usb: chipidea: udc: Add missing descriptions for function arg 'ci'
[platform/kernel/linux-rpi.git] / drivers / usb / chipidea / udc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * udc.c - ChipIdea UDC driver
4  *
5  * Copyright (C) 2008 Chipidea - MIPS Technologies, Inc. All rights reserved.
6  *
7  * Author: David Lopo
8  */
9
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmapool.h>
13 #include <linux/err.h>
14 #include <linux/irqreturn.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/pinctrl/consumer.h>
19 #include <linux/usb/ch9.h>
20 #include <linux/usb/gadget.h>
21 #include <linux/usb/otg-fsm.h>
22 #include <linux/usb/chipidea.h>
23
24 #include "ci.h"
25 #include "udc.h"
26 #include "bits.h"
27 #include "otg.h"
28 #include "otg_fsm.h"
29
30 /* control endpoint description */
31 static const struct usb_endpoint_descriptor
32 ctrl_endpt_out_desc = {
33         .bLength         = USB_DT_ENDPOINT_SIZE,
34         .bDescriptorType = USB_DT_ENDPOINT,
35
36         .bEndpointAddress = USB_DIR_OUT,
37         .bmAttributes    = USB_ENDPOINT_XFER_CONTROL,
38         .wMaxPacketSize  = cpu_to_le16(CTRL_PAYLOAD_MAX),
39 };
40
41 static const struct usb_endpoint_descriptor
42 ctrl_endpt_in_desc = {
43         .bLength         = USB_DT_ENDPOINT_SIZE,
44         .bDescriptorType = USB_DT_ENDPOINT,
45
46         .bEndpointAddress = USB_DIR_IN,
47         .bmAttributes    = USB_ENDPOINT_XFER_CONTROL,
48         .wMaxPacketSize  = cpu_to_le16(CTRL_PAYLOAD_MAX),
49 };
50
51 /**
52  * hw_ep_bit: calculates the bit number
53  * @num: endpoint number
54  * @dir: endpoint direction
55  *
56  * This function returns bit number
57  */
58 static inline int hw_ep_bit(int num, int dir)
59 {
60         return num + ((dir == TX) ? 16 : 0);
61 }
62
63 static inline int ep_to_bit(struct ci_hdrc *ci, int n)
64 {
65         int fill = 16 - ci->hw_ep_max / 2;
66
67         if (n >= ci->hw_ep_max / 2)
68                 n += fill;
69
70         return n;
71 }
72
73 /**
74  * hw_device_state: enables/disables interrupts (execute without interruption)
75  * @ci: the controller
76  * @dma: 0 => disable, !0 => enable and set dma engine
77  *
78  * This function returns an error code
79  */
80 static int hw_device_state(struct ci_hdrc *ci, u32 dma)
81 {
82         if (dma) {
83                 hw_write(ci, OP_ENDPTLISTADDR, ~0, dma);
84                 /* interrupt, error, port change, reset, sleep/suspend */
85                 hw_write(ci, OP_USBINTR, ~0,
86                              USBi_UI|USBi_UEI|USBi_PCI|USBi_URI|USBi_SLI);
87         } else {
88                 hw_write(ci, OP_USBINTR, ~0, 0);
89         }
90         return 0;
91 }
92
93 /**
94  * hw_ep_flush: flush endpoint fifo (execute without interruption)
95  * @ci: the controller
96  * @num: endpoint number
97  * @dir: endpoint direction
98  *
99  * This function returns an error code
100  */
101 static int hw_ep_flush(struct ci_hdrc *ci, int num, int dir)
102 {
103         int n = hw_ep_bit(num, dir);
104
105         do {
106                 /* flush any pending transfer */
107                 hw_write(ci, OP_ENDPTFLUSH, ~0, BIT(n));
108                 while (hw_read(ci, OP_ENDPTFLUSH, BIT(n)))
109                         cpu_relax();
110         } while (hw_read(ci, OP_ENDPTSTAT, BIT(n)));
111
112         return 0;
113 }
114
115 /**
116  * hw_ep_disable: disables endpoint (execute without interruption)
117  * @ci: the controller
118  * @num: endpoint number
119  * @dir: endpoint direction
120  *
121  * This function returns an error code
122  */
123 static int hw_ep_disable(struct ci_hdrc *ci, int num, int dir)
124 {
125         hw_write(ci, OP_ENDPTCTRL + num,
126                  (dir == TX) ? ENDPTCTRL_TXE : ENDPTCTRL_RXE, 0);
127         return 0;
128 }
129
130 /**
131  * hw_ep_enable: enables endpoint (execute without interruption)
132  * @ci: the controller
133  * @num:  endpoint number
134  * @dir:  endpoint direction
135  * @type: endpoint type
136  *
137  * This function returns an error code
138  */
139 static int hw_ep_enable(struct ci_hdrc *ci, int num, int dir, int type)
140 {
141         u32 mask, data;
142
143         if (dir == TX) {
144                 mask  = ENDPTCTRL_TXT;  /* type    */
145                 data  = type << __ffs(mask);
146
147                 mask |= ENDPTCTRL_TXS;  /* unstall */
148                 mask |= ENDPTCTRL_TXR;  /* reset data toggle */
149                 data |= ENDPTCTRL_TXR;
150                 mask |= ENDPTCTRL_TXE;  /* enable  */
151                 data |= ENDPTCTRL_TXE;
152         } else {
153                 mask  = ENDPTCTRL_RXT;  /* type    */
154                 data  = type << __ffs(mask);
155
156                 mask |= ENDPTCTRL_RXS;  /* unstall */
157                 mask |= ENDPTCTRL_RXR;  /* reset data toggle */
158                 data |= ENDPTCTRL_RXR;
159                 mask |= ENDPTCTRL_RXE;  /* enable  */
160                 data |= ENDPTCTRL_RXE;
161         }
162         hw_write(ci, OP_ENDPTCTRL + num, mask, data);
163         return 0;
164 }
165
166 /**
167  * hw_ep_get_halt: return endpoint halt status
168  * @ci: the controller
169  * @num: endpoint number
170  * @dir: endpoint direction
171  *
172  * This function returns 1 if endpoint halted
173  */
174 static int hw_ep_get_halt(struct ci_hdrc *ci, int num, int dir)
175 {
176         u32 mask = (dir == TX) ? ENDPTCTRL_TXS : ENDPTCTRL_RXS;
177
178         return hw_read(ci, OP_ENDPTCTRL + num, mask) ? 1 : 0;
179 }
180
181 /**
182  * hw_ep_prime: primes endpoint (execute without interruption)
183  * @ci: the controller
184  * @num:     endpoint number
185  * @dir:     endpoint direction
186  * @is_ctrl: true if control endpoint
187  *
188  * This function returns an error code
189  */
190 static int hw_ep_prime(struct ci_hdrc *ci, int num, int dir, int is_ctrl)
191 {
192         int n = hw_ep_bit(num, dir);
193
194         /* Synchronize before ep prime */
195         wmb();
196
197         if (is_ctrl && dir == RX && hw_read(ci, OP_ENDPTSETUPSTAT, BIT(num)))
198                 return -EAGAIN;
199
200         hw_write(ci, OP_ENDPTPRIME, ~0, BIT(n));
201
202         while (hw_read(ci, OP_ENDPTPRIME, BIT(n)))
203                 cpu_relax();
204         if (is_ctrl && dir == RX && hw_read(ci, OP_ENDPTSETUPSTAT, BIT(num)))
205                 return -EAGAIN;
206
207         /* status shoult be tested according with manual but it doesn't work */
208         return 0;
209 }
210
211 /**
212  * hw_ep_set_halt: configures ep halt & resets data toggle after clear (execute
213  *                 without interruption)
214  * @ci: the controller
215  * @num:   endpoint number
216  * @dir:   endpoint direction
217  * @value: true => stall, false => unstall
218  *
219  * This function returns an error code
220  */
221 static int hw_ep_set_halt(struct ci_hdrc *ci, int num, int dir, int value)
222 {
223         if (value != 0 && value != 1)
224                 return -EINVAL;
225
226         do {
227                 enum ci_hw_regs reg = OP_ENDPTCTRL + num;
228                 u32 mask_xs = (dir == TX) ? ENDPTCTRL_TXS : ENDPTCTRL_RXS;
229                 u32 mask_xr = (dir == TX) ? ENDPTCTRL_TXR : ENDPTCTRL_RXR;
230
231                 /* data toggle - reserved for EP0 but it's in ESS */
232                 hw_write(ci, reg, mask_xs|mask_xr,
233                           value ? mask_xs : mask_xr);
234         } while (value != hw_ep_get_halt(ci, num, dir));
235
236         return 0;
237 }
238
239 /**
240  * hw_is_port_high_speed: test if port is high speed
241  *
242  * This function returns true if high speed port
243  */
244 static int hw_port_is_high_speed(struct ci_hdrc *ci)
245 {
246         return ci->hw_bank.lpm ? hw_read(ci, OP_DEVLC, DEVLC_PSPD) :
247                 hw_read(ci, OP_PORTSC, PORTSC_HSP);
248 }
249
250 /**
251  * hw_test_and_clear_complete: test & clear complete status (execute without
252  *                             interruption)
253  * @ci: the controller
254  * @n: endpoint number
255  *
256  * This function returns complete status
257  */
258 static int hw_test_and_clear_complete(struct ci_hdrc *ci, int n)
259 {
260         n = ep_to_bit(ci, n);
261         return hw_test_and_clear(ci, OP_ENDPTCOMPLETE, BIT(n));
262 }
263
264 /**
265  * hw_test_and_clear_intr_active: test & clear active interrupts (execute
266  *                                without interruption)
267  *
268  * This function returns active interrutps
269  */
270 static u32 hw_test_and_clear_intr_active(struct ci_hdrc *ci)
271 {
272         u32 reg = hw_read_intr_status(ci) & hw_read_intr_enable(ci);
273
274         hw_write(ci, OP_USBSTS, ~0, reg);
275         return reg;
276 }
277
278 /**
279  * hw_test_and_clear_setup_guard: test & clear setup guard (execute without
280  *                                interruption)
281  *
282  * This function returns guard value
283  */
284 static int hw_test_and_clear_setup_guard(struct ci_hdrc *ci)
285 {
286         return hw_test_and_write(ci, OP_USBCMD, USBCMD_SUTW, 0);
287 }
288
289 /**
290  * hw_test_and_set_setup_guard: test & set setup guard (execute without
291  *                              interruption)
292  *
293  * This function returns guard value
294  */
295 static int hw_test_and_set_setup_guard(struct ci_hdrc *ci)
296 {
297         return hw_test_and_write(ci, OP_USBCMD, USBCMD_SUTW, USBCMD_SUTW);
298 }
299
300 /**
301  * hw_usb_set_address: configures USB address (execute without interruption)
302  * @ci: the controller
303  * @value: new USB address
304  *
305  * This function explicitly sets the address, without the "USBADRA" (advance)
306  * feature, which is not supported by older versions of the controller.
