Merge tag 'nfsd-6.6-1' of git://git.kernel.org/pub/scm/linux/kernel/git/cel/linux
[platform/kernel/linux-rpi.git] / drivers / usb / cdns3 / cdnsp-gadget.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Cadence CDNSP DRD Driver.
4  *
5  * Copyright (C) 2020 Cadence.
6  *
7  * Author: Pawel Laszczak <pawell@cadence.com>
8  *
9  */
10
11 #include <linux/moduleparam.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/module.h>
14 #include <linux/iopoll.h>
15 #include <linux/delay.h>
16 #include <linux/log2.h>
17 #include <linux/slab.h>
18 #include <linux/pci.h>
19 #include <linux/irq.h>
20 #include <linux/dmi.h>
21
22 #include "core.h"
23 #include "gadget-export.h"
24 #include "drd.h"
25 #include "cdnsp-gadget.h"
26 #include "cdnsp-trace.h"
27
28 unsigned int cdnsp_port_speed(unsigned int port_status)
29 {
30         /*Detect gadget speed based on PORTSC register*/
31         if (DEV_SUPERSPEEDPLUS(port_status))
32                 return USB_SPEED_SUPER_PLUS;
33         else if (DEV_SUPERSPEED(port_status))
34                 return USB_SPEED_SUPER;
35         else if (DEV_HIGHSPEED(port_status))
36                 return USB_SPEED_HIGH;
37         else if (DEV_FULLSPEED(port_status))
38                 return USB_SPEED_FULL;
39
40         /* If device is detached then speed will be USB_SPEED_UNKNOWN.*/
41         return USB_SPEED_UNKNOWN;
42 }
43
44 /*
45  * Given a port state, this function returns a value that would result in the
46  * port being in the same state, if the value was written to the port status
47  * control register.
48  * Save Read Only (RO) bits and save read/write bits where
49  * writing a 0 clears the bit and writing a 1 sets the bit (RWS).
50  * For all other types (RW1S, RW1CS, RW, and RZ), writing a '0' has no effect.
51  */
52 u32 cdnsp_port_state_to_neutral(u32 state)
53 {
54         /* Save read-only status and port state. */
55         return (state & CDNSP_PORT_RO) | (state & CDNSP_PORT_RWS);
56 }
57
58 /**
59  * cdnsp_find_next_ext_cap - Find the offset of the extended capabilities
60  *                           with capability ID id.
61  * @base: PCI MMIO registers base address.
62  * @start: Address at which to start looking, (0 or HCC_PARAMS to start at
63  *         beginning of list)
64  * @id: Extended capability ID to search for.
65  *
66  * Returns the offset of the next matching extended capability structure.
67  * Some capabilities can occur several times,
68  * e.g., the EXT_CAPS_PROTOCOL, and this provides a way to find them all.
69  */
70 int cdnsp_find_next_ext_cap(void __iomem *base, u32 start, int id)
71 {
72         u32 offset = start;
73         u32 next;
74         u32 val;
75
76         if (!start || start == HCC_PARAMS_OFFSET) {
77                 val = readl(base + HCC_PARAMS_OFFSET);
78                 if (val == ~0)
79                         return 0;
80
81                 offset = HCC_EXT_CAPS(val) << 2;
82                 if (!offset)
83                         return 0;
84         }
85
86         do {
87                 val = readl(base + offset);
88                 if (val == ~0)
89                         return 0;
90
91                 if (EXT_CAPS_ID(val) == id && offset != start)
92                         return offset;
93
94                 next = EXT_CAPS_NEXT(val);
95                 offset += next << 2;
96         } while (next);
97
98         return 0;
99 }
100
101 void cdnsp_set_link_state(struct cdnsp_device *pdev,
102                           __le32 __iomem *port_regs,
103                           u32 link_state)
104 {
105         int port_num = 0xFF;
106         u32 temp;
107
108         temp = readl(port_regs);
109         temp = cdnsp_port_state_to_neutral(temp);
110         temp |= PORT_WKCONN_E | PORT_WKDISC_E;
111         writel(temp, port_regs);
112
113         temp &= ~PORT_PLS_MASK;
114         temp |= PORT_LINK_STROBE | link_state;
115
116         if (pdev->active_port)
117                 port_num = pdev->active_port->port_num;
118
119         trace_cdnsp_handle_port_status(port_num, readl(port_regs));
120         writel(temp, port_regs);
121         trace_cdnsp_link_state_changed(port_num, readl(port_regs));
122 }
123
124 static void cdnsp_disable_port(struct cdnsp_device *pdev,
125                                __le32 __iomem *port_regs)
126 {
127         u32 temp = cdnsp_port_state_to_neutral(readl(port_regs));
128
129         writel(temp | PORT_PED, port_regs);
130 }
131
132 static void cdnsp_clear_port_change_bit(struct cdnsp_device *pdev,
133                                         __le32 __iomem *port_regs)
134 {
135         u32 portsc = readl(port_regs);
136
137         writel(cdnsp_port_state_to_neutral(portsc) |
138                (portsc & PORT_CHANGE_BITS), port_regs);
139 }
140
141 static void cdnsp_set_chicken_bits_2(struct cdnsp_device *pdev, u32 bit)
142 {
143         __le32 __iomem *reg;
144         void __iomem *base;
145         u32 offset = 0;
146
147         base = &pdev->cap_regs->hc_capbase;
148         offset = cdnsp_find_next_ext_cap(base, offset, D_XEC_PRE_REGS_CAP);
149         reg = base + offset + REG_CHICKEN_BITS_2_OFFSET;
150
151         bit = readl(reg) | bit;
152         writel(bit, reg);
153 }
154
155 static void cdnsp_clear_chicken_bits_2(struct cdnsp_device *pdev, u32 bit)
156 {
157         __le32 __iomem *reg;
158         void __iomem *base;
159         u32 offset = 0;
160
161         base = &pdev->cap_regs->hc_capbase;
162         offset = cdnsp_find_next_ext_cap(base, offset, D_XEC_PRE_REGS_CAP);
163         reg = base + offset + REG_CHICKEN_BITS_2_OFFSET;
164
165         bit = readl(reg) & ~bit;
166         writel(bit, reg);
167 }
168
169 /*
170  * Disable interrupts and begin the controller halting process.
171  */
172 static void cdnsp_quiesce(struct cdnsp_device *pdev)
173 {
174         u32 halted;
175         u32 mask;
176         u32 cmd;
177
178         mask = ~(u32)(CDNSP_IRQS);
179
180         halted = readl(&pdev->op_regs->status) & STS_HALT;
181         if (!halted)
182                 mask &= ~(CMD_R_S | CMD_DEVEN);
183
184         cmd = readl(&pdev->op_regs->command);
185         cmd &= mask;
186         writel(cmd, &pdev->op_regs->command);
187 }
188
189 /*
190  * Force controller into halt state.
191  *
192  * Disable any IRQs and clear the run/stop bit.
193  * Controller will complete any current and actively pipelined transactions, and
194  * should halt within 16 ms of the run/stop bit being cleared.
195  * Read controller Halted bit in the status register to see when the
196  * controller is finished.
197  */
198 int cdnsp_halt(struct cdnsp_device *pdev)
199 {
200         int ret;
201         u32 val;
202
203         cdnsp_quiesce(pdev);
204
205         ret = readl_poll_timeout_atomic(&pdev->op_regs->status, val,
206                                         val & STS_HALT, 1,
207                                         CDNSP_MAX_HALT_USEC);
208         if (ret) {
209                 dev_err(pdev->dev, "ERROR: Device halt failed\n");
210                 return ret;
211         }
212
213         pdev->cdnsp_state |= CDNSP_STATE_HALTED;
214
215         return 0;
216 }
217
218 /*
219  * device controller died, register read returns 0xffffffff, or command never
220  * ends.
221  */
222 void cdnsp_died(struct cdnsp_device *pdev)
223 {
224         dev_err(pdev->dev, "ERROR: CDNSP controller not responding\n");
225         pdev->cdnsp_state |= CDNSP_STATE_DYING;
226         cdnsp_halt(pdev);
227 }
228
229 /*
230  * Set the run bit and wait for the device to be running.
231  */
232 static int cdnsp_start(struct cdnsp_device *pdev)
233 {
234         u32 temp;
235         int ret;
236
237         temp = readl(&pdev->op_regs->command);
238         temp |= (CMD_R_S | CMD_DEVEN);
239         writel(temp, &pdev->op_regs->command);
240
241         pdev->cdnsp_state = 0;
242
243         /*
244          * Wait for the STS_HALT Status bit to be 0 to indicate the device is
245          * running.
246          */
247         ret = readl_poll_timeout_atomic(&pdev->op_regs->status, temp,
248                                         !(temp & STS_HALT), 1,
249                                         CDNSP_MAX_HALT_USEC);
250         if (ret) {
251                 pdev->cdnsp_state = CDNSP_STATE_DYING;
252                 dev_err(pdev->dev, "ERROR: Controller run failed\n");
253         }
254
255         return ret;
256 }
257
258 /*
259  * Reset a halted controller.
260  *
261  * This resets pipelines, timers, counters, state machines, etc.
262  * Transactions will be terminated immediately, and operational registers
263  * will be set to their defaults.
264  */
265 int cdnsp_reset(struct cdnsp_device *pdev)
266 {
267         u32 command;
268         u32 temp;
269         int ret;
270
271         temp = readl(&pdev->op_regs->status);
272
273         if (temp == ~(u32)0) {
274                 dev_err(pdev->dev, "Device not accessible, reset failed.\n");
275                 return -ENODEV;
276         }
277
278         if ((temp & STS_HALT) == 0) {
279                 dev_err(pdev->dev, "Controller not halted, aborting reset.\n");
280                 return -EINVAL;
281         }
282
283         command = readl(&pdev->op_regs->command);
284         command |= CMD_RESET;
285         writel(command, &pdev->op_regs->command);
286
287         ret = readl_poll_timeout_atomic(&pdev->op_regs->command, temp,
288                                         !(temp & CMD_RESET), 1,
289                                         10 * 1000);
290         if (ret) {
291                 dev_err(pdev->dev, "ERROR: Controller reset failed\n");
292                 return ret;
293         }
294
295         /*
296          * CDNSP cannot write any doorbells or operational registers other
297          * than status until the "Controller Not Ready" flag is cleared.
298          */
299         ret = readl_poll_timeout_atomic(&pdev->op_regs->status, temp,
300                                         !(temp & STS_CNR), 1,
301                                         10 * 1000);
302
303         if (ret) {
304                 dev_err(pdev->dev, "ERROR: Controller not ready to work\n");
305                 return ret;
306         }
307
308         dev_dbg(pdev->dev, "Controller ready to work");
309
310         return ret;
311 }
312
313 /*
314  * cdnsp_get_endpoint_index - Find the index for an endpoint given its
315  * descriptor.Use the return value to right shift 1 for the bitmask.
316  *
317  * Index = (epnum * 2) + direction - 1,
318  * where direction = 0 for OUT, 1 for IN.
319  * For control endpoints, the IN index is used (OUT index is unused), so
320  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
321  */
322 static unsigned int
323         cdnsp_get_endpoint_index(const struct usb_endpoint_descriptor *desc)
324 {
325         unsigned int index = (unsigned int)usb_endpoint_num(desc);
326
327         if (usb_endpoint_xfer_control(desc))
328                 return index * 2;
329
330         return (index * 2) + (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
331 }
332
333 /*
334  * Find the flag for this endpoint (for use in the control context). Use the
335  * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
336  * bit 1, etc.
337  */
338 static unsigned int
339         cdnsp_get_endpoint_flag(const struct usb_endpoint_descriptor *desc)
340 {
341         return 1 << (cdnsp_get_endpoint_index(desc) + 1);
342 }
343
344 int cdnsp_ep_enqueue(struct cdnsp_ep *pep, struct cdnsp_request *preq)
345 {
346         struct cdnsp_device *pdev = pep->pdev;
347         struct usb_request *request;
348         int ret;
349
350         if (preq->epnum == 0 && !list_empty(&pep->pending_list)) {
351                 trace_cdnsp_request_enqueue_busy(preq);
352                 return -EBUSY;
353         }
354
355         request = &preq->request;
356         request->actual = 0;
357         request->status = -EINPROGRESS;
358         preq->direction = pep->direction;
359         preq->epnum = pep->number;
360         preq->td.drbl = 0;
361
362         ret = usb_gadget_map_request_by_dev(pdev->dev, request, pep->direction);
363         if (ret) {
364                 trace_cdnsp_request_enqueue_error(preq);
365                 return ret;
366         }
367
368         list_add_tail(&preq->list, &pep->pending_list);
369
370         trace_cdnsp_request_enqueue(preq);
371
372         switch (usb_endpoint_type(pep->endpoint.desc)) {
373         case USB_ENDPOINT_XFER_CONTROL:
374                 ret = cdnsp_queue_ctrl_tx(pdev, preq);
375                 break;
376         case USB_ENDPOINT_XFER_BULK:
377         case USB_ENDPOINT_XFER_INT:
378                 ret = cdnsp_queue_bulk_tx(pdev, preq);
379                 break;
380         case USB_ENDPOINT_XFER_ISOC:
381                 ret = cdnsp_queue_isoc_tx(pdev, preq);
382         }
383
384         if (ret)
385                 goto unmap;
386
387         return 0;
388
389 unmap:
390         usb_gadget_unmap_request_by_dev(pdev->dev, &preq->request,
391                                         pep->direction);
392         list_del(&preq->list);
393         trace_cdnsp_request_enqueue_error(preq);
394
395         return ret;
396 }
397
398 /*
399  * Remove the request's TD from the endpoint ring. This may cause the
400  * controller to stop USB transfers, potentially stopping in the middle of a
401  * TRB buffer. The controller should pick up where it left off in the TD,
402  * unless a Set Transfer Ring Dequeue Pointer is issued.
403  *
404  * The TRBs that make up the buffers for the canceled request will be "removed"
405  * from the ring. Since the ring is a contiguous structure, they can't be
406  * physically removed. Instead, there are two options:
407  *
408  *  1) If the controller is in the middle of processing the request to be
409  *     canceled, we simply move the ring's dequeue pointer past those TRBs
410  *     using the Set Transfer Ring Dequeue Pointer command. This will be
411  *     the common case, when drivers timeout on the last submitted request
412  *     and attempt to cancel.
413  *
414  *  2) If the controller is in the middle of a different TD, we turn the TRBs
415  *     into a series of 1-TRB transfer no-op TDs. No-ops shouldn't be chained.
416  *     The controller will need to invalidate the any TRBs it has cached after
417  *     the stop endpoint command.
418  *
419  *  3) The TD may have completed by the time the Stop Endpoint Command
420  *     completes, so software needs to handle that case too.
421  *
422  */
423 int cdnsp_ep_dequeue(struct cdnsp_ep *pep, struct cdnsp_request *preq)
424 {
425         struct cdnsp_device *pdev = pep->pdev;
426         int ret_stop = 0;
427         int ret_rem;
428
429         trace_cdnsp_request_dequeue(preq);
430
431         if (GET_EP_CTX_STATE(pep->out_ctx) == EP_STATE_RUNNING)
432                 ret_stop = cdnsp_cmd_stop_ep(pdev, pep);
433
434         ret_rem = cdnsp_remove_request(pdev, preq, pep);
435
436         return ret_rem ? ret_rem : ret_stop;
437 }
438
439 static void cdnsp_zero_in_ctx(struct cdnsp_device *pdev)
440 {
441         struct cdnsp_input_control_ctx *ctrl_ctx;
442         struct cdnsp_slot_ctx *slot_ctx;
443         struct cdnsp_ep_ctx *ep_ctx;
444         int i;
445
446         ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
447
448         /*
449          * When a device's add flag and drop flag are zero, any subsequent
450          * configure endpoint command will leave that endpoint's state
451          * untouched. Make sure we don't leave any old state in the input
452          * endpoint contexts.
453          */
454         ctrl_ctx->drop_flags = 0;
455         ctrl_ctx->add_flags = 0;
456         slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
457         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
458
459         /* Endpoint 0 is always valid */
460         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
461         for (i = 1; i < CDNSP_ENDPOINTS_NUM; ++i) {
462                 ep_ctx = cdnsp_get_ep_ctx(&pdev->in_ctx, i);
463                 ep_ctx->ep_info = 0;
464                 ep_ctx->ep_info2 = 0;
465                 ep_ctx->deq = 0;
466                 ep_ctx->tx_info = 0;
467         }
468 }
469
470 /* Issue a configure endpoint command and wait for it to finish. */
471 static int cdnsp_configure_endpoint(struct cdnsp_device *pdev)
472 {
473         int ret;
474
475         cdnsp_queue_configure_endpoint(pdev, pdev->cmd.in_ctx->dma);
476         cdnsp_ring_cmd_db(pdev);
477         ret = cdnsp_wait_for_cmd_compl(pdev);
478         if (ret) {
479                 dev_err(pdev->dev,
480                         "ERR: unexpected command completion code 0x%x.\n", ret);
481                 return -EINVAL;
482         }
483
484         return ret;
485 }
486
487 static void cdnsp_invalidate_ep_events(struct cdnsp_device *pdev,
488                                        struct cdnsp_ep *pep)
489 {
490         struct cdnsp_segment *segment;
491         union cdnsp_trb *event;
492         u32 cycle_state;
493         u32  data;
494
495         event = pdev->event_ring->dequeue;
496         segment = pdev->event_ring->deq_seg;
497         cycle_state = pdev->event_ring->cycle_state;
498
499         while (1) {
500                 data = le32_to_cpu(event->trans_event.flags);
501
502                 /* Check the owner of the TRB. */
503                 if ((data & TRB_CYCLE) != cycle_state)
504                         break;
505
506                 if (TRB_FIELD_TO_TYPE(data) == TRB_TRANSFER &&
507                     TRB_TO_EP_ID(data) == (pep->idx + 1)) {
508                         data |= TRB_EVENT_INVALIDATE;
509                         event->trans_event.flags = cpu_to_le32(data);
510                 }
511
512                 if (cdnsp_last_trb_on_seg(segment, event)) {
513                         cycle_state ^= 1;
514                         segment = pdev->event_ring->deq_seg->next;
515                         event = segment->trbs;
516                 } else {
517                         event++;
518                 }
519         }
520 }
521
522 int cdnsp_wait_for_cmd_compl(struct cdnsp_device *pdev)
523 {
524         struct cdnsp_segment *event_deq_seg;
525         union cdnsp_trb *cmd_trb;
526         dma_addr_t cmd_deq_dma;
527         union cdnsp_trb *event;
528         u32 cycle_state;
529         int ret, val;
530         u64 cmd_dma;
531         u32  flags;
532
533         cmd_trb = pdev->cmd.command_trb;
534         pdev->cmd.status = 0;
535
536         trace_cdnsp_cmd_wait_for_compl(pdev->cmd_ring, &cmd_trb->generic);
537
538         ret = readl_poll_timeout_atomic(&pdev->op_regs->cmd_ring, val,
539                                         !CMD_RING_BUSY(val), 1,
540                                         CDNSP_CMD_TIMEOUT);
541         if (ret) {
542                 dev_err(pdev->dev, "ERR: Timeout while waiting for command\n");
543                 trace_cdnsp_cmd_timeout(pdev->cmd_ring, &cmd_trb->generic);
544                 pdev->cdnsp_state = CDNSP_STATE_DYING;
545                 return -ETIMEDOUT;
546         }
547
548         event = pdev->event_ring->dequeue;
549         event_deq_seg = pdev->event_ring->deq_seg;
550         cycle_state = pdev->event_ring->cycle_state;
551
552         cmd_deq_dma = cdnsp_trb_virt_to_dma(pdev->cmd_ring->deq_seg, cmd_trb);
553         if (!cmd_deq_dma)
554                 return -EINVAL;
555
556         while (1) {
557                 flags = le32_to_cpu(event->event_cmd.flags);
558
559                 /* Check the owner of the TRB. */
560                 if ((flags & TRB_CYCLE) != cycle_state)
561                         return -EINVAL;
562
563                 cmd_dma = le64_to_cpu(event->event_cmd.cmd_trb);
564
565                 /*
566                  * Check whether the completion event is for last queued
567                  * command.
568                  */
569                 if (TRB_FIELD_TO_TYPE(flags) != TRB_COMPLETION ||
570                     cmd_dma != (u64)cmd_deq_dma) {
571                         if (!cdnsp_last_trb_on_seg(event_deq_seg, event)) {
572                                 event++;
573                                 continue;
574                         }
575
576                         if (cdnsp_last_trb_on_ring(pdev->event_ring,
577                                                    event_deq_seg, event))
578                                 cycle_state ^= 1;
579
580                         event_deq_seg = event_deq_seg->next;
581                         event = event_deq_seg->trbs;
582                         continue;
583                 }
584
585                 trace_cdnsp_handle_command(pdev->cmd_ring, &cmd_trb->generic);
586
587                 pdev->cmd.status = GET_COMP_CODE(le32_to_cpu(event->event_cmd.status));
588                 if (pdev->cmd.status == COMP_SUCCESS)
589                         return 0;
590
591                 return -pdev->cmd.status;
592         }
593 }
594
595 int cdnsp_halt_endpoint(struct cdnsp_device *pdev,
596                         struct cdnsp_ep *pep,
597                         int value)
598 {
599         int ret;
600
601         trace_cdnsp_ep_halt(value ? "Set" : "Clear");
602
603         ret = cdnsp_cmd_stop_ep(pdev, pep);
604         if (ret)
605                 return ret;
606
607         if (value) {
608                 if (GET_EP_CTX_STATE(pep->out_ctx) == EP_STATE_STOPPED) {
609                         cdnsp_queue_halt_endpoint(pdev, pep->idx);
610                         cdnsp_ring_cmd_db(pdev);
611                         ret = cdnsp_wait_for_cmd_compl(pdev);
612                 }
613
614                 pep->ep_state |= EP_HALTED;
615         } else {
616                 cdnsp_queue_reset_ep(pdev, pep->idx);
617                 cdnsp_ring_cmd_db(pdev);
618                 ret = cdnsp_wait_for_cmd_compl(pdev);
619                 trace_cdnsp_handle_cmd_reset_ep(pep->out_ctx);
620
621                 if (ret)
622                         return ret;
623
624                 pep->ep_state &= ~EP_HALTED;
625
626                 if (pep->idx != 0 && !(pep->ep_state & EP_WEDGE))
627                         cdnsp_ring_doorbell_for_active_rings(pdev, pep);
628
629                 pep->ep_state &= ~EP_WEDGE;
630         }
631
632         return 0;
633 }
634
635 static int cdnsp_update_eps_configuration(struct cdnsp_device *pdev,
636                                           struct cdnsp_ep *pep)
637 {
638         struct cdnsp_input_control_ctx *ctrl_ctx;
639         struct cdnsp_slot_ctx *slot_ctx;
640         int ret = 0;
641         u32 ep_sts;
642         int i;
643
644         ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
645
646         /* Don't issue the command if there's no endpoints to update. */
647         if (ctrl_ctx->add_flags == 0 && ctrl_ctx->drop_flags == 0)
648                 return 0;
649
650         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
651         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
652         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
653
654         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
655         slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
656         for (i = CDNSP_ENDPOINTS_NUM; i >= 1; i--) {
657                 __le32 le32 = cpu_to_le32(BIT(i));
658
659                 if ((pdev->eps[i - 1].ring && !(ctrl_ctx->drop_flags & le32)) ||
660                     (ctrl_ctx->add_flags & le32) || i == 1) {
661                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
662                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
663                         break;
664                 }
665         }
666
667         ep_sts = GET_EP_CTX_STATE(pep->out_ctx);
668
669         if ((ctrl_ctx->add_flags != cpu_to_le32(SLOT_FLAG) &&
670              ep_sts == EP_STATE_DISABLED) ||
671             (ep_sts != EP_STATE_DISABLED && ctrl_ctx->drop_flags))
672                 ret = cdnsp_configure_endpoint(pdev);
673
674         trace_cdnsp_configure_endpoint(cdnsp_get_slot_ctx(&pdev->out_ctx));
675         trace_cdnsp_handle_cmd_config_ep(pep->out_ctx);
676
677         cdnsp_zero_in_ctx(pdev);
678
679         return ret;
680 }
681
682 /*
683  * This submits a Reset Device Command, which will set the device state to 0,
684  * set the device address to 0, and disable all the endpoints except the default
685  * control endpoint. The USB core should come back and call
686  * cdnsp_setup_device(), and then re-set up the configuration.
687  */
688 int cdnsp_reset_device(struct cdnsp_device *pdev)
689 {
690         struct cdnsp_slot_ctx *slot_ctx;
691         int slot_state;
692         int ret, i;
693
694         slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
695         slot_ctx->dev_info = 0;
696         pdev->device_address = 0;
697
698         /* If device is not setup, there is no point in resetting it. */
699         slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx);
700         slot_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state));
701         trace_cdnsp_reset_device(slot_ctx);
702
703         if (slot_state <= SLOT_STATE_DEFAULT &&
704             pdev->eps[0].ep_state & EP_HALTED) {
705                 cdnsp_halt_endpoint(pdev, &pdev->eps[0], 0);
706         }
707
708         /*
709          * During Reset Device command controller shall transition the
710          * endpoint ep0 to the Running State.
711          */
712         pdev->eps[0].ep_state &= ~(EP_STOPPED | EP_HALTED);
713         pdev->eps[0].ep_state |= EP_ENABLED;
714
715         if (slot_state <= SLOT_STATE_DEFAULT)
716                 return 0;
717
718         cdnsp_queue_reset_device(pdev);
719         cdnsp_ring_cmd_db(pdev);
720         ret = cdnsp_wait_for_cmd_compl(pdev);
721
722         /*
723          * After Reset Device command all not default endpoints
724          * are in Disabled state.
725          */
726         for (i = 1; i < CDNSP_ENDPOINTS_NUM; ++i)
727                 pdev->eps[i].ep_state |= EP_STOPPED | EP_UNCONFIGURED;
728
729         trace_cdnsp_handle_cmd_reset_dev(slot_ctx);
730
731         if (ret)
732                 dev_err(pdev->dev, "Reset device failed with error code %d",
733                         ret);
734
735         return ret;
736 }
737
738 /*
739  * Sets the MaxPStreams field and the Linear Stream Array field.
740  * Sets the dequeue pointer to the stream context array.
741  */
742 static void cdnsp_setup_streams_ep_input_ctx(struct cdnsp_device *pdev,
743                                              struct cdnsp_ep_ctx *ep_ctx,
744                                              struct cdnsp_stream_info *stream_info)
745 {
746         u32 max_primary_streams;
747
748         /* MaxPStreams is the number of stream context array entries, not the
749          * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
750          * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
751          */
752         max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
753         ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
754         ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
755                                        | EP_HAS_LSA);
756         ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
757 }
758
759 /*
760  * The drivers use this function to prepare a bulk endpoints to use streams.
761  *
762  * Don't allow the call to succeed if endpoint only supports one stream
763  * (which means it doesn't support streams at all).
764  */
765 int cdnsp_alloc_streams(struct cdnsp_device *pdev, struct cdnsp_ep *pep)
766 {
767         unsigned int num_streams = usb_ss_max_streams(pep->endpoint.comp_desc);
768         unsigned int num_stream_ctxs;
769         int ret;
770
771         if (num_streams ==  0)
772                 return 0;
773
774         if (num_streams > STREAM_NUM_STREAMS)
775                 return -EINVAL;
776
777         /*
778          * Add two to the number of streams requested to account for
779          * stream 0 that is reserved for controller usage and one additional
780          * for TASK SET FULL response.
781          */
782         num_streams += 2;
783
784         /* The stream context array size must be a power of two */
785         num_stream_ctxs = roundup_pow_of_two(num_streams);
786
787         trace_cdnsp_stream_number(pep, num_stream_ctxs, num_streams);
788
789         ret = cdnsp_alloc_stream_info(pdev, pep, num_stream_ctxs, num_streams);
790         if (ret)
791                 return ret;
792
793         cdnsp_setup_streams_ep_input_ctx(pdev, pep->in_ctx, &pep->stream_info);
794
795         pep->ep_state |= EP_HAS_STREAMS;
796         pep->stream_info.td_count = 0;
797         pep->stream_info.first_prime_det = 0;
798
799         /* Subtract 1 for stream 0, which drivers can't use. */
800         return num_streams - 1;
801 }
802
803 int cdnsp_disable_slot(struct cdnsp_device *pdev)
804 {
805         int ret;
806
807         cdnsp_queue_slot_control(pdev, TRB_DISABLE_SLOT);
808         cdnsp_ring_cmd_db(pdev);
809         ret = cdnsp_wait_for_cmd_compl(pdev);
810
811         pdev->slot_id = 0;
812         pdev->active_port = NULL;
813
814         trace_cdnsp_handle_cmd_disable_slot(cdnsp_get_slot_ctx(&pdev->out_ctx));
815
816         memset(pdev->in_ctx.bytes, 0, CDNSP_CTX_SIZE);
817         memset(pdev->out_ctx.bytes, 0, CDNSP_CTX_SIZE);
818
819         return ret;
820 }
821
822 int cdnsp_enable_slot(struct cdnsp_device *pdev)
823 {
824         struct cdnsp_slot_ctx *slot_ctx;
825         int slot_state;
826         int ret;
827
828         /* If device is not setup, there is no point in resetting it */
829         slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx);
830         slot_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state));
831
832         if (slot_state != SLOT_STATE_DISABLED)
833                 return 0;
834
835         cdnsp_queue_slot_control(pdev, TRB_ENABLE_SLOT);
836         cdnsp_ring_cmd_db(pdev);
837         ret = cdnsp_wait_for_cmd_compl(pdev);
838         if (ret)
839                 goto show_trace;
840
841         pdev->slot_id = 1;
842
843 show_trace:
844         trace_cdnsp_handle_cmd_enable_slot(cdnsp_get_slot_ctx(&pdev->out_ctx));
845
846         return ret;
847 }
848
849 /*
850  * Issue an Address Device command with BSR=0 if setup is SETUP_CONTEXT_ONLY
851  * or with BSR = 1 if set_address is SETUP_CONTEXT_ADDRESS.
852  */
853 int cdnsp_setup_device(struct cdnsp_device *pdev, enum cdnsp_setup_dev setup)
854 {
855         struct cdnsp_input_control_ctx *ctrl_ctx;
856         struct cdnsp_slot_ctx *slot_ctx;
857         int dev_state = 0;
858         int ret;
859
860         if (!pdev->slot_id) {
861                 trace_cdnsp_slot_id("incorrect");
862                 return -EINVAL;
863         }
864
865         if (!pdev->active_port->port_num)
866                 return -EINVAL;
867
868         slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx);
869         dev_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state));
870
871         if (setup == SETUP_CONTEXT_ONLY && dev_state == SLOT_STATE_DEFAULT) {
872                 trace_cdnsp_slot_already_in_default(slot_ctx);
873                 return 0;
874         }
875
876         slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
877         ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
878
879         if (!slot_ctx->dev_info || dev_state == SLOT_STATE_DEFAULT) {
880                 ret = cdnsp_setup_addressable_priv_dev(pdev);
881                 if (ret)
882                         return ret;
883         }
884
885         cdnsp_copy_ep0_dequeue_into_input_ctx(pdev);
886
887         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
888         ctrl_ctx->drop_flags = 0;
889
890         trace_cdnsp_setup_device_slot(slot_ctx);
891
892         cdnsp_queue_address_device(pdev, pdev->in_ctx.dma, setup);
893         cdnsp_ring_cmd_db(pdev);
894         ret = cdnsp_wait_for_cmd_compl(pdev);
895
896         trace_cdnsp_handle_cmd_addr_dev(cdnsp_get_slot_ctx(&pdev->out_ctx));
897
898         /* Zero the input context control for later use. */
899         ctrl_ctx->add_flags = 0;
900         ctrl_ctx->drop_flags = 0;
901
902         return ret;
903 }
904
905 void cdnsp_set_usb2_hardware_lpm(struct cdnsp_device *pdev,
906                                  struct usb_request *req,
907                                  int enable)
908 {
909         if (pdev->active_port != &pdev->usb2_port || !pdev->gadget.lpm_capable)
910                 return;
911
912         trace_cdnsp_lpm(enable);
913
914         if (enable)
915                 writel(PORT_BESL(CDNSP_DEFAULT_BESL) | PORT_L1S_NYET | PORT_HLE,
916                        &pdev->active_port->regs->portpmsc);
917         else
918                 writel(PORT_L1S_NYET, &pdev->active_port->regs->portpmsc);
919 }
920
921 static int cdnsp_get_frame(struct cdnsp_device *pdev)
922 {
923         return readl(&pdev->run_regs->microframe_index) >> 3;
924 }
925
926 static int cdnsp_gadget_ep_enable(struct usb_ep *ep,
927                                   const struct usb_endpoint_descriptor *desc)
928 {
929         struct cdnsp_input_control_ctx *ctrl_ctx;
930         struct cdnsp_device *pdev;
931         struct cdnsp_ep *pep;
932         unsigned long flags;
933         u32 added_ctxs;
934         int ret;
935
936         if (!ep || !desc || desc->bDescriptorType != USB_DT_ENDPOINT ||
937             !desc->wMaxPacketSize)
938                 return -EINVAL;
939
940         pep = to_cdnsp_ep(ep);
941         pdev = pep->pdev;
942         pep->ep_state &= ~EP_UNCONFIGURED;
943
944         if (dev_WARN_ONCE(pdev->dev, pep->ep_state & EP_ENABLED,
945                           "%s is already enabled\n", pep->name))
946                 return 0;
947
948         spin_lock_irqsave(&pdev->lock, flags);
949
950         added_ctxs = cdnsp_get_endpoint_flag(desc);
951         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
952                 dev_err(pdev->dev, "ERROR: Bad endpoint number\n");
953                 ret = -EINVAL;
954                 goto unlock;
955         }
956
957         pep->interval = desc->bInterval ? BIT(desc->bInterval - 1) : 0;
958
959         if (pdev->gadget.speed == USB_SPEED_FULL) {
960                 if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_INT)
961                         pep->interval = desc->bInterval << 3;
962                 if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_ISOC)
963                         pep->interval = BIT(desc->bInterval - 1) << 3;
964         }
965
966         if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_ISOC) {
967                 if (pep->interval > BIT(12)) {
968                         dev_err(pdev->dev, "bInterval %d not supported\n",
969                                 desc->bInterval);
970                         ret = -EINVAL;
971                         goto unlock;
972                 }
973                 cdnsp_set_chicken_bits_2(pdev, CHICKEN_XDMA_2_TP_CACHE_DIS);
974         }
975
976         ret = cdnsp_endpoint_init(pdev, pep, GFP_ATOMIC);
977         if (ret)
978                 goto unlock;
979
980         ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
981         ctrl_ctx->add_flags = cpu_to_le32(added_ctxs);
982         ctrl_ctx->drop_flags = 0;
983
984         ret = cdnsp_update_eps_configuration(pdev, pep);
985         if (ret) {
986                 cdnsp_free_endpoint_rings(pdev, pep);
987                 goto unlock;
988         }
989
990         pep->ep_state |= EP_ENABLED;
991         pep->ep_state &= ~EP_STOPPED;
992
993 unlock:
994         trace_cdnsp_ep_enable_end(pep, 0);
995         spin_unlock_irqrestore(&pdev->lock, flags);
996
997         return ret;
998 }
999
1000 static int cdnsp_gadget_ep_disable(struct usb_ep *ep)
1001 {
1002         struct cdnsp_input_control_ctx *ctrl_ctx;
1003         struct cdnsp_request *preq;
1004         struct cdnsp_device *pdev;
1005         struct cdnsp_ep *pep;
1006         unsigned long flags;
1007         u32 drop_flag;
1008         int ret = 0;
1009
1010         if (!ep)
1011                 return -EINVAL;
1012
1013         pep = to_cdnsp_ep(ep);
1014         pdev = pep->pdev;
1015
1016         spin_lock_irqsave(&pdev->lock, flags);
1017
1018         if (!(pep->ep_state & EP_ENABLED)) {
1019                 dev_err(pdev->dev, "%s is already disabled\n", pep->name);
1020                 ret = -EINVAL;
1021                 goto finish;
1022         }
1023
1024         pep->ep_state |= EP_DIS_IN_RROGRESS;
1025
1026         /* Endpoint was unconfigured by Reset Device command. */
1027         if (!(pep->ep_state & EP_UNCONFIGURED)) {
1028                 cdnsp_cmd_stop_ep(pdev, pep);
1029                 cdnsp_cmd_flush_ep(pdev, pep);
1030         }
1031
1032         /* Remove all queued USB requests. */
1033         while (!list_empty(&pep->pending_list)) {
1034                 preq = next_request(&pep->pending_list);
1035                 cdnsp_ep_dequeue(pep, preq);
1036         }
1037
1038         cdnsp_invalidate_ep_events(pdev, pep);
1039
1040         pep->ep_state &= ~EP_DIS_IN_RROGRESS;
1041         drop_flag = cdnsp_get_endpoint_flag(pep->endpoint.desc);
1042         ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
1043         ctrl_ctx->drop_flags = cpu_to_le32(drop_flag);
1044         ctrl_ctx->add_flags = 0;
1045
1046         cdnsp_endpoint_zero(pdev, pep);
1047
1048         if (!(pep->ep_state & EP_UNCONFIGURED))
1049                 ret = cdnsp_update_eps_configuration(pdev, pep);
1050
1051         cdnsp_free_endpoint_rings(pdev, pep);
1052
1053         pep->ep_state &= ~(EP_ENABLED | EP_UNCONFIGURED);
1054         pep->ep_state |= EP_STOPPED;
1055
1056 finish:
1057         trace_cdnsp_ep_disable_end(pep, 0);
1058         spin_unlock_irqrestore(&pdev->lock, flags);
1059
1060         return ret;
1061 }
1062
1063 static struct usb_request *cdnsp_gadget_ep_alloc_request(struct usb_ep *ep,
1064                                                          gfp_t gfp_flags)
1065 {
1066         struct cdnsp_ep *pep = to_cdnsp_ep(ep);
1067         struct cdnsp_request *preq;
1068
1069         preq = kzalloc(sizeof(*preq), gfp_flags);
1070         if (!preq)
1071                 return NULL;
1072
1073         preq->epnum = pep->number;
1074         preq->pep = pep;
1075
1076         trace_cdnsp_alloc_request(preq);
1077
1078         return &preq->request;
1079 }
1080
1081 static void cdnsp_gadget_ep_free_request(struct usb_ep *ep,
1082                                          struct usb_request *request)
1083 {
1084         struct cdnsp_request *preq = to_cdnsp_request(request);
