Merge tag 'usb-ci-v5.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/peter...
[platform/kernel/linux-rpi.git] / drivers / usb / chipidea / udc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * udc.c - ChipIdea UDC driver
4  *
5  * Copyright (C) 2008 Chipidea - MIPS Technologies, Inc. All rights reserved.
6  *
7  * Author: David Lopo
8  */
9
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmapool.h>
13 #include <linux/err.h>
14 #include <linux/irqreturn.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/pinctrl/consumer.h>
19 #include <linux/usb/ch9.h>
20 #include <linux/usb/gadget.h>
21 #include <linux/usb/otg-fsm.h>
22 #include <linux/usb/chipidea.h>
23
24 #include "ci.h"
25 #include "udc.h"
26 #include "bits.h"
27 #include "otg.h"
28 #include "otg_fsm.h"
29
30 /* control endpoint description */
31 static const struct usb_endpoint_descriptor
32 ctrl_endpt_out_desc = {
33         .bLength         = USB_DT_ENDPOINT_SIZE,
34         .bDescriptorType = USB_DT_ENDPOINT,
35
36         .bEndpointAddress = USB_DIR_OUT,
37         .bmAttributes    = USB_ENDPOINT_XFER_CONTROL,
38         .wMaxPacketSize  = cpu_to_le16(CTRL_PAYLOAD_MAX),
39 };
40
41 static const struct usb_endpoint_descriptor
42 ctrl_endpt_in_desc = {
43         .bLength         = USB_DT_ENDPOINT_SIZE,
44         .bDescriptorType = USB_DT_ENDPOINT,
45
46         .bEndpointAddress = USB_DIR_IN,
47         .bmAttributes    = USB_ENDPOINT_XFER_CONTROL,
48         .wMaxPacketSize  = cpu_to_le16(CTRL_PAYLOAD_MAX),
49 };
50
51 /**
52  * hw_ep_bit: calculates the bit number
53  * @num: endpoint number
54  * @dir: endpoint direction
55  *
56  * This function returns bit number
57  */
58 static inline int hw_ep_bit(int num, int dir)
59 {
60         return num + ((dir == TX) ? 16 : 0);
61 }
62
63 static inline int ep_to_bit(struct ci_hdrc *ci, int n)
64 {
65         int fill = 16 - ci->hw_ep_max / 2;
66
67         if (n >= ci->hw_ep_max / 2)
68                 n += fill;
69
70         return n;
71 }
72
73 /**
74  * hw_device_state: enables/disables interrupts (execute without interruption)
75  * @ci: the controller
76  * @dma: 0 => disable, !0 => enable and set dma engine
77  *
78  * This function returns an error code
79  */
80 static int hw_device_state(struct ci_hdrc *ci, u32 dma)
81 {
82         if (dma) {
83                 hw_write(ci, OP_ENDPTLISTADDR, ~0, dma);
84                 /* interrupt, error, port change, reset, sleep/suspend */
85                 hw_write(ci, OP_USBINTR, ~0,
86                              USBi_UI|USBi_UEI|USBi_PCI|USBi_URI|USBi_SLI);
87         } else {
88                 hw_write(ci, OP_USBINTR, ~0, 0);
89         }
90         return 0;
91 }
92
93 /**
94  * hw_ep_flush: flush endpoint fifo (execute without interruption)
95  * @ci: the controller
96  * @num: endpoint number
97  * @dir: endpoint direction
98  *
99  * This function returns an error code
100  */
101 static int hw_ep_flush(struct ci_hdrc *ci, int num, int dir)
102 {
103         int n = hw_ep_bit(num, dir);
104
105         do {
106                 /* flush any pending transfer */
107                 hw_write(ci, OP_ENDPTFLUSH, ~0, BIT(n));
108                 while (hw_read(ci, OP_ENDPTFLUSH, BIT(n)))
109                         cpu_relax();
110         } while (hw_read(ci, OP_ENDPTSTAT, BIT(n)));
111
112         return 0;
113 }
114
115 /**
116  * hw_ep_disable: disables endpoint (execute without interruption)
117  * @ci: the controller
118  * @num: endpoint number
119  * @dir: endpoint direction
120  *
121  * This function returns an error code
122  */
123 static int hw_ep_disable(struct ci_hdrc *ci, int num, int dir)
124 {
125         hw_write(ci, OP_ENDPTCTRL + num,
126                  (dir == TX) ? ENDPTCTRL_TXE : ENDPTCTRL_RXE, 0);
127         return 0;
128 }
129
130 /**
131  * hw_ep_enable: enables endpoint (execute without interruption)
132  * @ci: the controller
133  * @num:  endpoint number
134  * @dir:  endpoint direction
135  * @type: endpoint type
136  *
137  * This function returns an error code
138  */
139 static int hw_ep_enable(struct ci_hdrc *ci, int num, int dir, int type)
140 {
141         u32 mask, data;
142
143         if (dir == TX) {
144                 mask  = ENDPTCTRL_TXT;  /* type    */
145                 data  = type << __ffs(mask);
146
147                 mask |= ENDPTCTRL_TXS;  /* unstall */
148                 mask |= ENDPTCTRL_TXR;  /* reset data toggle */
149                 data |= ENDPTCTRL_TXR;
150                 mask |= ENDPTCTRL_TXE;  /* enable  */
151                 data |= ENDPTCTRL_TXE;
152         } else {
153                 mask  = ENDPTCTRL_RXT;  /* type    */
154                 data  = type << __ffs(mask);
155
156                 mask |= ENDPTCTRL_RXS;  /* unstall */
157                 mask |= ENDPTCTRL_RXR;  /* reset data toggle */
158                 data |= ENDPTCTRL_RXR;
159                 mask |= ENDPTCTRL_RXE;  /* enable  */
160                 data |= ENDPTCTRL_RXE;
161         }
162         hw_write(ci, OP_ENDPTCTRL + num, mask, data);
163         return 0;
164 }
165
166 /**
167  * hw_ep_get_halt: return endpoint halt status
168  * @ci: the controller
169  * @num: endpoint number
170  * @dir: endpoint direction
171  *
172  * This function returns 1 if endpoint halted
173  */
174 static int hw_ep_get_halt(struct ci_hdrc *ci, int num, int dir)
175 {
176         u32 mask = (dir == TX) ? ENDPTCTRL_TXS : ENDPTCTRL_RXS;
177
178         return hw_read(ci, OP_ENDPTCTRL + num, mask) ? 1 : 0;
179 }
180
181 /**
182  * hw_ep_prime: primes endpoint (execute without interruption)
183  * @ci: the controller
184  * @num:     endpoint number
185  * @dir:     endpoint direction
186  * @is_ctrl: true if control endpoint
187  *
188  * This function returns an error code
189  */
190 static int hw_ep_prime(struct ci_hdrc *ci, int num, int dir, int is_ctrl)
191 {
192         int n = hw_ep_bit(num, dir);
193
194         /* Synchronize before ep prime */
195         wmb();
196
197         if (is_ctrl && dir == RX && hw_read(ci, OP_ENDPTSETUPSTAT, BIT(num)))
198                 return -EAGAIN;
199
200         hw_write(ci, OP_ENDPTPRIME, ~0, BIT(n));
201
202         while (hw_read(ci, OP_ENDPTPRIME, BIT(n)))
203                 cpu_relax();
204         if (is_ctrl && dir == RX && hw_read(ci, OP_ENDPTSETUPSTAT, BIT(num)))
205                 return -EAGAIN;
206
207         /* status shoult be tested according with manual but it doesn't work */
208         return 0;
209 }
210
211 /**
212  * hw_ep_set_halt: configures ep halt & resets data toggle after clear (execute
213  *                 without interruption)
214  * @ci: the controller
215  * @num:   endpoint number
216  * @dir:   endpoint direction
217  * @value: true => stall, false => unstall
218  *
219  * This function returns an error code
220  */
221 static int hw_ep_set_halt(struct ci_hdrc *ci, int num, int dir, int value)
222 {
223         if (value != 0 && value != 1)
224                 return -EINVAL;
225
226         do {
227                 enum ci_hw_regs reg = OP_ENDPTCTRL + num;
228                 u32 mask_xs = (dir == TX) ? ENDPTCTRL_TXS : ENDPTCTRL_RXS;
229                 u32 mask_xr = (dir == TX) ? ENDPTCTRL_TXR : ENDPTCTRL_RXR;
230
231                 /* data toggle - reserved for EP0 but it's in ESS */
232                 hw_write(ci, reg, mask_xs|mask_xr,
233                           value ? mask_xs : mask_xr);
234         } while (value != hw_ep_get_halt(ci, num, dir));
235
236         return 0;
237 }
238
239 /**
240  * hw_is_port_high_speed: test if port is high speed
241  * @ci: the controller
242  *
243  * This function returns true if high speed port
244  */
245 static int hw_port_is_high_speed(struct ci_hdrc *ci)
246 {
247         return ci->hw_bank.lpm ? hw_read(ci, OP_DEVLC, DEVLC_PSPD) :
248                 hw_read(ci, OP_PORTSC, PORTSC_HSP);
249 }
250
251 /**
252  * hw_test_and_clear_complete: test & clear complete status (execute without
253  *                             interruption)
254  * @ci: the controller
255  * @n: endpoint number
256  *
257  * This function returns complete status
258  */
259 static int hw_test_and_clear_complete(struct ci_hdrc *ci, int n)
260 {
261         n = ep_to_bit(ci, n);
262         return hw_test_and_clear(ci, OP_ENDPTCOMPLETE, BIT(n));
263 }
264
265 /**
266  * hw_test_and_clear_intr_active: test & clear active interrupts (execute
267  *                                without interruption)
268  * @ci: the controller
269  *
270  * This function returns active interrutps
271  */
272 static u32 hw_test_and_clear_intr_active(struct ci_hdrc *ci)
273 {
274         u32 reg = hw_read_intr_status(ci) & hw_read_intr_enable(ci);
275
276         hw_write(ci, OP_USBSTS, ~0, reg);
277         return reg;
278 }
279
280 /**
281  * hw_test_and_clear_setup_guard: test & clear setup guard (execute without
282  *                                interruption)
283  * @ci: the controller
284  *
285  * This function returns guard value
286  */
287 static int hw_test_and_clear_setup_guard(struct ci_hdrc *ci)
288 {
289         return hw_test_and_write(ci, OP_USBCMD, USBCMD_SUTW, 0);
290 }
291
292 /**
293  * hw_test_and_set_setup_guard: test & set setup guard (execute without
294  *                              interruption)
295  * @ci: the controller
296  *
297  * This function returns guard value
298  */
299 static int hw_test_and_set_setup_guard(struct ci_hdrc *ci)
300 {
301         return hw_test_and_write(ci, OP_USBCMD, USBCMD_SUTW, USBCMD_SUTW);
302 }
303
304 /**
305  * hw_usb_set_address: configures USB address (execute without interruption)
306  * @ci: the controller
307  * @value: new USB address
308  *
309  * This function explicitly sets the address, without the "USBADRA" (advance)
310  * feature, which is not supported by older versions of the controller.