307  */
308 static void hw_usb_set_address(struct ci_hdrc *ci, u8 value)
309 {
310         hw_write(ci, OP_DEVICEADDR, DEVICEADDR_USBADR,
311                  value << __ffs(DEVICEADDR_USBADR));
312 }
313
314 /**
315  * hw_usb_reset: restart device after a bus reset (execute without
316  *               interruption)
317  *
318  * This function returns an error code
319  */
320 static int hw_usb_reset(struct ci_hdrc *ci)
321 {
322         hw_usb_set_address(ci, 0);
323
324         /* ESS flushes only at end?!? */
325         hw_write(ci, OP_ENDPTFLUSH,    ~0, ~0);
326
327         /* clear setup token semaphores */
328         hw_write(ci, OP_ENDPTSETUPSTAT, 0,  0);
329
330         /* clear complete status */
331         hw_write(ci, OP_ENDPTCOMPLETE,  0,  0);
332
333         /* wait until all bits cleared */
334         while (hw_read(ci, OP_ENDPTPRIME, ~0))
335                 udelay(10);             /* not RTOS friendly */
336
337         /* reset all endpoints ? */
338
339         /* reset internal status and wait for further instructions
340            no need to verify the port reset status (ESS does it) */
341
342         return 0;
343 }
344
345 /******************************************************************************
346  * UTIL block
347  *****************************************************************************/
348
349 static int add_td_to_list(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq,
350                         unsigned int length, struct scatterlist *s)
351 {
352         int i;
353         u32 temp;
354         struct td_node *lastnode, *node = kzalloc(sizeof(struct td_node),
355                                                   GFP_ATOMIC);
356
357         if (node == NULL)
358                 return -ENOMEM;
359
360         node->ptr = dma_pool_zalloc(hwep->td_pool, GFP_ATOMIC, &node->dma);
361         if (node->ptr == NULL) {
362                 kfree(node);
363                 return -ENOMEM;
364         }
365
366         node->ptr->token = cpu_to_le32(length << __ffs(TD_TOTAL_BYTES));
367         node->ptr->token &= cpu_to_le32(TD_TOTAL_BYTES);
368         node->ptr->token |= cpu_to_le32(TD_STATUS_ACTIVE);
369         if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == TX) {
370                 u32 mul = hwreq->req.length / hwep->ep.maxpacket;
371
372                 if (hwreq->req.length == 0
373                                 || hwreq->req.length % hwep->ep.maxpacket)
374                         mul++;
375                 node->ptr->token |= cpu_to_le32(mul << __ffs(TD_MULTO));
376         }
377
378         if (s) {
379                 temp = (u32) (sg_dma_address(s) + hwreq->req.actual);
380                 node->td_remaining_size = CI_MAX_BUF_SIZE - length;
381         } else {
382                 temp = (u32) (hwreq->req.dma + hwreq->req.actual);
383         }
384
385         if (length) {
386                 node->ptr->page[0] = cpu_to_le32(temp);
387                 for (i = 1; i < TD_PAGE_COUNT; i++) {
388                         u32 page = temp + i * CI_HDRC_PAGE_SIZE;
389                         page &= ~TD_RESERVED_MASK;
390                         node->ptr->page[i] = cpu_to_le32(page);
391                 }
392         }
393
394         hwreq->req.actual += length;
395
396         if (!list_empty(&hwreq->tds)) {
397                 /* get the last entry */
398                 lastnode = list_entry(hwreq->tds.prev,
399                                 struct td_node, td);
400                 lastnode->ptr->next = cpu_to_le32(node->dma);
401         }
402
403         INIT_LIST_HEAD(&node->td);
404         list_add_tail(&node->td, &hwreq->tds);
405
406         return 0;
407 }
408
409 /**
410  * _usb_addr: calculates endpoint address from direction & number
411  * @ep:  endpoint
412  */
413 static inline u8 _usb_addr(struct ci_hw_ep *ep)
414 {
415         return ((ep->dir == TX) ? USB_ENDPOINT_DIR_MASK : 0) | ep->num;
416 }
417
418 static int prepare_td_for_non_sg(struct ci_hw_ep *hwep,
419                 struct ci_hw_req *hwreq)
420 {
421         unsigned int rest = hwreq->req.length;
422         int pages = TD_PAGE_COUNT;
423         int ret = 0;
424
425         if (rest == 0) {
426                 ret = add_td_to_list(hwep, hwreq, 0, NULL);
427                 if (ret < 0)
428                         return ret;
429         }
430
431         /*
432          * The first buffer could be not page aligned.
433          * In that case we have to span into one extra td.
434          */
435         if (hwreq->req.dma % PAGE_SIZE)
436                 pages--;
437
438         while (rest > 0) {
439                 unsigned int count = min(hwreq->req.length - hwreq->req.actual,
440                         (unsigned int)(pages * CI_HDRC_PAGE_SIZE));
441
442                 ret = add_td_to_list(hwep, hwreq, count, NULL);
443                 if (ret < 0)
444                         return ret;
445
446                 rest -= count;
447         }
448
449         if (hwreq->req.zero && hwreq->req.length && hwep->dir == TX
450             && (hwreq->req.length % hwep->ep.maxpacket == 0)) {
451                 ret = add_td_to_list(hwep, hwreq, 0, NULL);
452                 if (ret < 0)
453                         return ret;
454         }
455
456         return ret;
457 }
458
459 static int prepare_td_per_sg(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq,
460                 struct scatterlist *s)
461 {
462         unsigned int rest = sg_dma_len(s);
463         int ret = 0;
464
465         hwreq->req.actual = 0;
466         while (rest > 0) {
467                 unsigned int count = min_t(unsigned int, rest,
468                                 CI_MAX_BUF_SIZE);
469
470                 ret = add_td_to_list(hwep, hwreq, count, s);
471                 if (ret < 0)
472                         return ret;
473
474                 rest -= count;
475         }
476
477         return ret;
478 }
479
480 static void ci_add_buffer_entry(struct td_node *node, struct scatterlist *s)
481 {
482         int empty_td_slot_index = (CI_MAX_BUF_SIZE - node->td_remaining_size)
483                         / CI_HDRC_PAGE_SIZE;
484         int i;
485
486         node->ptr->token +=
487                 cpu_to_le32(sg_dma_len(s) << __ffs(TD_TOTAL_BYTES));
488
489         for (i = empty_td_slot_index; i < TD_PAGE_COUNT; i++) {
490                 u32 page = (u32) sg_dma_address(s) +
491                         (i - empty_td_slot_index) * CI_HDRC_PAGE_SIZE;
492
493                 page &= ~TD_RESERVED_MASK;
494                 node->ptr->page[i] = cpu_to_le32(page);
495         }
496 }
497
498 static int prepare_td_for_sg(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
499 {
500         struct usb_request *req = &hwreq->req;
501         struct scatterlist *s = req->sg;
502         int ret = 0, i = 0;
503         struct td_node *node = NULL;
504
505         if (!s || req->zero || req->length == 0) {
506                 dev_err(hwep->ci->dev, "not supported operation for sg\n");
507                 return -EINVAL;
508         }
509
510         while (i++ < req->num_mapped_sgs) {
511                 if (sg_dma_address(s) % PAGE_SIZE) {
512                         dev_err(hwep->ci->dev, "not page aligned sg buffer\n");
513                         return -EINVAL;
514                 }
515
516                 if (node && (node->td_remaining_size >= sg_dma_len(s))) {
517                         ci_add_buffer_entry(node, s);
518                         node->td_remaining_size -= sg_dma_len(s);
519                 } else {
520                         ret = prepare_td_per_sg(hwep, hwreq, s);
521                         if (ret)
522                                 return ret;
523
524                         node = list_entry(hwreq->tds.prev,
525                                 struct td_node, td);
526                 }
527
528                 s = sg_next(s);
529         }
530
531         return ret;
532 }
533
534 /**
535  * _hardware_enqueue: configures a request at hardware level
536  * @hwep:   endpoint
537  * @hwreq:  request
538  *
539  * This function returns an error code
540  */
541 static int _hardware_enqueue(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
542 {
543         struct ci_hdrc *ci = hwep->ci;
544         int ret = 0;
545         struct td_node *firstnode, *lastnode;
546
547         /* don't queue twice */
548         if (hwreq->req.status == -EALREADY)
549                 return -EALREADY;
550
551         hwreq->req.status = -EALREADY;
552
553         ret = usb_gadget_map_request_by_dev(ci->dev->parent,
554                                             &hwreq->req, hwep->dir);
555         if (ret)
556                 return ret;
557
558         if (hwreq->req.num_mapped_sgs)
559                 ret = prepare_td_for_sg(hwep, hwreq);
560         else
561                 ret = prepare_td_for_non_sg(hwep, hwreq);
562
563         if (ret)
564                 return ret;
565
566         firstnode = list_first_entry(&hwreq->tds, struct td_node, td);
567
568         lastnode = list_entry(hwreq->tds.prev,
569                 struct td_node, td);
570
571         lastnode->ptr->next = cpu_to_le32(TD_TERMINATE);
572         if (!hwreq->req.no_interrupt)
573                 lastnode->ptr->token |= cpu_to_le32(TD_IOC);
574         wmb();
575
576         hwreq->req.actual = 0;
577         if (!list_empty(&hwep->qh.queue)) {
578                 struct ci_hw_req *hwreqprev;
579                 int n = hw_ep_bit(hwep->num, hwep->dir);
580                 int tmp_stat;
581                 struct td_node *prevlastnode;
582                 u32 next = firstnode->dma & TD_ADDR_MASK;
583
584                 hwreqprev = list_entry(hwep->qh.queue.prev,
585                                 struct ci_hw_req, queue);
586                 prevlastnode = list_entry(hwreqprev->tds.prev,
587                                 struct td_node, td);
588
589                 prevlastnode->ptr->next = cpu_to_le32(next);
590                 wmb();
591                 if (hw_read(ci, OP_ENDPTPRIME, BIT(n)))
592                         goto done;
593                 do {
594                         hw_write(ci, OP_USBCMD, USBCMD_ATDTW, USBCMD_ATDTW);
595                         tmp_stat = hw_read(ci, OP_ENDPTSTAT, BIT(n));
596                 } while (!hw_read(ci, OP_USBCMD, USBCMD_ATDTW));
597                 hw_write(ci, OP_USBCMD, USBCMD_ATDTW, 0);
598                 if (tmp_stat)
599                         goto done;
600         }
601
602         /*  QH configuration */
603         hwep->qh.ptr->td.next = cpu_to_le32(firstnode->dma);
604         hwep->qh.ptr->td.token &=
605                 cpu_to_le32(~(TD_STATUS_HALTED|TD_STATUS_ACTIVE));
606
607         if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == RX) {
608                 u32 mul = hwreq->req.length / hwep->ep.maxpacket;
609
610                 if (hwreq->req.length == 0
611                                 || hwreq->req.length % hwep->ep.maxpacket)
612                         mul++;
613                 hwep->qh.ptr->cap |= cpu_to_le32(mul << __ffs(QH_MULT));
614         }
615
616         ret = hw_ep_prime(ci, hwep->num, hwep->dir,
617                            hwep->type == USB_ENDPOINT_XFER_CONTROL);
618 done:
619         return ret;
620 }
621
622 /**
623  * free_pending_td: remove a pending request for the endpoint
624  * @ci: the controller
625  * @hwep: endpoint
626  */
627 static void free_pending_td(struct ci_hw_ep *hwep)
628 {
629         struct td_node *pending = hwep->pending_td;
630
631         dma_pool_free(hwep->td_pool, pending->ptr, pending->dma);
632         hwep->pending_td = NULL;
633         kfree(pending);
634 }
635
636 static int reprime_dtd(struct ci_hdrc *ci, struct ci_hw_ep *hwep,
637                                            struct td_node *node)
638 {
639         hwep->qh.ptr->td.next = cpu_to_le32(node->dma);
640         hwep->qh.ptr->td.token &=
641                 cpu_to_le32(~(TD_STATUS_HALTED | TD_STATUS_ACTIVE));
642
643         return hw_ep_prime(ci, hwep->num, hwep->dir,
644                                 hwep->type == USB_ENDPOINT_XFER_CONTROL);
645 }
646
647 /**
648  * _hardware_dequeue: handles a request at hardware level
649  * @gadget: gadget
650  * @hwep:   endpoint
651  *
652  * This function returns an error code
653  */
654 static int _hardware_dequeue(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
655 {
656         u32 tmptoken;
657         struct td_node *node, *tmpnode;
658         unsigned remaining_length;
659         unsigned actual = hwreq->req.length;
660         struct ci_hdrc *ci = hwep->ci;
661
662         if (hwreq->req.status != -EALREADY)
663                 return -EINVAL;
664
665         hwreq->req.status = 0;
666
667         list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
668                 tmptoken = le32_to_cpu(node->ptr->token);
669                 if ((TD_STATUS_ACTIVE & tmptoken) != 0) {
670                         int n = hw_ep_bit(hwep->num, hwep->dir);
671
672                         if (ci->rev == CI_REVISION_24)
673                                 if (!hw_read(ci, OP_ENDPTSTAT, BIT(n)))
674                                         reprime_dtd(ci, hwep, node);
675                         hwreq->req.status = -EALREADY;
676                         return -EBUSY;
677                 }
678
679                 remaining_length = (tmptoken & TD_TOTAL_BYTES);
680                 remaining_length >>= __ffs(TD_TOTAL_BYTES);
681                 actual -= remaining_length;
682
683                 hwreq->req.status = tmptoken & TD_STATUS;
684                 if ((TD_STATUS_HALTED & hwreq->req.status)) {
685                         hwreq->req.status = -EPIPE;
686                         break;
687                 } else if ((TD_STATUS_DT_ERR & hwreq->req.status)) {
688                         hwreq->req.status = -EPROTO;
689                         break;
690                 } else if ((TD_STATUS_TR_ERR & hwreq->req.status)) {
691                         hwreq->req.status = -EILSEQ;
692                         break;
693                 }
694
695                 if (remaining_length) {
696                         if (hwep->dir == TX) {
697                                 hwreq->req.status = -EPROTO;
698                                 break;
699                         }
700                 }
701                 /*
702                  * As the hardware could still address the freed td
703                  * which will run the udc unusable, the cleanup of the
704                  * td has to be delayed by one.
705                  */
706                 if (hwep->pending_td)
707                         free_pending_td(hwep);
708
709                 hwep->pending_td = node;
710                 list_del_init(&node->td);
711         }
712
713         usb_gadget_unmap_request_by_dev(hwep->ci->dev->parent,
714                                         &hwreq->req, hwep->dir);
715
716         hwreq->req.actual += actual;
717
718         if (hwreq->req.status)
719                 return hwreq->req.status;
720
721         return hwreq->req.actual;
722 }
723
724 /**
725  * _ep_nuke: dequeues all endpoint requests
726  * @hwep: endpoint
727  *
728  * This function returns an error code
729  * Caller must hold lock
730  */
731 static int _ep_nuke(struct ci_hw_ep *hwep)
732 __releases(hwep->lock)
733 __acquires(hwep->lock)
734 {
735         struct td_node *node, *tmpnode;
736         if (hwep == NULL)
737                 return -EINVAL;
738
739         hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
740
741         while (!list_empty(&hwep->qh.queue)) {
742
743                 /* pop oldest request */
744                 struct ci_hw_req *hwreq = list_entry(hwep->qh.queue.next,
745                                                      struct ci_hw_req, queue);
746
747                 list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
748                         dma_pool_free(hwep->td_pool, node->ptr, node->dma);
749                         list_del_init(&node->td);
750                         node->ptr = NULL;
751                         kfree(node);
752                 }
753
754                 list_del_init(&hwreq->queue);
755                 hwreq->req.status = -ESHUTDOWN;
756
757                 if (hwreq->req.complete != NULL) {
758                         spin_unlock(hwep->lock);
759                         usb_gadget_giveback_request(&hwep->ep, &hwreq->req);
760                         spin_lock(hwep->lock);
761                 }
762         }
763
764         if (hwep->pending_td)
765                 free_pending_td(hwep);
766
767         return 0;
768 }
769
770 static int _ep_set_halt(struct usb_ep *ep, int value, bool check_transfer)
771 {
772         struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
773         int direction, retval = 0;
774         unsigned long flags;
775
776         if (ep == NULL || hwep->ep.desc == NULL)
777                 return -EINVAL;
778
779         if (usb_endpoint_xfer_isoc(hwep->ep.desc))
780                 return -EOPNOTSUPP;
781
782         spin_lock_irqsave(hwep->lock, flags);
783
784         if (value && hwep->dir == TX && check_transfer &&
785                 !list_empty(&hwep->qh.queue) &&
786                         !usb_endpoint_xfer_control(hwep->ep.desc)) {
787                 spin_unlock_irqrestore(hwep->lock, flags);
788                 return -EAGAIN;
789         }
790
791         direction = hwep->dir;
792         do {
793                 retval |= hw_ep_set_halt(hwep->ci, hwep->num, hwep->dir, value);
794
795                 if (!value)
796                         hwep->wedge = 0;
797
798                 if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
799                         hwep->dir = (hwep->dir == TX) ? RX : TX;
800
801         } while (hwep->dir != direction);
802
803         spin_unlock_irqrestore(hwep->lock, flags);
804         return retval;
805 }
806
807
808 /**
809  * _gadget_stop_activity: stops all USB activity, flushes & disables all endpts
810  * @gadget: gadget
811  *
812  * This function returns an error code
813  */
814 static int _gadget_stop_activity(struct usb_gadget *gadget)
815 {
816         struct usb_ep *ep;
817         struct ci_hdrc    *ci = container_of(gadget, struct ci_hdrc, gadget);
818         unsigned long flags;
819
820         /* flush all endpoints */
821         gadget_for_each_ep(ep, gadget) {
822                 usb_ep_fifo_flush(ep);
823         }
824         usb_ep_fifo_flush(&ci->ep0out->ep);
825         usb_ep_fifo_flush(&ci->ep0in->ep);
826
827         /* make sure to disable all endpoints */
828         gadget_for_each_ep(ep, gadget) {
829                 usb_ep_disable(ep);
830         }
831
832         if (ci->status != NULL) {
833                 usb_ep_free_request(&ci->ep0in->ep, ci->status);
834                 ci->status = NULL;
835         }
836
837         spin_lock_irqsave(&ci->lock, flags);
838         ci->gadget.speed = USB_SPEED_UNKNOWN;
839         ci->remote_wakeup = 0;
840         ci->suspended = 0;
841         spin_unlock_irqrestore(&ci->lock, flags);
842
843         return 0;
844 }
845
846 /******************************************************************************
847  * ISR block
848  *****************************************************************************/
849 /**
850  * isr_reset_handler: USB reset interrupt handler
851  * @ci: UDC device
852  *
853  * This function resets USB engine after a bus reset occurred
854  */
855 static void isr_reset_handler(struct ci_hdrc *ci)
856 __releases(ci->lock)
857 __acquires(ci->lock)
858 {
859         int retval;
860
861         spin_unlock(&ci->lock);
862         if (ci->gadget.speed != USB_SPEED_UNKNOWN)
863                 usb_gadget_udc_reset(&ci->gadget, ci->driver);
864
865         retval = _gadget_stop_activity(&ci->gadget);
866         if (retval)
867                 goto done;
868
869         retval = hw_usb_reset(ci);
870         if (retval)
871                 goto done;
872
873         ci->status = usb_ep_alloc_request(&ci->ep0in->ep, GFP_ATOMIC);
874         if (ci->status == NULL)
875                 retval = -ENOMEM;
876
877 done:
878         spin_lock(&ci->lock);
879
880         if (retval)
881                 dev_err(ci->dev, "error: %i\n", retval);
882 }
883
884 /**
885  * isr_get_status_complete: get_status request complete function
886  * @ep:  endpoint
887  * @req: request handled
888  *
889  * Caller must release lock
890  */
891 static void isr_get_status_complete(struct usb_ep *ep, struct usb_request *req)
892 {
893         if (ep == NULL || req == NULL)
894                 return;
895
896         kfree(req->buf);
897         usb_ep_free_request(ep, req);
898 }
899
900 /**
901  * _ep_queue: queues (submits) an I/O request to an endpoint
902  * @ep:        endpoint
903  * @req:       request
904  * @gfp_flags: GFP flags (not used)
905  *
906  * Caller must hold lock
907  * This function returns an error code
908  */
909 static int _ep_queue(struct usb_ep *ep, struct usb_request *req,
910                     gfp_t __maybe_unused gfp_flags)
911 {
912         struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
913         struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
914         struct ci_hdrc *ci = hwep->ci;
915         int retval = 0;
916
917         if (ep == NULL || req == NULL || hwep->ep.desc == NULL)
918                 return -EINVAL;
919
920         if (hwep->type == USB_ENDPOINT_XFER_CONTROL) {
921                 if (req->length)
922                         hwep = (ci->ep0_dir == RX) ?
