scsi: ufs: core: Leave space for '\0' in utf8 desc string
[platform/kernel/linux-starfive.git] / drivers / ufs / core / ufshcd.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *      Santosh Yaraganavi <santosh.sy@samsung.com>
9  *      Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/regulator/consumer.h>
24 #include <linux/sched/clock.h>
25 #include <linux/iopoll.h>
26 #include <scsi/scsi_cmnd.h>
27 #include <scsi/scsi_dbg.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include "ufshcd-priv.h"
31 #include <ufs/ufs_quirks.h>
32 #include <ufs/unipro.h>
33 #include "ufs-sysfs.h"
34 #include "ufs-debugfs.h"
35 #include "ufs-fault-injection.h"
36 #include "ufs_bsg.h"
37 #include "ufshcd-crypto.h"
38 #include <asm/unaligned.h>
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/ufs.h>
42
43 #define UFSHCD_ENABLE_INTRS     (UTP_TRANSFER_REQ_COMPL |\
44                                  UTP_TASK_REQ_COMPL |\
45                                  UFSHCD_ERROR_MASK)
46
47 #define UFSHCD_ENABLE_MCQ_INTRS (UTP_TASK_REQ_COMPL |\
48                                  UFSHCD_ERROR_MASK |\
49                                  MCQ_CQ_EVENT_STATUS)
50
51
52 /* UIC command timeout, unit: ms */
53 #define UIC_CMD_TIMEOUT 500
54
55 /* NOP OUT retries waiting for NOP IN response */
56 #define NOP_OUT_RETRIES    10
57 /* Timeout after 50 msecs if NOP OUT hangs without response */
58 #define NOP_OUT_TIMEOUT    50 /* msecs */
59
60 /* Query request retries */
61 #define QUERY_REQ_RETRIES 3
62 /* Query request timeout */
63 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
64
65 /* Advanced RPMB request timeout */
66 #define ADVANCED_RPMB_REQ_TIMEOUT  3000 /* 3 seconds */
67
68 /* Task management command timeout */
69 #define TM_CMD_TIMEOUT  100 /* msecs */
70
71 /* maximum number of retries for a general UIC command  */
72 #define UFS_UIC_COMMAND_RETRIES 3
73
74 /* maximum number of link-startup retries */
75 #define DME_LINKSTARTUP_RETRIES 3
76
77 /* maximum number of reset retries before giving up */
78 #define MAX_HOST_RESET_RETRIES 5
79
80 /* Maximum number of error handler retries before giving up */
81 #define MAX_ERR_HANDLER_RETRIES 5
82
83 /* Expose the flag value from utp_upiu_query.value */
84 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
85
86 /* Interrupt aggregation default timeout, unit: 40us */
87 #define INT_AGGR_DEF_TO 0x02
88
89 /* default delay of autosuspend: 2000 ms */
90 #define RPM_AUTOSUSPEND_DELAY_MS 2000
91
92 /* Default delay of RPM device flush delayed work */
93 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
94
95 /* Default value of wait time before gating device ref clock */
96 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
97
98 /* Polling time to wait for fDeviceInit */
99 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
100
101 /* UFSHC 4.0 compliant HC support this mode. */
102 static bool use_mcq_mode = true;
103
104 static bool is_mcq_supported(struct ufs_hba *hba)
105 {
106         return hba->mcq_sup && use_mcq_mode;
107 }
108
109 module_param(use_mcq_mode, bool, 0644);
110 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
111
112 #define ufshcd_toggle_vreg(_dev, _vreg, _on)                            \
113         ({                                                              \
114                 int _ret;                                               \
115                 if (_on)                                                \
116                         _ret = ufshcd_enable_vreg(_dev, _vreg);         \
117                 else                                                    \
118                         _ret = ufshcd_disable_vreg(_dev, _vreg);        \
119                 _ret;                                                   \
120         })
121
122 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
123         size_t __len = (len);                                            \
124         print_hex_dump(KERN_ERR, prefix_str,                             \
125                        __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
126                        16, 4, buf, __len, false);                        \
127 } while (0)
128
129 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
130                      const char *prefix)
131 {
132         u32 *regs;
133         size_t pos;
134
135         if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
136                 return -EINVAL;
137
138         regs = kzalloc(len, GFP_ATOMIC);
139         if (!regs)
140                 return -ENOMEM;
141
142         for (pos = 0; pos < len; pos += 4) {
143                 if (offset == 0 &&
144                     pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
145                     pos <= REG_UIC_ERROR_CODE_DME)
146                         continue;
147                 regs[pos / 4] = ufshcd_readl(hba, offset + pos);
148         }
149
150         ufshcd_hex_dump(prefix, regs, len);
151         kfree(regs);
152
153         return 0;
154 }
155 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
156
157 enum {
158         UFSHCD_MAX_CHANNEL      = 0,
159         UFSHCD_MAX_ID           = 1,
160         UFSHCD_CMD_PER_LUN      = 32 - UFSHCD_NUM_RESERVED,
161         UFSHCD_CAN_QUEUE        = 32 - UFSHCD_NUM_RESERVED,
162 };
163
164 static const char *const ufshcd_state_name[] = {
165         [UFSHCD_STATE_RESET]                    = "reset",
166         [UFSHCD_STATE_OPERATIONAL]              = "operational",
167         [UFSHCD_STATE_ERROR]                    = "error",
168         [UFSHCD_STATE_EH_SCHEDULED_FATAL]       = "eh_fatal",
169         [UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]   = "eh_non_fatal",
170 };
171
172 /* UFSHCD error handling flags */
173 enum {
174         UFSHCD_EH_IN_PROGRESS = (1 << 0),
175 };
176
177 /* UFSHCD UIC layer error flags */
178 enum {
179         UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
180         UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
181         UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
182         UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
183         UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
184         UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
185         UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
186 };
187
188 #define ufshcd_set_eh_in_progress(h) \
189         ((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
190 #define ufshcd_eh_in_progress(h) \
191         ((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
192 #define ufshcd_clear_eh_in_progress(h) \
193         ((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
194
195 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
196         [UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
197         [UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
198         [UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
199         [UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
200         [UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
201         [UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
202         /*
203          * For DeepSleep, the link is first put in hibern8 and then off.
204          * Leaving the link in hibern8 is not supported.
205          */
206         [UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
207 };
208
209 static inline enum ufs_dev_pwr_mode
210 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
211 {
212         return ufs_pm_lvl_states[lvl].dev_state;
213 }
214
215 static inline enum uic_link_state
216 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
217 {
218         return ufs_pm_lvl_states[lvl].link_state;
219 }
220
221 static inline enum ufs_pm_level
222 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
223                                         enum uic_link_state link_state)
224 {
225         enum ufs_pm_level lvl;
226
227         for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
228                 if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
229                         (ufs_pm_lvl_states[lvl].link_state == link_state))
230                         return lvl;
231         }
232
233         /* if no match found, return the level 0 */
234         return UFS_PM_LVL_0;
235 }
236
237 static const struct ufs_dev_quirk ufs_fixups[] = {
238         /* UFS cards deviations table */
239         { .wmanufacturerid = UFS_VENDOR_MICRON,
240           .model = UFS_ANY_MODEL,
241           .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
242         { .wmanufacturerid = UFS_VENDOR_SAMSUNG,
243           .model = UFS_ANY_MODEL,
244           .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
245                    UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
246                    UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
247         { .wmanufacturerid = UFS_VENDOR_SKHYNIX,
248           .model = UFS_ANY_MODEL,
249           .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
250         { .wmanufacturerid = UFS_VENDOR_SKHYNIX,
251           .model = "hB8aL1" /*H28U62301AMR*/,
252           .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
253         { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
254           .model = UFS_ANY_MODEL,
255           .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
256         { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
257           .model = "THGLF2G9C8KBADG",
258           .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
259         { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
260           .model = "THGLF2G9D8KBADG",
261           .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
262         {}
263 };
264
265 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
266 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
267 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
268 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
269 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
270 static void ufshcd_hba_exit(struct ufs_hba *hba);
271 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
272 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
273 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
274 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
275 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
276 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
277 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba);
278 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up);
279 static irqreturn_t ufshcd_intr(int irq, void *__hba);
280 static int ufshcd_change_power_mode(struct ufs_hba *hba,
281                              struct ufs_pa_layer_attr *pwr_mode);
282 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
283 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
284 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
285                                          struct ufs_vreg *vreg);
286 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
287                                                  bool enable);
288 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
289 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
290
291 static inline void ufshcd_enable_irq(struct ufs_hba *hba)
292 {
293         if (!hba->is_irq_enabled) {
294                 enable_irq(hba->irq);
295                 hba->is_irq_enabled = true;
296         }
297 }
298
299 static inline void ufshcd_disable_irq(struct ufs_hba *hba)
300 {
301         if (hba->is_irq_enabled) {
302                 disable_irq(hba->irq);
303                 hba->is_irq_enabled = false;
304         }
305 }
306
307 static void ufshcd_configure_wb(struct ufs_hba *hba)
308 {
309         if (!ufshcd_is_wb_allowed(hba))
310                 return;
311
312         ufshcd_wb_toggle(hba, true);
313
314         ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
315
316         if (ufshcd_is_wb_buf_flush_allowed(hba))
317                 ufshcd_wb_toggle_buf_flush(hba, true);
318 }
319
320 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
321 {
322         if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
323                 scsi_unblock_requests(hba->host);
324 }
325
326 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
327 {
328         if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
329                 scsi_block_requests(hba->host);
330 }
331
332 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
333                                       enum ufs_trace_str_t str_t)
334 {
335         struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
336         struct utp_upiu_header *header;
337
338         if (!trace_ufshcd_upiu_enabled())
339                 return;
340
341         if (str_t == UFS_CMD_SEND)
342                 header = &rq->header;
343         else
344                 header = &hba->lrb[tag].ucd_rsp_ptr->header;
345
346         trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
347                           UFS_TSF_CDB);
348 }
349
350 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
351                                         enum ufs_trace_str_t str_t,
352                                         struct utp_upiu_req *rq_rsp)
353 {
354         if (!trace_ufshcd_upiu_enabled())
355                 return;
356
357         trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
358                           &rq_rsp->qr, UFS_TSF_OSF);
359 }
360
361 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
362                                      enum ufs_trace_str_t str_t)
363 {
364         struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
365
366         if (!trace_ufshcd_upiu_enabled())
367                 return;
368
369         if (str_t == UFS_TM_SEND)
370                 trace_ufshcd_upiu(dev_name(hba->dev), str_t,
371                                   &descp->upiu_req.req_header,
372                                   &descp->upiu_req.input_param1,
373                                   UFS_TSF_TM_INPUT);
374         else
375                 trace_ufshcd_upiu(dev_name(hba->dev), str_t,
376                                   &descp->upiu_rsp.rsp_header,
377                                   &descp->upiu_rsp.output_param1,
378                                   UFS_TSF_TM_OUTPUT);
379 }
380
381 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
382                                          const struct uic_command *ucmd,
383                                          enum ufs_trace_str_t str_t)
384 {
385         u32 cmd;
386
387         if (!trace_ufshcd_uic_command_enabled())
388                 return;
389
390         if (str_t == UFS_CMD_SEND)
391                 cmd = ucmd->command;
392         else
393                 cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
394
395         trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
396                                  ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
397                                  ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
398                                  ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
399 }
400
401 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
402                                      enum ufs_trace_str_t str_t)
403 {
404         u64 lba = 0;
405         u8 opcode = 0, group_id = 0;
406         u32 doorbell = 0;
407         u32 intr;
408         int hwq_id = -1;
409         struct ufshcd_lrb *lrbp = &hba->lrb[tag];
410         struct scsi_cmnd *cmd = lrbp->cmd;
411         struct request *rq = scsi_cmd_to_rq(cmd);
412         int transfer_len = -1;
413
414         if (!cmd)
415                 return;
416
417         /* trace UPIU also */
418         ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
419         if (!trace_ufshcd_command_enabled())
420                 return;
421
422         opcode = cmd->cmnd[0];
423
424         if (opcode == READ_10 || opcode == WRITE_10) {
425                 /*
426                  * Currently we only fully trace read(10) and write(10) commands
427                  */
428                 transfer_len =
429                        be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
430                 lba = scsi_get_lba(cmd);
431                 if (opcode == WRITE_10)
432                         group_id = lrbp->cmd->cmnd[6];
433         } else if (opcode == UNMAP) {
434                 /*
435                  * The number of Bytes to be unmapped beginning with the lba.
436                  */
437                 transfer_len = blk_rq_bytes(rq);
438                 lba = scsi_get_lba(cmd);
439         }
440
441         intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
442
443         if (is_mcq_enabled(hba)) {
444                 struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
445
446                 hwq_id = hwq->id;
447         } else {
448                 doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
449         }
450         trace_ufshcd_command(dev_name(hba->dev), str_t, tag,
451                         doorbell, hwq_id, transfer_len, intr, lba, opcode, group_id);
452 }
453
454 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
455 {
456         struct ufs_clk_info *clki;
457         struct list_head *head = &hba->clk_list_head;
458
459         if (list_empty(head))
460                 return;
461
462         list_for_each_entry(clki, head, list) {
463                 if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
464                                 clki->max_freq)
465                         dev_err(hba->dev, "clk: %s, rate: %u\n",
466                                         clki->name, clki->curr_freq);
467         }
468 }
469
470 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
471                              const char *err_name)
472 {
473         int i;
474         bool found = false;
475         const struct ufs_event_hist *e;
476
477         if (id >= UFS_EVT_CNT)
478                 return;
479
480         e = &hba->ufs_stats.event[id];
481
482         for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
483                 int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
484
485                 if (e->tstamp[p] == 0)
486                         continue;
487                 dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
488                         e->val[p], div_u64(e->tstamp[p], 1000));
489                 found = true;
490         }
491
492         if (!found)
493                 dev_err(hba->dev, "No record of %s\n", err_name);
494         else
495                 dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
496 }
497
498 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
499 {
500         ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
501
502         ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
503         ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
504         ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
505         ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
506         ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
507         ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
508                          "auto_hibern8_err");
509         ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
510         ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
511                          "link_startup_fail");
512         ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
513         ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
514                          "suspend_fail");
515         ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
516         ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
517                          "wlun suspend_fail");
518         ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
519         ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
520         ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
521
522         ufshcd_vops_dbg_register_dump(hba);
523 }
524
525 static
526 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
527 {
528         const struct ufshcd_lrb *lrbp;
529         int prdt_length;
530
531         lrbp = &hba->lrb[tag];
532
533         dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
534                         tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
535         dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
536                         tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
537         dev_err(hba->dev,
538                 "UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
539                 tag, (u64)lrbp->utrd_dma_addr);
540
541         ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
542                         sizeof(struct utp_transfer_req_desc));
543         dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
544                 (u64)lrbp->ucd_req_dma_addr);
545         ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
546                         sizeof(struct utp_upiu_req));
547         dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
548                 (u64)lrbp->ucd_rsp_dma_addr);
549         ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
550                         sizeof(struct utp_upiu_rsp));
551
552         prdt_length = le16_to_cpu(
553                 lrbp->utr_descriptor_ptr->prd_table_length);
554         if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
555                 prdt_length /= ufshcd_sg_entry_size(hba);
556
557         dev_err(hba->dev,
558                 "UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
559                 tag, prdt_length,
560                 (u64)lrbp->ucd_prdt_dma_addr);
561
562         if (pr_prdt)
563                 ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
564                         ufshcd_sg_entry_size(hba) * prdt_length);
565 }
566
567 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
568 {
569         struct scsi_device *sdev = req->q->queuedata;
570         struct Scsi_Host *shost = sdev->host;
571         struct ufs_hba *hba = shost_priv(shost);
572
573         ufshcd_print_tr(hba, req->tag, *(bool *)priv);
574
575         return true;
576 }
577
578 /**
579  * ufshcd_print_trs_all - print trs for all started requests.
580  * @hba: per-adapter instance.
581  * @pr_prdt: need to print prdt or not.