311  */
312 static void hw_usb_set_address(struct ci_hdrc *ci, u8 value)
313 {
314         hw_write(ci, OP_DEVICEADDR, DEVICEADDR_USBADR,
315                  value << __ffs(DEVICEADDR_USBADR));
316 }
317
318 /**
319  * hw_usb_reset: restart device after a bus reset (execute without
320  *               interruption)
321  * @ci: the controller
322  *
323  * This function returns an error code
324  */
325 static int hw_usb_reset(struct ci_hdrc *ci)
326 {
327         hw_usb_set_address(ci, 0);
328
329         /* ESS flushes only at end?!? */
330         hw_write(ci, OP_ENDPTFLUSH,    ~0, ~0);
331
332         /* clear setup token semaphores */
333         hw_write(ci, OP_ENDPTSETUPSTAT, 0,  0);
334
335         /* clear complete status */
336         hw_write(ci, OP_ENDPTCOMPLETE,  0,  0);
337
338         /* wait until all bits cleared */
339         while (hw_read(ci, OP_ENDPTPRIME, ~0))
340                 udelay(10);             /* not RTOS friendly */
341
342         /* reset all endpoints ? */
343
344         /* reset internal status and wait for further instructions
345            no need to verify the port reset status (ESS does it) */
346
347         return 0;
348 }
349
350 /******************************************************************************
351  * UTIL block
352  *****************************************************************************/
353
354 static int add_td_to_list(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq,
355                         unsigned int length, struct scatterlist *s)
356 {
357         int i;
358         u32 temp;
359         struct td_node *lastnode, *node = kzalloc(sizeof(struct td_node),
360                                                   GFP_ATOMIC);
361
362         if (node == NULL)
363                 return -ENOMEM;
364
365         node->ptr = dma_pool_zalloc(hwep->td_pool, GFP_ATOMIC, &node->dma);
366         if (node->ptr == NULL) {
367                 kfree(node);
368                 return -ENOMEM;
369         }
370
371         node->ptr->token = cpu_to_le32(length << __ffs(TD_TOTAL_BYTES));
372         node->ptr->token &= cpu_to_le32(TD_TOTAL_BYTES);
373         node->ptr->token |= cpu_to_le32(TD_STATUS_ACTIVE);
374         if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == TX) {
375                 u32 mul = hwreq->req.length / hwep->ep.maxpacket;
376
377                 if (hwreq->req.length == 0
378                                 || hwreq->req.length % hwep->ep.maxpacket)
379                         mul++;
380                 node->ptr->token |= cpu_to_le32(mul << __ffs(TD_MULTO));
381         }
382
383         if (s) {
384                 temp = (u32) (sg_dma_address(s) + hwreq->req.actual);
385                 node->td_remaining_size = CI_MAX_BUF_SIZE - length;
386         } else {
387                 temp = (u32) (hwreq->req.dma + hwreq->req.actual);
388         }
389
390         if (length) {
391                 node->ptr->page[0] = cpu_to_le32(temp);
392                 for (i = 1; i < TD_PAGE_COUNT; i++) {
393                         u32 page = temp + i * CI_HDRC_PAGE_SIZE;
394                         page &= ~TD_RESERVED_MASK;
395                         node->ptr->page[i] = cpu_to_le32(page);
396                 }
397         }
398
399         hwreq->req.actual += length;
400
401         if (!list_empty(&hwreq->tds)) {
402                 /* get the last entry */
403                 lastnode = list_entry(hwreq->tds.prev,
404                                 struct td_node, td);
405                 lastnode->ptr->next = cpu_to_le32(node->dma);
406         }
407
408         INIT_LIST_HEAD(&node->td);
409         list_add_tail(&node->td, &hwreq->tds);
410
411         return 0;
412 }
413
414 /**
415  * _usb_addr: calculates endpoint address from direction & number
416  * @ep:  endpoint
417  */
418 static inline u8 _usb_addr(struct ci_hw_ep *ep)
419 {
420         return ((ep->dir == TX) ? USB_ENDPOINT_DIR_MASK : 0) | ep->num;
421 }
422
423 static int prepare_td_for_non_sg(struct ci_hw_ep *hwep,
424                 struct ci_hw_req *hwreq)
425 {
426         unsigned int rest = hwreq->req.length;
427         int pages = TD_PAGE_COUNT;
428         int ret = 0;
429
430         if (rest == 0) {
431                 ret = add_td_to_list(hwep, hwreq, 0, NULL);
432                 if (ret < 0)
433                         return ret;
434         }
435
436         /*
437          * The first buffer could be not page aligned.
438          * In that case we have to span into one extra td.
439          */
440         if (hwreq->req.dma % PAGE_SIZE)
441                 pages--;
442
443         while (rest > 0) {
444                 unsigned int count = min(hwreq->req.length - hwreq->req.actual,
445                         (unsigned int)(pages * CI_HDRC_PAGE_SIZE));
446
447                 ret = add_td_to_list(hwep, hwreq, count, NULL);
448                 if (ret < 0)
449                         return ret;
450
451                 rest -= count;
452         }
453
454         if (hwreq->req.zero && hwreq->req.length && hwep->dir == TX
455             && (hwreq->req.length % hwep->ep.maxpacket == 0)) {
456                 ret = add_td_to_list(hwep, hwreq, 0, NULL);
457                 if (ret < 0)
458                         return ret;
459         }
460
461         return ret;
462 }
463
464 static int prepare_td_per_sg(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq,
465                 struct scatterlist *s)
466 {
467         unsigned int rest = sg_dma_len(s);
468         int ret = 0;
469
470         hwreq->req.actual = 0;
471         while (rest > 0) {
472                 unsigned int count = min_t(unsigned int, rest,
473                                 CI_MAX_BUF_SIZE);
474
475                 ret = add_td_to_list(hwep, hwreq, count, s);
476                 if (ret < 0)
477                         return ret;
478
479                 rest -= count;
480         }
481
482         return ret;
483 }
484
485 static void ci_add_buffer_entry(struct td_node *node, struct scatterlist *s)
486 {
487         int empty_td_slot_index = (CI_MAX_BUF_SIZE - node->td_remaining_size)
488                         / CI_HDRC_PAGE_SIZE;
489         int i;
490         u32 token;
491
492         token = le32_to_cpu(node->ptr->token) + (sg_dma_len(s) << __ffs(TD_TOTAL_BYTES));
493         node->ptr->token = cpu_to_le32(token);
494
495         for (i = empty_td_slot_index; i < TD_PAGE_COUNT; i++) {
496                 u32 page = (u32) sg_dma_address(s) +
497                         (i - empty_td_slot_index) * CI_HDRC_PAGE_SIZE;
498
499                 page &= ~TD_RESERVED_MASK;
500                 node->ptr->page[i] = cpu_to_le32(page);
501         }
502 }
503
504 static int prepare_td_for_sg(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
505 {
506         struct usb_request *req = &hwreq->req;
507         struct scatterlist *s = req->sg;
508         int ret = 0, i = 0;
509         struct td_node *node = NULL;
510
511         if (!s || req->zero || req->length == 0) {
512                 dev_err(hwep->ci->dev, "not supported operation for sg\n");
513                 return -EINVAL;
514         }
515
516         while (i++ < req->num_mapped_sgs) {
517                 if (sg_dma_address(s) % PAGE_SIZE) {
518                         dev_err(hwep->ci->dev, "not page aligned sg buffer\n");
519                         return -EINVAL;
520                 }
521
522                 if (node && (node->td_remaining_size >= sg_dma_len(s))) {
523                         ci_add_buffer_entry(node, s);
524                         node->td_remaining_size -= sg_dma_len(s);
525                 } else {
526                         ret = prepare_td_per_sg(hwep, hwreq, s);
527                         if (ret)
528                                 return ret;
529
530                         node = list_entry(hwreq->tds.prev,
531                                 struct td_node, td);
532                 }
533
534                 s = sg_next(s);
535         }
536
537         return ret;
538 }
539
540 /**
541  * _hardware_enqueue: configures a request at hardware level
542  * @hwep:   endpoint
543  * @hwreq:  request
544  *
545  * This function returns an error code
546  */
547 static int _hardware_enqueue(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
548 {
549         struct ci_hdrc *ci = hwep->ci;
550         int ret = 0;
551         struct td_node *firstnode, *lastnode;
552
553         /* don't queue twice */
554         if (hwreq->req.status == -EALREADY)
555                 return -EALREADY;
556
557         hwreq->req.status = -EALREADY;
558
559         ret = usb_gadget_map_request_by_dev(ci->dev->parent,
560                                             &hwreq->req, hwep->dir);
561         if (ret)
562                 return ret;
563
564         if (hwreq->req.num_mapped_sgs)
565                 ret = prepare_td_for_sg(hwep, hwreq);
566         else
567                 ret = prepare_td_for_non_sg(hwep, hwreq);
568
569         if (ret)
570                 return ret;
571
572         firstnode = list_first_entry(&hwreq->tds, struct td_node, td);
573
574         lastnode = list_entry(hwreq->tds.prev,
575                 struct td_node, td);
576
577         lastnode->ptr->next = cpu_to_le32(TD_TERMINATE);
578         if (!hwreq->req.no_interrupt)
579                 lastnode->ptr->token |= cpu_to_le32(TD_IOC);
580         wmb();
581
582         hwreq->req.actual = 0;
583         if (!list_empty(&hwep->qh.queue)) {
584                 struct ci_hw_req *hwreqprev;
585                 int n = hw_ep_bit(hwep->num, hwep->dir);
586                 int tmp_stat;
587                 struct td_node *prevlastnode;
588                 u32 next = firstnode->dma & TD_ADDR_MASK;
589
590                 hwreqprev = list_entry(hwep->qh.queue.prev,
591                                 struct ci_hw_req, queue);
592                 prevlastnode = list_entry(hwreqprev->tds.prev,
593                                 struct td_node, td);
594
595                 prevlastnode->ptr->next = cpu_to_le32(next);
596                 wmb();
597                 if (hw_read(ci, OP_ENDPTPRIME, BIT(n)))
598                         goto done;
599                 do {
600                         hw_write(ci, OP_USBCMD, USBCMD_ATDTW, USBCMD_ATDTW);
601                         tmp_stat = hw_read(ci, OP_ENDPTSTAT, BIT(n));
602                 } while (!hw_read(ci, OP_USBCMD, USBCMD_ATDTW));
603                 hw_write(ci, OP_USBCMD, USBCMD_ATDTW, 0);
604                 if (tmp_stat)
605                         goto done;
606         }
607
608         /*  QH configuration */
609         hwep->qh.ptr->td.next = cpu_to_le32(firstnode->dma);
610         hwep->qh.ptr->td.token &=
611                 cpu_to_le32(~(TD_STATUS_HALTED|TD_STATUS_ACTIVE));
612