923                                ci->ep0out : ci->ep0in;
924                 if (!list_empty(&hwep->qh.queue)) {
925                         _ep_nuke(hwep);
926                         dev_warn(hwep->ci->dev, "endpoint ctrl %X nuked\n",
927                                  _usb_addr(hwep));
928                 }
929         }
930
931         if (usb_endpoint_xfer_isoc(hwep->ep.desc) &&
932             hwreq->req.length > hwep->ep.mult * hwep->ep.maxpacket) {
933                 dev_err(hwep->ci->dev, "request length too big for isochronous\n");
934                 return -EMSGSIZE;
935         }
936
937         /* first nuke then test link, e.g. previous status has not sent */
938         if (!list_empty(&hwreq->queue)) {
939                 dev_err(hwep->ci->dev, "request already in queue\n");
940                 return -EBUSY;
941         }
942
943         /* push request */
944         hwreq->req.status = -EINPROGRESS;
945         hwreq->req.actual = 0;
946
947         retval = _hardware_enqueue(hwep, hwreq);
948
949         if (retval == -EALREADY)
950                 retval = 0;
951         if (!retval)
952                 list_add_tail(&hwreq->queue, &hwep->qh.queue);
953
954         return retval;
955 }
956
957 /**
958  * isr_get_status_response: get_status request response
959  * @ci: ci struct
960  * @setup: setup request packet
961  *
962  * This function returns an error code
963  */
964 static int isr_get_status_response(struct ci_hdrc *ci,
965                                    struct usb_ctrlrequest *setup)
966 __releases(hwep->lock)
967 __acquires(hwep->lock)
968 {
969         struct ci_hw_ep *hwep = ci->ep0in;
970         struct usb_request *req = NULL;
971         gfp_t gfp_flags = GFP_ATOMIC;
972         int dir, num, retval;
973
974         if (hwep == NULL || setup == NULL)
975                 return -EINVAL;
976
977         spin_unlock(hwep->lock);
978         req = usb_ep_alloc_request(&hwep->ep, gfp_flags);
979         spin_lock(hwep->lock);
980         if (req == NULL)
981                 return -ENOMEM;
982
983         req->complete = isr_get_status_complete;
984         req->length   = 2;
985         req->buf      = kzalloc(req->length, gfp_flags);
986         if (req->buf == NULL) {
987                 retval = -ENOMEM;
988                 goto err_free_req;
989         }
990
991         if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
992                 *(u16 *)req->buf = (ci->remote_wakeup << 1) |
993                         ci->gadget.is_selfpowered;
994         } else if ((setup->bRequestType & USB_RECIP_MASK) \
995                    == USB_RECIP_ENDPOINT) {
996                 dir = (le16_to_cpu(setup->wIndex) & USB_ENDPOINT_DIR_MASK) ?
997                         TX : RX;
998                 num =  le16_to_cpu(setup->wIndex) & USB_ENDPOINT_NUMBER_MASK;
999                 *(u16 *)req->buf = hw_ep_get_halt(ci, num, dir);
1000         }
1001         /* else do nothing; reserved for future use */
1002
1003         retval = _ep_queue(&hwep->ep, req, gfp_flags);
1004         if (retval)
1005                 goto err_free_buf;
1006
1007         return 0;
1008
1009  err_free_buf:
1010         kfree(req->buf);
1011  err_free_req:
1012         spin_unlock(hwep->lock);
1013         usb_ep_free_request(&hwep->ep, req);
1014         spin_lock(hwep->lock);
1015         return retval;
1016 }
1017
1018 /**
1019  * isr_setup_status_complete: setup_status request complete function
1020  * @ep:  endpoint
1021  * @req: request handled
1022  *
1023  * Caller must release lock. Put the port in test mode if test mode
1024  * feature is selected.
1025  */
1026 static void
1027 isr_setup_status_complete(struct usb_ep *ep, struct usb_request *req)
1028 {
1029         struct ci_hdrc *ci = req->context;
1030         unsigned long flags;
1031
1032         if (ci->setaddr) {
1033                 hw_usb_set_address(ci, ci->address);
1034                 ci->setaddr = false;
1035                 if (ci->address)
1036                         usb_gadget_set_state(&ci->gadget, USB_STATE_ADDRESS);
1037         }
1038
1039         spin_lock_irqsave(&ci->lock, flags);
1040         if (ci->test_mode)
1041                 hw_port_test_set(ci, ci->test_mode);
1042         spin_unlock_irqrestore(&ci->lock, flags);
1043 }
1044
1045 /**
1046  * isr_setup_status_phase: queues the status phase of a setup transation
1047  * @ci: ci struct
1048  *
1049  * This function returns an error code
1050  */
1051 static int isr_setup_status_phase(struct ci_hdrc *ci)
1052 {
1053         struct ci_hw_ep *hwep;
1054
1055         /*
1056          * Unexpected USB controller behavior, caused by bad signal integrity
1057          * or ground reference problems, can lead to isr_setup_status_phase
1058          * being called with ci->status equal to NULL.
1059          * If this situation occurs, you should review your USB hardware design.
1060          */
1061         if (WARN_ON_ONCE(!ci->status))
1062                 return -EPIPE;
1063
1064         hwep = (ci->ep0_dir == TX) ? ci->ep0out : ci->ep0in;
1065         ci->status->context = ci;
1066         ci->status->complete = isr_setup_status_complete;
1067
1068         return _ep_queue(&hwep->ep, ci->status, GFP_ATOMIC);
1069 }
1070
1071 /**
1072  * isr_tr_complete_low: transaction complete low level handler
1073  * @hwep: endpoint
1074  *
1075  * This function returns an error code
1076  * Caller must hold lock
1077  */
1078 static int isr_tr_complete_low(struct ci_hw_ep *hwep)
1079 __releases(hwep->lock)
1080 __acquires(hwep->lock)
1081 {
1082         struct ci_hw_req *hwreq, *hwreqtemp;
1083         struct ci_hw_ep *hweptemp = hwep;
1084         int retval = 0;
1085
1086         list_for_each_entry_safe(hwreq, hwreqtemp, &hwep->qh.queue,
1087                         queue) {
1088                 retval = _hardware_dequeue(hwep, hwreq);
1089                 if (retval < 0)
1090                         break;
1091                 list_del_init(&hwreq->queue);
1092                 if (hwreq->req.complete != NULL) {
1093                         spin_unlock(hwep->lock);
1094                         if ((hwep->type == USB_ENDPOINT_XFER_CONTROL) &&
1095                                         hwreq->req.length)
1096                                 hweptemp = hwep->ci->ep0in;
1097                         usb_gadget_giveback_request(&hweptemp->ep, &hwreq->req);
1098                         spin_lock(hwep->lock);
1099                 }
1100         }
1101
1102         if (retval == -EBUSY)
1103                 retval = 0;
1104
1105         return retval;
1106 }
1107
1108 static int otg_a_alt_hnp_support(struct ci_hdrc *ci)
1109 {
1110         dev_warn(&ci->gadget.dev,
1111                 "connect the device to an alternate port if you want HNP\n");
1112         return isr_setup_status_phase(ci);
1113 }
1114
1115 /**
1116  * isr_setup_packet_handler: setup packet handler
1117  * @ci: UDC descriptor
1118  *
1119  * This function handles setup packet 
1120  */
1121 static void isr_setup_packet_handler(struct ci_hdrc *ci)
1122 __releases(ci->lock)
1123 __acquires(ci->lock)
1124 {
1125         struct ci_hw_ep *hwep = &ci->ci_hw_ep[0];
1126         struct usb_ctrlrequest req;
1127         int type, num, dir, err = -EINVAL;
1128         u8 tmode = 0;
1129
1130         /*
1131          * Flush data and handshake transactions of previous
1132          * setup packet.