582  */
583 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
584 {
585         blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
586 }
587
588 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
589 {
590         int tag;
591
592         for_each_set_bit(tag, &bitmap, hba->nutmrs) {
593                 struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
594
595                 dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
596                 ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
597         }
598 }
599
600 static void ufshcd_print_host_state(struct ufs_hba *hba)
601 {
602         const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
603
604         dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
605         dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
606                 hba->outstanding_reqs, hba->outstanding_tasks);
607         dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
608                 hba->saved_err, hba->saved_uic_err);
609         dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
610                 hba->curr_dev_pwr_mode, hba->uic_link_state);
611         dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
612                 hba->pm_op_in_progress, hba->is_sys_suspended);
613         dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
614                 hba->auto_bkops_enabled, hba->host->host_self_blocked);
615         dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
616         dev_err(hba->dev,
617                 "last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
618                 div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
619                 hba->ufs_stats.hibern8_exit_cnt);
620         dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
621                 div_u64(hba->ufs_stats.last_intr_ts, 1000),
622                 hba->ufs_stats.last_intr_status);
623         dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
624                 hba->eh_flags, hba->req_abort_count);
625         dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
626                 hba->ufs_version, hba->capabilities, hba->caps);
627         dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
628                 hba->dev_quirks);
629         if (sdev_ufs)
630                 dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
631                         sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
632
633         ufshcd_print_clk_freqs(hba);
634 }
635
636 /**
637  * ufshcd_print_pwr_info - print power params as saved in hba
638  * power info
639  * @hba: per-adapter instance
640  */
641 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
642 {
643         static const char * const names[] = {
644                 "INVALID MODE",
645                 "FAST MODE",
646                 "SLOW_MODE",
647                 "INVALID MODE",
648                 "FASTAUTO_MODE",
649                 "SLOWAUTO_MODE",
650                 "INVALID MODE",
651         };
652
653         /*
654          * Using dev_dbg to avoid messages during runtime PM to avoid
655          * never-ending cycles of messages written back to storage by user space
656          * causing runtime resume, causing more messages and so on.
657          */
658         dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
659                  __func__,
660                  hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
661                  hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
662                  names[hba->pwr_info.pwr_rx],
663                  names[hba->pwr_info.pwr_tx],
664                  hba->pwr_info.hs_rate);
665 }
666
667 static void ufshcd_device_reset(struct ufs_hba *hba)
668 {
669         int err;
670
671         err = ufshcd_vops_device_reset(hba);
672
673         if (!err) {
674                 ufshcd_set_ufs_dev_active(hba);
675                 if (ufshcd_is_wb_allowed(hba)) {
676                         hba->dev_info.wb_enabled = false;
677                         hba->dev_info.wb_buf_flush_enabled = false;
678                 }
679         }
680         if (err != -EOPNOTSUPP)
681                 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
682 }
683
684 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
685 {
686         if (!us)
687                 return;
688
689         if (us < 10)
690                 udelay(us);
691         else
692                 usleep_range(us, us + tolerance);
693 }
694 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
695
696 /**
697  * ufshcd_wait_for_register - wait for register value to change
698  * @hba: per-adapter interface
699  * @reg: mmio register offset
700  * @mask: mask to apply to the read register value
701  * @val: value to wait for
702  * @interval_us: polling interval in microseconds
703  * @timeout_ms: timeout in milliseconds
704  *
705  * Return: -ETIMEDOUT on error, zero on success.
706  */
707 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
708                                 u32 val, unsigned long interval_us,
709                                 unsigned long timeout_ms)
710 {
711         int err = 0;
712         unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
713
714         /* ignore bits that we don't intend to wait on */
715         val = val & mask;
716
717         while ((ufshcd_readl(hba, reg) & mask) != val) {
718                 usleep_range(interval_us, interval_us + 50);
719                 if (time_after(jiffies, timeout)) {
720                         if ((ufshcd_readl(hba, reg) & mask) != val)
721                                 err = -ETIMEDOUT;
722                         break;
723                 }
724         }
725
726         return err;
727 }
728
729 /**
730  * ufshcd_get_intr_mask - Get the interrupt bit mask
731  * @hba: Pointer to adapter instance
732  *
733  * Return: interrupt bit mask per version
734  */
735 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
736 {
737         if (hba->ufs_version == ufshci_version(1, 0))
738                 return INTERRUPT_MASK_ALL_VER_10;
739         if (hba->ufs_version <= ufshci_version(2, 0))
740                 return INTERRUPT_MASK_ALL_VER_11;
741
742         return INTERRUPT_MASK_ALL_VER_21;
743 }
744
745 /**
746  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
747  * @hba: Pointer to adapter instance
748  *
749  * Return: UFSHCI version supported by the controller
750  */
751 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
752 {
753         u32 ufshci_ver;
754
755         if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
756                 ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
757         else
758                 ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
759
760         /*
761          * UFSHCI v1.x uses a different version scheme, in order
762          * to allow the use of comparisons with the ufshci_version
763          * function, we convert it to the same scheme as ufs 2.0+.
764          */
765         if (ufshci_ver & 0x00010000)
766                 return ufshci_version(1, ufshci_ver & 0x00000100);
767
768         return ufshci_ver;
769 }
770
771 /**
772  * ufshcd_is_device_present - Check if any device connected to
773  *                            the host controller
774  * @hba: pointer to adapter instance
775  *
776  * Return: true if device present, false if no device detected
777  */
778 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
779 {
780         return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
781 }
782
783 /**
784  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
785  * @lrbp: pointer to local command reference block
786  * @cqe: pointer to the completion queue entry
787  *
788  * This function is used to get the OCS field from UTRD
789  *
790  * Return: the OCS field in the UTRD.
791  */
792 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
793                                       struct cq_entry *cqe)
794 {
795         if (cqe)
796                 return le32_to_cpu(cqe->status) & MASK_OCS;
797
798         return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
799 }
800
801 /**
802  * ufshcd_utrl_clear() - Clear requests from the controller request list.
803  * @hba: per adapter instance
804  * @mask: mask with one bit set for each request to be cleared
805  */
806 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
807 {
808         if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
809                 mask = ~mask;
810         /*
811          * From the UFSHCI specification: "UTP Transfer Request List CLear
812          * Register (UTRLCLR): This field is bit significant. Each bit
813          * corresponds to a slot in the UTP Transfer Request List, where bit 0
814          * corresponds to request slot 0. A bit in this field is set to ‘0’
815          * by host software to indicate to the host controller that a transfer
816          * request slot is cleared. The host controller
817          * shall free up any resources associated to the request slot
818          * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
819          * host software indicates no change to request slots by setting the
820          * associated bits in this field to ‘1’. Bits in this field shall only
821          * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
822          */
823         ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
824 }
825
826 /**
827  * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
828  * @hba: per adapter instance
829  * @pos: position of the bit to be cleared
830  */
831 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
832 {
833         if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
834                 ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
835         else
836                 ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
837 }
838
839 /**
840  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
841  * @reg: Register value of host controller status
842  *
843  * Return: 0 on success; a positive value if failed.
844  */
845 static inline int ufshcd_get_lists_status(u32 reg)
846 {
847         return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
848 }
849
850 /**
851  * ufshcd_get_uic_cmd_result - Get the UIC command result
852  * @hba: Pointer to adapter instance
853  *
854  * This function gets the result of UIC command completion
855  *
856  * Return: 0 on success; non-zero value on error.
857  */
858 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
859 {
860         return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
861                MASK_UIC_COMMAND_RESULT;
862 }
863
864 /**
865  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
866  * @hba: Pointer to adapter instance
867  *
868  * This function gets UIC command argument3
869  *
870  * Return: 0 on success; non-zero value on error.
871  */
872 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
873 {
874         return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
875 }
876
877 /**
878  * ufshcd_get_req_rsp - returns the TR response transaction type
879  * @ucd_rsp_ptr: pointer to response UPIU
880  *
881  * Return: UPIU type.
882  */
883 static inline enum upiu_response_transaction
884 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
885 {
886         return ucd_rsp_ptr->header.transaction_code;
887 }
888
889 /**
890  * ufshcd_is_exception_event - Check if the device raised an exception event
891  * @ucd_rsp_ptr: pointer to response UPIU
892  *
893  * The function checks if the device raised an exception event indicated in
894  * the Device Information field of response UPIU.
895  *
896  * Return: true if exception is raised, false otherwise.
897  */
898 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
899 {
900         return ucd_rsp_ptr->header.device_information & 1;
901 }
902
903 /**
904  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
905  * @hba: per adapter instance
906  */
907 static inline void
908 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
909 {
910         ufshcd_writel(hba, INT_AGGR_ENABLE |
911                       INT_AGGR_COUNTER_AND_TIMER_RESET,
912                       REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
913 }
914
915 /**
916  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
917  * @hba: per adapter instance
918  * @cnt: Interrupt aggregation counter threshold
919  * @tmout: Interrupt aggregation timeout value
920  */
921 static inline void
922 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
923 {
924         ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
925                       INT_AGGR_COUNTER_THLD_VAL(cnt) |
926                       INT_AGGR_TIMEOUT_VAL(tmout),
927                       REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
928 }
929
930 /**
931  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
932  * @hba: per adapter instance
933  */
934 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
935 {
936         ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
937 }
938
939 /**
940  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
941  *                      When run-stop registers are set to 1, it indicates the
942  *                      host controller that it can process the requests
943  * @hba: per adapter instance
944  */
945 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
946 {
947         ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
948                       REG_UTP_TASK_REQ_LIST_RUN_STOP);
949         ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
950                       REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
951 }
952
953 /**
954  * ufshcd_hba_start - Start controller initialization sequence
955  * @hba: per adapter instance
956  */
957 static inline void ufshcd_hba_start(struct ufs_hba *hba)
958 {
959         u32 val = CONTROLLER_ENABLE;
960
961         if (ufshcd_crypto_enable(hba))
962                 val |= CRYPTO_GENERAL_ENABLE;
963
964         ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
965 }
966
967 /**
968  * ufshcd_is_hba_active - Get controller state
969  * @hba: per adapter instance
970  *
971  * Return: true if and only if the controller is active.
972  */
973 bool ufshcd_is_hba_active(struct ufs_hba *hba)
974 {
975         return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
976 }
977 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
978
979 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
980 {
981         /* HCI version 1.0 and 1.1 supports UniPro 1.41 */
982         if (hba->ufs_version <= ufshci_version(1, 1))
983                 return UFS_UNIPRO_VER_1_41;
984         else
985                 return UFS_UNIPRO_VER_1_6;
986 }
987 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
988
989 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
990 {
991         /*
992          * If both host and device support UniPro ver1.6 or later, PA layer
993          * parameters tuning happens during link startup itself.
994          *
995          * We can manually tune PA layer parameters if either host or device
996          * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
997          * logic simple, we will only do manual tuning if local unipro version
998          * doesn't support ver1.6 or later.
999          */
1000         return ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6;
1001 }
1002
1003 /**
1004  * ufshcd_set_clk_freq - set UFS controller clock frequencies
1005  * @hba: per adapter instance
1006  * @scale_up: If True, set max possible frequency othewise set low frequency
1007  *
1008  * Return: 0 if successful; < 0 upon failure.
1009  */
1010 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1011 {
1012         int ret = 0;
1013         struct ufs_clk_info *clki;
1014         struct list_head *head = &hba->clk_list_head;
1015
1016         if (list_empty(head))
1017                 goto out;
1018
1019         list_for_each_entry(clki, head, list) {
1020                 if (!IS_ERR_OR_NULL(clki->clk)) {
1021                         if (scale_up && clki->max_freq) {
1022                                 if (clki->curr_freq == clki->max_freq)
1023                                         continue;
1024
1025                                 ret = clk_set_rate(clki->clk, clki->max_freq);
1026                                 if (ret) {
1027                                         dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1028                                                 __func__, clki->name,
1029                                                 clki->max_freq, ret);
1030                                         break;
1031                                 }
1032                                 trace_ufshcd_clk_scaling(dev_name(hba->dev),
1033                                                 "scaled up", clki->name,
1034                                                 clki->curr_freq,
1035                                                 clki->max_freq);
1036
1037                                 clki->curr_freq = clki->max_freq;
1038
1039                         } else if (!scale_up && clki->min_freq) {
1040                                 if (clki->curr_freq == clki->min_freq)
1041                                         continue;
1042
1043                                 ret = clk_set_rate(clki->clk, clki->min_freq);
1044                                 if (ret) {
1045                                         dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1046                                                 __func__, clki->name,
1047                                                 clki->min_freq, ret);
1048                                         break;
1049                                 }
1050                                 trace_ufshcd_clk_scaling(dev_name(hba->dev),
1051                                                 "scaled down", clki->name,
1052                                                 clki->curr_freq,
1053                                                 clki->min_freq);
1054                                 clki->curr_freq = clki->min_freq;
1055                         }
1056                 }
1057                 dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1058                                 clki->name, clk_get_rate(clki->clk));
1059         }
1060
1061 out:
1062         return ret;
1063 }
1064
1065 /**
1066  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1067  * @hba: per adapter instance
1068  * @scale_up: True if scaling up and false if scaling down
1069  *
1070  * Return: 0 if successful; < 0 upon failure.
1071  */
1072 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up)
1073 {
1074         int ret = 0;
1075         ktime_t start = ktime_get();
1076
1077         ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1078         if (ret)
1079                 goto out;
1080
1081         ret = ufshcd_set_clk_freq(hba, scale_up);
1082         if (ret)
1083                 goto out;
1084
1085         ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1086         if (ret)
1087                 ufshcd_set_clk_freq(hba, !scale_up);
1088
1089 out:
1090         trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1091                         (scale_up ? "up" : "down"),
1092                         ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1093         return ret;
1094 }
1095
1096 /**
1097  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1098  * @hba: per adapter instance
1099  * @scale_up: True if scaling up and false if scaling down
1100  *
1101  * Return: true if scaling is required, false otherwise.
1102  */
1103 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1104                                                bool scale_up)
1105 {
1106         struct ufs_clk_info *clki;
1107         struct list_head *head = &hba->clk_list_head;
1108
1109         if (list_empty(head))
1110                 return false;
1111
1112         list_for_each_entry(clki, head, list) {
1113                 if (!IS_ERR_OR_NULL(clki->clk)) {
1114                         if (scale_up && clki->max_freq) {
1115                                 if (clki->curr_freq == clki->max_freq)
1116                                         continue;
1117                                 return true;
1118                         } else if (!scale_up && clki->min_freq) {
1119                                 if (clki->curr_freq == clki->min_freq)
1120                                         continue;
1121                                 return true;
1122                         }
1123                 }
1124         }
1125
1126         return false;
1127 }
1128
1129 /*
1130  * Determine the number of pending commands by counting the bits in the SCSI
1131  * device budget maps. This approach has been selected because a bit is set in
1132  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1133  * flag. The host_self_blocked flag can be modified by calling
1134  * scsi_block_requests() or scsi_unblock_requests().
1135  */
1136 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1137 {
1138         const struct scsi_device *sdev;
1139         u32 pending = 0;
1140
1141         lockdep_assert_held(hba->host->host_lock);
1142         __shost_for_each_device(sdev, hba->host)
1143                 pending += sbitmap_weight(&sdev->budget_map);
1144
1145         return pending;
1146 }
1147
1148 /*
1149  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1150  * has expired.
1151  *
1152  * Return: 0 upon success; -EBUSY upon timeout.
1153  */
1154 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1155                                         u64 wait_timeout_us)
1156 {
1157         unsigned long flags;
1158         int ret = 0;
1159         u32 tm_doorbell;
1160         u32 tr_pending;
1161         bool timeout = false, do_last_check = false;
1162         ktime_t start;
1163
1164         ufshcd_hold(hba);
1165         spin_lock_irqsave(hba->host->host_lock, flags);
1166         /*
1167          * Wait for all the outstanding tasks/transfer requests.
1168          * Verify by checking the doorbell registers are clear.
1169          */
1170         start = ktime_get();
1171         do {
1172                 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1173                         ret = -EBUSY;
1174                         goto out;
1175                 }
1176
1177                 tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1178                 tr_pending = ufshcd_pending_cmds(hba);
1179                 if (!tm_doorbell && !tr_pending) {
1180                         timeout = false;
1181                         break;
1182                 } else if (do_last_check) {
1183                         break;
1184                 }
1185
1186                 spin_unlock_irqrestore(hba->host->host_lock, flags);
1187                 io_schedule_timeout(msecs_to_jiffies(20));
1188                 if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1189                     wait_timeout_us) {
1190                         timeout = true;
1191                         /*
1192                          * We might have scheduled out for long time so make
1193                          * sure to check if doorbells are cleared by this time
1194                          * or not.
1195                          */
1196                         do_last_check = true;
1197                 }
1198                 spin_lock_irqsave(hba->host->host_lock, flags);
1199         } while (tm_doorbell || tr_pending);
1200
1201         if (timeout) {
1202                 dev_err(hba->dev,
1203                         "%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1204                         __func__, tm_doorbell, tr_pending);
1205                 ret = -EBUSY;
1206         }
1207 out:
1208         spin_unlock_irqrestore(hba->host->host_lock, flags);
1209         ufshcd_release(hba);
1210         return ret;
1211 }
1212
1213 /**
1214  * ufshcd_scale_gear - scale up/down UFS gear
1215  * @hba: per adapter instance
1216  * @scale_up: True for scaling up gear and false for scaling down
1217  *
1218  * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1219  * non-zero for any other errors.
