can_wakeup(hcd->self.controller)
2468                         && device_can_wakeup(&hcd->self.root_hub->dev))
2469                 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2470
2471         /* enable irqs just before we start the controller,
2472          * if the BIOS provides legacy PCI irqs.
2473          */
2474         if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2475                 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2476                 if (retval)
2477                         goto err_request_irq;
2478         }
2479
2480         hcd->state = HC_STATE_RUNNING;
2481         retval = hcd->driver->start(hcd);
2482         if (retval < 0) {
2483                 dev_err(hcd->self.controller, "startup error %d\n", retval);
2484                 goto err_hcd_driver_start;
2485         }
2486
2487         /* starting here, usbcore will pay attention to this root hub */
2488         rhdev->bus_mA = min(500u, hcd->power_budget);
2489         if ((retval = register_root_hub(hcd)) != 0)
2490                 goto err_register_root_hub;
2491
2492         retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2493         if (retval < 0) {
2494                 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2495                        retval);
2496                 goto error_create_attr_group;
2497         }
2498         if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2499                 usb_hcd_poll_rh_status(hcd);
2500
2501         /*
2502          * Host controllers don't generate their own wakeup requests;
2503          * they only forward requests from the root hub.  Therefore
2504          * controllers should always be enabled for remote wakeup.
2505          */
2506         device_wakeup_enable(hcd->self.controller);
2507         return retval;
2508
2509 error_create_attr_group:
2510         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2511         if (HC_IS_RUNNING(hcd->state))
2512                 hcd->state = HC_STATE_QUIESCING;
2513         spin_lock_irq(&hcd_root_hub_lock);
2514         hcd->rh_registered = 0;
2515         spin_unlock_irq(&hcd_root_hub_lock);
2516
2517 #ifdef CONFIG_USB_SUSPEND
2518         cancel_work_sync(&hcd->wakeup_work);
2519 #endif
2520         mutex_lock(&usb_bus_list_lock);
2521         usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2522         mutex_unlock(&usb_bus_list_lock);
2523 err_register_root_hub:
2524         hcd->rh_pollable = 0;
2525         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2526         del_timer_sync(&hcd->rh_timer);
2527         hcd->driver->stop(hcd);
2528         hcd->state = HC_STATE_HALT;
2529         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2530         del_timer_sync(&hcd->rh_timer);
2531 err_hcd_driver_start:
2532         if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2533                 free_irq(irqnum, hcd);
2534 err_request_irq:
2535 err_hcd_driver_setup:
2536 err_set_rh_speed:
2537         usb_put_dev(hcd->self.root_hub);
2538 err_allocate_root_hub:
2539         usb_deregister_bus(&hcd->self);
2540 err_register_bus:
2541         hcd_buffer_destroy(hcd);
2542         return retval;
2543
2544 EXPORT_SYMBOL_GPL(usb_add_hcd);
2545
2546 /**
2547  * usb_remove_hcd - shutdown processing for generic HCDs
2548  * @hcd: the usb_hcd structure to remove
2549  * Context: !in_interrupt()
2550  *
2551  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2552  * invoking the HCD's stop() method.
2553  */
2554 void usb_remove_hcd(struct usb_hcd *hcd)
2555 {
2556         struct usb_device *rhdev = hcd->self.root_hub;
2557
2558         dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2559
2560         usb_get_dev(rhdev);
2561         sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2562
2563         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2564         if (HC_IS_RUNNING (hcd->state))
2565                 hcd->state = HC_STATE_QUIESCING;
2566
2567         dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2568         spin_lock_irq (&hcd_root_hub_lock);
2569         hcd->rh_registered = 0;
2570         spin_unlock_irq (&hcd_root_hub_lock);
2571
2572 #ifdef CONFIG_USB_SUSPEND
2573         cancel_work_sync(&hcd->wakeup_work);
2574 #endif
2575
2576         mutex_lock(&usb_bus_list_lock);
2577         usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2578         mutex_unlock(&usb_bus_list_lock);
2579
2580         /* Prevent any more root-hub status calls from the timer.
2581          * The HCD might still restart the timer (if a port status change
2582          * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2583          * the hub_status_data() callback.
2584          */
2585         hcd->rh_pollable = 0;
2586         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2587         del_timer_sync(&hcd->rh_timer);
2588
2589         hcd->driver->stop(hcd);
2590         hcd->state = HC_STATE_HALT;
2591
2592         /* In case the HCD restarted the timer, stop it again. */
2593         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2594         del_timer_sync(&hcd->rh_timer);
2595
2596         if (usb_hcd_is_primary_hcd(hcd)) {
2597                 if (hcd->irq > 0)
2598                         free_irq(hcd->irq, hcd);
2599         }
2600
2601         usb_put_dev(hcd->self.root_hub);
2602         usb_deregister_bus(&hcd->self);
2603         hcd_buffer_destroy(hcd);
2604 }
2605 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2606
2607 void
2608 usb_hcd_platform_shutdown(struct platform_device* dev)
2609 {
2610         struct usb_hcd *hcd = platform_get_drvdata(dev);
2611
2612         if (hcd->driver->shutdown)
2613                 hcd->driver->shutdown(hcd);
2614 }
2615 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2616
2617 /*-------------------------------------------------------------------------*/
2618
2619 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2620
2621 struct usb_mon_operations *mon_ops;
2622
2623 /*
2624  * The registration is unlocked.
2625  * We do it this way because we do not want to lock in hot paths.
2626  *
2627  * Notice that the code is minimally error-proof. Because usbmon needs
2628  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2629  */
2630  
2631 int usb_mon_register (struct usb_mon_operations *ops)
2632 {
2633
2634         if (mon_ops)
2635                 return -EBUSY;
2636
2637         mon_ops = ops;
2638         mb();
2639         return 0;
2640 }
2641 EXPORT_SYMBOL_GPL (usb_mon_register);
2642
2643 void usb_mon_deregister (void)
2644 {
2645
2646         if (mon_ops == NULL) {
2647                 printk(KERN_ERR "USB: monitor was not registered\n");
2648                 return;
2649         }
2650         mon_ops = NULL;
2651         mb();
2652 }
2653 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2654
2655 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */