2 * Programmable Real-Time Unit Sub System (PRUSS) UIO driver (uio_pruss)
4 * This driver exports PRUSS host event out interrupts and PRUSS, L3 RAM,
5 * and DDR RAM to user space for applications interacting with PRUSS firmware
7 * Copyright (C) 2010-11 Texas Instruments Incorporated - http://www.ti.com/
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation version 2.
13 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
14 * kind, whether express or implied; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 #include <linux/device.h>
19 #include <linux/module.h>
20 #include <linux/moduleparam.h>
21 #include <linux/platform_device.h>
22 #include <linux/uio_driver.h>
23 #include <linux/platform_data/uio_pruss.h>
25 #include <linux/clk.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/sizes.h>
28 #include <linux/slab.h>
29 #include <linux/genalloc.h>
31 #define DRV_NAME "pruss_uio"
32 #define DRV_VERSION "1.0"
34 static int sram_pool_sz = SZ_16K;
35 module_param(sram_pool_sz, int, 0);
36 MODULE_PARM_DESC(sram_pool_sz, "sram pool size to allocate ");
38 static int extram_pool_sz = SZ_256K;
39 module_param(extram_pool_sz, int, 0);
40 MODULE_PARM_DESC(extram_pool_sz, "external ram pool size to allocate");
43 * Host event IRQ numbers from PRUSS - PRUSS can generate up to 8 interrupt
44 * events to AINTC of ARM host processor - which can be used for IPC b/w PRUSS
45 * firmware and user space application, async notification from PRU firmware
46 * to user space application
56 #define MAX_PRUSS_EVT 8
58 #define PINTC_HIDISR 0x0038
59 #define PINTC_HIPIR 0x0900
60 #define HIPIR_NOPEND 0x80000000
61 #define PINTC_HIER 0x1500
63 struct uio_pruss_dev {
64 struct uio_info *info;
65 struct clk *pruss_clk;
66 dma_addr_t sram_paddr;
68 void __iomem *prussio_vaddr;
69 unsigned long sram_vaddr;
71 unsigned int hostirq_start;
72 unsigned int pintc_base;
73 struct gen_pool *sram_pool;
76 static irqreturn_t pruss_handler(int irq, struct uio_info *info)
78 struct uio_pruss_dev *gdev = info->priv;
79 int intr_bit = (irq - gdev->hostirq_start + 2);
80 int val, intr_mask = (1 << intr_bit);
81 void __iomem *base = gdev->prussio_vaddr + gdev->pintc_base;
82 void __iomem *intren_reg = base + PINTC_HIER;
83 void __iomem *intrdis_reg = base + PINTC_HIDISR;
84 void __iomem *intrstat_reg = base + PINTC_HIPIR + (intr_bit << 2);
86 val = ioread32(intren_reg);
87 /* Is interrupt enabled and active ? */
88 if (!(val & intr_mask) && (ioread32(intrstat_reg) & HIPIR_NOPEND))
90 /* Disable interrupt */
91 iowrite32(intr_bit, intrdis_reg);
95 static void pruss_cleanup(struct device *dev, struct uio_pruss_dev *gdev)
98 struct uio_info *p = gdev->info;
100 for (cnt = 0; cnt < MAX_PRUSS_EVT; cnt++, p++) {
101 uio_unregister_device(p);
104 iounmap(gdev->prussio_vaddr);
105 if (gdev->ddr_vaddr) {
106 dma_free_coherent(dev, extram_pool_sz, gdev->ddr_vaddr,
109 if (gdev->sram_vaddr)
110 gen_pool_free(gdev->sram_pool,
114 clk_disable(gdev->pruss_clk);
115 clk_put(gdev->pruss_clk);
119 static int pruss_probe(struct platform_device *pdev)
122 struct uio_pruss_dev *gdev;
123 struct resource *regs_prussio;
124 struct device *dev = &pdev->dev;
125 int ret = -ENODEV, cnt = 0, len;
126 struct uio_pruss_pdata *pdata = dev_get_platdata(dev);
128 gdev = kzalloc(sizeof(struct uio_pruss_dev), GFP_KERNEL);
132 gdev->info = kzalloc(sizeof(*p) * MAX_PRUSS_EVT, GFP_KERNEL);
138 /* Power on PRU in case its not done as part of boot-loader */
139 gdev->pruss_clk = clk_get(dev, "pruss");
140 if (IS_ERR(gdev->pruss_clk)) {
141 dev_err(dev, "Failed to get clock\n");
142 ret = PTR_ERR(gdev->pruss_clk);
147 ret = clk_enable(gdev->pruss_clk);
149 dev_err(dev, "Failed to enable clock\n");
150 clk_put(gdev->pruss_clk);
157 regs_prussio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
159 dev_err(dev, "No PRUSS I/O resource specified\n");
163 if (!regs_prussio->start) {
164 dev_err(dev, "Invalid memory resource\n");
168 if (pdata->sram_pool) {
169 gdev->sram_pool = pdata->sram_pool;
171 (unsigned long)gen_pool_dma_alloc(gdev->sram_pool,
172 sram_pool_sz, &gdev->sram_paddr);
173 if (!gdev->sram_vaddr) {
174 dev_err(dev, "Could not allocate SRAM pool\n");
179 gdev->ddr_vaddr = dma_alloc_coherent(dev, extram_pool_sz,
180 &(gdev->ddr_paddr), GFP_KERNEL | GFP_DMA);
181 if (!gdev->ddr_vaddr) {
182 dev_err(dev, "Could not allocate external memory\n");
186 len = resource_size(regs_prussio);
187 gdev->prussio_vaddr = ioremap(regs_prussio->start, len);
188 if (!gdev->prussio_vaddr) {
189 dev_err(dev, "Can't remap PRUSS I/O address range\n");
193 gdev->pintc_base = pdata->pintc_base;
194 gdev->hostirq_start = platform_get_irq(pdev, 0);
196 for (cnt = 0, p = gdev->info; cnt < MAX_PRUSS_EVT; cnt++, p++) {
197 p->mem[0].addr = regs_prussio->start;
198 p->mem[0].size = resource_size(regs_prussio);
199 p->mem[0].memtype = UIO_MEM_PHYS;
201 p->mem[1].addr = gdev->sram_paddr;
202 p->mem[1].size = sram_pool_sz;
203 p->mem[1].memtype = UIO_MEM_PHYS;
205 p->mem[2].addr = gdev->ddr_paddr;
206 p->mem[2].size = extram_pool_sz;
207 p->mem[2].memtype = UIO_MEM_PHYS;
209 p->name = kasprintf(GFP_KERNEL, "pruss_evt%d", cnt);
210 p->version = DRV_VERSION;
212 /* Register PRUSS IRQ lines */
213 p->irq = gdev->hostirq_start + cnt;
214 p->handler = pruss_handler;
217 ret = uio_register_device(dev, p);
222 platform_set_drvdata(pdev, gdev);
226 pruss_cleanup(dev, gdev);
230 static int pruss_remove(struct platform_device *dev)
232 struct uio_pruss_dev *gdev = platform_get_drvdata(dev);
234 pruss_cleanup(&dev->dev, gdev);
238 static struct platform_driver pruss_driver = {
239 .probe = pruss_probe,
240 .remove = pruss_remove,
246 module_platform_driver(pruss_driver);
248 MODULE_LICENSE("GPL v2");
249 MODULE_VERSION(DRV_VERSION);
250 MODULE_AUTHOR("Amit Chatterjee <amit.chatterjee@ti.com>");
251 MODULE_AUTHOR("Pratheesh Gangadhar <pratheesh@ti.com>");