613         if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == RX) {
614                 u32 mul = hwreq->req.length / hwep->ep.maxpacket;
615
616                 if (hwreq->req.length == 0
617                                 || hwreq->req.length % hwep->ep.maxpacket)
618                         mul++;
619                 hwep->qh.ptr->cap |= cpu_to_le32(mul << __ffs(QH_MULT));
620         }
621
622         ret = hw_ep_prime(ci, hwep->num, hwep->dir,
623                            hwep->type == USB_ENDPOINT_XFER_CONTROL);
624 done:
625         return ret;
626 }
627
628 /**
629  * free_pending_td: remove a pending request for the endpoint
630  * @hwep: endpoint
631  */
632 static void free_pending_td(struct ci_hw_ep *hwep)
633 {
634         struct td_node *pending = hwep->pending_td;
635
636         dma_pool_free(hwep->td_pool, pending->ptr, pending->dma);
637         hwep->pending_td = NULL;
638         kfree(pending);
639 }
640
641 static int reprime_dtd(struct ci_hdrc *ci, struct ci_hw_ep *hwep,
642                                            struct td_node *node)
643 {
644         hwep->qh.ptr->td.next = cpu_to_le32(node->dma);
645         hwep->qh.ptr->td.token &=
646                 cpu_to_le32(~(TD_STATUS_HALTED | TD_STATUS_ACTIVE));
647
648         return hw_ep_prime(ci, hwep->num, hwep->dir,
649                                 hwep->type == USB_ENDPOINT_XFER_CONTROL);
650 }
651
652 /**
653  * _hardware_dequeue: handles a request at hardware level
654  * @hwep: endpoint
655  * @hwreq:  request
656  *
657  * This function returns an error code
658  */
659 static int _hardware_dequeue(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
660 {
661         u32 tmptoken;
662         struct td_node *node, *tmpnode;
663         unsigned remaining_length;
664         unsigned actual = hwreq->req.length;
665         struct ci_hdrc *ci = hwep->ci;
666
667         if (hwreq->req.status != -EALREADY)
668                 return -EINVAL;
669
670         hwreq->req.status = 0;
671
672         list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
673                 tmptoken = le32_to_cpu(node->ptr->token);
674                 if ((TD_STATUS_ACTIVE & tmptoken) != 0) {
675                         int n = hw_ep_bit(hwep->num, hwep->dir);
676
677                         if (ci->rev == CI_REVISION_24)
678                                 if (!hw_read(ci, OP_ENDPTSTAT, BIT(n)))
679                                         reprime_dtd(ci, hwep, node);
680                         hwreq->req.status = -EALREADY;
681                         return -EBUSY;
682                 }
683
684                 remaining_length = (tmptoken & TD_TOTAL_BYTES);
685                 remaining_length >>= __ffs(TD_TOTAL_BYTES);
686                 actual -= remaining_length;
687
688                 hwreq->req.status = tmptoken & TD_STATUS;
689                 if ((TD_STATUS_HALTED & hwreq->req.status)) {
690                         hwreq->req.status = -EPIPE;
691                         break;
692                 } else if ((TD_STATUS_DT_ERR & hwreq->req.status)) {
693                         hwreq->req.status = -EPROTO;
694                         break;
695                 } else if ((TD_STATUS_TR_ERR & hwreq->req.status)) {
696                         hwreq->req.status = -EILSEQ;
697                         break;
698                 }
699
700                 if (remaining_length) {
701                         if (hwep->dir == TX) {
702                                 hwreq->req.status = -EPROTO;
703                                 break;
704                         }
705                 }
706                 /*
707                  * As the hardware could still address the freed td
708                  * which will run the udc unusable, the cleanup of the
709                  * td has to be delayed by one.
710                  */
711                 if (hwep->pending_td)
712                         free_pending_td(hwep);
713
714                 hwep->pending_td = node;
715                 list_del_init(&node->td);
716         }
717
718         usb_gadget_unmap_request_by_dev(hwep->ci->dev->parent,
719                                         &hwreq->req, hwep->dir);
720
721         hwreq->req.actual += actual;
722
723         if (hwreq->req.status)
724                 return hwreq->req.status;
725
726         return hwreq->req.actual;
727 }
728
729 /**
730  * _ep_nuke: dequeues all endpoint requests
731  * @hwep: endpoint
732  *
733  * This function returns an error code
734  * Caller must hold lock
735  */
736 static int _ep_nuke(struct ci_hw_ep *hwep)
737 __releases(hwep->lock)
738 __acquires(hwep->lock)
739 {
740         struct td_node *node, *tmpnode;
741         if (hwep == NULL)
742                 return -EINVAL;
743
744         hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
745
746         while (!list_empty(&hwep->qh.queue)) {
747
748                 /* pop oldest request */
749                 struct ci_hw_req *hwreq = list_entry(hwep->qh.queue.next,
750                                                      struct ci_hw_req, queue);
751
752                 list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
753                         dma_pool_free(hwep->td_pool, node->ptr, node->dma);
754                         list_del_init(&node->td);
755                         node->ptr = NULL;
756                         kfree(node);
757                 }
758
759                 list_del_init(&hwreq->queue);
760                 hwreq->req.status = -ESHUTDOWN;
761
762                 if (hwreq->req.complete != NULL) {
763                         spin_unlock(hwep->lock);
764                         usb_gadget_giveback_request(&hwep->ep, &hwreq->req);
765                         spin_lock(hwep->lock);
766                 }
767         }
768
769         if (hwep->pending_td)
770                 free_pending_td(hwep);
771
772         return 0;
773 }
774
775 static int _ep_set_halt(struct usb_ep *ep, int value, bool check_transfer)
776 {
777         struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
778         int direction, retval = 0;
779         unsigned long flags;
780
781         if (ep == NULL || hwep->ep.desc == NULL)
782                 return -EINVAL;
783
784         if (usb_endpoint_xfer_isoc(hwep->ep.desc))
785                 return -EOPNOTSUPP;
786
787         spin_lock_irqsave(hwep->lock, flags);
788
789         if (value && hwep->dir == TX && check_transfer &&
790                 !list_empty(&hwep->qh.queue) &&
791                         !usb_endpoint_xfer_control(hwep->ep.desc)) {
792                 spin_unlock_irqrestore(hwep->lock, flags);
793                 return -EAGAIN;
794         }
795
796         direction = hwep->dir;
797         do {
798                 retval |= hw_ep_set_halt(hwep->ci, hwep->num, hwep->dir, value);
799
800                 if (!value)
801                         hwep->wedge = 0;
802
803                 if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
804                         hwep->dir = (hwep->dir == TX) ? RX : TX;
805
806         } while (hwep->dir != direction);
807
808         spin_unlock_irqrestore(hwep->lock, flags);
809         return retval;
810 }
811
812
813 /**
814  * _gadget_stop_activity: stops all USB activity, flushes & disables all endpts
815  * @gadget: gadget
816  *
817  * This function returns an error code
818  */
819 static int _gadget_stop_activity(struct usb_gadget *gadget)
820 {
821         struct usb_ep *ep;
822         struct ci_hdrc    *ci = container_of(gadget, struct ci_hdrc, gadget);
823         unsigned long flags;
824
825         /* flush all endpoints */
826         gadget_for_each_ep(ep, gadget) {
827                 usb_ep_fifo_flush(ep);
828         }
829         usb_ep_fifo_flush(&ci->ep0out->ep);
830         usb_ep_fifo_flush(&ci->ep0in->ep);
831
832         /* make sure to disable all endpoints */
833         gadget_for_each_ep(ep, gadget) {
834                 usb_ep_disable(ep);
835         }
836
837         if (ci->status != NULL) {
838                 usb_ep_free_request(&ci->ep0in->ep, ci->status);
839                 ci->status = NULL;
840         }
841
842         spin_lock_irqsave(&ci->lock, flags);
843         ci->gadget.speed = USB_SPEED_UNKNOWN;
844         ci->remote_wakeup = 0;
845         ci->suspended = 0;
846         spin_unlock_irqrestore(&ci->lock, flags);
847
848         return 0;
849 }
850
851 /******************************************************************************
852  * ISR block
853  *****************************************************************************/
854 /**
855  * isr_reset_handler: USB reset interrupt handler
856  * @ci: UDC device
857  *
858  * This function resets USB engine after a bus reset occurred
859  */
860 static void isr_reset_handler(struct ci_hdrc *ci)
861 __releases(ci->lock)
862 __acquires(ci->lock)
863 {
864         int retval;
865
866         spin_unlock(&ci->lock);
867         if (ci->gadget.speed != USB_SPEED_UNKNOWN)
868                 usb_gadget_udc_reset(&ci->gadget, ci->driver);
869
870         retval = _gadget_stop_activity(&ci->gadget);
871         if (retval)
872                 goto done;
873
874         retval = hw_usb_reset(ci);
875         if (retval)
876                 goto done;
877
878         ci->status = usb_ep_alloc_request(&ci->ep0in->ep, GFP_ATOMIC);
879         if (ci->status == NULL)
880                 retval = -ENOMEM;
881
882 done:
883         spin_lock(&ci->lock);
884
885         if (retval)
886                 dev_err(ci->dev, "error: %i\n", retval);
887 }
888
889 /**
890  * isr_get_status_complete: get_status request complete function
891  * @ep:  endpoint
892  * @req: request handled
893  *
894  * Caller must release lock
895  */
896 static void isr_get_status_complete(struct usb_ep *ep, struct usb_request *req)
897 {
898         if (ep == NULL || req == NULL)
899                 return;
900
901         kfree(req->buf);
902         usb_ep_free_request(ep, req);
903 }
904
905 /**
906  * _ep_queue: queues (submits) an I/O request to an endpoint
907  * @ep:        endpoint
908  * @req:       request
909  * @gfp_flags: GFP flags (not used)
910  *
911  * Caller must hold lock
912  * This function returns an error code
913  */
914 static int _ep_queue(struct usb_ep *ep, struct usb_request *req,
915                     gfp_t __maybe_unused gfp_flags)
916 {
917         struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
918         struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
919         struct ci_hdrc *ci = hwep->ci;
920         int retval = 0;
921
922         if (ep == NULL || req == NULL || hwep->ep.desc == NULL)
923                 return -EINVAL;
924
925         if (hwep->type == USB_ENDPOINT_XFER_CONTROL) {
926                 if (req->length)
927                         hwep = (ci->ep0_dir == RX) ?
928                                ci->ep0out : ci->ep0in;
929                 if (!list_empty(&hwep->qh.queue)) {
930                         _ep_nuke(hwep);
931                         dev_warn(hwep->ci->dev, "endpoint ctrl %X nuked\n",
932                                  _usb_addr(hwep));
933                 }
934         }
935
936         if (usb_endpoint_xfer_isoc(hwep->ep.desc) &&
937             hwreq->req.length > hwep->ep.mult * hwep->ep.maxpacket) {
938                 dev_err(hwep->ci->dev, "request length too big for isochronous\n");
939                 return -EMSGSIZE;
940         }
941
942         /* first nuke then test link, e.g. previous status has not sent */
943         if (!list_empty(&hwreq->queue)) {
944                 dev_err(hwep->ci->dev, "request already in queue\n");
945                 return -EBUSY;
946         }
947
948         /* push request */
949         hwreq->req.status = -EINPROGRESS;
950         hwreq->req.actual = 0;
951
952         retval = _hardware_enqueue(hwep, hwreq);
953
954         if (retval == -EALREADY)
955                 retval = 0;
956         if (!retval)
957                 list_add_tail(&hwreq->queue, &hwep->qh.queue);
958
959         return retval;
960 }
961
962 /**
963  * isr_get_status_response: get_status request response
964  * @ci: ci struct
965  * @setup: setup request packet
966  *
967  * This function returns an error code
968  */
969 static int isr_get_status_response(struct ci_hdrc *ci,
970                                    struct usb_ctrlrequest *setup)
971 __releases(hwep->lock)
972 __acquires(hwep->lock)
973 {
974         struct ci_hw_ep *hwep = ci->ep0in;
975         struct usb_request *req = NULL;
976         gfp_t gfp_flags = GFP_ATOMIC;
977         int dir, num, retval;
978
979         if (hwep == NULL || setup == NULL)
980                 return -EINVAL;
981
982         spin_unlock(hwep->lock);
983         req = usb_ep_alloc_request(&hwep->ep, gfp_flags);
984         spin_lock(hwep->lock);
985         if (req == NULL)
986                 return -ENOMEM;
987
988         req->complete = isr_get_status_complete;
989         req->length   = 2;
990         req->buf      = kzalloc(req->length, gfp_flags);
991         if (req->buf == NULL) {
992                 retval = -ENOMEM;
993                 goto err_free_req;
994         }
995
996         if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
997                 *(u16 *)req->buf = (ci->remote_wakeup << 1) |
998                         ci->gadget.is_selfpowered;
999         } else if ((setup->bRequestType & USB_RECIP_MASK) \
1000                    == USB_RECIP_ENDPOINT) {
1001                 dir = (le16_to_cpu(setup->wIndex) & USB_ENDPOINT_DIR_MASK) ?
1002                         TX : RX;
1003                 num =  le16_to_cpu(setup->wIndex) & USB_ENDPOINT_NUMBER_MASK;
1004                 *(u16 *)req->buf = hw_ep_get_halt(ci, num, dir);
1005         }
1006         /* else do nothing; reserved for future use */
1007
1008         retval = _ep_queue(&hwep->ep, req, gfp_flags);
1009         if (retval)
1010                 goto err_free_buf;
1011
1012         return 0;
1013
1014  err_free_buf:
1015         kfree(req->buf);
1016  err_free_req:
1017         spin_unlock(hwep->lock);
1018         usb_ep_free_request(&hwep->ep, req);
1019         spin_lock(hwep->lock);
1020         return retval;
1021 }
1022
1023 /**
1024  * isr_setup_status_complete: setup_status request complete function
1025  * @ep:  endpoint
1026  * @req: request handled
1027  *
1028  * Caller must release lock. Put the port in test mode if test mode
1029  * feature is selected.
1030  */
1031 static void
1032 isr_setup_status_complete(struct usb_ep *ep, struct usb_request *req)
1033 {
1034         struct ci_hdrc *ci = req->context;
1035         unsigned long flags;
1036
1037         if (ci->setaddr) {
1038                 hw_usb_set_address(ci, ci->address);
1039                 ci->setaddr = false;
1040                 if (ci->address)
1041                         usb_gadget_set_state(&ci->gadget, USB_STATE_ADDRESS);
1042         }
1043
1044         spin_lock_irqsave(&ci->lock, flags);
1045         if (ci->test_mode)
1046                 hw_port_test_set(ci, ci->test_mode);
1047         spin_unlock_irqrestore(&ci->lock, flags);
1048 }
1049
1050 /**
1051  * isr_setup_status_phase: queues the status phase of a setup transation
1052  * @ci: ci struct
1053  *
1054  * This function returns an error code
1055  */
1056 static int isr_setup_status_phase(struct ci_hdrc *ci)
1057 {
1058         struct ci_hw_ep *hwep;
1059
1060         /*
1061          * Unexpected USB controller behavior, caused by bad signal integrity
1062          * or ground reference problems, can lead to isr_setup_status_phase
1063          * being called with ci->status equal to NULL.
1064          * If this situation occurs, you should review your USB hardware design.
1065          */
1066         if (WARN_ON_ONCE(!ci->status))
1067                 return -EPIPE;
1068
1069         hwep = (ci->ep0_dir == TX) ? ci->ep0out : ci->ep0in;
1070         ci->status->context = ci;
1071         ci->status->complete = isr_setup_status_complete;
1072
1073         return _ep_queue(&hwep->ep, ci->status, GFP_ATOMIC);
1074 }
1075
1076 /**
1077  * isr_tr_complete_low: transaction complete low level handler
1078  * @hwep: endpoint
1079  *
1080  * This function returns an error code
1081  * Caller must hold lock
1082  */
1083 static int isr_tr_complete_low(struct ci_hw_ep *hwep)
1084 __releases(hwep->lock)
1085 __acquires(hwep->lock)
1086 {
1087         struct ci_hw_req *hwreq, *hwreqtemp;
1088         struct ci_hw_ep *hweptemp = hwep;
1089         int retval = 0;
1090
1091         list_for_each_entry_safe(hwreq, hwreqtemp, &hwep->qh.queue,
1092                         queue) {
1093                 retval = _hardware_dequeue(hwep, hwreq);
1094                 if (retval < 0)
1095                         break;
1096                 list_del_init(&hwreq->queue);
1097                 if (hwreq->req.complete != NULL) {
1098                         spin_unlock(hwep->lock);
1099                         if ((hwep->type == USB_ENDPOINT_XFER_CONTROL) &&
1100                                         hwreq->req.length)
1101                                 hweptemp = hwep->ci->ep0in;
1102                         usb_gadget_giveback_request(&hweptemp->ep, &hwreq->req);
1103                         spin_lock(hwep->lock);
1104                 }
1105         }
1106
1107         if (retval == -EBUSY)
1108                 retval = 0;
1109
1110         return retval;
1111 }
1112
1113 static int otg_a_alt_hnp_support(struct ci_hdrc *ci)
1114 {
1115         dev_warn(&ci->gadget.dev,
1116                 "connect the device to an alternate port if you want HNP\n");
1117         return isr_setup_status_phase(ci);
1118 }
1119
1120 /**
1121  * isr_setup_packet_handler: setup packet handler
1122  * @ci: UDC descriptor
1123  *
1124  * This function handles setup packet 
1125  */
1126 static void isr_setup_packet_handler(struct ci_hdrc *ci)
1127 __releases(ci->lock)
1128 __acquires(ci->lock)
1129 {
1130         struct ci_hw_ep *hwep = &ci->ci_hw_ep[0];
1131         struct usb_ctrlrequest req;
1132         int type, num, dir, err = -EINVAL;
1133         u8 tmode = 0;
1134
1135         /*
1136          * Flush data and handshake transactions of previous
1137          * setup packet.