1085
1086         trace_cdnsp_free_request(preq);
1087         kfree(preq);
1088 }
1089
1090 static int cdnsp_gadget_ep_queue(struct usb_ep *ep,
1091                                  struct usb_request *request,
1092                                  gfp_t gfp_flags)
1093 {
1094         struct cdnsp_request *preq;
1095         struct cdnsp_device *pdev;
1096         struct cdnsp_ep *pep;
1097         unsigned long flags;
1098         int ret;
1099
1100         if (!request || !ep)
1101                 return -EINVAL;
1102
1103         pep = to_cdnsp_ep(ep);
1104         pdev = pep->pdev;
1105
1106         if (!(pep->ep_state & EP_ENABLED)) {
1107                 dev_err(pdev->dev, "%s: can't queue to disabled endpoint\n",
1108                         pep->name);
1109                 return -EINVAL;
1110         }
1111
1112         preq = to_cdnsp_request(request);
1113         spin_lock_irqsave(&pdev->lock, flags);
1114         ret = cdnsp_ep_enqueue(pep, preq);
1115         spin_unlock_irqrestore(&pdev->lock, flags);
1116
1117         return ret;
1118 }
1119
1120 static int cdnsp_gadget_ep_dequeue(struct usb_ep *ep,
1121                                    struct usb_request *request)
1122 {
1123         struct cdnsp_ep *pep = to_cdnsp_ep(ep);
1124         struct cdnsp_device *pdev = pep->pdev;
1125         unsigned long flags;
1126         int ret;
1127
1128         if (!pep->endpoint.desc) {
1129                 dev_err(pdev->dev,
1130                         "%s: can't dequeue to disabled endpoint\n",
1131                         pep->name);
1132                 return -ESHUTDOWN;
1133         }
1134
1135         /* Requests has been dequeued during disabling endpoint. */
1136         if (!(pep->ep_state & EP_ENABLED))
1137                 return 0;
1138
1139         spin_lock_irqsave(&pdev->lock, flags);
1140         ret = cdnsp_ep_dequeue(pep, to_cdnsp_request(request));
1141         spin_unlock_irqrestore(&pdev->lock, flags);
1142
1143         return ret;
1144 }
1145
1146 static int cdnsp_gadget_ep_set_halt(struct usb_ep *ep, int value)
1147 {
1148         struct cdnsp_ep *pep = to_cdnsp_ep(ep);
1149         struct cdnsp_device *pdev = pep->pdev;
1150         struct cdnsp_request *preq;
1151         unsigned long flags;
1152         int ret;
1153
1154         spin_lock_irqsave(&pdev->lock, flags);
1155
1156         preq = next_request(&pep->pending_list);
1157         if (value) {
1158                 if (preq) {
1159                         trace_cdnsp_ep_busy_try_halt_again(pep, 0);
1160                         ret = -EAGAIN;
1161                         goto done;
1162                 }
1163         }
1164
1165         ret = cdnsp_halt_endpoint(pdev, pep, value);
1166
1167 done:
1168         spin_unlock_irqrestore(&pdev->lock, flags);
1169         return ret;
1170 }
1171
1172 static int cdnsp_gadget_ep_set_wedge(struct usb_ep *ep)
1173 {
1174         struct cdnsp_ep *pep = to_cdnsp_ep(ep);
1175         struct cdnsp_device *pdev = pep->pdev;
1176         unsigned long flags;
1177         int ret;
1178
1179         spin_lock_irqsave(&pdev->lock, flags);
1180         pep->ep_state |= EP_WEDGE;
1181         ret = cdnsp_halt_endpoint(pdev, pep, 1);
1182         spin_unlock_irqrestore(&pdev->lock, flags);
1183
1184         return ret;
1185 }
1186
1187 static const struct usb_ep_ops cdnsp_gadget_ep0_ops = {
1188         .enable         = cdnsp_gadget_ep_enable,
1189         .disable        = cdnsp_gadget_ep_disable,
1190         .alloc_request  = cdnsp_gadget_ep_alloc_request,
1191         .free_request   = cdnsp_gadget_ep_free_request,
1192         .queue          = cdnsp_gadget_ep_queue,
1193         .dequeue        = cdnsp_gadget_ep_dequeue,
1194         .set_halt       = cdnsp_gadget_ep_set_halt,
1195         .set_wedge      = cdnsp_gadget_ep_set_wedge,
1196 };
1197
1198 static const struct usb_ep_ops cdnsp_gadget_ep_ops = {
1199         .enable         = cdnsp_gadget_ep_enable,
1200         .disable        = cdnsp_gadget_ep_disable,
1201         .alloc_request  = cdnsp_gadget_ep_alloc_request,
1202         .free_request   = cdnsp_gadget_ep_free_request,
1203         .queue          = cdnsp_gadget_ep_queue,
1204         .dequeue        = cdnsp_gadget_ep_dequeue,
1205         .set_halt       = cdnsp_gadget_ep_set_halt,
1206         .set_wedge      = cdnsp_gadget_ep_set_wedge,
1207 };
1208
1209 void cdnsp_gadget_giveback(struct cdnsp_ep *pep,
1210                            struct cdnsp_request *preq,
1211                            int status)
1212 {
1213         struct cdnsp_device *pdev = pep->pdev;
1214
1215         list_del(&preq->list);
1216
1217         if (preq->request.status == -EINPROGRESS)
1218                 preq->request.status = status;
1219
1220         usb_gadget_unmap_request_by_dev(pdev->dev, &preq->request,
1221                                         preq->direction);
1222
1223         trace_cdnsp_request_giveback(preq);
1224
1225         if (preq != &pdev->ep0_preq) {
1226                 spin_unlock(&pdev->lock);
1227                 usb_gadget_giveback_request(&pep->endpoint, &preq->request);
1228                 spin_lock(&pdev->lock);
1229         }
1230 }
1231
1232 static struct usb_endpoint_descriptor cdnsp_gadget_ep0_desc = {
1233         .bLength =              USB_DT_ENDPOINT_SIZE,
1234         .bDescriptorType =      USB_DT_ENDPOINT,
1235         .bmAttributes =         USB_ENDPOINT_XFER_CONTROL,
1236 };
1237
1238 static int cdnsp_run(struct cdnsp_device *pdev,
1239                      enum usb_device_speed speed)
1240 {
1241         u32 fs_speed = 0;
1242         u32 temp;
1243         int ret;
1244
1245         temp = readl(&pdev->ir_set->irq_control);
1246         temp &= ~IMOD_INTERVAL_MASK;
1247         temp |= ((IMOD_DEFAULT_INTERVAL / 250) & IMOD_INTERVAL_MASK);
1248         writel(temp, &pdev->ir_set->irq_control);
1249
1250         temp = readl(&pdev->port3x_regs->mode_addr);
1251
1252         switch (speed) {
1253         case USB_SPEED_SUPER_PLUS:
1254                 temp |= CFG_3XPORT_SSP_SUPPORT;
1255                 break;
1256         case USB_SPEED_SUPER:
1257                 temp &= ~CFG_3XPORT_SSP_SUPPORT;
1258                 break;
1259         case USB_SPEED_HIGH:
1260                 break;
1261         case USB_SPEED_FULL:
1262                 fs_speed = PORT_REG6_FORCE_FS;
1263                 break;
1264         default:
1265                 dev_err(pdev->dev, "invalid maximum_speed parameter %d\n",
1266                         speed);
1267                 fallthrough;
1268         case USB_SPEED_UNKNOWN:
1269                 /* Default to superspeed. */
1270                 speed = USB_SPEED_SUPER;
1271                 break;
1272         }
1273
1274         if (speed >= USB_SPEED_SUPER) {
1275                 writel(temp, &pdev->port3x_regs->mode_addr);
1276                 cdnsp_set_link_state(pdev, &pdev->usb3_port.regs->portsc,
1277                                      XDEV_RXDETECT);
1278         } else {
1279                 cdnsp_disable_port(pdev, &pdev->usb3_port.regs->portsc);
1280         }
1281
1282         cdnsp_set_link_state(pdev, &pdev->usb2_port.regs->portsc,
1283                              XDEV_RXDETECT);
1284
1285         cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(512);
1286
1287         writel(PORT_REG6_L1_L0_HW_EN | fs_speed, &pdev->port20_regs->port_reg6);
1288
1289         ret = cdnsp_start(pdev);
1290         if (ret) {
1291                 ret = -ENODEV;
1292                 goto err;
1293         }
1294
1295         temp = readl(&pdev->op_regs->command);
1296         temp |= (CMD_INTE);
1297         writel(temp, &pdev->op_regs->command);
1298
1299         temp = readl(&pdev->ir_set->irq_pending);
1300         writel(IMAN_IE_SET(temp), &pdev->ir_set->irq_pending);
1301
1302         trace_cdnsp_init("Controller ready to work");
1303         return 0;
1304 err:
1305         cdnsp_halt(pdev);
1306         return ret;
1307 }
1308
1309 static int cdnsp_gadget_udc_start(struct usb_gadget *g,
1310                                   struct usb_gadget_driver *driver)
1311 {
1312         enum usb_device_speed max_speed = driver->max_speed;
1313         struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1314         unsigned long flags;