1220  */
1221 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1222 {
1223         int ret = 0;
1224         struct ufs_pa_layer_attr new_pwr_info;
1225
1226         if (scale_up) {
1227                 memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1228                        sizeof(struct ufs_pa_layer_attr));
1229         } else {
1230                 memcpy(&new_pwr_info, &hba->pwr_info,
1231                        sizeof(struct ufs_pa_layer_attr));
1232
1233                 if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1234                     hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1235                         /* save the current power mode */
1236                         memcpy(&hba->clk_scaling.saved_pwr_info,
1237                                 &hba->pwr_info,
1238                                 sizeof(struct ufs_pa_layer_attr));
1239
1240                         /* scale down gear */
1241                         new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1242                         new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1243                 }
1244         }
1245
1246         /* check if the power mode needs to be changed or not? */
1247         ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1248         if (ret)
1249                 dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1250                         __func__, ret,
1251                         hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1252                         new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1253
1254         return ret;
1255 }
1256
1257 /*
1258  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1259  * has expired.
1260  *
1261  * Return: 0 upon success; -EBUSY upon timeout.
1262  */
1263 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1264 {
1265         int ret = 0;
1266         /*
1267          * make sure that there are no outstanding requests when
1268          * clock scaling is in progress
1269          */
1270         ufshcd_scsi_block_requests(hba);
1271         mutex_lock(&hba->wb_mutex);
1272         down_write(&hba->clk_scaling_lock);
1273
1274         if (!hba->clk_scaling.is_allowed ||
1275             ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1276                 ret = -EBUSY;
1277                 up_write(&hba->clk_scaling_lock);
1278                 mutex_unlock(&hba->wb_mutex);
1279                 ufshcd_scsi_unblock_requests(hba);
1280                 goto out;
1281         }
1282
1283         /* let's not get into low power until clock scaling is completed */
1284         ufshcd_hold(hba);
1285
1286 out:
1287         return ret;
1288 }
1289
1290 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up)
1291 {
1292         up_write(&hba->clk_scaling_lock);
1293
1294         /* Enable Write Booster if we have scaled up else disable it */
1295         if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1296                 ufshcd_wb_toggle(hba, scale_up);
1297
1298         mutex_unlock(&hba->wb_mutex);
1299
1300         ufshcd_scsi_unblock_requests(hba);
1301         ufshcd_release(hba);
1302 }
1303
1304 /**
1305  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1306  * @hba: per adapter instance
1307  * @scale_up: True for scaling up and false for scalin down
1308  *
1309  * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1310  * for any other errors.
1311  */
1312 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up)
1313 {
1314         int ret = 0;
1315
1316         ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1317         if (ret)
1318                 return ret;
1319
1320         /* scale down the gear before scaling down clocks */
1321         if (!scale_up) {
1322                 ret = ufshcd_scale_gear(hba, false);
1323                 if (ret)
1324                         goto out_unprepare;
1325         }
1326
1327         ret = ufshcd_scale_clks(hba, scale_up);
1328         if (ret) {
1329                 if (!scale_up)
1330                         ufshcd_scale_gear(hba, true);
1331                 goto out_unprepare;
1332         }
1333
1334         /* scale up the gear after scaling up clocks */
1335         if (scale_up) {
1336                 ret = ufshcd_scale_gear(hba, true);
1337                 if (ret) {
1338                         ufshcd_scale_clks(hba, false);
1339                         goto out_unprepare;
1340                 }
1341         }
1342
1343 out_unprepare:
1344         ufshcd_clock_scaling_unprepare(hba, ret, scale_up);
1345         return ret;
1346 }
1347
1348 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1349 {
1350         struct ufs_hba *hba = container_of(work, struct ufs_hba,
1351                                            clk_scaling.suspend_work);
1352         unsigned long irq_flags;
1353
1354         spin_lock_irqsave(hba->host->host_lock, irq_flags);
1355         if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1356                 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1357                 return;
1358         }
1359         hba->clk_scaling.is_suspended = true;
1360         spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1361
1362         __ufshcd_suspend_clkscaling(hba);
1363 }
1364
1365 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1366 {
1367         struct ufs_hba *hba = container_of(work, struct ufs_hba,
1368                                            clk_scaling.resume_work);
1369         unsigned long irq_flags;
1370
1371         spin_lock_irqsave(hba->host->host_lock, irq_flags);
1372         if (!hba->clk_scaling.is_suspended) {
1373                 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1374                 return;
1375         }
1376         hba->clk_scaling.is_suspended = false;
1377         spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1378
1379         devfreq_resume_device(hba->devfreq);
1380 }
1381
1382 static int ufshcd_devfreq_target(struct device *dev,
1383                                 unsigned long *freq, u32 flags)
1384 {
1385         int ret = 0;
1386         struct ufs_hba *hba = dev_get_drvdata(dev);
1387         ktime_t start;
1388         bool scale_up, sched_clk_scaling_suspend_work = false;
1389         struct list_head *clk_list = &hba->clk_list_head;
1390         struct ufs_clk_info *clki;
1391         unsigned long irq_flags;
1392
1393         if (!ufshcd_is_clkscaling_supported(hba))
1394                 return -EINVAL;
1395
1396         clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1397         /* Override with the closest supported frequency */
1398         *freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1399         spin_lock_irqsave(hba->host->host_lock, irq_flags);
1400         if (ufshcd_eh_in_progress(hba)) {
1401                 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1402                 return 0;
1403         }
1404
1405         if (!hba->clk_scaling.active_reqs)
1406                 sched_clk_scaling_suspend_work = true;
1407
1408         if (list_empty(clk_list)) {
1409                 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1410                 goto out;
1411         }
1412
1413         /* Decide based on the rounded-off frequency and update */
1414         scale_up = *freq == clki->max_freq;
1415         if (!scale_up)
1416                 *freq = clki->min_freq;
1417         /* Update the frequency */
1418         if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) {
1419                 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1420                 ret = 0;
1421                 goto out; /* no state change required */
1422         }
1423         spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1424
1425         start = ktime_get();
1426         ret = ufshcd_devfreq_scale(hba, scale_up);
1427
1428         trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1429                 (scale_up ? "up" : "down"),
1430                 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1431
1432 out:
1433         if (sched_clk_scaling_suspend_work)
1434                 queue_work(hba->clk_scaling.workq,
1435                            &hba->clk_scaling.suspend_work);
1436
1437         return ret;
1438 }
1439
1440 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1441                 struct devfreq_dev_status *stat)
1442 {
1443         struct ufs_hba *hba = dev_get_drvdata(dev);
1444         struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1445         unsigned long flags;
1446         struct list_head *clk_list = &hba->clk_list_head;
1447         struct ufs_clk_info *clki;
1448         ktime_t curr_t;
1449
1450         if (!ufshcd_is_clkscaling_supported(hba))
1451                 return -EINVAL;
1452
1453         memset(stat, 0, sizeof(*stat));
1454
1455         spin_lock_irqsave(hba->host->host_lock, flags);
1456         curr_t = ktime_get();
1457         if (!scaling->window_start_t)
1458                 goto start_window;
1459
1460         clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1461         /*
1462          * If current frequency is 0, then the ondemand governor considers
1463          * there's no initial frequency set. And it always requests to set
1464          * to max. frequency.
1465          */
1466         stat->current_frequency = clki->curr_freq;
1467         if (scaling->is_busy_started)
1468                 scaling->tot_busy_t += ktime_us_delta(curr_t,
1469                                 scaling->busy_start_t);
1470
1471         stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1472         stat->busy_time = scaling->tot_busy_t;
1473 start_window:
1474         scaling->window_start_t = curr_t;
1475         scaling->tot_busy_t = 0;
1476
1477         if (scaling->active_reqs) {
1478                 scaling->busy_start_t = curr_t;
1479                 scaling->is_busy_started = true;
1480         } else {
1481                 scaling->busy_start_t = 0;
1482                 scaling->is_busy_started = false;
1483         }
1484         spin_unlock_irqrestore(hba->host->host_lock, flags);
1485         return 0;
1486 }
1487
1488 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1489 {
1490         struct list_head *clk_list = &hba->clk_list_head;
1491         struct ufs_clk_info *clki;
1492         struct devfreq *devfreq;
1493         int ret;
1494
1495         /* Skip devfreq if we don't have any clocks in the list */
1496         if (list_empty(clk_list))
1497                 return 0;
1498
1499         clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1500         dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1501         dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1502
1503         ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1504                                          &hba->vps->ondemand_data);
1505         devfreq = devfreq_add_device(hba->dev,
1506                         &hba->vps->devfreq_profile,
1507                         DEVFREQ_GOV_SIMPLE_ONDEMAND,
1508                         &hba->vps->ondemand_data);
1509         if (IS_ERR(devfreq)) {
1510                 ret = PTR_ERR(devfreq);
1511                 dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1512
1513                 dev_pm_opp_remove(hba->dev, clki->min_freq);
1514                 dev_pm_opp_remove(hba->dev, clki->max_freq);
1515                 return ret;
1516         }
1517
1518         hba->devfreq = devfreq;
1519
1520         return 0;
1521 }
1522
1523 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1524 {
1525         struct list_head *clk_list = &hba->clk_list_head;
1526         struct ufs_clk_info *clki;
1527
1528         if (!hba->devfreq)
1529                 return;
1530
1531         devfreq_remove_device(hba->devfreq);
1532         hba->devfreq = NULL;
1533
1534         clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1535         dev_pm_opp_remove(hba->dev, clki->min_freq);
1536         dev_pm_opp_remove(hba->dev, clki->max_freq);
1537 }
1538
1539 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1540 {
1541         unsigned long flags;
1542
1543         devfreq_suspend_device(hba->devfreq);
1544         spin_lock_irqsave(hba->host->host_lock, flags);
1545         hba->clk_scaling.window_start_t = 0;
1546         spin_unlock_irqrestore(hba->host->host_lock, flags);
1547 }
1548
1549 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1550 {
1551         unsigned long flags;
1552         bool suspend = false;
1553
1554         cancel_work_sync(&hba->clk_scaling.suspend_work);
1555         cancel_work_sync(&hba->clk_scaling.resume_work);
1556
1557         spin_lock_irqsave(hba->host->host_lock, flags);
1558         if (!hba->clk_scaling.is_suspended) {
1559                 suspend = true;
1560                 hba->clk_scaling.is_suspended = true;
1561         }
1562         spin_unlock_irqrestore(hba->host->host_lock, flags);
1563
1564         if (suspend)
1565                 __ufshcd_suspend_clkscaling(hba);
1566 }
1567
1568 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1569 {
1570         unsigned long flags;
1571         bool resume = false;
1572
1573         spin_lock_irqsave(hba->host->host_lock, flags);
1574         if (hba->clk_scaling.is_suspended) {
1575                 resume = true;
1576                 hba->clk_scaling.is_suspended = false;
1577         }
1578         spin_unlock_irqrestore(hba->host->host_lock, flags);
1579
1580         if (resume)
1581                 devfreq_resume_device(hba->devfreq);
1582 }
1583
1584 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1585                 struct device_attribute *attr, char *buf)
1586 {
1587         struct ufs_hba *hba = dev_get_drvdata(dev);
1588
1589         return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1590 }
1591
1592 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1593                 struct device_attribute *attr, const char *buf, size_t count)
1594 {
1595         struct ufs_hba *hba = dev_get_drvdata(dev);
1596         u32 value;
1597         int err = 0;
1598
1599         if (kstrtou32(buf, 0, &value))
1600                 return -EINVAL;
1601
1602         down(&hba->host_sem);
1603         if (!ufshcd_is_user_access_allowed(hba)) {
1604                 err = -EBUSY;
1605                 goto out;
1606         }
1607
1608         value = !!value;
1609         if (value == hba->clk_scaling.is_enabled)
1610                 goto out;
1611
1612         ufshcd_rpm_get_sync(hba);
1613         ufshcd_hold(hba);
1614
1615         hba->clk_scaling.is_enabled = value;
1616
1617         if (value) {
1618                 ufshcd_resume_clkscaling(hba);
1619         } else {
1620                 ufshcd_suspend_clkscaling(hba);
1621                 err = ufshcd_devfreq_scale(hba, true);
1622                 if (err)
1623                         dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1624                                         __func__, err);
1625         }
1626
1627         ufshcd_release(hba);
1628         ufshcd_rpm_put_sync(hba);
1629 out:
1630         up(&hba->host_sem);
1631         return err ? err : count;
1632 }
1633
1634 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1635 {
1636         hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1637         hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1638         sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1639         hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1640         hba->clk_scaling.enable_attr.attr.mode = 0644;
1641         if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1642                 dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1643 }
1644
1645 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1646 {
1647         if (hba->clk_scaling.enable_attr.attr.name)
1648                 device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1649 }
1650
1651 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1652 {
1653         char wq_name[sizeof("ufs_clkscaling_00")];
1654
1655         if (!ufshcd_is_clkscaling_supported(hba))
1656                 return;
1657
1658         if (!hba->clk_scaling.min_gear)
1659                 hba->clk_scaling.min_gear = UFS_HS_G1;
1660
1661         INIT_WORK(&hba->clk_scaling.suspend_work,
1662                   ufshcd_clk_scaling_suspend_work);
1663         INIT_WORK(&hba->clk_scaling.resume_work,
1664                   ufshcd_clk_scaling_resume_work);
1665
1666         snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1667                  hba->host->host_no);
1668         hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1669
1670         hba->clk_scaling.is_initialized = true;
1671 }
1672
1673 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1674 {
1675         if (!hba->clk_scaling.is_initialized)
1676                 return;
1677
1678         ufshcd_remove_clk_scaling_sysfs(hba);
1679         destroy_workqueue(hba->clk_scaling.workq);
1680         ufshcd_devfreq_remove(hba);
1681         hba->clk_scaling.is_initialized = false;
1682 }
1683
1684 static void ufshcd_ungate_work(struct work_struct *work)
1685 {
1686         int ret;
1687         unsigned long flags;
1688         struct ufs_hba *hba = container_of(work, struct ufs_hba,
1689                         clk_gating.ungate_work);
1690
1691         cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1692
1693         spin_lock_irqsave(hba->host->host_lock, flags);
1694         if (hba->clk_gating.state == CLKS_ON) {
1695                 spin_unlock_irqrestore(hba->host->host_lock, flags);
1696                 return;
1697         }
1698
1699         spin_unlock_irqrestore(hba->host->host_lock, flags);
1700         ufshcd_hba_vreg_set_hpm(hba);
1701         ufshcd_setup_clocks(hba, true);
1702
1703         ufshcd_enable_irq(hba);
1704
1705         /* Exit from hibern8 */
1706         if (ufshcd_can_hibern8_during_gating(hba)) {
1707                 /* Prevent gating in this path */
1708                 hba->clk_gating.is_suspended = true;
1709                 if (ufshcd_is_link_hibern8(hba)) {
1710                         ret = ufshcd_uic_hibern8_exit(hba);
1711                         if (ret)
1712                                 dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1713                                         __func__, ret);
1714                         else
1715                                 ufshcd_set_link_active(hba);
1716                 }
1717                 hba->clk_gating.is_suspended = false;
1718         }
1719 }
1720
1721 /**
1722  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1723  * Also, exit from hibern8 mode and set the link as active.
1724  * @hba: per adapter instance
1725  */
1726 void ufshcd_hold(struct ufs_hba *hba)
1727 {
1728         bool flush_result;
1729         unsigned long flags;
1730
1731         if (!ufshcd_is_clkgating_allowed(hba) ||
1732             !hba->clk_gating.is_initialized)
1733                 return;
1734         spin_lock_irqsave(hba->host->host_lock, flags);
1735         hba->clk_gating.active_reqs++;
1736
1737 start:
1738         switch (hba->clk_gating.state) {
1739         case CLKS_ON:
1740                 /*
1741                  * Wait for the ungate work to complete if in progress.
1742                  * Though the clocks may be in ON state, the link could
1743                  * still be in hibner8 state if hibern8 is allowed
1744                  * during clock gating.
1745                  * Make sure we exit hibern8 state also in addition to
1746                  * clocks being ON.
1747                  */
1748                 if (ufshcd_can_hibern8_during_gating(hba) &&
1749                     ufshcd_is_link_hibern8(hba)) {
1750                         spin_unlock_irqrestore(hba->host->host_lock, flags);
1751                         flush_result = flush_work(&hba->clk_gating.ungate_work);
1752                         if (hba->clk_gating.is_suspended && !flush_result)
1753                                 return;
1754                         spin_lock_irqsave(hba->host->host_lock, flags);
1755                         goto start;
1756                 }
1757                 break;
1758         case REQ_CLKS_OFF:
1759                 if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1760                         hba->clk_gating.state = CLKS_ON;
1761                         trace_ufshcd_clk_gating(dev_name(hba->dev),
1762                                                 hba->clk_gating.state);
1763                         break;
1764                 }
1765                 /*
1766                  * If we are here, it means gating work is either done or
1767                  * currently running. Hence, fall through to cancel gating
1768                  * work and to enable clocks.