1138          */
1139         _ep_nuke(ci->ep0out);
1140         _ep_nuke(ci->ep0in);
1141
1142         /* read_setup_packet */
1143         do {
1144                 hw_test_and_set_setup_guard(ci);
1145                 memcpy(&req, &hwep->qh.ptr->setup, sizeof(req));
1146         } while (!hw_test_and_clear_setup_guard(ci));
1147
1148         type = req.bRequestType;
1149
1150         ci->ep0_dir = (type & USB_DIR_IN) ? TX : RX;
1151
1152         switch (req.bRequest) {
1153         case USB_REQ_CLEAR_FEATURE:
1154                 if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) &&
1155                                 le16_to_cpu(req.wValue) ==
1156                                 USB_ENDPOINT_HALT) {
1157                         if (req.wLength != 0)
1158                                 break;
1159                         num  = le16_to_cpu(req.wIndex);
1160                         dir = (num & USB_ENDPOINT_DIR_MASK) ? TX : RX;
1161                         num &= USB_ENDPOINT_NUMBER_MASK;
1162                         if (dir == TX)
1163                                 num += ci->hw_ep_max / 2;
1164                         if (!ci->ci_hw_ep[num].wedge) {
1165                                 spin_unlock(&ci->lock);
1166                                 err = usb_ep_clear_halt(
1167                                         &ci->ci_hw_ep[num].ep);
1168                                 spin_lock(&ci->lock);
1169                                 if (err)
1170                                         break;
1171                         }
1172                         err = isr_setup_status_phase(ci);
1173                 } else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE) &&
1174                                 le16_to_cpu(req.wValue) ==
1175                                 USB_DEVICE_REMOTE_WAKEUP) {
1176                         if (req.wLength != 0)
1177                                 break;
1178                         ci->remote_wakeup = 0;
1179                         err = isr_setup_status_phase(ci);
1180                 } else {
1181                         goto delegate;
1182                 }
1183                 break;
1184         case USB_REQ_GET_STATUS:
1185                 if ((type != (USB_DIR_IN|USB_RECIP_DEVICE) ||
1186                         le16_to_cpu(req.wIndex) == OTG_STS_SELECTOR) &&
1187                     type != (USB_DIR_IN|USB_RECIP_ENDPOINT) &&
1188                     type != (USB_DIR_IN|USB_RECIP_INTERFACE))
1189                         goto delegate;
1190                 if (le16_to_cpu(req.wLength) != 2 ||
1191                     le16_to_cpu(req.wValue)  != 0)
1192                         break;
1193                 err = isr_get_status_response(ci, &req);
1194                 break;
1195         case USB_REQ_SET_ADDRESS:
1196                 if (type != (USB_DIR_OUT|USB_RECIP_DEVICE))
1197                         goto delegate;
1198                 if (le16_to_cpu(req.wLength) != 0 ||
1199                     le16_to_cpu(req.wIndex)  != 0)
1200                         break;
1201                 ci->address = (u8)le16_to_cpu(req.wValue);
1202                 ci->setaddr = true;
1203                 err = isr_setup_status_phase(ci);
1204                 break;
1205         case USB_REQ_SET_FEATURE:
1206                 if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) &&
1207                                 le16_to_cpu(req.wValue) ==
1208                                 USB_ENDPOINT_HALT) {
1209                         if (req.wLength != 0)
1210                                 break;
1211                         num  = le16_to_cpu(req.wIndex);
1212                         dir = (num & USB_ENDPOINT_DIR_MASK) ? TX : RX;
1213                         num &= USB_ENDPOINT_NUMBER_MASK;
1214                         if (dir == TX)
1215                                 num += ci->hw_ep_max / 2;
1216
1217                         spin_unlock(&ci->lock);
1218                         err = _ep_set_halt(&ci->ci_hw_ep[num].ep, 1, false);
1219                         spin_lock(&ci->lock);
1220                         if (!err)
1221                                 isr_setup_status_phase(ci);
1222                 } else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE)) {
1223                         if (req.wLength != 0)
1224                                 break;
1225                         switch (le16_to_cpu(req.wValue)) {
1226                         case USB_DEVICE_REMOTE_WAKEUP:
1227                                 ci->remote_wakeup = 1;
1228                                 err = isr_setup_status_phase(ci);
1229                                 break;
1230                         case USB_DEVICE_TEST_MODE:
1231                                 tmode = le16_to_cpu(req.wIndex) >> 8;
1232                                 switch (tmode) {
1233                                 case USB_TEST_J:
1234                                 case USB_TEST_K:
1235                                 case USB_TEST_SE0_NAK:
1236                                 case USB_TEST_PACKET:
1237                                 case USB_TEST_FORCE_ENABLE:
1238                                         ci->test_mode = tmode;
1239                                         err = isr_setup_status_phase(
1240                                                         ci);
1241                                         break;
1242                                 default:
1243                                         break;
1244                                 }
1245                                 break;
1246                         case USB_DEVICE_B_HNP_ENABLE:
1247                                 if (ci_otg_is_fsm_mode(ci)) {
1248                                         ci->gadget.b_hnp_enable = 1;
1249                                         err = isr_setup_status_phase(
1250                                                         ci);
1251                                 }
1252                                 break;
1253                         case USB_DEVICE_A_ALT_HNP_SUPPORT:
1254                                 if (ci_otg_is_fsm_mode(ci))
1255                                         err = otg_a_alt_hnp_support(ci);
1256                                 break;
1257                         case USB_DEVICE_A_HNP_SUPPORT:
1258                                 if (ci_otg_is_fsm_mode(ci)) {
1259                                         ci->gadget.a_hnp_support = 1;
1260                                         err = isr_setup_status_phase(
1261                                                         ci);
1262                                 }
1263                                 break;
1264                         default:
1265                                 goto delegate;
1266                         }
1267                 } else {
1268                         goto delegate;
1269                 }
1270                 break;
1271         default:
1272 delegate:
1273                 if (req.wLength == 0)   /* no data phase */
1274                         ci->ep0_dir = TX;
1275
1276                 spin_unlock(&ci->lock);
1277                 err = ci->driver->setup(&ci->gadget, &req);
1278                 spin_lock(&ci->lock);
1279                 break;
1280         }
1281
1282         if (err < 0) {
1283                 spin_unlock(&ci->lock);
1284                 if (_ep_set_halt(&hwep->ep, 1, false))
1285                         dev_err(ci->dev, "error: _ep_set_halt\n");
1286                 spin_lock(&ci->lock);
1287         }
1288 }
1289
1290 /**
1291  * isr_tr_complete_handler: transaction complete interrupt handler
1292  * @ci: UDC descriptor
1293  *
1294  * This function handles traffic events
1295  */
1296 static void isr_tr_complete_handler(struct ci_hdrc *ci)
1297 __releases(ci->lock)
1298 __acquires(ci->lock)
1299 {
1300         unsigned i;
1301         int err;
1302
1303         for (i = 0; i < ci->hw_ep_max; i++) {
1304                 struct ci_hw_ep *hwep  = &ci->ci_hw_ep[i];
1305
1306                 if (hwep->ep.desc == NULL)
1307                         continue;   /* not configured */
1308
1309                 if (hw_test_and_clear_complete(ci, i)) {
1310                         err = isr_tr_complete_low(hwep);
1311                         if (hwep->type == USB_ENDPOINT_XFER_CONTROL) {
1312                                 if (err > 0)   /* needs status phase */
1313                                         err = isr_setup_status_phase(ci);
1314                                 if (err < 0) {
1315                                         spin_unlock(&ci->lock);
1316                                         if (_ep_set_halt(&hwep->ep, 1, false))
1317                                                 dev_err(ci->dev,
1318                                                 "error: _ep_set_halt\n");
1319                                         spin_lock(&ci->lock);
1320                                 }
1321                         }
1322                 }
1323
1324                 /* Only handle setup packet below */
1325                 if (i == 0 &&
1326                         hw_test_and_clear(ci, OP_ENDPTSETUPSTAT, BIT(0)))
1327                         isr_setup_packet_handler(ci);
1328         }
1329 }
1330
1331 /******************************************************************************
1332  * ENDPT block
1333  *****************************************************************************/
1334 /*
1335  * ep_enable: configure endpoint, making it usable
1336  *
1337  * Check usb_ep_enable() at "usb_gadget.h" for details
1338  */
1339 static int ep_enable(struct usb_ep *ep,
1340                      const struct usb_endpoint_descriptor *desc)
1341 {
1342         struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1343         int retval = 0;
1344         unsigned long flags;
1345         u32 cap = 0;
1346
1347         if (ep == NULL || desc == NULL)
1348                 return -EINVAL;
1349
1350         spin_lock_irqsave(hwep->lock, flags);
1351
1352         /* only internal SW should enable ctrl endpts */
1353
1354         if (!list_empty(&hwep->qh.queue)) {
1355                 dev_warn(hwep->ci->dev, "enabling a non-empty endpoint!\n");
1356                 spin_unlock_irqrestore(hwep->lock, flags);
1357                 return -EBUSY;
1358         }
1359
1360         hwep->ep.desc = desc;
1361
1362         hwep->dir  = usb_endpoint_dir_in(desc) ? TX : RX;
1363         hwep->num  = usb_endpoint_num(desc);
1364         hwep->type = usb_endpoint_type(desc);
1365
1366         hwep->ep.maxpacket = usb_endpoint_maxp(desc);
1367         hwep->ep.mult = usb_endpoint_maxp_mult(desc);
1368
1369         if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
1370                 cap |= QH_IOS;
1371
1372         cap |= QH_ZLT;
1373         cap |= (hwep->ep.maxpacket << __ffs(QH_MAX_PKT)) & QH_MAX_PKT;
1374         /*
1375          * For ISO-TX, we set mult at QH as the largest value, and use
1376          * MultO at TD as real mult value.
1377          */
1378         if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == TX)
1379                 cap |= 3 << __ffs(QH_MULT);
1380
1381         hwep->qh.ptr->cap = cpu_to_le32(cap);
1382
1383         hwep->qh.ptr->td.next |= cpu_to_le32(TD_TERMINATE);   /* needed? */
1384
1385         if (hwep->num != 0 && hwep->type == USB_ENDPOINT_XFER_CONTROL) {
1386                 dev_err(hwep->ci->dev, "Set control xfer at non-ep0\n");
1387                 retval = -EINVAL;
1388         }
1389
1390         /*
1391          * Enable endpoints in the HW other than ep0 as ep0
1392          * is always enabled
1393          */
1394         if (hwep->num)
1395                 retval |= hw_ep_enable(hwep->ci, hwep->num, hwep->dir,
1396                                        hwep->type);
1397
1398         spin_unlock_irqrestore(hwep->lock, flags);
1399         return retval;
1400 }
1401
1402 /*
1403  * ep_disable: endpoint is no longer usable
1404  *
1405  * Check usb_ep_disable() at "usb_gadget.h" for details
1406  */
1407 static int ep_disable(struct usb_ep *ep)
1408 {
1409         struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1410         int direction, retval = 0;
1411         unsigned long flags;
1412
1413         if (ep == NULL)
1414                 return -EINVAL;
1415         else if (hwep->ep.desc == NULL)
1416                 return -EBUSY;
1417
1418         spin_lock_irqsave(hwep->lock, flags);
1419         if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) {
1420                 spin_unlock_irqrestore(hwep->lock, flags);
1421                 return 0;
1422         }
1423
1424         /* only internal SW should disable ctrl endpts */
1425
1426         direction = hwep->dir;
1427         do {
1428                 retval |= _ep_nuke(hwep);
1429                 retval |= hw_ep_disable(hwep->ci, hwep->num, hwep->dir);
1430
1431                 if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
1432                         hwep->dir = (hwep->dir == TX) ? RX : TX;
1433
1434         } while (hwep->dir != direction);
1435
1436         hwep->ep.desc = NULL;
1437
1438         spin_unlock_irqrestore(hwep->lock, flags);
1439         return retval;
1440 }
1441
1442 /*
1443  * ep_alloc_request: allocate a request object to use with this endpoint
1444  *
1445  * Check usb_ep_alloc_request() at "usb_gadget.h" for details
1446  */
1447 static struct usb_request *ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags)
1448 {
1449         struct ci_hw_req *hwreq = NULL;
1450
1451         if (ep == NULL)
1452                 return NULL;
1453
1454         hwreq = kzalloc(sizeof(struct ci_hw_req), gfp_flags);
1455         if (hwreq != NULL) {
1456                 INIT_LIST_HEAD(&hwreq->queue);
1457                 INIT_LIST_HEAD(&hwreq->tds);
1458         }
1459
1460         return (hwreq == NULL) ? NULL : &hwreq->req;
1461 }
1462
1463 /*
1464  * ep_free_request: frees a request object
1465  *
1466  * Check usb_ep_free_request() at "usb_gadget.h" for details
1467  */
1468 static void ep_free_request(struct usb_ep *ep, struct usb_request *req)
1469 {
1470         struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1471         struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
1472         struct td_node *node, *tmpnode;
1473         unsigned long flags;
1474
1475         if (ep == NULL || req == NULL) {
1476                 return;
1477         } else if (!list_empty(&hwreq->queue)) {
1478                 dev_err(hwep->ci->dev, "freeing queued request\n");
1479                 return;
1480         }
1481
1482         spin_lock_irqsave(hwep->lock, flags);
1483
1484         list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
1485                 dma_pool_free(hwep->td_pool, node->ptr, node->dma);
1486                 list_del_init(&node->td);
1487                 node->ptr = NULL;
1488                 kfree(node);
1489         }
1490
1491         kfree(hwreq);
1492
1493         spin_unlock_irqrestore(hwep->lock, flags);
1494 }
1495
1496 /*
1497  * ep_queue: queues (submits) an I/O request to an endpoint
1498  *
1499  * Check usb_ep_queue()* at usb_gadget.h" for details
1500  */
1501 static int ep_queue(struct usb_ep *ep, struct usb_request *req,
1502                     gfp_t __maybe_unused gfp_flags)
1503 {
1504         struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1505         int retval = 0;
1506         unsigned long flags;
1507
1508         if (ep == NULL || req == NULL || hwep->ep.desc == NULL)
1509                 return -EINVAL;
1510
1511         spin_lock_irqsave(hwep->lock, flags);
1512         if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) {
1513                 spin_unlock_irqrestore(hwep->lock, flags);
1514                 return 0;
1515         }
1516         retval = _ep_queue(ep, req, gfp_flags);
1517         spin_unlock_irqrestore(hwep->lock, flags);
1518         return retval;
1519 }
1520
1521 /*
1522  * ep_dequeue: dequeues (cancels, unlinks) an I/O request from an endpoint
1523  *
1524  * Check usb_ep_dequeue() at "usb_gadget.h" for details
1525  */
1526 static int ep_dequeue(struct usb_ep *ep, struct usb_request *req)
1527 {
1528         struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1529         struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
1530         unsigned long flags;
1531         struct td_node *node, *tmpnode;
1532
1533         if (ep == NULL || req == NULL || hwreq->req.status != -EALREADY ||
1534                 hwep->ep.desc == NULL || list_empty(&hwreq->queue) ||
1535                 list_empty(&hwep->qh.queue))
1536                 return -EINVAL;
1537
1538         spin_lock_irqsave(hwep->lock, flags);
1539         if (hwep->ci->gadget.speed != USB_SPEED_UNKNOWN)
1540                 hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
1541
1542         list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
1543                 dma_pool_free(hwep->td_pool, node->ptr, node->dma);
1544                 list_del(&node->td);
1545                 kfree(node);
1546         }
1547
1548         /* pop request */
1549         list_del_init(&hwreq->queue);
1550
1551         usb_gadget_unmap_request(&hwep->ci->gadget, req, hwep->dir);
1552
1553         req->status = -ECONNRESET;
1554
1555         if (hwreq->req.complete != NULL) {
1556                 spin_unlock(hwep->lock);
1557                 usb_gadget_giveback_request(&hwep->ep, &hwreq->req);
1558                 spin_lock(hwep->lock);
1559         }
1560
1561         spin_unlock_irqrestore(hwep->lock, flags);
1562         return 0;
1563 }
1564
1565 /*
1566  * ep_set_halt: sets the endpoint halt feature
1567  *
1568  * Check usb_ep_set_halt() at "usb_gadget.h" for details
1569  */
1570 static int ep_set_halt(struct usb_ep *ep, int value)
1571 {
1572         return _ep_set_halt(ep, value, true);
1573 }
1574
1575 /*
1576  * ep_set_wedge: sets the halt feature and ignores clear requests
1577  *
1578  * Check usb_ep_set_wedge() at "usb_gadget.h" for details
1579  */
1580 static int ep_set_wedge(struct usb_ep *ep)
1581 {
1582         struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1583         unsigned long flags;
1584
1585         if (ep == NULL || hwep->ep.desc == NULL)
1586                 return -EINVAL;
1587
1588         spin_lock_irqsave(hwep->lock, flags);
1589         hwep->wedge = 1;
1590         spin_unlock_irqrestore(hwep->lock, flags);
1591
1592         return usb_ep_set_halt(ep);
1593 }
1594
1595 /*
1596  * ep_fifo_flush: flushes contents of a fifo
1597  *
1598  * Check usb_ep_fifo_flush() at "usb_gadget.h" for details
1599  */
1600 static void ep_fifo_flush(struct usb_ep *ep)
1601 {
1602         struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1603         unsigned long flags;
1604
1605         if (ep == NULL) {
1606                 dev_err(hwep->ci->dev, "%02X: -EINVAL\n", _usb_addr(hwep));
1607                 return;
1608         }
1609
1610         spin_lock_irqsave(hwep->lock, flags);
1611         if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) {
1612                 spin_unlock_irqrestore(hwep->lock, flags);
1613                 return;
1614         }
1615
1616         hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
1617
1618         spin_unlock_irqrestore(hwep->lock, flags);
1619 }
1620
1621 /*
1622  * Endpoint-specific part of the API to the USB controller hardware
1623  * Check "usb_gadget.h" for details
1624  */
1625 static const struct usb_ep_ops usb_ep_ops = {
1626         .enable        = ep_enable,
1627         .disable       = ep_disable,
1628         .alloc_request = ep_alloc_request,
1629         .free_request  = ep_free_request,
1630         .queue         = ep_queue,
1631         .dequeue       = ep_dequeue,
1632         .set_halt      = ep_set_halt,
1633         .set_wedge     = ep_set_wedge,
1634         .fifo_flush    = ep_fifo_flush,
1635 };
1636
1637 /******************************************************************************
1638  * GADGET block
1639  *****************************************************************************/
1640 /*
1641  * ci_hdrc_gadget_connect: caller makes sure gadget driver is binded
1642  */
1643 static void ci_hdrc_gadget_connect(struct usb_gadget *_gadget, int is_active)
1644 {
1645         struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1646
1647         if (is_active) {
1648                 pm_runtime_get_sync(ci->dev);
1649                 hw_device_reset(ci);
1650                 spin_lock_irq(&ci->lock);
1651                 if (ci->driver) {
1652                         hw_device_state(ci, ci->ep0out->qh.dma);
1653                         usb_gadget_set_state(_gadget, USB_STATE_POWERED);
1654                         spin_unlock_irq(&ci->lock);
1655                         usb_udc_vbus_handler(_gadget, true);
1656                 } else {
1657                         spin_unlock_irq(&ci->lock);
1658                 }
1659         } else {
1660                 usb_udc_vbus_handler(_gadget, false);
1661                 if (ci->driver)
1662                         ci->driver->disconnect(&ci->gadget);
1663                 hw_device_state(ci, 0);
1664                 if (ci->platdata->notify_event)
1665                         ci->platdata->notify_event(ci,
1666                         CI_HDRC_CONTROLLER_STOPPED_EVENT);
1667                 _gadget_stop_activity(&ci->gadget);
1668                 pm_runtime_put_sync(ci->dev);
1669                 usb_gadget_set_state(_gadget, USB_STATE_NOTATTACHED);
1670         }
1671 }
1672
1673 static int ci_udc_vbus_session(struct usb_gadget *_gadget, int is_active)
1674 {
1675         struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1676         unsigned long flags;
1677         int ret = 0;
1678
1679         spin_lock_irqsave(&ci->lock, flags);
1680         ci->vbus_active = is_active;
1681         spin_unlock_irqrestore(&ci->lock, flags);
1682
1683         if (ci->usb_phy)
1684                 usb_phy_set_charger_state(ci->usb_phy, is_active ?