1315         int ret;
1316
1317         spin_lock_irqsave(&pdev->lock, flags);
1318         pdev->gadget_driver = driver;
1319
1320         /* limit speed if necessary */
1321         max_speed = min(driver->max_speed, g->max_speed);
1322         ret = cdnsp_run(pdev, max_speed);
1323
1324         spin_unlock_irqrestore(&pdev->lock, flags);
1325
1326         return ret;
1327 }
1328
1329 /*
1330  * Update Event Ring Dequeue Pointer:
1331  * - When all events have finished
1332  * - To avoid "Event Ring Full Error" condition
1333  */
1334 void cdnsp_update_erst_dequeue(struct cdnsp_device *pdev,
1335                                union cdnsp_trb *event_ring_deq,
1336                                u8 clear_ehb)
1337 {
1338         u64 temp_64;
1339         dma_addr_t deq;
1340
1341         temp_64 = cdnsp_read_64(&pdev->ir_set->erst_dequeue);
1342
1343         /* If necessary, update the HW's version of the event ring deq ptr. */
1344         if (event_ring_deq != pdev->event_ring->dequeue) {
1345                 deq = cdnsp_trb_virt_to_dma(pdev->event_ring->deq_seg,
1346                                             pdev->event_ring->dequeue);
1347                 temp_64 &= ERST_PTR_MASK;
1348                 temp_64 |= ((u64)deq & (u64)~ERST_PTR_MASK);
1349         }
1350
1351         /* Clear the event handler busy flag (RW1C). */
1352         if (clear_ehb)
1353                 temp_64 |= ERST_EHB;
1354         else
1355                 temp_64 &= ~ERST_EHB;
1356
1357         cdnsp_write_64(temp_64, &pdev->ir_set->erst_dequeue);
1358 }
1359
1360 static void cdnsp_clear_cmd_ring(struct cdnsp_device *pdev)
1361 {
1362         struct cdnsp_segment *seg;
1363         u64 val_64;
1364         int i;
1365
1366         cdnsp_initialize_ring_info(pdev->cmd_ring);
1367
1368         seg = pdev->cmd_ring->first_seg;
1369         for (i = 0; i < pdev->cmd_ring->num_segs; i++) {
1370                 memset(seg->trbs, 0,
1371                        sizeof(union cdnsp_trb) * (TRBS_PER_SEGMENT - 1));
1372                 seg = seg->next;
1373         }
1374
1375         /* Set the address in the Command Ring Control register. */
1376         val_64 = cdnsp_read_64(&pdev->op_regs->cmd_ring);
1377         val_64 = (val_64 & (u64)CMD_RING_RSVD_BITS) |
1378                  (pdev->cmd_ring->first_seg->dma & (u64)~CMD_RING_RSVD_BITS) |
1379                  pdev->cmd_ring->cycle_state;
1380         cdnsp_write_64(val_64, &pdev->op_regs->cmd_ring);
1381 }
1382
1383 static void cdnsp_consume_all_events(struct cdnsp_device *pdev)
1384 {
1385         struct cdnsp_segment *event_deq_seg;
1386         union cdnsp_trb *event_ring_deq;
1387         union cdnsp_trb *event;
1388         u32 cycle_bit;
1389
1390         event_ring_deq = pdev->event_ring->dequeue;
1391         event_deq_seg = pdev->event_ring->deq_seg;
1392         event = pdev->event_ring->dequeue;
1393
1394         /* Update ring dequeue pointer. */
1395         while (1) {
1396                 cycle_bit = (le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE);
1397
1398                 /* Does the controller or driver own the TRB? */
1399                 if (cycle_bit != pdev->event_ring->cycle_state)
1400                         break;
1401
1402                 cdnsp_inc_deq(pdev, pdev->event_ring);
1403
1404                 if (!cdnsp_last_trb_on_seg(event_deq_seg, event)) {
1405                         event++;
1406                         continue;
1407                 }
1408
1409                 if (cdnsp_last_trb_on_ring(pdev->event_ring, event_deq_seg,
1410                                            event))
1411                         cycle_bit ^= 1;
1412
1413                 event_deq_seg = event_deq_seg->next;
1414                 event = event_deq_seg->trbs;
1415         }
1416
1417         cdnsp_update_erst_dequeue(pdev,  event_ring_deq, 1);
1418 }
1419
1420 static void cdnsp_stop(struct cdnsp_device *pdev)
1421 {
1422         u32 temp;
1423
1424         cdnsp_cmd_flush_ep(pdev, &pdev->eps[0]);
1425
1426         /* Remove internally queued request for ep0. */
1427         if (!list_empty(&pdev->eps[0].pending_list)) {
1428                 struct cdnsp_request *req;
1429
1430                 req = next_request(&pdev->eps[0].pending_list);
1431                 if (req == &pdev->ep0_preq)
1432                         cdnsp_ep_dequeue(&pdev->eps[0], req);
1433         }
1434
1435         cdnsp_disable_port(pdev, &pdev->usb2_port.regs->portsc);
1436         cdnsp_disable_port(pdev, &pdev->usb3_port.regs->portsc);
1437         cdnsp_disable_slot(pdev);
1438         cdnsp_halt(pdev);
1439
1440         temp = readl(&pdev->op_regs->status);
1441         writel((temp & ~0x1fff) | STS_EINT, &pdev->op_regs->status);
1442         temp = readl(&pdev->ir_set->irq_pending);
1443         writel(IMAN_IE_CLEAR(temp), &pdev->ir_set->irq_pending);
1444
1445         cdnsp_clear_port_change_bit(pdev, &pdev->usb2_port.regs->portsc);
1446         cdnsp_clear_port_change_bit(pdev, &pdev->usb3_port.regs->portsc);
1447
1448         /* Clear interrupt line */
1449         temp = readl(&pdev->ir_set->irq_pending);
1450         temp |= IMAN_IP;
1451         writel(temp, &pdev->ir_set->irq_pending);
1452
1453         cdnsp_consume_all_events(pdev);
1454         cdnsp_clear_cmd_ring(pdev);
1455
1456         trace_cdnsp_exit("Controller stopped.");
1457 }
1458
1459 /*
1460  * Stop controller.
1461  * This function is called by the gadget core when the driver is removed.
1462  * Disable slot, disable IRQs, and quiesce the controller.
1463  */
1464 static int cdnsp_gadget_udc_stop(struct usb_gadget *g)
1465 {
1466         struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1467         unsigned long flags;
1468
1469         spin_lock_irqsave(&pdev->lock, flags);
1470         cdnsp_stop(pdev);
1471         pdev->gadget_driver = NULL;
1472         spin_unlock_irqrestore(&pdev->lock, flags);
1473
1474         return 0;
1475 }
1476
1477 static int cdnsp_gadget_get_frame(struct usb_gadget *g)
1478 {
1479         struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1480
1481         return cdnsp_get_frame(pdev);
1482 }
1483
1484 static void __cdnsp_gadget_wakeup(struct cdnsp_device *pdev)
1485 {
1486         struct cdnsp_port_regs __iomem *port_regs;
1487         u32 portpm, portsc;
1488
1489         port_regs = pdev->active_port->regs;
1490         portsc = readl(&port_regs->portsc) & PORT_PLS_MASK;
1491
1492         /* Remote wakeup feature is not enabled by host. */
1493         if (pdev->gadget.speed < USB_SPEED_SUPER && portsc == XDEV_U2) {
1494                 portpm = readl(&port_regs->portpmsc);
1495
1496                 if (!(portpm & PORT_RWE))
1497                         return;
1498         }
1499
1500         if (portsc == XDEV_U3 && !pdev->may_wakeup)
1501                 return;
1502
1503         cdnsp_set_link_state(pdev, &port_regs->portsc, XDEV_U0);
1504
1505         pdev->cdnsp_state |= CDNSP_WAKEUP_PENDING;
1506 }
1507
1508 static int cdnsp_gadget_wakeup(struct usb_gadget *g)
1509 {
1510         struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1511         unsigned long flags;
1512
1513         spin_lock_irqsave(&pdev->lock, flags);
1514         __cdnsp_gadget_wakeup(pdev);
1515         spin_unlock_irqrestore(&pdev->lock, flags);
1516
1517         return 0;
1518 }
1519
1520 static int cdnsp_gadget_set_selfpowered(struct usb_gadget *g,
1521                                         int is_selfpowered)
1522 {
1523         struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1524         unsigned long flags;
1525
1526         spin_lock_irqsave(&pdev->lock, flags);
1527         g->is_selfpowered = !!is_selfpowered;
1528         spin_unlock_irqrestore(&pdev->lock, flags);
1529
1530         return 0;
1531 }
1532
1533 static int cdnsp_gadget_pullup(struct usb_gadget *gadget, int is_on)
1534 {
1535         struct cdnsp_device *pdev = gadget_to_cdnsp(gadget);
1536         struct cdns *cdns = dev_get_drvdata(pdev->dev);
1537         unsigned long flags;
1538
1539         trace_cdnsp_pullup(is_on);
1540
1541         /*
1542          * Disable events handling while controller is being
1543          * enabled/disabled.