1769                  */
1770                 fallthrough;
1771         case CLKS_OFF:
1772                 hba->clk_gating.state = REQ_CLKS_ON;
1773                 trace_ufshcd_clk_gating(dev_name(hba->dev),
1774                                         hba->clk_gating.state);
1775                 queue_work(hba->clk_gating.clk_gating_workq,
1776                            &hba->clk_gating.ungate_work);
1777                 /*
1778                  * fall through to check if we should wait for this
1779                  * work to be done or not.
1780                  */
1781                 fallthrough;
1782         case REQ_CLKS_ON:
1783                 spin_unlock_irqrestore(hba->host->host_lock, flags);
1784                 flush_work(&hba->clk_gating.ungate_work);
1785                 /* Make sure state is CLKS_ON before returning */
1786                 spin_lock_irqsave(hba->host->host_lock, flags);
1787                 goto start;
1788         default:
1789                 dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1790                                 __func__, hba->clk_gating.state);
1791                 break;
1792         }
1793         spin_unlock_irqrestore(hba->host->host_lock, flags);
1794 }
1795 EXPORT_SYMBOL_GPL(ufshcd_hold);
1796
1797 static void ufshcd_gate_work(struct work_struct *work)
1798 {
1799         struct ufs_hba *hba = container_of(work, struct ufs_hba,
1800                         clk_gating.gate_work.work);
1801         unsigned long flags;
1802         int ret;
1803
1804         spin_lock_irqsave(hba->host->host_lock, flags);
1805         /*
1806          * In case you are here to cancel this work the gating state
1807          * would be marked as REQ_CLKS_ON. In this case save time by
1808          * skipping the gating work and exit after changing the clock
1809          * state to CLKS_ON.
1810          */
1811         if (hba->clk_gating.is_suspended ||
1812                 (hba->clk_gating.state != REQ_CLKS_OFF)) {
1813                 hba->clk_gating.state = CLKS_ON;
1814                 trace_ufshcd_clk_gating(dev_name(hba->dev),
1815                                         hba->clk_gating.state);
1816                 goto rel_lock;
1817         }
1818
1819         if (hba->clk_gating.active_reqs
1820                 || hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
1821                 || hba->outstanding_reqs || hba->outstanding_tasks
1822                 || hba->active_uic_cmd || hba->uic_async_done)
1823                 goto rel_lock;
1824
1825         spin_unlock_irqrestore(hba->host->host_lock, flags);
1826
1827         /* put the link into hibern8 mode before turning off clocks */
1828         if (ufshcd_can_hibern8_during_gating(hba)) {
1829                 ret = ufshcd_uic_hibern8_enter(hba);
1830                 if (ret) {
1831                         hba->clk_gating.state = CLKS_ON;
1832                         dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1833                                         __func__, ret);
1834                         trace_ufshcd_clk_gating(dev_name(hba->dev),
1835                                                 hba->clk_gating.state);
1836                         goto out;
1837                 }
1838                 ufshcd_set_link_hibern8(hba);
1839         }
1840
1841         ufshcd_disable_irq(hba);
1842
1843         ufshcd_setup_clocks(hba, false);
1844
1845         /* Put the host controller in low power mode if possible */
1846         ufshcd_hba_vreg_set_lpm(hba);
1847         /*
1848          * In case you are here to cancel this work the gating state
1849          * would be marked as REQ_CLKS_ON. In this case keep the state
1850          * as REQ_CLKS_ON which would anyway imply that clocks are off
1851          * and a request to turn them on is pending. By doing this way,
1852          * we keep the state machine in tact and this would ultimately
1853          * prevent from doing cancel work multiple times when there are
1854          * new requests arriving before the current cancel work is done.
1855          */
1856         spin_lock_irqsave(hba->host->host_lock, flags);
1857         if (hba->clk_gating.state == REQ_CLKS_OFF) {
1858                 hba->clk_gating.state = CLKS_OFF;
1859                 trace_ufshcd_clk_gating(dev_name(hba->dev),
1860                                         hba->clk_gating.state);
1861         }
1862 rel_lock:
1863         spin_unlock_irqrestore(hba->host->host_lock, flags);
1864 out:
1865         return;
1866 }
1867
1868 /* host lock must be held before calling this variant */
1869 static void __ufshcd_release(struct ufs_hba *hba)
1870 {
1871         if (!ufshcd_is_clkgating_allowed(hba))
1872                 return;
1873
1874         hba->clk_gating.active_reqs--;
1875
1876         if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
1877             hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
1878             hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
1879             hba->active_uic_cmd || hba->uic_async_done ||
1880             hba->clk_gating.state == CLKS_OFF)
1881                 return;
1882
1883         hba->clk_gating.state = REQ_CLKS_OFF;
1884         trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1885         queue_delayed_work(hba->clk_gating.clk_gating_workq,
1886                            &hba->clk_gating.gate_work,
1887                            msecs_to_jiffies(hba->clk_gating.delay_ms));
1888 }
1889
1890 void ufshcd_release(struct ufs_hba *hba)
1891 {
1892         unsigned long flags;
1893
1894         spin_lock_irqsave(hba->host->host_lock, flags);
1895         __ufshcd_release(hba);
1896         spin_unlock_irqrestore(hba->host->host_lock, flags);
1897 }
1898 EXPORT_SYMBOL_GPL(ufshcd_release);
1899
1900 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
1901                 struct device_attribute *attr, char *buf)
1902 {
1903         struct ufs_hba *hba = dev_get_drvdata(dev);
1904
1905         return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
1906 }
1907
1908 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
1909 {
1910         struct ufs_hba *hba = dev_get_drvdata(dev);
1911         unsigned long flags;
1912
1913         spin_lock_irqsave(hba->host->host_lock, flags);
1914         hba->clk_gating.delay_ms = value;
1915         spin_unlock_irqrestore(hba->host->host_lock, flags);
1916 }
1917 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
1918
1919 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
1920                 struct device_attribute *attr, const char *buf, size_t count)
1921 {
1922         unsigned long value;
1923
1924         if (kstrtoul(buf, 0, &value))
1925                 return -EINVAL;
1926
1927         ufshcd_clkgate_delay_set(dev, value);
1928         return count;
1929 }
1930
1931 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
1932                 struct device_attribute *attr, char *buf)
1933 {
1934         struct ufs_hba *hba = dev_get_drvdata(dev);
1935
1936         return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
1937 }
1938
1939 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
1940                 struct device_attribute *attr, const char *buf, size_t count)
1941 {
1942         struct ufs_hba *hba = dev_get_drvdata(dev);
1943         unsigned long flags;
1944         u32 value;
1945
1946         if (kstrtou32(buf, 0, &value))
1947                 return -EINVAL;
1948
1949         value = !!value;
1950
1951         spin_lock_irqsave(hba->host->host_lock, flags);
1952         if (value == hba->clk_gating.is_enabled)
1953                 goto out;
1954
1955         if (value)
1956                 __ufshcd_release(hba);
1957         else
1958                 hba->clk_gating.active_reqs++;
1959
1960         hba->clk_gating.is_enabled = value;
1961 out:
1962         spin_unlock_irqrestore(hba->host->host_lock, flags);
1963         return count;
1964 }
1965
1966 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
1967 {
1968         hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
1969         hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
1970         sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
1971         hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
1972         hba->clk_gating.delay_attr.attr.mode = 0644;
1973         if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
1974                 dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
1975
1976         hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
1977         hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
1978         sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
1979         hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
1980         hba->clk_gating.enable_attr.attr.mode = 0644;
1981         if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
1982                 dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
1983 }
1984
1985 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
1986 {
1987         if (hba->clk_gating.delay_attr.attr.name)
1988                 device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
1989         if (hba->clk_gating.enable_attr.attr.name)
1990                 device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
1991 }
1992
1993 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
1994 {
1995         char wq_name[sizeof("ufs_clk_gating_00")];
1996
1997         if (!ufshcd_is_clkgating_allowed(hba))
1998                 return;
1999
2000         hba->clk_gating.state = CLKS_ON;
2001
2002         hba->clk_gating.delay_ms = 150;
2003         INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2004         INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2005
2006         snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
2007                  hba->host->host_no);
2008         hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
2009                                         WQ_MEM_RECLAIM | WQ_HIGHPRI);
2010
2011         ufshcd_init_clk_gating_sysfs(hba);
2012
2013         hba->clk_gating.is_enabled = true;
2014         hba->clk_gating.is_initialized = true;
2015 }
2016
2017 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2018 {
2019         if (!hba->clk_gating.is_initialized)
2020                 return;
2021
2022         ufshcd_remove_clk_gating_sysfs(hba);
2023
2024         /* Ungate the clock if necessary. */
2025         ufshcd_hold(hba);
2026         hba->clk_gating.is_initialized = false;
2027         ufshcd_release(hba);
2028
2029         destroy_workqueue(hba->clk_gating.clk_gating_workq);
2030 }
2031
2032 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2033 {
2034         bool queue_resume_work = false;
2035         ktime_t curr_t = ktime_get();
2036         unsigned long flags;
2037
2038         if (!ufshcd_is_clkscaling_supported(hba))
2039                 return;
2040
2041         spin_lock_irqsave(hba->host->host_lock, flags);
2042         if (!hba->clk_scaling.active_reqs++)
2043                 queue_resume_work = true;
2044
2045         if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2046                 spin_unlock_irqrestore(hba->host->host_lock, flags);
2047                 return;
2048         }
2049
2050         if (queue_resume_work)
2051                 queue_work(hba->clk_scaling.workq,
2052                            &hba->clk_scaling.resume_work);
2053
2054         if (!hba->clk_scaling.window_start_t) {
2055                 hba->clk_scaling.window_start_t = curr_t;
2056                 hba->clk_scaling.tot_busy_t = 0;
2057                 hba->clk_scaling.is_busy_started = false;
2058         }
2059
2060         if (!hba->clk_scaling.is_busy_started) {
2061                 hba->clk_scaling.busy_start_t = curr_t;
2062                 hba->clk_scaling.is_busy_started = true;
2063         }
2064         spin_unlock_irqrestore(hba->host->host_lock, flags);
2065 }
2066
2067 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2068 {
2069         struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2070         unsigned long flags;
2071
2072         if (!ufshcd_is_clkscaling_supported(hba))
2073                 return;
2074
2075         spin_lock_irqsave(hba->host->host_lock, flags);
2076         hba->clk_scaling.active_reqs--;
2077         if (!scaling->active_reqs && scaling->is_busy_started) {
2078                 scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2079                                         scaling->busy_start_t));
2080                 scaling->busy_start_t = 0;
2081                 scaling->is_busy_started = false;
2082         }
2083         spin_unlock_irqrestore(hba->host->host_lock, flags);
2084 }
2085
2086 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2087 {
2088         if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2089                 return READ;
2090         else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2091                 return WRITE;
2092         else
2093                 return -EINVAL;
2094 }
2095
2096 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2097                                                 struct ufshcd_lrb *lrbp)
2098 {
2099         const struct ufs_hba_monitor *m = &hba->monitor;
2100
2101         return (m->enabled && lrbp && lrbp->cmd &&
2102                 (!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2103                 ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2104 }
2105
2106 static void ufshcd_start_monitor(struct ufs_hba *hba,
2107                                  const struct ufshcd_lrb *lrbp)
2108 {
2109         int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2110         unsigned long flags;
2111
2112         spin_lock_irqsave(hba->host->host_lock, flags);
2113         if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2114                 hba->monitor.busy_start_ts[dir] = ktime_get();
2115         spin_unlock_irqrestore(hba->host->host_lock, flags);
2116 }
2117
2118 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2119 {
2120         int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2121         unsigned long flags;
2122
2123         spin_lock_irqsave(hba->host->host_lock, flags);
2124         if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2125                 const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2126                 struct ufs_hba_monitor *m = &hba->monitor;
2127                 ktime_t now, inc, lat;
2128
2129                 now = lrbp->compl_time_stamp;
2130                 inc = ktime_sub(now, m->busy_start_ts[dir]);
2131                 m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2132                 m->nr_sec_rw[dir] += blk_rq_sectors(req);
2133
2134                 /* Update latencies */
2135                 m->nr_req[dir]++;
2136                 lat = ktime_sub(now, lrbp->issue_time_stamp);
2137                 m->lat_sum[dir] += lat;
2138                 if (m->lat_max[dir] < lat || !m->lat_max[dir])
2139                         m->lat_max[dir] = lat;
2140                 if (m->lat_min[dir] > lat || !m->lat_min[dir])
2141                         m->lat_min[dir] = lat;
2142
2143                 m->nr_queued[dir]--;
2144                 /* Push forward the busy start of monitor */
2145                 m->busy_start_ts[dir] = now;
2146         }
2147         spin_unlock_irqrestore(hba->host->host_lock, flags);
2148 }
2149
2150 /**
2151  * ufshcd_send_command - Send SCSI or device management commands
2152  * @hba: per adapter instance
2153  * @task_tag: Task tag of the command
2154  * @hwq: pointer to hardware queue instance
2155  */
2156 static inline
2157 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2158                          struct ufs_hw_queue *hwq)
2159 {
2160         struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2161         unsigned long flags;
2162
2163         lrbp->issue_time_stamp = ktime_get();
2164         lrbp->issue_time_stamp_local_clock = local_clock();
2165         lrbp->compl_time_stamp = ktime_set(0, 0);
2166         lrbp->compl_time_stamp_local_clock = 0;
2167         ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2168         ufshcd_clk_scaling_start_busy(hba);
2169         if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2170                 ufshcd_start_monitor(hba, lrbp);
2171
2172         if (is_mcq_enabled(hba)) {
2173                 int utrd_size = sizeof(struct utp_transfer_req_desc);
2174                 struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2175                 struct utp_transfer_req_desc *dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2176
2177                 spin_lock(&hwq->sq_lock);
2178                 memcpy(dest, src, utrd_size);
2179                 ufshcd_inc_sq_tail(hwq);
2180                 spin_unlock(&hwq->sq_lock);
2181         } else {
2182                 spin_lock_irqsave(&hba->outstanding_lock, flags);
2183                 if (hba->vops && hba->vops->setup_xfer_req)
2184                         hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2185                                                   !!lrbp->cmd);
2186                 __set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2187                 ufshcd_writel(hba, 1 << lrbp->task_tag,
2188                               REG_UTP_TRANSFER_REQ_DOOR_BELL);
2189                 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2190         }
2191 }
2192
2193 /**
2194  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2195  * @lrbp: pointer to local reference block
2196  */
2197 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2198 {
2199         u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2200         u16 resp_len;
2201         int len;
2202
2203         resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2204         if (sense_buffer && resp_len) {
2205                 int len_to_copy;
2206
2207                 len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2208                 len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2209
2210                 memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2211                        len_to_copy);
2212         }
2213 }
2214
2215 /**
2216  * ufshcd_copy_query_response() - Copy the Query Response and the data
2217  * descriptor
2218  * @hba: per adapter instance
2219  * @lrbp: pointer to local reference block
2220  *
2221  * Return: 0 upon success; < 0 upon failure.
2222  */
2223 static
2224 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2225 {
2226         struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2227
2228         memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2229
2230         /* Get the descriptor */
2231         if (hba->dev_cmd.query.descriptor &&
2232             lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2233                 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2234                                 GENERAL_UPIU_REQUEST_SIZE;
2235                 u16 resp_len;
2236                 u16 buf_len;
2237
2238                 /* data segment length */
2239                 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2240                                        .data_segment_length);
2241                 buf_len = be16_to_cpu(
2242                                 hba->dev_cmd.query.request.upiu_req.length);
2243                 if (likely(buf_len >= resp_len)) {
2244                         memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2245                 } else {
2246                         dev_warn(hba->dev,
2247                                  "%s: rsp size %d is bigger than buffer size %d",
2248                                  __func__, resp_len, buf_len);
2249                         return -EINVAL;
2250                 }
2251         }
2252
2253         return 0;
2254 }
2255
2256 /**
2257  * ufshcd_hba_capabilities - Read controller capabilities
2258  * @hba: per adapter instance
2259  *
2260  * Return: 0 on success, negative on error.
2261  */
2262 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2263 {
2264         int err;
2265
2266         hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2267         if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS)
2268                 hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT;
2269
2270         /* nutrs and nutmrs are 0 based values */
2271         hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2272         hba->nutmrs =
2273         ((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2274         hba->reserved_slot = hba->nutrs - 1;
2275
2276         /* Read crypto capabilities */
2277         err = ufshcd_hba_init_crypto_capabilities(hba);
2278         if (err) {
2279                 dev_err(hba->dev, "crypto setup failed\n");
2280                 return err;
2281         }
2282
2283         hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2284         if (!hba->mcq_sup)
2285                 return 0;
2286
2287         hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2288         hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT,
2289                                      hba->mcq_capabilities);
2290
2291         return 0;
2292 }
2293
2294 /**
2295  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2296  *                            to accept UIC commands
2297  * @hba: per adapter instance
2298  *
2299  * Return: true on success, else false.
2300  */
2301 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2302 {
2303         u32 val;
2304         int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2305                                     500, UIC_CMD_TIMEOUT * 1000, false, hba,
2306                                     REG_CONTROLLER_STATUS);
2307         return ret == 0 ? true : false;
2308 }
2309
2310 /**
2311  * ufshcd_get_upmcrs - Get the power mode change request status
2312  * @hba: Pointer to adapter instance
2313  *
2314  * This function gets the UPMCRS field of HCS register
2315  *
2316  * Return: value of UPMCRS field.
2317  */
2318 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2319 {
2320         return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2321 }
2322
2323 /**
2324  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2325  * @hba: per adapter instance
2326  * @uic_cmd: UIC command
2327  */
2328 static inline void
2329 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2330 {
2331         lockdep_assert_held(&hba->uic_cmd_mutex);
2332
2333         WARN_ON(hba->active_uic_cmd);
2334
2335         hba->active_uic_cmd = uic_cmd;
2336
2337         /* Write Args */
2338         ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2339         ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2340         ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2341
2342         ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2343
2344         /* Write UIC Cmd */
2345         ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2346                       REG_UIC_COMMAND);
2347 }
2348
2349 /**
2350  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2351  * @hba: per adapter instance
2352  * @uic_cmd: UIC command
2353  *
2354  * Return: 0 only if success.
2355  */
2356 static int
2357 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2358 {
2359         int ret;
2360         unsigned long flags;
2361
2362         lockdep_assert_held(&hba->uic_cmd_mutex);
2363
2364         if (wait_for_completion_timeout(&uic_cmd->done,
2365                                         msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2366                 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2367         } else {
2368                 ret = -ETIMEDOUT;
2369                 dev_err(hba->dev,
2370                         "uic cmd 0x%x with arg3 0x%x completion timeout\n",
2371                         uic_cmd->command, uic_cmd->argument3);
2372
2373                 if (!uic_cmd->cmd_active) {
2374                         dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2375                                 __func__);
2376                         ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2377                 }
2378         }
2379
2380         spin_lock_irqsave(hba->host->host_lock, flags);
2381         hba->active_uic_cmd = NULL;
2382         spin_unlock_irqrestore(hba->host->host_lock, flags);
2383
2384         return ret;
2385 }
2386
2387 /**
2388  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2389  * @hba: per adapter instance
2390  * @uic_cmd: UIC command
2391  * @completion: initialize the completion only if this is set to true
2392  *
2393  * Return: 0 only if success.
2394  */
2395 static int
2396 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2397                       bool completion)
2398 {
2399         lockdep_assert_held(&hba->uic_cmd_mutex);
2400
2401         if (!ufshcd_ready_for_uic_cmd(hba)) {
2402                 dev_err(hba->dev,
2403                         "Controller not ready to accept UIC commands\n");
2404                 return -EIO;
2405         }
2406
2407         if (completion)
2408                 init_completion(&uic_cmd->done);
2409
2410         uic_cmd->cmd_active = 1;
2411         ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2412
2413         return 0;
2414 }
2415
2416 /**
2417  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2418  * @hba: per adapter instance
2419  * @uic_cmd: UIC command
2420  *
2421  * Return: 0 only if success.
2422  */
2423 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2424 {
2425         int ret;
2426
2427         if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2428                 return 0;
2429
2430         ufshcd_hold(hba);
2431         mutex_lock(&hba->uic_cmd_mutex);
2432         ufshcd_add_delay_before_dme_cmd(hba);
2433
2434         ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2435         if (!ret)
2436                 ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2437
2438         mutex_unlock(&hba->uic_cmd_mutex);
2439
2440         ufshcd_release(hba);
2441         return ret;
2442 }
2443
2444 /**
2445  * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2446  * @hba:        per-adapter instance
2447  * @lrbp:       pointer to local reference block
2448  * @sg_entries: The number of sg lists actually used
2449  * @sg_list:    Pointer to SG list
2450  */
2451 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2452                                struct scatterlist *sg_list)
2453 {
2454         struct ufshcd_sg_entry *prd;
2455         struct scatterlist *sg;
2456         int i;
2457
2458         if (sg_entries) {
2459
2460                 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2461                         lrbp->utr_descriptor_ptr->prd_table_length =
2462                                 cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2463                 else
2464                         lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2465
2466                 prd = lrbp->ucd_prdt_ptr;
2467
2468                 for_each_sg(sg_list, sg, sg_entries, i) {
2469                         const unsigned int len = sg_dma_len(sg);
2470
2471                         /*
2472                          * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2473                          * based value that indicates the length, in bytes, of
2474                          * the data block. A maximum of length of 256KB may
2475                          * exist for any entry. Bits 1:0 of this field shall be
2476                          * 11b to indicate Dword granularity. A value of '3'
2477                          * indicates 4 bytes, '7' indicates 8 bytes, etc."
2478                          */
2479                         WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2480                         prd->size = cpu_to_le32(len - 1);
2481                         prd->addr = cpu_to_le64(sg->dma_address);
2482                         prd->reserved = 0;
2483                         prd = (void *)prd + ufshcd_sg_entry_size(hba);
2484                 }
2485         } else {
2486                 lrbp->utr_descriptor_ptr->prd_table_length = 0;
2487         }
2488 }
2489
2490 /**
2491  * ufshcd_map_sg - Map scatter-gather list to prdt
2492  * @hba: per adapter instance
2493  * @lrbp: pointer to local reference block
2494  *
2495  * Return: 0 in case of success, non-zero value in case of failure.
2496  */
2497 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2498 {
2499         struct scsi_cmnd *cmd = lrbp->cmd;
2500         int sg_segments = scsi_dma_map(cmd);
2501
2502         if (sg_segments < 0)
2503                 return sg_segments;
2504
2505         ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2506
2507         return 0;
2508 }
2509
2510 /**
2511  * ufshcd_enable_intr - enable interrupts
2512  * @hba: per adapter instance
2513  * @intrs: interrupt bits
2514  */
2515 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2516 {
2517         u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2518
2519         if (hba->ufs_version == ufshci_version(1, 0)) {
2520                 u32 rw;
2521                 rw = set & INTERRUPT_MASK_RW_VER_10;
2522                 set = rw | ((set ^ intrs) & intrs);
2523         } else {
2524                 set |= intrs;
2525         }
2526
2527         ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2528 }
2529
2530 /**
2531  * ufshcd_disable_intr - disable interrupts
2532  * @hba: per adapter instance
2533  * @intrs: interrupt bits
2534  */
2535 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2536 {
2537         u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2538
2539         if (hba->ufs_version == ufshci_version(1, 0)) {
2540                 u32 rw;
2541                 rw = (set & INTERRUPT_MASK_RW_VER_10) &
2542                         ~(intrs & INTERRUPT_MASK_RW_VER_10);
2543                 set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2544
2545         } else {
2546                 set &= ~intrs;
2547         }
2548
2549         ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2550 }
2551
2552 /**
2553  * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2554  * descriptor according to request
2555  * @lrbp: pointer to local reference block
2556  * @upiu_flags: flags required in the header
2557  * @cmd_dir: requests data direction
2558  * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2559  */
2560 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp, u8 *upiu_flags,
2561                                         enum dma_data_direction cmd_dir, int ehs_length)
2562 {
2563         struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2564         struct request_desc_header *h = &req_desc->header;
2565         enum utp_data_direction data_direction;
2566
2567         *h = (typeof(*h)){ };
2568
2569         if (cmd_dir == DMA_FROM_DEVICE) {
2570                 data_direction = UTP_DEVICE_TO_HOST;
2571                 *upiu_flags = UPIU_CMD_FLAGS_READ;
2572         } else if (cmd_dir == DMA_TO_DEVICE) {
2573                 data_direction = UTP_HOST_TO_DEVICE;
2574                 *upiu_flags = UPIU_CMD_FLAGS_WRITE;
2575         } else {
2576                 data_direction = UTP_NO_DATA_TRANSFER;
2577                 *upiu_flags = UPIU_CMD_FLAGS_NONE;
2578         }
2579
2580         h->command_type = lrbp->command_type;
2581         h->data_direction = data_direction;
2582         h->ehs_length = ehs_length;
2583
2584         if (lrbp->intr_cmd)
2585                 h->interrupt = 1;
2586
2587         /* Prepare crypto related dwords */
2588         ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2589
2590         /*
2591          * assigning invalid value for command status. Controller
2592          * updates OCS on command completion, with the command
2593          * status
2594          */
2595         h->ocs = OCS_INVALID_COMMAND_STATUS;
2596
2597         req_desc->prd_table_length = 0;
2598 }
2599
2600 /**
2601  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2602  * for scsi commands
2603  * @lrbp: local reference block pointer
2604  * @upiu_flags: flags
2605  */
2606 static
2607 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2608 {
2609         struct scsi_cmnd *cmd = lrbp->cmd;
2610         struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2611         unsigned short cdb_len;
2612
2613         ucd_req_ptr->header = (struct utp_upiu_header){
2614                 .transaction_code = UPIU_TRANSACTION_COMMAND,
2615                 .flags = upiu_flags,
2616                 .lun = lrbp->lun,
2617                 .task_tag = lrbp->task_tag,
2618                 .command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2619         };
2620
2621         ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2622
2623         cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2624         memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2625         memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2626
2627         memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2628 }
2629
2630 /**
2631  * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2632  * @hba: UFS hba
2633  * @lrbp: local reference block pointer
2634  * @upiu_flags: flags
2635  */
2636 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2637                                 struct ufshcd_lrb *lrbp, u8 upiu_flags)
2638 {
2639         struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2640         struct ufs_query *query = &hba->dev_cmd.query;
2641         u16 len = be16_to_cpu(query->request.upiu_req.length);
2642
2643         /* Query request header */
2644         ucd_req_ptr->header = (struct utp_upiu_header){
2645                 .transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2646                 .flags = upiu_flags,
2647                 .lun = lrbp->lun,
2648                 .task_tag = lrbp->task_tag,
2649                 .query_function = query->request.query_func,
2650                 /* Data segment length only need for WRITE_DESC */
2651                 .data_segment_length =
2652                         query->request.upiu_req.opcode ==
2653                                         UPIU_QUERY_OPCODE_WRITE_DESC ?
2654                                 cpu_to_be16(len) :
2655                                 0,
2656         };
2657
2658         /* Copy the Query Request buffer as is */
2659         memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2660                         QUERY_OSF_SIZE);
2661
2662         /* Copy the Descriptor */
2663         if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2664                 memcpy(ucd_req_ptr + 1, query->descriptor, len);
2665
2666         memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2667 }
2668
2669 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2670 {
2671         struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2672
2673         memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2674
2675         ucd_req_ptr->header = (struct utp_upiu_header){
2676                 .transaction_code = UPIU_TRANSACTION_NOP_OUT,
2677                 .task_tag = lrbp->task_tag,
2678         };
2679
2680         memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2681 }
2682
2683 /**
2684  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2685  *                           for Device Management Purposes
2686  * @hba: per adapter instance
2687  * @lrbp: pointer to local reference block
2688  *
2689  * Return: 0 upon success; < 0 upon failure.
2690  */
2691 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2692                                       struct ufshcd_lrb *lrbp)
2693 {
2694         u8 upiu_flags;
2695         int ret = 0;
2696
2697         if (hba->ufs_version <= ufshci_version(1, 1))
2698                 lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2699         else
2700                 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2701
2702         ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
2703         if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2704                 ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2705         else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2706                 ufshcd_prepare_utp_nop_upiu(lrbp);
2707         else
2708                 ret = -EINVAL;
2709
2710         return ret;
2711 }
2712
2713 /**
2714  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2715  *                         for SCSI Purposes
2716  * @hba: per adapter instance
2717  * @lrbp: pointer to local reference block
2718  *
2719  * Return: 0 upon success; < 0 upon failure.
2720  */
2721 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2722 {
2723         u8 upiu_flags;
2724         int ret = 0;
2725
2726         if (hba->ufs_version <= ufshci_version(1, 1))
2727                 lrbp->command_type = UTP_CMD_TYPE_SCSI;
2728         else
2729                 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2730
2731         if (likely(lrbp->cmd)) {
2732                 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2733                 ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2734         } else {
2735                 ret = -EINVAL;
2736         }
2737
2738         return ret;
2739 }
2740
2741 /**
2742  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2743  * @upiu_wlun_id: UPIU W-LUN id
2744  *
2745  * Return: SCSI W-LUN id.
2746  */
2747 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2748 {
2749         return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2750 }
2751
2752 static inline bool is_device_wlun(struct scsi_device *sdev)
2753 {
2754         return sdev->lun ==
2755                 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2756 }
2757
2758 /*
2759  * Associate the UFS controller queue with the default and poll HCTX types.
2760  * Initialize the mq_map[] arrays.
2761  */
2762 static void ufshcd_map_queues(struct Scsi_Host *shost)
2763 {
2764         struct ufs_hba *hba = shost_priv(shost);
2765         int i, queue_offset = 0;
2766
2767         if (!is_mcq_supported(hba)) {
2768                 hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2769                 hba->nr_queues[HCTX_TYPE_READ] = 0;
2770                 hba->nr_queues[HCTX_TYPE_POLL] = 1;
2771                 hba->nr_hw_queues = 1;
2772         }
2773
2774         for (i = 0; i < shost->nr_maps; i++) {
2775                 struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2776
2777                 map->nr_queues = hba->nr_queues[i];
2778                 if (!map->nr_queues)
2779                         continue;
2780                 map->queue_offset = queue_offset;
2781                 if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2782                         map->queue_offset = 0;
2783
2784                 blk_mq_map_queues(map);
2785                 queue_offset += map->nr_queues;
2786         }
2787 }
2788
2789 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2790 {
2791         struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2792                 i * ufshcd_get_ucd_size(hba);
2793         struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2794         dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2795                 i * ufshcd_get_ucd_size(hba);
2796         u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2797                                        response_upiu);
2798         u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2799
2800         lrb->utr_descriptor_ptr = utrdlp + i;
2801         lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2802                 i * sizeof(struct utp_transfer_req_desc);
2803         lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2804         lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2805         lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2806         lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2807         lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2808         lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2809 }
2810
2811 /**
2812  * ufshcd_queuecommand - main entry point for SCSI requests
2813  * @host: SCSI host pointer
2814  * @cmd: command from SCSI Midlayer
2815  *
2816  * Return: 0 for success, non-zero in case of failure.
2817  */
2818 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2819 {
2820         struct ufs_hba *hba = shost_priv(host);
2821         int tag = scsi_cmd_to_rq(cmd)->tag;
2822         struct ufshcd_lrb *lrbp;
2823         int err = 0;
2824         struct ufs_hw_queue *hwq = NULL;
2825
2826         WARN_ONCE(tag < 0 || tag >= hba->nutrs, "Invalid tag %d\n", tag);
2827
2828         switch (hba->ufshcd_state) {
2829         case UFSHCD_STATE_OPERATIONAL:
2830                 break;
2831         case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2832                 /*
2833                  * SCSI error handler can call ->queuecommand() while UFS error
2834                  * handler is in progress. Error interrupts could change the
2835                  * state from UFSHCD_STATE_RESET to
2836                  * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2837                  * being issued in that case.
2838                  */
2839                 if (ufshcd_eh_in_progress(hba)) {
2840                         err = SCSI_MLQUEUE_HOST_BUSY;
2841                         goto out;
2842                 }
2843                 break;
2844         case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2845                 /*
2846                  * pm_runtime_get_sync() is used at error handling preparation
2847                  * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2848                  * PM ops, it can never be finished if we let SCSI layer keep
2849                  * retrying it, which gets err handler stuck forever. Neither
2850                  * can we let the scsi cmd pass through, because UFS is in bad
2851                  * state, the scsi cmd may eventually time out, which will get
2852                  * err handler blocked for too long. So, just fail the scsi cmd
2853                  * sent from PM ops, err handler can recover PM error anyways.
2854                  */
2855                 if (hba->pm_op_in_progress) {
2856                         hba->force_reset = true;
2857                         set_host_byte(cmd, DID_BAD_TARGET);
2858                         scsi_done(cmd);
2859                         goto out;
2860                 }
2861                 fallthrough;
2862         case UFSHCD_STATE_RESET:
2863                 err = SCSI_MLQUEUE_HOST_BUSY;
2864                 goto out;
2865         case UFSHCD_STATE_ERROR:
2866                 set_host_byte(cmd, DID_ERROR);
2867                 scsi_done(cmd);
2868                 goto out;
2869         }
2870
2871         hba->req_abort_count = 0;
2872
2873         ufshcd_hold(hba);
2874
2875         lrbp = &hba->lrb[tag];
2876         lrbp->cmd = cmd;
2877         lrbp->task_tag = tag;
2878         lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2879         lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2880
2881         ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
2882
2883         lrbp->req_abort_skip = false;
2884
2885         ufshcd_comp_scsi_upiu(hba, lrbp);
2886
2887         err = ufshcd_map_sg(hba, lrbp);
2888         if (err) {
2889                 ufshcd_release(hba);
2890                 goto out;
2891         }
2892
2893         if (is_mcq_enabled(hba))
2894                 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
2895
2896         ufshcd_send_command(hba, tag, hwq);
2897
2898 out:
2899         if (ufs_trigger_eh()) {
2900                 unsigned long flags;
2901
2902                 spin_lock_irqsave(hba->host->host_lock, flags);
2903                 ufshcd_schedule_eh_work(hba);
2904                 spin_unlock_irqrestore(hba->host->host_lock, flags);
2905         }
2906
2907         return err;
2908 }
2909
2910 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
2911                 struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
2912 {
2913         lrbp->cmd = NULL;
2914         lrbp->task_tag = tag;
2915         lrbp->lun = 0; /* device management cmd is not specific to any LUN */
2916         lrbp->intr_cmd = true; /* No interrupt aggregation */
2917         ufshcd_prepare_lrbp_crypto(NULL, lrbp);
2918         hba->dev_cmd.type = cmd_type;
2919
2920         return ufshcd_compose_devman_upiu(hba, lrbp);
2921 }
2922
2923 /*
2924  * Check with the block layer if the command is inflight
2925  * @cmd: command to check.
2926  *
2927  * Return: true if command is inflight; false if not.
2928  */
2929 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
2930 {
2931         struct request *rq;
2932
2933         if (!cmd)
2934                 return false;
2935
2936         rq = scsi_cmd_to_rq(cmd);
2937         if (!blk_mq_request_started(rq))
2938                 return false;
2939
2940         return true;
2941 }
2942
2943 /*
2944  * Clear the pending command in the controller and wait until
2945  * the controller confirms that the command has been cleared.
2946  * @hba: per adapter instance
2947  * @task_tag: The tag number of the command to be cleared.
2948  */
2949 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
2950 {
2951         u32 mask = 1U << task_tag;
2952         unsigned long flags;
2953         int err;
2954
2955         if (is_mcq_enabled(hba)) {
2956                 /*
2957                  * MCQ mode. Clean up the MCQ resources similar to
2958                  * what the ufshcd_utrl_clear() does for SDB mode.
2959                  */
2960                 err = ufshcd_mcq_sq_cleanup(hba, task_tag);
2961                 if (err) {
2962                         dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
2963                                 __func__, task_tag, err);
2964                         return err;
2965                 }
2966                 return 0;
2967         }
2968
2969         /* clear outstanding transaction before retry */
2970         spin_lock_irqsave(hba->host->host_lock, flags);
2971         ufshcd_utrl_clear(hba, mask);
2972         spin_unlock_irqrestore(hba->host->host_lock, flags);
2973
2974         /*
2975          * wait for h/w to clear corresponding bit in door-bell.
2976          * max. wait is 1 sec.
2977          */
2978         return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
2979                                         mask, ~mask, 1000, 1000);
2980 }
2981
2982 /**
2983  * ufshcd_dev_cmd_completion() - handles device management command responses
2984  * @hba: per adapter instance
2985  * @lrbp: pointer to local reference block
2986  *
2987  * Return: 0 upon success; < 0 upon failure.
2988  */
2989 static int
2990 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2991 {
2992         enum upiu_response_transaction resp;
2993         int err = 0;
2994
2995         hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
2996         resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
2997
2998         switch (resp) {
2999         case UPIU_TRANSACTION_NOP_IN:
3000                 if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3001                         err = -EINVAL;
3002                         dev_err(hba->dev, "%s: unexpected response %x\n",
3003                                         __func__, resp);
3004                 }
3005                 break;
3006         case UPIU_TRANSACTION_QUERY_RSP: {
3007                 u8 response = lrbp->ucd_rsp_ptr->header.response;
3008
3009                 if (response == 0)
3010                         err = ufshcd_copy_query_response(hba, lrbp);
3011                 break;
3012         }
3013         case UPIU_TRANSACTION_REJECT_UPIU:
3014                 /* TODO: handle Reject UPIU Response */
3015                 err = -EPERM;
3016                 dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3017                                 __func__);
3018                 break;
3019         case UPIU_TRANSACTION_RESPONSE:
3020                 if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3021                         err = -EINVAL;
3022                         dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3023                 }
3024                 break;
3025         default:
3026                 err = -EINVAL;
3027                 dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3028                                 __func__, resp);
3029                 break;
3030         }
3031
3032         return err;
3033 }
3034
3035 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3036                 struct ufshcd_lrb *lrbp, int max_timeout)
3037 {
3038         unsigned long time_left = msecs_to_jiffies(max_timeout);
3039         unsigned long flags;
3040         bool pending;
3041         int err;
3042
3043 retry:
3044         time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3045                                                 time_left);
3046
3047         if (likely(time_left)) {
3048                 /*
3049                  * The completion handler called complete() and the caller of
3050                  * this function still owns the @lrbp tag so the code below does
3051                  * not trigger any race conditions.
3052                  */
3053                 hba->dev_cmd.complete = NULL;
3054                 err = ufshcd_get_tr_ocs(lrbp, NULL);
3055                 if (!err)
3056                         err = ufshcd_dev_cmd_completion(hba, lrbp);
3057         } else {
3058                 err = -ETIMEDOUT;
3059                 dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3060                         __func__, lrbp->task_tag);
3061
3062                 /* MCQ mode */
3063                 if (is_mcq_enabled(hba)) {
3064                         err = ufshcd_clear_cmd(hba, lrbp->task_tag);
3065                         hba->dev_cmd.complete = NULL;
3066                         return err;
3067                 }
3068
3069                 /* SDB mode */
3070                 if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3071                         /* successfully cleared the command, retry if needed */
3072                         err = -EAGAIN;
3073                         /*
3074                          * Since clearing the command succeeded we also need to
3075                          * clear the task tag bit from the outstanding_reqs
3076                          * variable.
3077                          */
3078                         spin_lock_irqsave(&hba->outstanding_lock, flags);
3079                         pending = test_bit(lrbp->task_tag,
3080                                            &hba->outstanding_reqs);
3081                         if (pending) {
3082                                 hba->dev_cmd.complete = NULL;
3083                                 __clear_bit(lrbp->task_tag,
3084                                             &hba->outstanding_reqs);
3085                         }
3086                         spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3087
3088                         if (!pending) {
3089                                 /*
3090                                  * The completion handler ran while we tried to
3091                                  * clear the command.
3092                                  */
3093                                 time_left = 1;
3094                                 goto retry;
3095                         }
3096                 } else {
3097                         dev_err(hba->dev, "%s: failed to clear tag %d\n",
3098                                 __func__, lrbp->task_tag);
3099
3100                         spin_lock_irqsave(&hba->outstanding_lock, flags);
3101                         pending = test_bit(lrbp->task_tag,
3102                                            &hba->outstanding_reqs);
3103                         if (pending)
3104                                 hba->dev_cmd.complete = NULL;
3105                         spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3106
3107                         if (!pending) {
3108                                 /*
3109                                  * The completion handler ran while we tried to
3110                                  * clear the command.
3111                                  */
3112                                 time_left = 1;
3113                                 goto retry;
3114                         }
3115                 }
3116         }
3117
3118         return err;
3119 }
3120
3121 /**
3122  * ufshcd_exec_dev_cmd - API for sending device management requests
3123  * @hba: UFS hba
3124  * @cmd_type: specifies the type (NOP, Query...)
3125  * @timeout: timeout in milliseconds
3126  *
3127  * Return: 0 upon success; < 0 upon failure.
3128  *
3129  * NOTE: Since there is only one available tag for device management commands,
3130  * it is expected you hold the hba->dev_cmd.lock mutex.
3131  */
3132 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3133                 enum dev_cmd_type cmd_type, int timeout)
3134 {
3135         DECLARE_COMPLETION_ONSTACK(wait);
3136         const u32 tag = hba->reserved_slot;
3137         struct ufshcd_lrb *lrbp;
3138         int err;
3139
3140         /* Protects use of hba->reserved_slot. */
3141         lockdep_assert_held(&hba->dev_cmd.lock);
3142
3143         down_read(&hba->clk_scaling_lock);
3144
3145         lrbp = &hba->lrb[tag];
3146         lrbp->cmd = NULL;
3147         err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3148         if (unlikely(err))
3149                 goto out;
3150
3151         hba->dev_cmd.complete = &wait;
3152
3153         ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3154
3155         ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3156         err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3157         ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3158                                     (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3159
3160 out:
3161         up_read(&hba->clk_scaling_lock);
3162         return err;
3163 }
3164
3165 /**
3166  * ufshcd_init_query() - init the query response and request parameters
3167  * @hba: per-adapter instance
3168  * @request: address of the request pointer to be initialized
3169  * @response: address of the response pointer to be initialized
3170  * @opcode: operation to perform
3171  * @idn: flag idn to access
3172  * @index: LU number to access
3173  * @selector: query/flag/descriptor further identification
3174  */
3175 static inline void ufshcd_init_query(struct ufs_hba *hba,
3176                 struct ufs_query_req **request, struct ufs_query_res **response,
3177                 enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3178 {
3179         *request = &hba->dev_cmd.query.request;
3180         *response = &hba->dev_cmd.query.response;
3181         memset(*request, 0, sizeof(struct ufs_query_req));
3182         memset(*response, 0, sizeof(struct ufs_query_res));
3183         (*request)->upiu_req.opcode = opcode;
3184         (*request)->upiu_req.idn = idn;
3185         (*request)->upiu_req.index = index;
3186         (*request)->upiu_req.selector = selector;
3187 }
3188
3189 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3190         enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3191 {
3192         int ret;
3193         int retries;
3194
3195         for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3196                 ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3197                 if (ret)
3198                         dev_dbg(hba->dev,
3199                                 "%s: failed with error %d, retries %d\n",
3200                                 __func__, ret, retries);
3201                 else
3202                         break;
3203         }
3204
3205         if (ret)
3206                 dev_err(hba->dev,
3207                         "%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3208                         __func__, opcode, idn, ret, retries);
3209         return ret;
3210 }
3211
3212 /**
3213  * ufshcd_query_flag() - API function for sending flag query requests
3214  * @hba: per-adapter instance
3215  * @opcode: flag query to perform
3216  * @idn: flag idn to access
3217  * @index: flag index to access
3218  * @flag_res: the flag value after the query request completes
3219  *
3220  * Return: 0 for success, non-zero in case of failure.
3221  */
3222 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3223                         enum flag_idn idn, u8 index, bool *flag_res)
3224 {
3225         struct ufs_query_req *request = NULL;
3226         struct ufs_query_res *response = NULL;
3227         int err, selector = 0;
3228         int timeout = QUERY_REQ_TIMEOUT;
3229
3230         BUG_ON(!hba);
3231
3232         ufshcd_hold(hba);
3233         mutex_lock(&hba->dev_cmd.lock);
3234         ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3235                         selector);
3236
3237         switch (opcode) {
3238         case UPIU_QUERY_OPCODE_SET_FLAG:
3239         case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3240         case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3241                 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3242                 break;
3243         case UPIU_QUERY_OPCODE_READ_FLAG:
3244                 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3245                 if (!flag_res) {
3246                         /* No dummy reads */
3247                         dev_err(hba->dev, "%s: Invalid argument for read request\n",
3248                                         __func__);
3249                         err = -EINVAL;
3250                         goto out_unlock;
3251                 }
3252                 break;
3253         default:
3254                 dev_err(hba->dev,
3255                         "%s: Expected query flag opcode but got = %d\n",
3256                         __func__, opcode);
3257                 err = -EINVAL;
3258                 goto out_unlock;
3259         }
3260
3261         err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3262
3263         if (err) {
3264                 dev_err(hba->dev,
3265                         "%s: Sending flag query for idn %d failed, err = %d\n",
3266                         __func__, idn, err);
3267                 goto out_unlock;
3268         }
3269
3270         if (flag_res)
3271                 *flag_res = (be32_to_cpu(response->upiu_res.value) &
3272                                 MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3273
3274 out_unlock:
3275         mutex_unlock(&hba->dev_cmd.lock);
3276         ufshcd_release(hba);
3277         return err;
3278 }
3279
3280 /**
3281  * ufshcd_query_attr - API function for sending attribute requests
3282  * @hba: per-adapter instance
3283  * @opcode: attribute opcode
3284  * @idn: attribute idn to access
3285  * @index: index field
3286  * @selector: selector field
3287  * @attr_val: the attribute value after the query request completes
3288  *
3289  * Return: 0 for success, non-zero in case of failure.
3290 */
3291 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3292                       enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3293 {
3294         struct ufs_query_req *request = NULL;
3295         struct ufs_query_res *response = NULL;
3296         int err;
3297
3298         BUG_ON(!hba);
3299
3300         if (!attr_val) {
3301                 dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3302                                 __func__, opcode);
3303                 return -EINVAL;
3304         }
3305
3306         ufshcd_hold(hba);
3307
3308         mutex_lock(&hba->dev_cmd.lock);
3309         ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3310                         selector);
3311
3312         switch (opcode) {
3313         case UPIU_QUERY_OPCODE_WRITE_ATTR:
3314                 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3315                 request->upiu_req.value = cpu_to_be32(*attr_val);
3316                 break;
3317         case UPIU_QUERY_OPCODE_READ_ATTR:
3318                 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3319                 break;
3320         default:
3321                 dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3322                                 __func__, opcode);
3323                 err = -EINVAL;
3324                 goto out_unlock;
3325         }
3326
3327         err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3328
3329         if (err) {
3330                 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3331                                 __func__, opcode, idn, index, err);
3332                 goto out_unlock;
3333         }
3334
3335         *attr_val = be32_to_cpu(response->upiu_res.value);
3336
3337 out_unlock:
3338         mutex_unlock(&hba->dev_cmd.lock);
3339         ufshcd_release(hba);
3340         return err;
3341 }
3342
3343 /**
3344  * ufshcd_query_attr_retry() - API function for sending query
3345  * attribute with retries
3346  * @hba: per-adapter instance
3347  * @opcode: attribute opcode
3348  * @idn: attribute idn to access
3349  * @index: index field
3350  * @selector: selector field
3351  * @attr_val: the attribute value after the query request
3352  * completes
3353  *
3354  * Return: 0 for success, non-zero in case of failure.
3355 */
3356 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3357         enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3358         u32 *attr_val)
3359 {
3360         int ret = 0;
3361         u32 retries;
3362
3363         for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3364                 ret = ufshcd_query_attr(hba, opcode, idn, index,
3365                                                 selector, attr_val);
3366                 if (ret)
3367                         dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3368                                 __func__, ret, retries);
3369                 else
3370                         break;
3371         }
3372
3373         if (ret)
3374                 dev_err(hba->dev,
3375                         "%s: query attribute, idn %d, failed with error %d after %d retries\n",
3376                         __func__, idn, ret, QUERY_REQ_RETRIES);
3377         return ret;
3378 }
3379
3380 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3381                         enum query_opcode opcode, enum desc_idn idn, u8 index,
3382                         u8 selector, u8 *desc_buf, int *buf_len)
3383 {
3384         struct ufs_query_req *request = NULL;
3385         struct ufs_query_res *response = NULL;
3386         int err;
3387
3388         BUG_ON(!hba);
3389
3390         if (!desc_buf) {
3391                 dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3392                                 __func__, opcode);
3393                 return -EINVAL;
3394         }
3395
3396         if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3397                 dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3398                                 __func__, *buf_len);
3399                 return -EINVAL;
3400         }
3401
3402         ufshcd_hold(hba);
3403
3404         mutex_lock(&hba->dev_cmd.lock);
3405         ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3406                         selector);
3407         hba->dev_cmd.query.descriptor = desc_buf;
3408         request->upiu_req.length = cpu_to_be16(*buf_len);
3409
3410         switch (opcode) {
3411         case UPIU_QUERY_OPCODE_WRITE_DESC:
3412                 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3413                 break;
3414         case UPIU_QUERY_OPCODE_READ_DESC:
3415                 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3416                 break;
3417         default:
3418                 dev_err(hba->dev,
3419                                 "%s: Expected query descriptor opcode but got = 0x%.2x\n",
3420                                 __func__, opcode);
3421                 err = -EINVAL;
3422                 goto out_unlock;
3423         }
3424
3425         err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3426
3427         if (err) {
3428                 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3429                                 __func__, opcode, idn, index, err);
3430                 goto out_unlock;
3431         }
3432
3433         *buf_len = be16_to_cpu(response->upiu_res.length);
3434
3435 out_unlock:
3436         hba->dev_cmd.query.descriptor = NULL;
3437         mutex_unlock(&hba->dev_cmd.lock);
3438         ufshcd_release(hba);
3439         return err;
3440 }
3441
3442 /**
3443  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3444  * @hba: per-adapter instance
3445  * @opcode: attribute opcode
3446  * @idn: attribute idn to access
3447  * @index: index field
3448  * @selector: selector field
3449  * @desc_buf: the buffer that contains the descriptor
3450  * @buf_len: length parameter passed to the device
3451  *
3452  * The buf_len parameter will contain, on return, the length parameter
3453  * received on the response.