1133          */
1134         _ep_nuke(ci->ep0out);
1135         _ep_nuke(ci->ep0in);
1136
1137         /* read_setup_packet */
1138         do {
1139                 hw_test_and_set_setup_guard(ci);
1140                 memcpy(&req, &hwep->qh.ptr->setup, sizeof(req));
1141         } while (!hw_test_and_clear_setup_guard(ci));
1142
1143         type = req.bRequestType;
1144
1145         ci->ep0_dir = (type & USB_DIR_IN) ? TX : RX;
1146
1147         switch (req.bRequest) {
1148         case USB_REQ_CLEAR_FEATURE:
1149                 if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) &&
1150                                 le16_to_cpu(req.wValue) ==
1151                                 USB_ENDPOINT_HALT) {
1152                         if (req.wLength != 0)
1153                                 break;
1154                         num  = le16_to_cpu(req.wIndex);
1155                         dir = (num & USB_ENDPOINT_DIR_MASK) ? TX : RX;
1156                         num &= USB_ENDPOINT_NUMBER_MASK;
1157                         if (dir == TX)
1158                                 num += ci->hw_ep_max / 2;
1159                         if (!ci->ci_hw_ep[num].wedge) {
1160                                 spin_unlock(&ci->lock);
1161                                 err = usb_ep_clear_halt(
1162                                         &ci->ci_hw_ep[num].ep);
1163                                 spin_lock(&ci->lock);
1164                                 if (err)
1165                                         break;
1166                         }
1167                         err = isr_setup_status_phase(ci);
1168                 } else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE) &&
1169                                 le16_to_cpu(req.wValue) ==
1170                                 USB_DEVICE_REMOTE_WAKEUP) {
1171                         if (req.wLength != 0)
1172                                 break;
1173                         ci->remote_wakeup = 0;
1174                         err = isr_setup_status_phase(ci);
1175                 } else {
1176                         goto delegate;
1177                 }
1178                 break;
1179         case USB_REQ_GET_STATUS:
1180                 if ((type != (USB_DIR_IN|USB_RECIP_DEVICE) ||
1181                         le16_to_cpu(req.wIndex) == OTG_STS_SELECTOR) &&
1182                     type != (USB_DIR_IN|USB_RECIP_ENDPOINT) &&
1183                     type != (USB_DIR_IN|USB_RECIP_INTERFACE))
1184                         goto delegate;
1185                 if (le16_to_cpu(req.wLength) != 2 ||
1186                     le16_to_cpu(req.wValue)  != 0)
1187                         break;
1188                 err = isr_get_status_response(ci, &req);
1189                 break;
1190         case USB_REQ_SET_ADDRESS:
1191                 if (type != (USB_DIR_OUT|USB_RECIP_DEVICE))
1192                         goto delegate;
1193                 if (le16_to_cpu(req.wLength) != 0 ||
1194                     le16_to_cpu(req.wIndex)  != 0)
1195                         break;
1196                 ci->address = (u8)le16_to_cpu(req.wValue);
1197                 ci->setaddr = true;
1198                 err = isr_setup_status_phase(ci);
1199                 break;
1200         case USB_REQ_SET_FEATURE:
1201                 if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) &&
1202                                 le16_to_cpu(req.wValue) ==
1203                                 USB_ENDPOINT_HALT) {
1204                         if (req.wLength != 0)
1205                                 break;
1206                         num  = le16_to_cpu(req.wIndex);
1207                         dir = (num & USB_ENDPOINT_DIR_MASK) ? TX : RX;
1208                         num &= USB_ENDPOINT_NUMBER_MASK;
1209                         if (dir == TX)
1210                                 num += ci->hw_ep_max / 2;
1211
1212                         spin_unlock(&ci->lock);
1213                         err = _ep_set_halt(&ci->ci_hw_ep[num].ep, 1, false);
1214                         spin_lock(&ci->lock);
1215                         if (!err)
1216                                 isr_setup_status_phase(ci);
1217                 } else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE)) {
1218                         if (req.wLength != 0)
1219                                 break;
1220                         switch (le16_to_cpu(req.wValue)) {
1221                         case USB_DEVICE_REMOTE_WAKEUP:
1222                                 ci->remote_wakeup = 1;
1223                                 err = isr_setup_status_phase(ci);
1224                                 break;
1225                         case USB_DEVICE_TEST_MODE:
1226                                 tmode = le16_to_cpu(req.wIndex) >> 8;
1227                                 switch (tmode) {
1228                                 case USB_TEST_J:
1229                                 case USB_TEST_K:
1230                                 case USB_TEST_SE0_NAK:
1231                                 case USB_TEST_PACKET:
1232                                 case USB_TEST_FORCE_ENABLE:
1233                                         ci->test_mode = tmode;
1234                                         err = isr_setup_status_phase(
1235                                                         ci);
1236                                         break;
1237                                 default:
1238                                         break;
1239                                 }
1240                                 break;
1241                         case USB_DEVICE_B_HNP_ENABLE:
1242                                 if (ci_otg_is_fsm_mode(ci)) {
1243                                         ci->gadget.b_hnp_enable = 1;
1244                                         err = isr_setup_status_phase(
1245                                                         ci);
1246                                 }
1247                                 break;
1248                         case USB_DEVICE_A_ALT_HNP_SUPPORT:
1249                                 if (ci_otg_is_fsm_mode(ci))
1250                                         err = otg_a_alt_hnp_support(ci);
1251                                 break;
1252                         case USB_DEVICE_A_HNP_SUPPORT:
1253                                 if (ci_otg_is_fsm_mode(ci)) {
1254                                         ci->gadget.a_hnp_support = 1;
1255                                         err = isr_setup_status_phase(
1256                                                         ci);
1257                                 }
1258                                 break;
1259                         default:
1260                                 goto delegate;
1261                         }
1262                 } else {
1263                         goto delegate;
1264                 }
1265                 break;
1266         default:
1267 delegate:
1268                 if (req.wLength == 0)   /* no data phase */
1269                         ci->ep0_dir = TX;
1270
1271                 spin_unlock(&ci->lock);
1272                 err = ci->driver->setup(&ci->gadget, &req);
1273                 spin_lock(&ci->lock);
1274                 break;
1275         }
1276
1277         if (err < 0) {
1278                 spin_unlock(&ci->lock);
1279                 if (_ep_set_halt(&hwep->ep, 1, false))
1280                         dev_err(ci->dev, "error: _ep_set_halt\n");
1281                 spin_lock(&ci->lock);
1282         }
1283 }
1284
1285 /**
1286  * isr_tr_complete_handler: transaction complete interrupt handler
1287  * @ci: UDC descriptor
1288  *
1289  * This function handles traffic events
1290  */
1291 static void isr_tr_complete_handler(struct ci_hdrc *ci)
1292 __releases(ci->lock)
1293 __acquires(ci->lock)
1294 {
1295         unsigned i;
1296         int err;
1297
1298         for (i = 0; i < ci->hw_ep_max; i++) {
1299                 struct ci_hw_ep *hwep  = &ci->ci_hw_ep[i];
1300
1301                 if (hwep->ep.desc == NULL)
1302                         continue;   /* not configured */
1303
1304                 if (hw_test_and_clear_complete(ci, i)) {
1305                         err = isr_tr_complete_low(hwep);
1306                         if (hwep->type == USB_ENDPOINT_XFER_CONTROL) {
1307                                 if (err > 0)   /* needs status phase */
1308                                         err = isr_setup_status_phase(ci);
1309                                 if (err < 0) {
1310                                         spin_unlock(&ci->lock);
1311                                         if (_ep_set_halt(&hwep->ep, 1, false))
1312                                                 dev_err(ci->dev,
1313                                                 "error: _ep_set_halt\n");
1314                                         spin_lock(&ci->lock);
1315                                 }
1316                         }
1317                 }
1318
1319                 /* Only handle setup packet below */
1320                 if (i == 0 &&
1321                         hw_test_and_clear(ci, OP_ENDPTSETUPSTAT, BIT(0)))
1322                         isr_setup_packet_handler(ci);
1323         }
1324 }
1325
1326 /******************************************************************************
1327  * ENDPT block
1328  *****************************************************************************/
1329 /**
1330  * ep_enable: configure endpoint, making it usable
1331  *
1332  * Check usb_ep_enable() at "usb_gadget.h" for details
1333  */
1334 static int ep_enable(struct usb_ep *ep,
1335                      const struct usb_endpoint_descriptor *desc)
1336 {
1337         struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1338         int retval = 0;
1339         unsigned long flags;
1340         u32 cap = 0;
1341
1342         if (ep == NULL || desc == NULL)
1343                 return -EINVAL;
1344
1345         spin_lock_irqsave(hwep->lock, flags);
1346
1347         /* only internal SW should enable ctrl endpts */
1348
1349         if (!list_empty(&hwep->qh.queue)) {
1350                 dev_warn(hwep->ci->dev, "enabling a non-empty endpoint!\n");
1351                 spin_unlock_irqrestore(hwep->lock, flags);
1352                 return -EBUSY;
1353         }
1354
1355         hwep->ep.desc = desc;
1356
1357         hwep->dir  = usb_endpoint_dir_in(desc) ? TX : RX;
1358         hwep->num  = usb_endpoint_num(desc);
1359         hwep->type = usb_endpoint_type(desc);
1360
1361         hwep->ep.maxpacket = usb_endpoint_maxp(desc);
1362         hwep->ep.mult = usb_endpoint_maxp_mult(desc);
1363
1364         if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
1365                 cap |= QH_IOS;
1366
1367         cap |= QH_ZLT;
1368         cap |= (hwep->ep.maxpacket << __ffs(QH_MAX_PKT)) & QH_MAX_PKT;
1369         /*
1370          * For ISO-TX, we set mult at QH as the largest value, and use
1371          * MultO at TD as real mult value.