1544          */
1545         disable_irq(cdns->dev_irq);
1546         spin_lock_irqsave(&pdev->lock, flags);
1547
1548         if (!is_on) {
1549                 cdnsp_reset_device(pdev);
1550                 cdns_clear_vbus(cdns);
1551         } else {
1552                 cdns_set_vbus(cdns);
1553         }
1554
1555         spin_unlock_irqrestore(&pdev->lock, flags);
1556         enable_irq(cdns->dev_irq);
1557
1558         return 0;
1559 }
1560
1561 static const struct usb_gadget_ops cdnsp_gadget_ops = {
1562         .get_frame              = cdnsp_gadget_get_frame,
1563         .wakeup                 = cdnsp_gadget_wakeup,
1564         .set_selfpowered        = cdnsp_gadget_set_selfpowered,
1565         .pullup                 = cdnsp_gadget_pullup,
1566         .udc_start              = cdnsp_gadget_udc_start,
1567         .udc_stop               = cdnsp_gadget_udc_stop,
1568 };
1569
1570 static void cdnsp_get_ep_buffering(struct cdnsp_device *pdev,
1571                                    struct cdnsp_ep *pep)
1572 {
1573         void __iomem *reg = &pdev->cap_regs->hc_capbase;
1574         int endpoints;
1575
1576         reg += cdnsp_find_next_ext_cap(reg, 0, XBUF_CAP_ID);
1577
1578         if (!pep->direction) {
1579                 pep->buffering = readl(reg + XBUF_RX_TAG_MASK_0_OFFSET);
1580                 pep->buffering_period = readl(reg + XBUF_RX_TAG_MASK_1_OFFSET);
1581                 pep->buffering = (pep->buffering + 1) / 2;
1582                 pep->buffering_period = (pep->buffering_period + 1) / 2;
1583                 return;
1584         }
1585
1586         endpoints = HCS_ENDPOINTS(pdev->hcs_params1) / 2;
1587
1588         /* Set to XBUF_TX_TAG_MASK_0 register. */
1589         reg += XBUF_TX_CMD_OFFSET + (endpoints * 2 + 2) * sizeof(u32);
1590         /* Set reg to XBUF_TX_TAG_MASK_N related with this endpoint. */
1591         reg += pep->number * sizeof(u32) * 2;
1592
1593         pep->buffering = (readl(reg) + 1) / 2;
1594         pep->buffering_period = pep->buffering;
1595 }
1596
1597 static int cdnsp_gadget_init_endpoints(struct cdnsp_device *pdev)
1598 {
1599         int max_streams = HCC_MAX_PSA(pdev->hcc_params);
1600         struct cdnsp_ep *pep;
1601         int i;
1602
1603         INIT_LIST_HEAD(&pdev->gadget.ep_list);
1604
1605         if (max_streams < STREAM_LOG_STREAMS) {
1606                 dev_err(pdev->dev, "Stream size %d not supported\n",
1607                         max_streams);
1608                 return -EINVAL;
1609         }
1610
1611         max_streams = STREAM_LOG_STREAMS;
1612
1613         for (i = 0; i < CDNSP_ENDPOINTS_NUM; i++) {
1614                 bool direction = !(i & 1); /* Start from OUT endpoint. */
1615                 u8 epnum = ((i + 1) >> 1);
1616
1617                 if (!CDNSP_IF_EP_EXIST(pdev, epnum, direction))
1618                         continue;
1619
1620                 pep = &pdev->eps[i];
1621                 pep->pdev = pdev;
1622                 pep->number = epnum;
1623                 pep->direction = direction; /* 0 for OUT, 1 for IN. */
1624
1625                 /*
1626                  * Ep0 is bidirectional, so ep0in and ep0out are represented by
1627                  * pdev->eps[0]
1628                  */
1629                 if (epnum == 0) {
1630                         snprintf(pep->name, sizeof(pep->name), "ep%d%s",
1631                                  epnum, "BiDir");
1632
1633                         pep->idx = 0;
1634                         usb_ep_set_maxpacket_limit(&pep->endpoint, 512);
1635                         pep->endpoint.maxburst = 1;
1636                         pep->endpoint.ops = &cdnsp_gadget_ep0_ops;
1637                         pep->endpoint.desc = &cdnsp_gadget_ep0_desc;
1638                         pep->endpoint.comp_desc = NULL;
1639                         pep->endpoint.caps.type_control = true;
1640                         pep->endpoint.caps.dir_in = true;
1641                         pep->endpoint.caps.dir_out = true;
1642
1643                         pdev->ep0_preq.epnum = pep->number;
1644                         pdev->ep0_preq.pep = pep;
1645                         pdev->gadget.ep0 = &pep->endpoint;
1646                 } else {
1647                         snprintf(pep->name, sizeof(pep->name), "ep%d%s",
1648                                  epnum, (pep->direction) ? "in" : "out");
1649
1650                         pep->idx =  (epnum * 2 + (direction ? 1 : 0)) - 1;
1651                         usb_ep_set_maxpacket_limit(&pep->endpoint, 1024);
1652
1653                         pep->endpoint.max_streams = max_streams;
1654                         pep->endpoint.ops = &cdnsp_gadget_ep_ops;
1655                         list_add_tail(&pep->endpoint.ep_list,
1656                                       &pdev->gadget.ep_list);
1657
1658                         pep->endpoint.caps.type_iso = true;
1659                         pep->endpoint.caps.type_bulk = true;
1660                         pep->endpoint.caps.type_int = true;
1661
1662                         pep->endpoint.caps.dir_in = direction;
1663                         pep->endpoint.caps.dir_out = !direction;
1664                 }
1665
1666                 pep->endpoint.name = pep->name;
1667                 pep->in_ctx = cdnsp_get_ep_ctx(&pdev->in_ctx, pep->idx);
1668                 pep->out_ctx = cdnsp_get_ep_ctx(&pdev->out_ctx, pep->idx);
1669                 cdnsp_get_ep_buffering(pdev, pep);
1670
1671                 dev_dbg(pdev->dev, "Init %s, MPS: %04x SupType: "
1672                         "CTRL: %s, INT: %s, BULK: %s, ISOC %s, "
1673                         "SupDir IN: %s, OUT: %s\n",
1674                         pep->name, 1024,
1675                         (pep->endpoint.caps.type_control) ? "yes" : "no",
1676                         (pep->endpoint.caps.type_int) ? "yes" : "no",
1677                         (pep->endpoint.caps.type_bulk) ? "yes" : "no",
1678                         (pep->endpoint.caps.type_iso) ? "yes" : "no",
1679                         (pep->endpoint.caps.dir_in) ? "yes" : "no",
1680                         (pep->endpoint.caps.dir_out) ? "yes" : "no");
1681
1682                 INIT_LIST_HEAD(&pep->pending_list);
1683         }
1684
1685         return 0;
1686 }
1687
1688 static void cdnsp_gadget_free_endpoints(struct cdnsp_device *pdev)
1689 {
1690         struct cdnsp_ep *pep;
1691         int i;
1692
1693         for (i = 0; i < CDNSP_ENDPOINTS_NUM; i++) {
1694                 pep = &pdev->eps[i];
1695                 if (pep->number != 0 && pep->out_ctx)
1696                         list_del(&pep->endpoint.ep_list);
1697         }
1698 }
1699
1700 void cdnsp_disconnect_gadget(struct cdnsp_device *pdev)
1701 {
1702         pdev->cdnsp_state |= CDNSP_STATE_DISCONNECT_PENDING;
1703
1704         if (pdev->gadget_driver && pdev->gadget_driver->disconnect) {
1705                 spin_unlock(&pdev->lock);
1706                 pdev->gadget_driver->disconnect(&pdev->gadget);
1707                 spin_lock(&pdev->lock);
1708         }
1709
1710         pdev->gadget.speed = USB_SPEED_UNKNOWN;
1711         usb_gadget_set_state(&pdev->gadget, USB_STATE_NOTATTACHED);
1712
1713         pdev->cdnsp_state &= ~CDNSP_STATE_DISCONNECT_PENDING;
1714 }
1715
1716 void cdnsp_suspend_gadget(struct cdnsp_device *pdev)
1717 {
1718         if (pdev->gadget_driver && pdev->gadget_driver->suspend) {
1719                 spin_unlock(&pdev->lock);
1720                 pdev->gadget_driver->suspend(&pdev->gadget);
1721                 spin_lock(&pdev->lock);
1722         }
1723 }
1724
1725 void cdnsp_resume_gadget(struct cdnsp_device *pdev)
1726 {
1727         if (pdev->gadget_driver && pdev->gadget_driver->resume) {
1728                 spin_unlock(&pdev->lock);
1729                 pdev->gadget_driver->resume(&pdev->gadget);
1730                 spin_lock(&pdev->lock);
1731         }
1732 }
1733
1734 void cdnsp_irq_reset(struct cdnsp_device *pdev)
1735 {
1736         struct cdnsp_port_regs __iomem *port_regs;
1737
1738         cdnsp_reset_device(pdev);
1739
1740         port_regs = pdev->active_port->regs;
1741         pdev->gadget.speed = cdnsp_port_speed(readl(port_regs));
1742
1743         spin_unlock(&pdev->lock);
1744         usb_gadget_udc_reset(&pdev->gadget, pdev->gadget_driver);
1745         spin_lock(&pdev->lock);
1746
1747         switch (pdev->gadget.speed) {
1748         case USB_SPEED_SUPER_PLUS:
1749         case USB_SPEED_SUPER:
1750                 cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(512);
1751                 pdev->gadget.ep0->maxpacket = 512;
1752                 break;
1753         case USB_SPEED_HIGH:
1754         case USB_SPEED_FULL:
1755                 cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(64);
1756                 pdev->gadget.ep0->maxpacket = 64;
1757                 break;
1758         default:
1759                 /* Low speed is not supported. */
1760                 dev_err(pdev->dev, "Unknown device speed\n");
1761                 break;
1762         }
1763
1764         cdnsp_clear_chicken_bits_2(pdev, CHICKEN_XDMA_2_TP_CACHE_DIS);
1765         cdnsp_setup_device(pdev, SETUP_CONTEXT_ONLY);
1766         usb_gadget_set_state(&pdev->gadget, USB_STATE_DEFAULT);
1767 }
1768
1769 static void cdnsp_get_rev_cap(struct cdnsp_device *pdev)
1770 {
1771         void __iomem *reg = &pdev->cap_regs->hc_capbase;
1772
1773         reg += cdnsp_find_next_ext_cap(reg, 0, RTL_REV_CAP);
1774         pdev->rev_cap  = reg;
1775
1776         dev_info(pdev->dev, "Rev: %08x/%08x, eps: %08x, buff: %08x/%08x\n",
1777                  readl(&pdev->rev_cap->ctrl_revision),
1778                  readl(&pdev->rev_cap->rtl_revision),
1779                  readl(&pdev->rev_cap->ep_supported),
1780                  readl(&pdev->rev_cap->rx_buff_size),
1781                  readl(&pdev->rev_cap->tx_buff_size));
1782 }
1783
1784 static int cdnsp_gen_setup(struct cdnsp_device *pdev)
1785 {
1786         int ret;
1787         u32 reg;
1788
1789         pdev->cap_regs = pdev->regs;
1790         pdev->op_regs = pdev->regs +
1791                 HC_LENGTH(readl(&pdev->cap_regs->hc_capbase));
1792         pdev->run_regs = pdev->regs +
1793                 (readl(&pdev->cap_regs->run_regs_off) & RTSOFF_MASK);
1794
1795         /* Cache read-only capability registers */
1796         pdev->hcs_params1 = readl(&pdev->cap_regs->hcs_params1);
1797         pdev->hcc_params = readl(&pdev->cap_regs->hc_capbase);
1798         pdev->hci_version = HC_VERSION(pdev->hcc_params);
1799         pdev->hcc_params = readl(&pdev->cap_regs->hcc_params);
1800
1801         cdnsp_get_rev_cap(pdev);
1802
1803         /* Make sure the Device Controller is halted. */
1804         ret = cdnsp_halt(pdev);
1805         if (ret)
1806                 return ret;
1807
1808         /* Reset the internal controller memory state and registers. */
1809         ret = cdnsp_reset(pdev);
1810         if (ret)
1811                 return ret;
1812
1813         /*
1814          * Set dma_mask and coherent_dma_mask to 64-bits,
1815          * if controller supports 64-bit addressing.