3454  *
3455  * Return: 0 for success, non-zero in case of failure.
3456  */
3457 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3458                                   enum query_opcode opcode,
3459                                   enum desc_idn idn, u8 index,
3460                                   u8 selector,
3461                                   u8 *desc_buf, int *buf_len)
3462 {
3463         int err;
3464         int retries;
3465
3466         for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3467                 err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3468                                                 selector, desc_buf, buf_len);
3469                 if (!err || err == -EINVAL)
3470                         break;
3471         }
3472
3473         return err;
3474 }
3475
3476 /**
3477  * ufshcd_read_desc_param - read the specified descriptor parameter
3478  * @hba: Pointer to adapter instance
3479  * @desc_id: descriptor idn value
3480  * @desc_index: descriptor index
3481  * @param_offset: offset of the parameter to read
3482  * @param_read_buf: pointer to buffer where parameter would be read
3483  * @param_size: sizeof(param_read_buf)
3484  *
3485  * Return: 0 in case of success, non-zero otherwise.
3486  */
3487 int ufshcd_read_desc_param(struct ufs_hba *hba,
3488                            enum desc_idn desc_id,
3489                            int desc_index,
3490                            u8 param_offset,
3491                            u8 *param_read_buf,
3492                            u8 param_size)
3493 {
3494         int ret;
3495         u8 *desc_buf;
3496         int buff_len = QUERY_DESC_MAX_SIZE;
3497         bool is_kmalloc = true;
3498
3499         /* Safety check */
3500         if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3501                 return -EINVAL;
3502
3503         /* Check whether we need temp memory */
3504         if (param_offset != 0 || param_size < buff_len) {
3505                 desc_buf = kzalloc(buff_len, GFP_KERNEL);
3506                 if (!desc_buf)
3507                         return -ENOMEM;
3508         } else {
3509                 desc_buf = param_read_buf;
3510                 is_kmalloc = false;
3511         }
3512
3513         /* Request for full descriptor */
3514         ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3515                                             desc_id, desc_index, 0,
3516                                             desc_buf, &buff_len);
3517         if (ret) {
3518                 dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3519                         __func__, desc_id, desc_index, param_offset, ret);
3520                 goto out;
3521         }
3522
3523         /* Update descriptor length */
3524         buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3525
3526         if (param_offset >= buff_len) {
3527                 dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3528                         __func__, param_offset, desc_id, buff_len);
3529                 ret = -EINVAL;
3530                 goto out;
3531         }
3532
3533         /* Sanity check */
3534         if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3535                 dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3536                         __func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3537                 ret = -EINVAL;
3538                 goto out;
3539         }
3540
3541         if (is_kmalloc) {
3542                 /* Make sure we don't copy more data than available */
3543                 if (param_offset >= buff_len)
3544                         ret = -EINVAL;
3545                 else
3546                         memcpy(param_read_buf, &desc_buf[param_offset],
3547                                min_t(u32, param_size, buff_len - param_offset));
3548         }
3549 out:
3550         if (is_kmalloc)
3551                 kfree(desc_buf);
3552         return ret;
3553 }
3554
3555 /**
3556  * struct uc_string_id - unicode string
3557  *
3558  * @len: size of this descriptor inclusive
3559  * @type: descriptor type
3560  * @uc: unicode string character
3561  */
3562 struct uc_string_id {
3563         u8 len;
3564         u8 type;
3565         wchar_t uc[];
3566 } __packed;
3567
3568 /* replace non-printable or non-ASCII characters with spaces */
3569 static inline char ufshcd_remove_non_printable(u8 ch)
3570 {
3571         return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3572 }
3573
3574 /**
3575  * ufshcd_read_string_desc - read string descriptor
3576  * @hba: pointer to adapter instance
3577  * @desc_index: descriptor index
3578  * @buf: pointer to buffer where descriptor would be read,
3579  *       the caller should free the memory.
3580  * @ascii: if true convert from unicode to ascii characters
3581  *         null terminated string.
3582  *
3583  * Return:
3584  * *      string size on success.
3585  * *      -ENOMEM: on allocation failure
3586  * *      -EINVAL: on a wrong parameter
3587  */
3588 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3589                             u8 **buf, bool ascii)
3590 {
3591         struct uc_string_id *uc_str;
3592         u8 *str;
3593         int ret;
3594
3595         if (!buf)
3596                 return -EINVAL;
3597
3598         uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3599         if (!uc_str)
3600                 return -ENOMEM;
3601
3602         ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3603                                      (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3604         if (ret < 0) {
3605                 dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3606                         QUERY_REQ_RETRIES, ret);
3607                 str = NULL;
3608                 goto out;
3609         }
3610
3611         if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3612                 dev_dbg(hba->dev, "String Desc is of zero length\n");
3613                 str = NULL;
3614                 ret = 0;
3615                 goto out;
3616         }
3617
3618         if (ascii) {
3619                 ssize_t ascii_len;
3620                 int i;
3621                 /* remove header and divide by 2 to move from UTF16 to UTF8 */
3622                 ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3623                 str = kzalloc(ascii_len, GFP_KERNEL);
3624                 if (!str) {
3625                         ret = -ENOMEM;
3626                         goto out;
3627                 }
3628
3629                 /*
3630                  * the descriptor contains string in UTF16 format
3631                  * we need to convert to utf-8 so it can be displayed
3632                  */
3633                 ret = utf16s_to_utf8s(uc_str->uc,
3634                                       uc_str->len - QUERY_DESC_HDR_SIZE,
3635                                       UTF16_BIG_ENDIAN, str, ascii_len - 1);
3636
3637                 /* replace non-printable or non-ASCII characters with spaces */
3638                 for (i = 0; i < ret; i++)
3639                         str[i] = ufshcd_remove_non_printable(str[i]);
3640
3641                 str[ret++] = '\0';
3642
3643         } else {
3644                 str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3645                 if (!str) {
3646                         ret = -ENOMEM;
3647                         goto out;
3648                 }
3649                 ret = uc_str->len;
3650         }
3651 out:
3652         *buf = str;
3653         kfree(uc_str);
3654         return ret;
3655 }
3656
3657 /**
3658  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3659  * @hba: Pointer to adapter instance
3660  * @lun: lun id
3661  * @param_offset: offset of the parameter to read
3662  * @param_read_buf: pointer to buffer where parameter would be read
3663  * @param_size: sizeof(param_read_buf)
3664  *
3665  * Return: 0 in case of success, non-zero otherwise.
3666  */
3667 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3668                                               int lun,
3669                                               enum unit_desc_param param_offset,
3670                                               u8 *param_read_buf,
3671                                               u32 param_size)
3672 {
3673         /*
3674          * Unit descriptors are only available for general purpose LUs (LUN id
3675          * from 0 to 7) and RPMB Well known LU.
3676          */
3677         if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3678                 return -EOPNOTSUPP;
3679
3680         return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3681                                       param_offset, param_read_buf, param_size);
3682 }
3683
3684 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3685 {
3686         int err = 0;
3687         u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3688
3689         if (hba->dev_info.wspecversion >= 0x300) {
3690                 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3691                                 QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3692                                 &gating_wait);
3693                 if (err)
3694                         dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3695                                          err, gating_wait);
3696
3697                 if (gating_wait == 0) {
3698                         gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3699                         dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3700                                          gating_wait);
3701                 }
3702
3703                 hba->dev_info.clk_gating_wait_us = gating_wait;
3704         }
3705
3706         return err;
3707 }
3708
3709 /**
3710  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3711  * @hba: per adapter instance
3712  *
3713  * 1. Allocate DMA memory for Command Descriptor array
3714  *      Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3715  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3716  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3717  *      (UTMRDL)
3718  * 4. Allocate memory for local reference block(lrb).
3719  *
3720  * Return: 0 for success, non-zero in case of failure.
3721  */
3722 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3723 {
3724         size_t utmrdl_size, utrdl_size, ucdl_size;
3725
3726         /* Allocate memory for UTP command descriptors */
3727         ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3728         hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3729                                                   ucdl_size,
3730                                                   &hba->ucdl_dma_addr,
3731                                                   GFP_KERNEL);
3732
3733         /*
3734          * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3735          */
3736         if (!hba->ucdl_base_addr ||
3737             WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3738                 dev_err(hba->dev,
3739                         "Command Descriptor Memory allocation failed\n");
3740                 goto out;
3741         }
3742
3743         /*
3744          * Allocate memory for UTP Transfer descriptors
3745          * UFSHCI requires 1KB alignment of UTRD
3746          */
3747         utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3748         hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3749                                                    utrdl_size,
3750                                                    &hba->utrdl_dma_addr,
3751                                                    GFP_KERNEL);
3752         if (!hba->utrdl_base_addr ||
3753             WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3754                 dev_err(hba->dev,
3755                         "Transfer Descriptor Memory allocation failed\n");
3756                 goto out;
3757         }
3758
3759         /*
3760          * Skip utmrdl allocation; it may have been
3761          * allocated during first pass and not released during
3762          * MCQ memory allocation.
3763          * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3764          */
3765         if (hba->utmrdl_base_addr)
3766                 goto skip_utmrdl;
3767         /*
3768          * Allocate memory for UTP Task Management descriptors
3769          * UFSHCI requires 1KB alignment of UTMRD
3770          */
3771         utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3772         hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3773                                                     utmrdl_size,
3774                                                     &hba->utmrdl_dma_addr,
3775                                                     GFP_KERNEL);
3776         if (!hba->utmrdl_base_addr ||
3777             WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3778                 dev_err(hba->dev,
3779                 "Task Management Descriptor Memory allocation failed\n");
3780                 goto out;
3781         }
3782
3783 skip_utmrdl:
3784         /* Allocate memory for local reference block */
3785         hba->lrb = devm_kcalloc(hba->dev,
3786                                 hba->nutrs, sizeof(struct ufshcd_lrb),
3787                                 GFP_KERNEL);
3788         if (!hba->lrb) {
3789                 dev_err(hba->dev, "LRB Memory allocation failed\n");
3790                 goto out;
3791         }
3792         return 0;
3793 out:
3794         return -ENOMEM;
3795 }
3796
3797 /**
3798  * ufshcd_host_memory_configure - configure local reference block with
3799  *                              memory offsets
3800  * @hba: per adapter instance
3801  *
3802  * Configure Host memory space
3803  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3804  * address.
3805  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3806  * and PRDT offset.
3807  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3808  * into local reference block.
3809  */
3810 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3811 {
3812         struct utp_transfer_req_desc *utrdlp;
3813         dma_addr_t cmd_desc_dma_addr;
3814         dma_addr_t cmd_desc_element_addr;
3815         u16 response_offset;
3816         u16 prdt_offset;
3817         int cmd_desc_size;
3818         int i;
3819
3820         utrdlp = hba->utrdl_base_addr;
3821
3822         response_offset =
3823                 offsetof(struct utp_transfer_cmd_desc, response_upiu);
3824         prdt_offset =
3825                 offsetof(struct utp_transfer_cmd_desc, prd_table);
3826
3827         cmd_desc_size = ufshcd_get_ucd_size(hba);
3828         cmd_desc_dma_addr = hba->ucdl_dma_addr;
3829
3830         for (i = 0; i < hba->nutrs; i++) {
3831                 /* Configure UTRD with command descriptor base address */
3832                 cmd_desc_element_addr =
3833                                 (cmd_desc_dma_addr + (cmd_desc_size * i));
3834                 utrdlp[i].command_desc_base_addr =
3835                                 cpu_to_le64(cmd_desc_element_addr);
3836
3837                 /* Response upiu and prdt offset should be in double words */
3838                 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3839                         utrdlp[i].response_upiu_offset =
3840                                 cpu_to_le16(response_offset);
3841                         utrdlp[i].prd_table_offset =
3842                                 cpu_to_le16(prdt_offset);
3843                         utrdlp[i].response_upiu_length =
3844                                 cpu_to_le16(ALIGNED_UPIU_SIZE);
3845                 } else {
3846                         utrdlp[i].response_upiu_offset =
3847                                 cpu_to_le16(response_offset >> 2);
3848                         utrdlp[i].prd_table_offset =
3849                                 cpu_to_le16(prdt_offset >> 2);
3850                         utrdlp[i].response_upiu_length =
3851                                 cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3852                 }
3853
3854                 ufshcd_init_lrb(hba, &hba->lrb[i], i);
3855         }
3856 }
3857
3858 /**
3859  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3860  * @hba: per adapter instance
3861  *
3862  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3863  * in order to initialize the Unipro link startup procedure.
3864  * Once the Unipro links are up, the device connected to the controller
3865  * is detected.
3866  *
3867  * Return: 0 on success, non-zero value on failure.
3868  */
3869 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3870 {
3871         struct uic_command uic_cmd = {0};
3872         int ret;
3873
3874         uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3875
3876         ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3877         if (ret)
3878                 dev_dbg(hba->dev,
3879                         "dme-link-startup: error code %d\n", ret);
3880         return ret;
3881 }
3882 /**
3883  * ufshcd_dme_reset - UIC command for DME_RESET
3884  * @hba: per adapter instance
3885  *
3886  * DME_RESET command is issued in order to reset UniPro stack.
3887  * This function now deals with cold reset.
3888  *
3889  * Return: 0 on success, non-zero value on failure.
3890  */
3891 static int ufshcd_dme_reset(struct ufs_hba *hba)
3892 {
3893         struct uic_command uic_cmd = {0};
3894         int ret;
3895
3896         uic_cmd.command = UIC_CMD_DME_RESET;
3897
3898         ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3899         if (ret)
3900                 dev_err(hba->dev,
3901                         "dme-reset: error code %d\n", ret);
3902
3903         return ret;
3904 }
3905
3906 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
3907                                int agreed_gear,
3908                                int adapt_val)
3909 {
3910         int ret;
3911
3912         if (agreed_gear < UFS_HS_G4)
3913                 adapt_val = PA_NO_ADAPT;
3914
3915         ret = ufshcd_dme_set(hba,
3916                              UIC_ARG_MIB(PA_TXHSADAPTTYPE),
3917                              adapt_val);
3918         return ret;
3919 }
3920 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
3921
3922 /**
3923  * ufshcd_dme_enable - UIC command for DME_ENABLE
3924  * @hba: per adapter instance
3925  *
3926  * DME_ENABLE command is issued in order to enable UniPro stack.
3927  *
3928  * Return: 0 on success, non-zero value on failure.
3929  */
3930 static int ufshcd_dme_enable(struct ufs_hba *hba)
3931 {
3932         struct uic_command uic_cmd = {0};
3933         int ret;
3934
3935         uic_cmd.command = UIC_CMD_DME_ENABLE;
3936
3937         ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3938         if (ret)
3939                 dev_err(hba->dev,
3940                         "dme-enable: error code %d\n", ret);
3941
3942         return ret;
3943 }
3944
3945 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
3946 {
3947         #define MIN_DELAY_BEFORE_DME_CMDS_US    1000
3948         unsigned long min_sleep_time_us;
3949
3950         if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
3951                 return;
3952
3953         /*
3954          * last_dme_cmd_tstamp will be 0 only for 1st call to
3955          * this function
3956          */
3957         if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
3958                 min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
3959         } else {
3960                 unsigned long delta =
3961                         (unsigned long) ktime_to_us(
3962                                 ktime_sub(ktime_get(),
3963                                 hba->last_dme_cmd_tstamp));
3964
3965                 if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
3966                         min_sleep_time_us =
3967                                 MIN_DELAY_BEFORE_DME_CMDS_US - delta;
3968                 else
3969                         return; /* no more delay required */
3970         }
3971
3972         /* allow sleep for extra 50us if needed */
3973         usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
3974 }
3975
3976 /**
3977  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
3978  * @hba: per adapter instance
3979  * @attr_sel: uic command argument1
3980  * @attr_set: attribute set type as uic command argument2
3981  * @mib_val: setting value as uic command argument3
3982  * @peer: indicate whether peer or local
3983  *
3984  * Return: 0 on success, non-zero value on failure.