1685                         USB_CHARGER_PRESENT : USB_CHARGER_ABSENT);
1686
1687         if (ci->platdata->notify_event)
1688                 ret = ci->platdata->notify_event(ci,
1689                                 CI_HDRC_CONTROLLER_VBUS_EVENT);
1690
1691         if (ci->driver)
1692                 ci_hdrc_gadget_connect(_gadget, is_active);
1693
1694         return ret;
1695 }
1696
1697 static int ci_udc_wakeup(struct usb_gadget *_gadget)
1698 {
1699         struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1700         unsigned long flags;
1701         int ret = 0;
1702
1703         spin_lock_irqsave(&ci->lock, flags);
1704         if (ci->gadget.speed == USB_SPEED_UNKNOWN) {
1705                 spin_unlock_irqrestore(&ci->lock, flags);
1706                 return 0;
1707         }
1708         if (!ci->remote_wakeup) {
1709                 ret = -EOPNOTSUPP;
1710                 goto out;
1711         }
1712         if (!hw_read(ci, OP_PORTSC, PORTSC_SUSP)) {
1713                 ret = -EINVAL;
1714                 goto out;
1715         }
1716         hw_write(ci, OP_PORTSC, PORTSC_FPR, PORTSC_FPR);
1717 out:
1718         spin_unlock_irqrestore(&ci->lock, flags);
1719         return ret;
1720 }
1721
1722 static int ci_udc_vbus_draw(struct usb_gadget *_gadget, unsigned ma)
1723 {
1724         struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1725
1726         if (ci->usb_phy)
1727                 return usb_phy_set_power(ci->usb_phy, ma);
1728         return -ENOTSUPP;
1729 }
1730
1731 static int ci_udc_selfpowered(struct usb_gadget *_gadget, int is_on)
1732 {
1733         struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1734         struct ci_hw_ep *hwep = ci->ep0in;
1735         unsigned long flags;
1736
1737         spin_lock_irqsave(hwep->lock, flags);
1738         _gadget->is_selfpowered = (is_on != 0);
1739         spin_unlock_irqrestore(hwep->lock, flags);
1740
1741         return 0;
1742 }
1743
1744 /* Change Data+ pullup status
1745  * this func is used by usb_gadget_connect/disconnect
1746  */
1747 static int ci_udc_pullup(struct usb_gadget *_gadget, int is_on)
1748 {
1749         struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1750
1751         /*
1752          * Data+ pullup controlled by OTG state machine in OTG fsm mode;
1753          * and don't touch Data+ in host mode for dual role config.
1754          */
1755         if (ci_otg_is_fsm_mode(ci) || ci->role == CI_ROLE_HOST)
1756                 return 0;
1757
1758         pm_runtime_get_sync(ci->dev);
1759         if (is_on)
1760                 hw_write(ci, OP_USBCMD, USBCMD_RS, USBCMD_RS);
1761         else
1762                 hw_write(ci, OP_USBCMD, USBCMD_RS, 0);
1763         pm_runtime_put_sync(ci->dev);
1764
1765         return 0;
1766 }
1767
1768 static int ci_udc_start(struct usb_gadget *gadget,
1769                          struct usb_gadget_driver *driver);
1770 static int ci_udc_stop(struct usb_gadget *gadget);
1771
1772 /* Match ISOC IN from the highest endpoint */
1773 static struct usb_ep *ci_udc_match_ep(struct usb_gadget *gadget,
1774                               struct usb_endpoint_descriptor *desc,
1775                               struct usb_ss_ep_comp_descriptor *comp_desc)
1776 {
1777         struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
1778         struct usb_ep *ep;
1779
1780         if (usb_endpoint_xfer_isoc(desc) && usb_endpoint_dir_in(desc)) {
1781                 list_for_each_entry_reverse(ep, &ci->gadget.ep_list, ep_list) {
1782                         if (ep->caps.dir_in && !ep->claimed)
1783                                 return ep;
1784                 }
1785         }
1786
1787         return NULL;
1788 }
1789
1790 /*
1791  * Device operations part of the API to the USB controller hardware,
1792  * which don't involve endpoints (or i/o)
1793  * Check  "usb_gadget.h" for details
1794  */
1795 static const struct usb_gadget_ops usb_gadget_ops = {
1796         .vbus_session   = ci_udc_vbus_session,
1797         .wakeup         = ci_udc_wakeup,
1798         .set_selfpowered        = ci_udc_selfpowered,
1799         .pullup         = ci_udc_pullup,
1800         .vbus_draw      = ci_udc_vbus_draw,
1801         .udc_start      = ci_udc_start,
1802         .udc_stop       = ci_udc_stop,
1803         .match_ep       = ci_udc_match_ep,
1804 };
1805
1806 static int init_eps(struct ci_hdrc *ci)
1807 {
1808         int retval = 0, i, j;
1809
1810         for (i = 0; i < ci->hw_ep_max/2; i++)
1811                 for (j = RX; j <= TX; j++) {
1812                         int k = i + j * ci->hw_ep_max/2;
1813                         struct ci_hw_ep *hwep = &ci->ci_hw_ep[k];
1814
1815                         scnprintf(hwep->name, sizeof(hwep->name), "ep%i%s", i,
1816                                         (j == TX)  ? "in" : "out");
1817
1818                         hwep->ci          = ci;
1819                         hwep->lock         = &ci->lock;
1820                         hwep->td_pool      = ci->td_pool;
1821
1822                         hwep->ep.name      = hwep->name;
1823                         hwep->ep.ops       = &usb_ep_ops;
1824
1825                         if (i == 0) {
1826                                 hwep->ep.caps.type_control = true;
1827                         } else {
1828                                 hwep->ep.caps.type_iso = true;
1829                                 hwep->ep.caps.type_bulk = true;
1830                                 hwep->ep.caps.type_int = true;
1831                         }
1832
1833                         if (j == TX)
1834                                 hwep->ep.caps.dir_in = true;
1835                         else
1836                                 hwep->ep.caps.dir_out = true;
1837
1838                         /*
1839                          * for ep0: maxP defined in desc, for other
1840                          * eps, maxP is set by epautoconfig() called
1841                          * by gadget layer
1842                          */
1843                         usb_ep_set_maxpacket_limit(&hwep->ep, (unsigned short)~0);
1844
1845                         INIT_LIST_HEAD(&hwep->qh.queue);
1846                         hwep->qh.ptr = dma_pool_zalloc(ci->qh_pool, GFP_KERNEL,
1847                                                        &hwep->qh.dma);
1848                         if (hwep->qh.ptr == NULL)
1849                                 retval = -ENOMEM;
1850
1851                         /*
1852                          * set up shorthands for ep0 out and in endpoints,
1853                          * don't add to gadget's ep_list
1854                          */
1855                         if (i == 0) {
1856                                 if (j == RX)
1857                                         ci->ep0out = hwep;
1858                                 else
1859                                         ci->ep0in = hwep;
1860
1861                                 usb_ep_set_maxpacket_limit(&hwep->ep, CTRL_PAYLOAD_MAX);
1862                                 continue;
1863                         }
1864
1865                         list_add_tail(&hwep->ep.ep_list, &ci->gadget.ep_list);
1866                 }
1867
1868         return retval;
1869 }
1870
1871 static void destroy_eps(struct ci_hdrc *ci)
1872 {
1873         int i;
1874
1875         for (i = 0; i < ci->hw_ep_max; i++) {
1876                 struct ci_hw_ep *hwep = &ci->ci_hw_ep[i];
1877
1878                 if (hwep->pending_td)
1879                         free_pending_td(hwep);
1880                 dma_pool_free(ci->qh_pool, hwep->qh.ptr, hwep->qh.dma);
1881         }
1882 }
1883
1884 /**
1885  * ci_udc_start: register a gadget driver
1886  * @gadget: our gadget
1887  * @driver: the driver being registered
1888  *
1889  * Interrupts are enabled here.