1372          */
1373         if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == TX)
1374                 cap |= 3 << __ffs(QH_MULT);
1375
1376         hwep->qh.ptr->cap = cpu_to_le32(cap);
1377
1378         hwep->qh.ptr->td.next |= cpu_to_le32(TD_TERMINATE);   /* needed? */
1379
1380         if (hwep->num != 0 && hwep->type == USB_ENDPOINT_XFER_CONTROL) {
1381                 dev_err(hwep->ci->dev, "Set control xfer at non-ep0\n");
1382                 retval = -EINVAL;
1383         }
1384
1385         /*
1386          * Enable endpoints in the HW other than ep0 as ep0
1387          * is always enabled
1388          */
1389         if (hwep->num)
1390                 retval |= hw_ep_enable(hwep->ci, hwep->num, hwep->dir,
1391                                        hwep->type);
1392
1393         spin_unlock_irqrestore(hwep->lock, flags);
1394         return retval;
1395 }
1396
1397 /**
1398  * ep_disable: endpoint is no longer usable
1399  *
1400  * Check usb_ep_disable() at "usb_gadget.h" for details
1401  */
1402 static int ep_disable(struct usb_ep *ep)
1403 {
1404         struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1405         int direction, retval = 0;
1406         unsigned long flags;
1407
1408         if (ep == NULL)
1409                 return -EINVAL;
1410         else if (hwep->ep.desc == NULL)
1411                 return -EBUSY;
1412
1413         spin_lock_irqsave(hwep->lock, flags);
1414         if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) {
1415                 spin_unlock_irqrestore(hwep->lock, flags);
1416                 return 0;
1417         }
1418
1419         /* only internal SW should disable ctrl endpts */
1420
1421         direction = hwep->dir;
1422         do {
1423                 retval |= _ep_nuke(hwep);
1424                 retval |= hw_ep_disable(hwep->ci, hwep->num, hwep->dir);
1425
1426                 if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
1427                         hwep->dir = (hwep->dir == TX) ? RX : TX;
1428
1429         } while (hwep->dir != direction);
1430
1431         hwep->ep.desc = NULL;
1432
1433         spin_unlock_irqrestore(hwep->lock, flags);
1434         return retval;
1435 }
1436
1437 /**
1438  * ep_alloc_request: allocate a request object to use with this endpoint
1439  *
1440  * Check usb_ep_alloc_request() at "usb_gadget.h" for details
1441  */
1442 static struct usb_request *ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags)
1443 {
1444         struct ci_hw_req *hwreq = NULL;
1445
1446         if (ep == NULL)
1447                 return NULL;
1448
1449         hwreq = kzalloc(sizeof(struct ci_hw_req), gfp_flags);
1450         if (hwreq != NULL) {
1451                 INIT_LIST_HEAD(&hwreq->queue);
1452                 INIT_LIST_HEAD(&hwreq->tds);
1453         }
1454
1455         return (hwreq == NULL) ? NULL : &hwreq->req;
1456 }
1457
1458 /**
1459  * ep_free_request: frees a request object
1460  *
1461  * Check usb_ep_free_request() at "usb_gadget.h" for details
1462  */
1463 static void ep_free_request(struct usb_ep *ep, struct usb_request *req)
1464 {
1465         struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1466         struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
1467         struct td_node *node, *tmpnode;
1468         unsigned long flags;
1469
1470         if (ep == NULL || req == NULL) {
1471                 return;
1472         } else if (!list_empty(&hwreq->queue)) {
1473                 dev_err(hwep->ci->dev, "freeing queued request\n");
1474                 return;
1475         }
1476
1477         spin_lock_irqsave(hwep->lock, flags);
1478
1479         list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
1480                 dma_pool_free(hwep->td_pool, node->ptr, node->dma);
1481                 list_del_init(&node->td);
1482                 node->ptr = NULL;
1483                 kfree(node);
1484         }
1485
1486         kfree(hwreq);
1487
1488         spin_unlock_irqrestore(hwep->lock, flags);
1489 }
1490
1491 /**
1492  * ep_queue: queues (submits) an I/O request to an endpoint
1493  *
1494  * Check usb_ep_queue()* at usb_gadget.h" for details
1495  */
1496 static int ep_queue(struct usb_ep *ep, struct usb_request *req,
1497                     gfp_t __maybe_unused gfp_flags)
1498 {
1499         struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1500         int retval = 0;
1501         unsigned long flags;
1502
1503         if (ep == NULL || req == NULL || hwep->ep.desc == NULL)
1504                 return -EINVAL;
1505
1506         spin_lock_irqsave(hwep->lock, flags);
1507         if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) {
1508                 spin_unlock_irqrestore(hwep->lock, flags);
1509                 return 0;
1510         }
1511         retval = _ep_queue(ep, req, gfp_flags);
1512         spin_unlock_irqrestore(hwep->lock, flags);
1513         return retval;
1514 }
1515
1516 /**
1517  * ep_dequeue: dequeues (cancels, unlinks) an I/O request from an endpoint
1518  *
1519  * Check usb_ep_dequeue() at "usb_gadget.h" for details
1520  */
1521 static int ep_dequeue(struct usb_ep *ep, struct usb_request *req)
1522 {
1523         struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1524         struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
1525         unsigned long flags;
1526         struct td_node *node, *tmpnode;
1527
1528         if (ep == NULL || req == NULL || hwreq->req.status != -EALREADY ||
1529                 hwep->ep.desc == NULL || list_empty(&hwreq->queue) ||
1530                 list_empty(&hwep->qh.queue))
1531                 return -EINVAL;
1532
1533         spin_lock_irqsave(hwep->lock, flags);
1534         if (hwep->ci->gadget.speed != USB_SPEED_UNKNOWN)
1535                 hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
1536
1537         list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
1538                 dma_pool_free(hwep->td_pool, node->ptr, node->dma);
1539                 list_del(&node->td);
1540                 kfree(node);
1541         }
1542
1543         /* pop request */
1544         list_del_init(&hwreq->queue);
1545
1546         usb_gadget_unmap_request(&hwep->ci->gadget, req, hwep->dir);
1547
1548         req->status = -ECONNRESET;
1549
1550         if (hwreq->req.complete != NULL) {
1551                 spin_unlock(hwep->lock);
1552                 usb_gadget_giveback_request(&hwep->ep, &hwreq->req);
1553                 spin_lock(hwep->lock);
1554         }
1555
1556         spin_unlock_irqrestore(hwep->lock, flags);
1557         return 0;
1558 }
1559
1560 /**
1561  * ep_set_halt: sets the endpoint halt feature
1562  *
1563  * Check usb_ep_set_halt() at "usb_gadget.h" for details
1564  */
1565 static int ep_set_halt(struct usb_ep *ep, int value)
1566 {
1567         return _ep_set_halt(ep, value, true);
1568 }
1569
1570 /**
1571  * ep_set_wedge: sets the halt feature and ignores clear requests
1572  *
1573  * Check usb_ep_set_wedge() at "usb_gadget.h" for details
1574  */
1575 static int ep_set_wedge(struct usb_ep *ep)
1576 {
1577         struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1578         unsigned long flags;
1579
1580         if (ep == NULL || hwep->ep.desc == NULL)
1581                 return -EINVAL;
1582
1583         spin_lock_irqsave(hwep->lock, flags);
1584         hwep->wedge = 1;
1585         spin_unlock_irqrestore(hwep->lock, flags);
1586
1587         return usb_ep_set_halt(ep);
1588 }
1589
1590 /**
1591  * ep_fifo_flush: flushes contents of a fifo
1592  *
1593  * Check usb_ep_fifo_flush() at "usb_gadget.h" for details
1594  */
1595 static void ep_fifo_flush(struct usb_ep *ep)
1596 {
1597         struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1598         unsigned long flags;
1599
1600         if (ep == NULL) {
1601                 dev_err(hwep->ci->dev, "%02X: -EINVAL\n", _usb_addr(hwep));
1602                 return;
1603         }
1604
1605         spin_lock_irqsave(hwep->lock, flags);
1606         if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) {
1607                 spin_unlock_irqrestore(hwep->lock, flags);
1608                 return;
1609         }
1610
1611         hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
1612
1613         spin_unlock_irqrestore(hwep->lock, flags);
1614 }
1615
1616 /**
1617  * Endpoint-specific part of the API to the USB controller hardware
1618  * Check "usb_gadget.h" for details
1619  */
1620 static const struct usb_ep_ops usb_ep_ops = {
1621         .enable        = ep_enable,
1622         .disable       = ep_disable,
1623         .alloc_request = ep_alloc_request,
1624         .free_request  = ep_free_request,
1625         .queue         = ep_queue,
1626         .dequeue       = ep_dequeue,
1627         .set_halt      = ep_set_halt,
1628         .set_wedge     = ep_set_wedge,
1629         .fifo_flush    = ep_fifo_flush,
1630 };
1631
1632 /******************************************************************************
1633  * GADGET block
1634  *****************************************************************************/
1635 /**
1636  * ci_hdrc_gadget_connect: caller makes sure gadget driver is binded
1637  */
1638 static void ci_hdrc_gadget_connect(struct usb_gadget *_gadget, int is_active)
1639 {
1640         struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1641
1642         if (is_active) {
1643                 pm_runtime_get_sync(ci->dev);
1644                 hw_device_reset(ci);
1645                 spin_lock_irq(&ci->lock);
1646                 if (ci->driver) {
1647                         hw_device_state(ci, ci->ep0out->qh.dma);
1648                         usb_gadget_set_state(_gadget, USB_STATE_POWERED);
1649                         spin_unlock_irq(&ci->lock);
1650                         usb_udc_vbus_handler(_gadget, true);
1651                 } else {
1652                         spin_unlock_irq(&ci->lock);
1653                 }
1654         } else {
1655                 usb_udc_vbus_handler(_gadget, false);
1656                 if (ci->driver)
1657                         ci->driver->disconnect(&ci->gadget);
1658                 hw_device_state(ci, 0);
1659                 if (ci->platdata->notify_event)
1660                         ci->platdata->notify_event(ci,
1661                         CI_HDRC_CONTROLLER_STOPPED_EVENT);
1662                 _gadget_stop_activity(&ci->gadget);
1663                 pm_runtime_put_sync(ci->dev);
1664                 usb_gadget_set_state(_gadget, USB_STATE_NOTATTACHED);
1665         }
1666 }
1667
1668 static int ci_udc_vbus_session(struct usb_gadget *_gadget, int is_active)
1669 {
1670         struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1671         unsigned long flags;
1672         int ret = 0;
1673
1674         spin_lock_irqsave(&ci->lock, flags);
1675         ci->vbus_active = is_active;
1676         spin_unlock_irqrestore(&ci->lock, flags);
1677
1678         if (ci->usb_phy)
1679                 usb_phy_set_charger_state(ci->usb_phy, is_active ?