1816          */
1817         if (HCC_64BIT_ADDR(pdev->hcc_params) &&
1818             !dma_set_mask(pdev->dev, DMA_BIT_MASK(64))) {
1819                 dev_dbg(pdev->dev, "Enabling 64-bit DMA addresses.\n");
1820                 dma_set_coherent_mask(pdev->dev, DMA_BIT_MASK(64));
1821         } else {
1822                 /*
1823                  * This is to avoid error in cases where a 32-bit USB
1824                  * controller is used on a 64-bit capable system.
1825                  */
1826                 ret = dma_set_mask(pdev->dev, DMA_BIT_MASK(32));
1827                 if (ret)
1828                         return ret;
1829
1830                 dev_dbg(pdev->dev, "Enabling 32-bit DMA addresses.\n");
1831                 dma_set_coherent_mask(pdev->dev, DMA_BIT_MASK(32));
1832         }
1833
1834         spin_lock_init(&pdev->lock);
1835
1836         ret = cdnsp_mem_init(pdev);
1837         if (ret)
1838                 return ret;
1839
1840         /*
1841          * Software workaround for U1: after transition
1842          * to U1 the controller starts gating clock, and in some cases,
1843          * it causes that controller stack.
1844          */
1845         reg = readl(&pdev->port3x_regs->mode_2);
1846         reg &= ~CFG_3XPORT_U1_PIPE_CLK_GATE_EN;
1847         writel(reg, &pdev->port3x_regs->mode_2);
1848
1849         return 0;
1850 }
1851
1852 static int __cdnsp_gadget_init(struct cdns *cdns)
1853 {
1854         struct cdnsp_device *pdev;
1855         u32 max_speed;
1856         int ret = -ENOMEM;
1857
1858         cdns_drd_gadget_on(cdns);
1859
1860         pdev = kzalloc(sizeof(*pdev), GFP_KERNEL);
1861         if (!pdev)
1862                 return -ENOMEM;
1863
1864         pm_runtime_get_sync(cdns->dev);
1865
1866         cdns->gadget_dev = pdev;
1867         pdev->dev = cdns->dev;
1868         pdev->regs = cdns->dev_regs;
1869         max_speed = usb_get_maximum_speed(cdns->dev);
1870
1871         switch (max_speed) {
1872         case USB_SPEED_FULL:
1873         case USB_SPEED_HIGH:
1874         case USB_SPEED_SUPER:
1875         case USB_SPEED_SUPER_PLUS:
1876                 break;
1877         default:
1878                 dev_err(cdns->dev, "invalid speed parameter %d\n", max_speed);
1879                 fallthrough;
1880         case USB_SPEED_UNKNOWN:
1881                 /* Default to SSP */
1882                 max_speed = USB_SPEED_SUPER_PLUS;
1883                 break;
1884         }
1885
1886         pdev->gadget.ops = &cdnsp_gadget_ops;
1887         pdev->gadget.name = "cdnsp-gadget";
1888         pdev->gadget.speed = USB_SPEED_UNKNOWN;
1889         pdev->gadget.sg_supported = 1;
1890         pdev->gadget.max_speed = max_speed;
1891         pdev->gadget.lpm_capable = 1;
1892
1893         pdev->setup_buf = kzalloc(CDNSP_EP0_SETUP_SIZE, GFP_KERNEL);
1894         if (!pdev->setup_buf)
1895                 goto free_pdev;
1896
1897         /*
1898          * Controller supports not aligned buffer but it should improve
1899          * performance.
1900          */
1901         pdev->gadget.quirk_ep_out_aligned_size = true;
1902
1903         ret = cdnsp_gen_setup(pdev);
1904         if (ret) {
1905                 dev_err(pdev->dev, "Generic initialization failed %d\n", ret);
1906                 goto free_setup;
1907         }
1908
1909         ret = cdnsp_gadget_init_endpoints(pdev);
1910         if (ret) {
1911                 dev_err(pdev->dev, "failed to initialize endpoints\n");
1912                 goto halt_pdev;
1913         }
1914
1915         ret = usb_add_gadget_udc(pdev->dev, &pdev->gadget);
1916         if (ret) {
1917                 dev_err(pdev->dev, "failed to register udc\n");
1918                 goto free_endpoints;
1919         }
1920
1921         ret = devm_request_threaded_irq(pdev->dev, cdns->dev_irq,
1922                                         cdnsp_irq_handler,
1923                                         cdnsp_thread_irq_handler, IRQF_SHARED,
1924                                         dev_name(pdev->dev), pdev);
1925         if (ret)
1926                 goto del_gadget;
1927
1928         return 0;
1929
1930 del_gadget:
1931         usb_del_gadget_udc(&pdev->gadget);
1932 free_endpoints:
1933         cdnsp_gadget_free_endpoints(pdev);
1934 halt_pdev:
1935         cdnsp_halt(pdev);
1936         cdnsp_reset(pdev);
1937         cdnsp_mem_cleanup(pdev);
1938 free_setup:
1939         kfree(pdev->setup_buf);
1940 free_pdev:
1941         kfree(pdev);
1942
1943         return ret;
1944 }
1945
1946 static void cdnsp_gadget_exit(struct cdns *cdns)
1947 {
1948         struct cdnsp_device *pdev = cdns->gadget_dev;
1949
1950         devm_free_irq(pdev->dev, cdns->dev_irq, pdev);
1951         pm_runtime_mark_last_busy(cdns->dev);
1952         pm_runtime_put_autosuspend(cdns->dev);
1953         usb_del_gadget_udc(&pdev->gadget);
1954         cdnsp_gadget_free_endpoints(pdev);
1955         cdnsp_mem_cleanup(pdev);
1956         kfree(pdev);
1957         cdns->gadget_dev = NULL;
1958         cdns_drd_gadget_off(cdns);
1959 }
1960
1961 static int cdnsp_gadget_suspend(struct cdns *cdns, bool do_wakeup)
1962 {
1963         struct cdnsp_device *pdev = cdns->gadget_dev;
1964         unsigned long flags;
1965
1966         if (pdev->link_state == XDEV_U3)
1967                 return 0;
1968
1969         spin_lock_irqsave(&pdev->lock, flags);
1970         cdnsp_disconnect_gadget(pdev);
1971         cdnsp_stop(pdev);
1972         spin_unlock_irqrestore(&pdev->lock, flags);
1973
1974         return 0;
1975 }
1976
1977 static int cdnsp_gadget_resume(struct cdns *cdns, bool hibernated)
1978 {
1979         struct cdnsp_device *pdev = cdns->gadget_dev;
1980         enum usb_device_speed max_speed;
1981         unsigned long flags;
1982         int ret;
1983
1984         if (!pdev->gadget_driver)
1985                 return 0;
1986
1987         spin_lock_irqsave(&pdev->lock, flags);
1988         max_speed = pdev->gadget_driver->max_speed;
1989
1990         /* Limit speed if necessary. */
1991         max_speed = min(max_speed, pdev->gadget.max_speed);
1992
1993         ret = cdnsp_run(pdev, max_speed);
1994
1995         if (pdev->link_state == XDEV_U3)
1996                 __cdnsp_gadget_wakeup(pdev);
1997
1998         spin_unlock_irqrestore(&pdev->lock, flags);
1999
2000         return ret;
2001 }
2002
2003 /**
2004  * cdnsp_gadget_init - initialize device structure
2005  * @cdns: cdnsp instance
2006  *
2007  * This function initializes the gadget.
2008  */
2009 int cdnsp_gadget_init(struct cdns *cdns)
2010 {
2011         struct cdns_role_driver *rdrv;
2012
2013         rdrv = devm_kzalloc(cdns->dev, sizeof(*rdrv), GFP_KERNEL);
2014         if (!rdrv)
2015                 return -ENOMEM;
2016
2017         rdrv->start     = __cdnsp_gadget_init;
2018         rdrv->stop      = cdnsp_gadget_exit;
2019         rdrv->suspend   = cdnsp_gadget_suspend;
2020         rdrv->resume    = cdnsp_gadget_resume;
2021         rdrv->state     = CDNS_ROLE_STATE_INACTIVE;
2022         rdrv->name      = "gadget";
2023         cdns->roles[USB_ROLE_DEVICE] = rdrv;
2024
2025         return 0;
2026 }