1890  */
1891 static int ci_udc_start(struct usb_gadget *gadget,
1892                          struct usb_gadget_driver *driver)
1893 {
1894         struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
1895         int retval;
1896
1897         if (driver->disconnect == NULL)
1898                 return -EINVAL;
1899
1900         ci->ep0out->ep.desc = &ctrl_endpt_out_desc;
1901         retval = usb_ep_enable(&ci->ep0out->ep);
1902         if (retval)
1903                 return retval;
1904
1905         ci->ep0in->ep.desc = &ctrl_endpt_in_desc;
1906         retval = usb_ep_enable(&ci->ep0in->ep);
1907         if (retval)
1908                 return retval;
1909
1910         ci->driver = driver;
1911
1912         /* Start otg fsm for B-device */
1913         if (ci_otg_is_fsm_mode(ci) && ci->fsm.id) {
1914                 ci_hdrc_otg_fsm_start(ci);
1915                 return retval;
1916         }
1917
1918         if (ci->vbus_active)
1919                 ci_hdrc_gadget_connect(gadget, 1);
1920         else
1921                 usb_udc_vbus_handler(&ci->gadget, false);
1922
1923         return retval;
1924 }
1925
1926 static void ci_udc_stop_for_otg_fsm(struct ci_hdrc *ci)
1927 {
1928         if (!ci_otg_is_fsm_mode(ci))
1929                 return;
1930
1931         mutex_lock(&ci->fsm.lock);
1932         if (ci->fsm.otg->state == OTG_STATE_A_PERIPHERAL) {
1933                 ci->fsm.a_bidl_adis_tmout = 1;
1934                 ci_hdrc_otg_fsm_start(ci);
1935         } else if (ci->fsm.otg->state == OTG_STATE_B_PERIPHERAL) {
1936                 ci->fsm.protocol = PROTO_UNDEF;
1937                 ci->fsm.otg->state = OTG_STATE_UNDEFINED;
1938         }
1939         mutex_unlock(&ci->fsm.lock);
1940 }
1941
1942 /*
1943  * ci_udc_stop: unregister a gadget driver
1944  */
1945 static int ci_udc_stop(struct usb_gadget *gadget)
1946 {
1947         struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
1948         unsigned long flags;
1949
1950         spin_lock_irqsave(&ci->lock, flags);
1951         ci->driver = NULL;
1952
1953         if (ci->vbus_active) {
1954                 hw_device_state(ci, 0);
1955                 spin_unlock_irqrestore(&ci->lock, flags);
1956                 if (ci->platdata->notify_event)
1957                         ci->platdata->notify_event(ci,
1958                         CI_HDRC_CONTROLLER_STOPPED_EVENT);
1959                 _gadget_stop_activity(&ci->gadget);
1960                 spin_lock_irqsave(&ci->lock, flags);
1961                 pm_runtime_put(ci->dev);
1962         }
1963
1964         spin_unlock_irqrestore(&ci->lock, flags);
1965
1966         ci_udc_stop_for_otg_fsm(ci);
1967         return 0;
1968 }
1969
1970 /******************************************************************************
1971  * BUS block
1972  *****************************************************************************/
1973 /*
1974  * udc_irq: ci interrupt handler
1975  *
1976  * This function returns IRQ_HANDLED if the IRQ has been handled
1977  * It locks access to registers
1978  */
1979 static irqreturn_t udc_irq(struct ci_hdrc *ci)
1980 {
1981         irqreturn_t retval;
1982         u32 intr;
1983
1984         if (ci == NULL)
1985                 return IRQ_HANDLED;
1986
1987         spin_lock(&ci->lock);
1988
1989         if (ci->platdata->flags & CI_HDRC_REGS_SHARED) {
1990                 if (hw_read(ci, OP_USBMODE, USBMODE_CM) !=
1991                                 USBMODE_CM_DC) {
1992                         spin_unlock(&ci->lock);
1993                         return IRQ_NONE;
1994                 }
1995         }
1996         intr = hw_test_and_clear_intr_active(ci);
1997
1998         if (intr) {
1999                 /* order defines priority - do NOT change it */
2000                 if (USBi_URI & intr)
2001                         isr_reset_handler(ci);
2002
2003                 if (USBi_PCI & intr) {
2004                         ci->gadget.speed = hw_port_is_high_speed(ci) ?
2005                                 USB_SPEED_HIGH : USB_SPEED_FULL;
2006                         if (ci->suspended) {
2007                                 if (ci->driver->resume) {
2008                                         spin_unlock(&ci->lock);
2009                                         ci->driver->resume(&ci->gadget);
2010                                         spin_lock(&ci->lock);
2011                                 }
2012                                 ci->suspended = 0;
2013                                 usb_gadget_set_state(&ci->gadget,
2014                                                 ci->resume_state);
2015                         }
2016                 }
2017
2018                 if (USBi_UI  & intr)
2019                         isr_tr_complete_handler(ci);
2020
2021                 if ((USBi_SLI & intr) && !(ci->suspended)) {
2022                         ci->suspended = 1;
2023                         ci->resume_state = ci->gadget.state;
2024                         if (ci->gadget.speed != USB_SPEED_UNKNOWN &&
2025                             ci->driver->suspend) {
2026                                 spin_unlock(&ci->lock);
2027                                 ci->driver->suspend(&ci->gadget);
2028                                 spin_lock(&ci->lock);
2029                         }
2030                         usb_gadget_set_state(&ci->gadget,
2031                                         USB_STATE_SUSPENDED);
2032                 }
2033                 retval = IRQ_HANDLED;
2034         } else {
2035                 retval = IRQ_NONE;
2036         }
2037         spin_unlock(&ci->lock);
2038
2039         return retval;
2040 }
2041
2042 /**
2043  * udc_start: initialize gadget role
2044  * @ci: chipidea controller
2045  */
2046 static int udc_start(struct ci_hdrc *ci)
2047 {
2048         struct device *dev = ci->dev;
2049         struct usb_otg_caps *otg_caps = &ci->platdata->ci_otg_caps;
2050         int retval = 0;
2051
2052         ci->gadget.ops          = &usb_gadget_ops;
2053         ci->gadget.speed        = USB_SPEED_UNKNOWN;
2054         ci->gadget.max_speed    = USB_SPEED_HIGH;
2055         ci->gadget.name         = ci->platdata->name;
2056         ci->gadget.otg_caps     = otg_caps;
2057         ci->gadget.sg_supported = 1;
2058
2059         if (ci->platdata->flags & CI_HDRC_REQUIRES_ALIGNED_DMA)
2060                 ci->gadget.quirk_avoids_skb_reserve = 1;
2061
2062         if (ci->is_otg && (otg_caps->hnp_support || otg_caps->srp_support ||
2063                                                 otg_caps->adp_support))
2064                 ci->gadget.is_otg = 1;
2065
2066         INIT_LIST_HEAD(&ci->gadget.ep_list);
2067
2068         /* alloc resources */
2069         ci->qh_pool = dma_pool_create("ci_hw_qh", dev->parent,
2070                                        sizeof(struct ci_hw_qh),
2071                                        64, CI_HDRC_PAGE_SIZE);
2072         if (ci->qh_pool == NULL)
2073                 return -ENOMEM;
2074
2075         ci->td_pool = dma_pool_create("ci_hw_td", dev->parent,
2076                                        sizeof(struct ci_hw_td),
2077                                        64, CI_HDRC_PAGE_SIZE);
2078         if (ci->td_pool == NULL) {
2079                 retval = -ENOMEM;
2080                 goto free_qh_pool;
2081         }
2082
2083         retval = init_eps(ci);
2084         if (retval)
2085                 goto free_pools;
2086
2087         ci->gadget.ep0 = &ci->ep0in->ep;
2088
2089         retval = usb_add_gadget_udc(dev, &ci->gadget);
2090         if (retval)
2091                 goto destroy_eps;
2092
2093         return retval;
2094
2095 destroy_eps:
2096         destroy_eps(ci);
2097 free_pools:
2098         dma_pool_destroy(ci->td_pool);
2099 free_qh_pool:
2100         dma_pool_destroy(ci->qh_pool);
2101         return retval;
2102 }
2103
2104 /*
2105  * ci_hdrc_gadget_destroy: parent remove must call this to remove UDC
2106  *
2107  * No interrupts active, the IRQ has been released
2108  */
2109 void ci_hdrc_gadget_destroy(struct ci_hdrc *ci)
2110 {
2111         if (!ci->roles[CI_ROLE_GADGET])
2112                 return;
2113
2114         usb_del_gadget_udc(&ci->gadget);
2115
2116         destroy_eps(ci);
2117
2118         dma_pool_destroy(ci->td_pool);
2119         dma_pool_destroy(ci->qh_pool);
2120 }
2121
2122 static int udc_id_switch_for_device(struct ci_hdrc *ci)
2123 {
2124         if (ci->platdata->pins_device)
2125                 pinctrl_select_state(ci->platdata->pctl,
2126                                      ci->platdata->pins_device);
2127
2128         if (ci->is_otg)
2129                 /* Clear and enable BSV irq */
2130                 hw_write_otgsc(ci, OTGSC_BSVIS | OTGSC_BSVIE,
2131                                         OTGSC_BSVIS | OTGSC_BSVIE);
2132
2133         return 0;
2134 }
2135
2136 static void udc_id_switch_for_host(struct ci_hdrc *ci)
2137 {
2138         /*
2139          * host doesn't care B_SESSION_VALID event
2140          * so clear and disbale BSV irq
2141          */
2142         if (ci->is_otg)
2143                 hw_write_otgsc(ci, OTGSC_BSVIE | OTGSC_BSVIS, OTGSC_BSVIS);
2144
2145         ci->vbus_active = 0;
2146
2147         if (ci->platdata->pins_device && ci->platdata->pins_default)
2148                 pinctrl_select_state(ci->platdata->pctl,
2149                                      ci->platdata->pins_default);
2150 }
2151
2152 /**
2153  * ci_hdrc_gadget_init - initialize device related bits
2154  * @ci: the controller
2155  *
2156  * This function initializes the gadget, if the device is "device capable".
2157  */
2158 int ci_hdrc_gadget_init(struct ci_hdrc *ci)
2159 {
2160         struct ci_role_driver *rdrv;
2161         int ret;
2162
2163         if (!hw_read(ci, CAP_DCCPARAMS, DCCPARAMS_DC))
2164                 return -ENXIO;
2165
2166         rdrv = devm_kzalloc(ci->dev, sizeof(*rdrv), GFP_KERNEL);
2167         if (!rdrv)
2168                 return -ENOMEM;
2169
2170         rdrv->start     = udc_id_switch_for_device;
2171         rdrv->stop      = udc_id_switch_for_host;
2172         rdrv->irq       = udc_irq;
2173         rdrv->name      = "gadget";
2174
2175         ret = udc_start(ci);
2176         if (!ret)
2177                 ci->roles[CI_ROLE_GADGET] = rdrv;
2178
2179         return ret;
2180 }