1680                         USB_CHARGER_PRESENT : USB_CHARGER_ABSENT);
1681
1682         if (ci->platdata->notify_event)
1683                 ret = ci->platdata->notify_event(ci,
1684                                 CI_HDRC_CONTROLLER_VBUS_EVENT);
1685
1686         if (ci->driver)
1687                 ci_hdrc_gadget_connect(_gadget, is_active);
1688
1689         return ret;
1690 }
1691
1692 static int ci_udc_wakeup(struct usb_gadget *_gadget)
1693 {
1694         struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1695         unsigned long flags;
1696         int ret = 0;
1697
1698         spin_lock_irqsave(&ci->lock, flags);
1699         if (ci->gadget.speed == USB_SPEED_UNKNOWN) {
1700                 spin_unlock_irqrestore(&ci->lock, flags);
1701                 return 0;
1702         }
1703         if (!ci->remote_wakeup) {
1704                 ret = -EOPNOTSUPP;
1705                 goto out;
1706         }
1707         if (!hw_read(ci, OP_PORTSC, PORTSC_SUSP)) {
1708                 ret = -EINVAL;
1709                 goto out;
1710         }
1711         hw_write(ci, OP_PORTSC, PORTSC_FPR, PORTSC_FPR);
1712 out:
1713         spin_unlock_irqrestore(&ci->lock, flags);
1714         return ret;
1715 }
1716
1717 static int ci_udc_vbus_draw(struct usb_gadget *_gadget, unsigned ma)
1718 {
1719         struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1720
1721         if (ci->usb_phy)
1722                 return usb_phy_set_power(ci->usb_phy, ma);
1723         return -ENOTSUPP;
1724 }
1725
1726 static int ci_udc_selfpowered(struct usb_gadget *_gadget, int is_on)
1727 {
1728         struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1729         struct ci_hw_ep *hwep = ci->ep0in;
1730         unsigned long flags;
1731
1732         spin_lock_irqsave(hwep->lock, flags);
1733         _gadget->is_selfpowered = (is_on != 0);
1734         spin_unlock_irqrestore(hwep->lock, flags);
1735
1736         return 0;
1737 }
1738
1739 /* Change Data+ pullup status
1740  * this func is used by usb_gadget_connect/disconnect
1741  */
1742 static int ci_udc_pullup(struct usb_gadget *_gadget, int is_on)
1743 {
1744         struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1745
1746         /*
1747          * Data+ pullup controlled by OTG state machine in OTG fsm mode;
1748          * and don't touch Data+ in host mode for dual role config.
1749          */
1750         if (ci_otg_is_fsm_mode(ci) || ci->role == CI_ROLE_HOST)
1751                 return 0;
1752
1753         pm_runtime_get_sync(ci->dev);
1754         if (is_on)
1755                 hw_write(ci, OP_USBCMD, USBCMD_RS, USBCMD_RS);
1756         else
1757                 hw_write(ci, OP_USBCMD, USBCMD_RS, 0);
1758         pm_runtime_put_sync(ci->dev);
1759
1760         return 0;
1761 }
1762
1763 static int ci_udc_start(struct usb_gadget *gadget,
1764                          struct usb_gadget_driver *driver);
1765 static int ci_udc_stop(struct usb_gadget *gadget);
1766
1767 /* Match ISOC IN from the highest endpoint */
1768 static struct usb_ep *ci_udc_match_ep(struct usb_gadget *gadget,
1769                               struct usb_endpoint_descriptor *desc,
1770                               struct usb_ss_ep_comp_descriptor *comp_desc)
1771 {
1772         struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
1773         struct usb_ep *ep;
1774
1775         if (usb_endpoint_xfer_isoc(desc) && usb_endpoint_dir_in(desc)) {
1776                 list_for_each_entry_reverse(ep, &ci->gadget.ep_list, ep_list) {
1777                         if (ep->caps.dir_in && !ep->claimed)
1778                                 return ep;
1779                 }
1780         }
1781
1782         return NULL;
1783 }
1784
1785 /**
1786  * Device operations part of the API to the USB controller hardware,
1787  * which don't involve endpoints (or i/o)
1788  * Check  "usb_gadget.h" for details
1789  */
1790 static const struct usb_gadget_ops usb_gadget_ops = {
1791         .vbus_session   = ci_udc_vbus_session,
1792         .wakeup         = ci_udc_wakeup,
1793         .set_selfpowered        = ci_udc_selfpowered,
1794         .pullup         = ci_udc_pullup,
1795         .vbus_draw      = ci_udc_vbus_draw,
1796         .udc_start      = ci_udc_start,
1797         .udc_stop       = ci_udc_stop,
1798         .match_ep       = ci_udc_match_ep,
1799 };
1800
1801 static int init_eps(struct ci_hdrc *ci)
1802 {
1803         int retval = 0, i, j;
1804
1805         for (i = 0; i < ci->hw_ep_max/2; i++)
1806                 for (j = RX; j <= TX; j++) {
1807                         int k = i + j * ci->hw_ep_max/2;
1808                         struct ci_hw_ep *hwep = &ci->ci_hw_ep[k];
1809
1810                         scnprintf(hwep->name, sizeof(hwep->name), "ep%i%s", i,
1811                                         (j == TX)  ? "in" : "out");
1812
1813                         hwep->ci          = ci;
1814                         hwep->lock         = &ci->lock;
1815                         hwep->td_pool      = ci->td_pool;
1816
1817                         hwep->ep.name      = hwep->name;
1818                         hwep->ep.ops       = &usb_ep_ops;
1819
1820                         if (i == 0) {
1821                                 hwep->ep.caps.type_control = true;
1822                         } else {
1823                                 hwep->ep.caps.type_iso = true;
1824                                 hwep->ep.caps.type_bulk = true;
1825                                 hwep->ep.caps.type_int = true;
1826                         }
1827
1828                         if (j == TX)
1829                                 hwep->ep.caps.dir_in = true;
1830                         else
1831                                 hwep->ep.caps.dir_out = true;
1832
1833                         /*
1834                          * for ep0: maxP defined in desc, for other
1835                          * eps, maxP is set by epautoconfig() called
1836                          * by gadget layer
1837                          */
1838                         usb_ep_set_maxpacket_limit(&hwep->ep, (unsigned short)~0);
1839
1840                         INIT_LIST_HEAD(&hwep->qh.queue);
1841                         hwep->qh.ptr = dma_pool_zalloc(ci->qh_pool, GFP_KERNEL,
1842                                                        &hwep->qh.dma);
1843                         if (hwep->qh.ptr == NULL)
1844                                 retval = -ENOMEM;
1845
1846                         /*
1847                          * set up shorthands for ep0 out and in endpoints,
1848                          * don't add to gadget's ep_list
1849                          */
1850                         if (i == 0) {
1851                                 if (j == RX)
1852                                         ci->ep0out = hwep;
1853                                 else
1854                                         ci->ep0in = hwep;
1855
1856                                 usb_ep_set_maxpacket_limit(&hwep->ep, CTRL_PAYLOAD_MAX);
1857                                 continue;
1858                         }
1859
1860                         list_add_tail(&hwep->ep.ep_list, &ci->gadget.ep_list);
1861                 }
1862
1863         return retval;
1864 }
1865
1866 static void destroy_eps(struct ci_hdrc *ci)
1867 {
1868         int i;
1869
1870         for (i = 0; i < ci->hw_ep_max; i++) {
1871                 struct ci_hw_ep *hwep = &ci->ci_hw_ep[i];
1872
1873                 if (hwep->pending_td)
1874                         free_pending_td(hwep);
1875                 dma_pool_free(ci->qh_pool, hwep->qh.ptr, hwep->qh.dma);
1876         }
1877 }
1878
1879 /**
1880  * ci_udc_start: register a gadget driver
1881  * @gadget: our gadget
1882  * @driver: the driver being registered
1883  *
1884  * Interrupts are enabled here.
1885  */
1886 static int ci_udc_start(struct usb_gadget *gadget,
1887                          struct usb_gadget_driver *driver)
1888 {
1889         struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
1890         int retval;
1891
1892         if (driver->disconnect == NULL)
1893                 return -EINVAL;
1894
1895         ci->ep0out->ep.desc = &ctrl_endpt_out_desc;
1896         retval = usb_ep_enable(&ci->ep0out->ep);
1897         if (retval)
1898                 return retval;
1899
1900         ci->ep0in->ep.desc = &ctrl_endpt_in_desc;
1901         retval = usb_ep_enable(&ci->ep0in->ep);
1902         if (retval)
1903                 return retval;
1904
1905         ci->driver = driver;
1906
1907         /* Start otg fsm for B-device */
1908         if (ci_otg_is_fsm_mode(ci) && ci->fsm.id) {
1909                 ci_hdrc_otg_fsm_start(ci);
1910                 return retval;
1911         }
1912
1913         if (ci->vbus_active)
1914                 ci_hdrc_gadget_connect(gadget, 1);
1915         else
1916                 usb_udc_vbus_handler(&ci->gadget, false);
1917
1918         return retval;
1919 }
1920
1921 static void ci_udc_stop_for_otg_fsm(struct ci_hdrc *ci)
1922 {
1923         if (!ci_otg_is_fsm_mode(ci))
1924                 return;
1925
1926         mutex_lock(&ci->fsm.lock);
1927         if (ci->fsm.otg->state == OTG_STATE_A_PERIPHERAL) {
1928                 ci->fsm.a_bidl_adis_tmout = 1;
1929                 ci_hdrc_otg_fsm_start(ci);
1930         } else if (ci->fsm.otg->state == OTG_STATE_B_PERIPHERAL) {
1931                 ci->fsm.protocol = PROTO_UNDEF;
1932                 ci->fsm.otg->state = OTG_STATE_UNDEFINED;
1933         }
1934         mutex_unlock(&ci->fsm.lock);
1935 }
1936
1937 /**
1938  * ci_udc_stop: unregister a gadget driver
1939  */
1940 static int ci_udc_stop(struct usb_gadget *gadget)
1941 {
1942         struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
1943         unsigned long flags;
1944
1945         spin_lock_irqsave(&ci->lock, flags);
1946         ci->driver = NULL;
1947
1948         if (ci->vbus_active) {
1949                 hw_device_state(ci, 0);
1950                 spin_unlock_irqrestore(&ci->lock, flags);
1951                 if (ci->platdata->notify_event)
1952                         ci->platdata->notify_event(ci,
1953                         CI_HDRC_CONTROLLER_STOPPED_EVENT);
1954                 _gadget_stop_activity(&ci->gadget);
1955                 spin_lock_irqsave(&ci->lock, flags);
1956                 pm_runtime_put(ci->dev);
1957         }
1958
1959         spin_unlock_irqrestore(&ci->lock, flags);
1960
1961         ci_udc_stop_for_otg_fsm(ci);
1962         return 0;
1963 }
1964
1965 /******************************************************************************
1966  * BUS block
1967  *****************************************************************************/
1968 /**
1969  * udc_irq: ci interrupt handler
1970  *
1971  * This function returns IRQ_HANDLED if the IRQ has been handled
1972  * It locks access to registers
1973  */
1974 static irqreturn_t udc_irq(struct ci_hdrc *ci)
1975 {
1976         irqreturn_t retval;
1977         u32 intr;
1978
1979         if (ci == NULL)
1980                 return IRQ_HANDLED;
1981
1982         spin_lock(&ci->lock);
1983
1984         if (ci->platdata->flags & CI_HDRC_REGS_SHARED) {
1985                 if (hw_read(ci, OP_USBMODE, USBMODE_CM) !=
1986                                 USBMODE_CM_DC) {
1987                         spin_unlock(&ci->lock);
1988                         return IRQ_NONE;
1989                 }
1990         }
1991         intr = hw_test_and_clear_intr_active(ci);
1992
1993         if (intr) {
1994                 /* order defines priority - do NOT change it */
1995                 if (USBi_URI & intr)
1996                         isr_reset_handler(ci);
1997
1998                 if (USBi_PCI & intr) {
1999                         ci->gadget.speed = hw_port_is_high_speed(ci) ?
2000                                 USB_SPEED_HIGH : USB_SPEED_FULL;
2001                         if (ci->suspended) {
2002                                 if (ci->driver->resume) {
2003                                         spin_unlock(&ci->lock);
2004                                         ci->driver->resume(&ci->gadget);
2005                                         spin_lock(&ci->lock);
2006                                 }
2007                                 ci->suspended = 0;
2008                                 usb_gadget_set_state(&ci->gadget,
2009                                                 ci->resume_state);
2010                         }
2011                 }
2012
2013                 if (USBi_UI  & intr)
2014                         isr_tr_complete_handler(ci);
2015
2016                 if ((USBi_SLI & intr) && !(ci->suspended)) {
2017                         ci->suspended = 1;
2018                         ci->resume_state = ci->gadget.state;
2019                         if (ci->gadget.speed != USB_SPEED_UNKNOWN &&
2020                             ci->driver->suspend) {
2021                                 spin_unlock(&ci->lock);
2022                                 ci->driver->suspend(&ci->gadget);
2023                                 spin_lock(&ci->lock);
2024                         }
2025                         usb_gadget_set_state(&ci->gadget,
2026                                         USB_STATE_SUSPENDED);
2027                 }
2028                 retval = IRQ_HANDLED;
2029         } else {
2030                 retval = IRQ_NONE;
2031         }
2032         spin_unlock(&ci->lock);
2033
2034         return retval;
2035 }
2036
2037 /**
2038  * udc_start: initialize gadget role
2039  * @ci: chipidea controller
2040  */
2041 static int udc_start(struct ci_hdrc *ci)
2042 {
2043         struct device *dev = ci->dev;
2044         struct usb_otg_caps *otg_caps = &ci->platdata->ci_otg_caps;
2045         int retval = 0;
2046
2047         ci->gadget.ops          = &usb_gadget_ops;
2048         ci->gadget.speed        = USB_SPEED_UNKNOWN;
2049         ci->gadget.max_speed    = USB_SPEED_HIGH;
2050         ci->gadget.name         = ci->platdata->name;
2051         ci->gadget.otg_caps     = otg_caps;
2052         ci->gadget.sg_supported = 1;
2053
2054         if (ci->platdata->flags & CI_HDRC_REQUIRES_ALIGNED_DMA)
2055                 ci->gadget.quirk_avoids_skb_reserve = 1;
2056
2057         if (ci->is_otg && (otg_caps->hnp_support || otg_caps->srp_support ||
2058                                                 otg_caps->adp_support))
2059                 ci->gadget.is_otg = 1;
2060
2061         INIT_LIST_HEAD(&ci->gadget.ep_list);
2062
2063         /* alloc resources */
2064         ci->qh_pool = dma_pool_create("ci_hw_qh", dev->parent,
2065                                        sizeof(struct ci_hw_qh),
2066                                        64, CI_HDRC_PAGE_SIZE);
2067         if (ci->qh_pool == NULL)
2068                 return -ENOMEM;
2069
2070         ci->td_pool = dma_pool_create("ci_hw_td", dev->parent,
2071                                        sizeof(struct ci_hw_td),
2072                                        64, CI_HDRC_PAGE_SIZE);
2073         if (ci->td_pool == NULL) {
2074                 retval = -ENOMEM;
2075                 goto free_qh_pool;
2076         }
2077
2078         retval = init_eps(ci);
2079         if (retval)
2080                 goto free_pools;
2081
2082         ci->gadget.ep0 = &ci->ep0in->ep;
2083
2084         retval = usb_add_gadget_udc(dev, &ci->gadget);
2085         if (retval)
2086                 goto destroy_eps;
2087
2088         return retval;
2089
2090 destroy_eps:
2091         destroy_eps(ci);
2092 free_pools:
2093         dma_pool_destroy(ci->td_pool);
2094 free_qh_pool:
2095         dma_pool_destroy(ci->qh_pool);
2096         return retval;
2097 }
2098
2099 /**
2100  * ci_hdrc_gadget_destroy: parent remove must call this to remove UDC
2101  *
2102  * No interrupts active, the IRQ has been released
2103  */
2104 void ci_hdrc_gadget_destroy(struct ci_hdrc *ci)
2105 {
2106         if (!ci->roles[CI_ROLE_GADGET])
2107                 return;
2108
2109         usb_del_gadget_udc(&ci->gadget);
2110
2111         destroy_eps(ci);
2112
2113         dma_pool_destroy(ci->td_pool);
2114         dma_pool_destroy(ci->qh_pool);
2115 }
2116
2117 static int udc_id_switch_for_device(struct ci_hdrc *ci)
2118 {
2119         if (ci->platdata->pins_device)
2120                 pinctrl_select_state(ci->platdata->pctl,
2121                                      ci->platdata->pins_device);
2122
2123         if (ci->is_otg)
2124                 /* Clear and enable BSV irq */
2125                 hw_write_otgsc(ci, OTGSC_BSVIS | OTGSC_BSVIE,
2126                                         OTGSC_BSVIS | OTGSC_BSVIE);
2127
2128         return 0;
2129 }
2130
2131 static void udc_id_switch_for_host(struct ci_hdrc *ci)
2132 {
2133         /*
2134          * host doesn't care B_SESSION_VALID event
2135          * so clear and disbale BSV irq
2136          */
2137         if (ci->is_otg)
2138                 hw_write_otgsc(ci, OTGSC_BSVIE | OTGSC_BSVIS, OTGSC_BSVIS);
2139
2140         ci->vbus_active = 0;
2141
2142         if (ci->platdata->pins_device && ci->platdata->pins_default)
2143                 pinctrl_select_state(ci->platdata->pctl,
2144                                      ci->platdata->pins_default);
2145 }
2146
2147 /**
2148  * ci_hdrc_gadget_init - initialize device related bits
2149  * ci: the controller
2150  *
2151  * This function initializes the gadget, if the device is "device capable".
2152  */
2153 int ci_hdrc_gadget_init(struct ci_hdrc *ci)
2154 {
2155         struct ci_role_driver *rdrv;
2156         int ret;
2157
2158         if (!hw_read(ci, CAP_DCCPARAMS, DCCPARAMS_DC))
2159                 return -ENXIO;
2160
2161         rdrv = devm_kzalloc(ci->dev, sizeof(*rdrv), GFP_KERNEL);
2162         if (!rdrv)
2163                 return -ENOMEM;
2164
2165         rdrv->start     = udc_id_switch_for_device;
2166         rdrv->stop      = udc_id_switch_for_host;
2167         rdrv->irq       = udc_irq;
2168         rdrv->name      = "gadget";
2169
2170         ret = udc_start(ci);
2171         if (!ret)
2172                 ci->roles[CI_ROLE_GADGET] = rdrv;
2173
2174         return ret;
2175 }