3985  */
3986 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
3987                         u8 attr_set, u32 mib_val, u8 peer)
3988 {
3989         struct uic_command uic_cmd = {0};
3990         static const char *const action[] = {
3991                 "dme-set",
3992                 "dme-peer-set"
3993         };
3994         const char *set = action[!!peer];
3995         int ret;
3996         int retries = UFS_UIC_COMMAND_RETRIES;
3997
3998         uic_cmd.command = peer ?
3999                 UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
4000         uic_cmd.argument1 = attr_sel;
4001         uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
4002         uic_cmd.argument3 = mib_val;
4003
4004         do {
4005                 /* for peer attributes we retry upon failure */
4006                 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4007                 if (ret)
4008                         dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4009                                 set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4010         } while (ret && peer && --retries);
4011
4012         if (ret)
4013                 dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4014                         set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4015                         UFS_UIC_COMMAND_RETRIES - retries);
4016
4017         return ret;
4018 }
4019 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4020
4021 /**
4022  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4023  * @hba: per adapter instance
4024  * @attr_sel: uic command argument1
4025  * @mib_val: the value of the attribute as returned by the UIC command
4026  * @peer: indicate whether peer or local
4027  *
4028  * Return: 0 on success, non-zero value on failure.
4029  */
4030 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4031                         u32 *mib_val, u8 peer)
4032 {
4033         struct uic_command uic_cmd = {0};
4034         static const char *const action[] = {
4035                 "dme-get",
4036                 "dme-peer-get"
4037         };
4038         const char *get = action[!!peer];
4039         int ret;
4040         int retries = UFS_UIC_COMMAND_RETRIES;
4041         struct ufs_pa_layer_attr orig_pwr_info;
4042         struct ufs_pa_layer_attr temp_pwr_info;
4043         bool pwr_mode_change = false;
4044
4045         if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4046                 orig_pwr_info = hba->pwr_info;
4047                 temp_pwr_info = orig_pwr_info;
4048
4049                 if (orig_pwr_info.pwr_tx == FAST_MODE ||
4050                     orig_pwr_info.pwr_rx == FAST_MODE) {
4051                         temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4052                         temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4053                         pwr_mode_change = true;
4054                 } else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4055                     orig_pwr_info.pwr_rx == SLOW_MODE) {
4056                         temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4057                         temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4058                         pwr_mode_change = true;
4059                 }
4060                 if (pwr_mode_change) {
4061                         ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4062                         if (ret)
4063                                 goto out;
4064                 }
4065         }
4066
4067         uic_cmd.command = peer ?
4068                 UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
4069         uic_cmd.argument1 = attr_sel;
4070
4071         do {
4072                 /* for peer attributes we retry upon failure */
4073                 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4074                 if (ret)
4075                         dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4076                                 get, UIC_GET_ATTR_ID(attr_sel), ret);
4077         } while (ret && peer && --retries);
4078
4079         if (ret)
4080                 dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4081                         get, UIC_GET_ATTR_ID(attr_sel),
4082                         UFS_UIC_COMMAND_RETRIES - retries);
4083
4084         if (mib_val && !ret)
4085                 *mib_val = uic_cmd.argument3;
4086
4087         if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4088             && pwr_mode_change)
4089                 ufshcd_change_power_mode(hba, &orig_pwr_info);
4090 out:
4091         return ret;
4092 }
4093 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4094
4095 /**
4096  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4097  * state) and waits for it to take effect.
4098  *
4099  * @hba: per adapter instance
4100  * @cmd: UIC command to execute
4101  *
4102  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4103  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4104  * and device UniPro link and hence it's final completion would be indicated by
4105  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4106  * addition to normal UIC command completion Status (UCCS). This function only
4107  * returns after the relevant status bits indicate the completion.
4108  *
4109  * Return: 0 on success, non-zero value on failure.
4110  */
4111 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4112 {
4113         DECLARE_COMPLETION_ONSTACK(uic_async_done);
4114         unsigned long flags;
4115         u8 status;
4116         int ret;
4117         bool reenable_intr = false;
4118
4119         mutex_lock(&hba->uic_cmd_mutex);
4120         ufshcd_add_delay_before_dme_cmd(hba);
4121
4122         spin_lock_irqsave(hba->host->host_lock, flags);
4123         if (ufshcd_is_link_broken(hba)) {
4124                 ret = -ENOLINK;
4125                 goto out_unlock;
4126         }
4127         hba->uic_async_done = &uic_async_done;
4128         if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4129                 ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4130                 /*
4131                  * Make sure UIC command completion interrupt is disabled before
4132                  * issuing UIC command.
4133                  */
4134                 wmb();
4135                 reenable_intr = true;
4136         }
4137         spin_unlock_irqrestore(hba->host->host_lock, flags);
4138         ret = __ufshcd_send_uic_cmd(hba, cmd, false);
4139         if (ret) {
4140                 dev_err(hba->dev,
4141                         "pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4142                         cmd->command, cmd->argument3, ret);
4143                 goto out;
4144         }
4145
4146         if (!wait_for_completion_timeout(hba->uic_async_done,
4147                                          msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
4148                 dev_err(hba->dev,
4149                         "pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4150                         cmd->command, cmd->argument3);
4151
4152                 if (!cmd->cmd_active) {
4153                         dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4154                                 __func__);
4155                         goto check_upmcrs;
4156                 }
4157
4158                 ret = -ETIMEDOUT;
4159                 goto out;
4160         }
4161
4162 check_upmcrs:
4163         status = ufshcd_get_upmcrs(hba);
4164         if (status != PWR_LOCAL) {
4165                 dev_err(hba->dev,
4166                         "pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4167                         cmd->command, status);
4168                 ret = (status != PWR_OK) ? status : -1;
4169         }
4170 out:
4171         if (ret) {
4172                 ufshcd_print_host_state(hba);
4173                 ufshcd_print_pwr_info(hba);
4174                 ufshcd_print_evt_hist(hba);
4175         }
4176
4177         spin_lock_irqsave(hba->host->host_lock, flags);
4178         hba->active_uic_cmd = NULL;
4179         hba->uic_async_done = NULL;
4180         if (reenable_intr)
4181                 ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4182         if (ret) {
4183                 ufshcd_set_link_broken(hba);
4184                 ufshcd_schedule_eh_work(hba);
4185         }
4186 out_unlock:
4187         spin_unlock_irqrestore(hba->host->host_lock, flags);
4188         mutex_unlock(&hba->uic_cmd_mutex);
4189
4190         return ret;
4191 }
4192
4193 /**
4194  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4195  *                              using DME_SET primitives.
4196  * @hba: per adapter instance
4197  * @mode: powr mode value
4198  *
4199  * Return: 0 on success, non-zero value on failure.
4200  */
4201 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4202 {
4203         struct uic_command uic_cmd = {0};
4204         int ret;
4205
4206         if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4207                 ret = ufshcd_dme_set(hba,
4208                                 UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4209                 if (ret) {
4210                         dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4211                                                 __func__, ret);
4212                         goto out;
4213                 }
4214         }
4215
4216         uic_cmd.command = UIC_CMD_DME_SET;
4217         uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
4218         uic_cmd.argument3 = mode;
4219         ufshcd_hold(hba);
4220         ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4221         ufshcd_release(hba);
4222
4223 out:
4224         return ret;
4225 }
4226 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4227
4228 int ufshcd_link_recovery(struct ufs_hba *hba)
4229 {
4230         int ret;
4231         unsigned long flags;
4232
4233         spin_lock_irqsave(hba->host->host_lock, flags);
4234         hba->ufshcd_state = UFSHCD_STATE_RESET;
4235         ufshcd_set_eh_in_progress(hba);
4236         spin_unlock_irqrestore(hba->host->host_lock, flags);
4237
4238         /* Reset the attached device */
4239         ufshcd_device_reset(hba);
4240
4241         ret = ufshcd_host_reset_and_restore(hba);
4242
4243         spin_lock_irqsave(hba->host->host_lock, flags);
4244         if (ret)
4245                 hba->ufshcd_state = UFSHCD_STATE_ERROR;
4246         ufshcd_clear_eh_in_progress(hba);
4247         spin_unlock_irqrestore(hba->host->host_lock, flags);
4248
4249         if (ret)
4250                 dev_err(hba->dev, "%s: link recovery failed, err %d",
4251                         __func__, ret);
4252
4253         return ret;
4254 }
4255 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4256
4257 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4258 {
4259         int ret;
4260         struct uic_command uic_cmd = {0};
4261         ktime_t start = ktime_get();
4262
4263         ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4264
4265         uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
4266         ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4267         trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4268                              ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4269
4270         if (ret)
4271                 dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4272                         __func__, ret);
4273         else
4274                 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4275                                                                 POST_CHANGE);
4276
4277         return ret;
4278 }
4279 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4280
4281 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4282 {
4283         struct uic_command uic_cmd = {0};
4284         int ret;
4285         ktime_t start = ktime_get();
4286
4287         ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4288
4289         uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4290         ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4291         trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4292                              ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4293
4294         if (ret) {
4295                 dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4296                         __func__, ret);
4297         } else {
4298                 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4299                                                                 POST_CHANGE);
4300                 hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4301                 hba->ufs_stats.hibern8_exit_cnt++;
4302         }
4303
4304         return ret;
4305 }
4306 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4307
4308 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4309 {
4310         unsigned long flags;
4311         bool update = false;
4312
4313         if (!ufshcd_is_auto_hibern8_supported(hba))
4314                 return;
4315
4316         spin_lock_irqsave(hba->host->host_lock, flags);
4317         if (hba->ahit != ahit) {
4318                 hba->ahit = ahit;
4319                 update = true;
4320         }
4321         spin_unlock_irqrestore(hba->host->host_lock, flags);
4322
4323         if (update &&
4324             !pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4325                 ufshcd_rpm_get_sync(hba);
4326                 ufshcd_hold(hba);
4327                 ufshcd_auto_hibern8_enable(hba);
4328                 ufshcd_release(hba);
4329                 ufshcd_rpm_put_sync(hba);
4330         }
4331 }
4332 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4333
4334 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba)
4335 {
4336         if (!ufshcd_is_auto_hibern8_supported(hba))
4337                 return;
4338
4339         ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4340 }
4341
4342  /**
4343  * ufshcd_init_pwr_info - setting the POR (power on reset)
4344  * values in hba power info
4345  * @hba: per-adapter instance
4346  */
4347 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4348 {
4349         hba->pwr_info.gear_rx = UFS_PWM_G1;
4350         hba->pwr_info.gear_tx = UFS_PWM_G1;
4351         hba->pwr_info.lane_rx = UFS_LANE_1;
4352         hba->pwr_info.lane_tx = UFS_LANE_1;
4353         hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4354         hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4355         hba->pwr_info.hs_rate = 0;
4356 }
4357
4358 /**
4359  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4360  * @hba: per-adapter instance
4361  *
4362  * Return: 0 upon success; < 0 upon failure.
4363  */
4364 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4365 {
4366         struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4367
4368         if (hba->max_pwr_info.is_valid)
4369                 return 0;
4370
4371         if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4372                 pwr_info->pwr_tx = FASTAUTO_MODE;
4373                 pwr_info->pwr_rx = FASTAUTO_MODE;
4374         } else {
4375                 pwr_info->pwr_tx = FAST_MODE;
4376                 pwr_info->pwr_rx = FAST_MODE;
4377         }
4378         pwr_info->hs_rate = PA_HS_MODE_B;
4379
4380         /* Get the connected lane count */
4381         ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4382                         &pwr_info->lane_rx);
4383         ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4384                         &pwr_info->lane_tx);
4385
4386         if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4387                 dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4388                                 __func__,
4389                                 pwr_info->lane_rx,
4390                                 pwr_info->lane_tx);
4391                 return -EINVAL;
4392         }
4393
4394         /*
4395          * First, get the maximum gears of HS speed.
4396          * If a zero value, it means there is no HSGEAR capability.
4397          * Then, get the maximum gears of PWM speed.
4398          */
4399         ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4400         if (!pwr_info->gear_rx) {
4401                 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4402                                 &pwr_info->gear_rx);
4403                 if (!pwr_info->gear_rx) {
4404                         dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4405                                 __func__, pwr_info->gear_rx);
4406                         return -EINVAL;
4407                 }
4408                 pwr_info->pwr_rx = SLOW_MODE;
4409         }
4410
4411         ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4412                         &pwr_info->gear_tx);
4413         if (!pwr_info->gear_tx) {
4414                 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4415                                 &pwr_info->gear_tx);
4416                 if (!pwr_info->gear_tx) {
4417                         dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4418                                 __func__, pwr_info->gear_tx);
4419                         return -EINVAL;
4420                 }
4421                 pwr_info->pwr_tx = SLOW_MODE;
4422         }
4423
4424         hba->max_pwr_info.is_valid = true;
4425         return 0;
4426 }
4427
4428 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4429                              struct ufs_pa_layer_attr *pwr_mode)
4430 {
4431         int ret;
4432
4433         /* if already configured to the requested pwr_mode */
4434         if (!hba->force_pmc &&
4435             pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4436             pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4437             pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4438             pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4439             pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4440             pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4441             pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4442                 dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4443                 return 0;
4444         }
4445
4446         /*
4447          * Configure attributes for power mode change with below.
4448          * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4449          * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4450          * - PA_HSSERIES
4451          */
4452         ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4453         ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4454                         pwr_mode->lane_rx);
4455         if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4456                         pwr_mode->pwr_rx == FAST_MODE)
4457                 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4458         else
4459                 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4460
4461         ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4462         ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4463                         pwr_mode->lane_tx);
4464         if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4465                         pwr_mode->pwr_tx == FAST_MODE)
4466                 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4467         else
4468                 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4469
4470         if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4471             pwr_mode->pwr_tx == FASTAUTO_MODE ||
4472             pwr_mode->pwr_rx == FAST_MODE ||
4473             pwr_mode->pwr_tx == FAST_MODE)
4474                 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4475                                                 pwr_mode->hs_rate);
4476
4477         if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4478                 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4479                                 DL_FC0ProtectionTimeOutVal_Default);
4480                 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4481                                 DL_TC0ReplayTimeOutVal_Default);
4482                 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4483                                 DL_AFC0ReqTimeOutVal_Default);
4484                 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4485                                 DL_FC1ProtectionTimeOutVal_Default);
4486                 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4487                                 DL_TC1ReplayTimeOutVal_Default);
4488                 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4489                                 DL_AFC1ReqTimeOutVal_Default);
4490
4491                 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4492                                 DL_FC0ProtectionTimeOutVal_Default);
4493                 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4494                                 DL_TC0ReplayTimeOutVal_Default);
4495                 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4496                                 DL_AFC0ReqTimeOutVal_Default);
4497         }
4498
4499         ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4500                         | pwr_mode->pwr_tx);
4501
4502         if (ret) {
4503                 dev_err(hba->dev,
4504                         "%s: power mode change failed %d\n", __func__, ret);
4505         } else {
4506                 ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4507                                                                 pwr_mode);
4508
4509                 memcpy(&hba->pwr_info, pwr_mode,
4510                         sizeof(struct ufs_pa_layer_attr));
4511         }
4512
4513         return ret;
4514 }
4515
4516 /**
4517  * ufshcd_config_pwr_mode - configure a new power mode
4518  * @hba: per-adapter instance
4519  * @desired_pwr_mode: desired power configuration
4520  *
4521  * Return: 0 upon success; < 0 upon failure.
4522  */
4523 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4524                 struct ufs_pa_layer_attr *desired_pwr_mode)
4525 {
4526         struct ufs_pa_layer_attr final_params = { 0 };
4527         int ret;
4528
4529         ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4530                                         desired_pwr_mode, &final_params);
4531
4532         if (ret)
4533                 memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4534
4535         ret = ufshcd_change_power_mode(hba, &final_params);
4536
4537         return ret;
4538 }
4539 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4540
4541 /**
4542  * ufshcd_complete_dev_init() - checks device readiness
4543  * @hba: per-adapter instance
4544  *
4545  * Set fDeviceInit flag and poll until device toggles it.
4546  *
4547  * Return: 0 upon success; < 0 upon failure.
4548  */
4549 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4550 {
4551         int err;
4552         bool flag_res = true;
4553         ktime_t timeout;
4554
4555         err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4556                 QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4557         if (err) {
4558                 dev_err(hba->dev,
4559                         "%s: setting fDeviceInit flag failed with error %d\n",
4560                         __func__, err);
4561                 goto out;
4562         }
4563
4564         /* Poll fDeviceInit flag to be cleared */
4565         timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4566         do {
4567                 err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4568                                         QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4569                 if (!flag_res)
4570                         break;
4571                 usleep_range(500, 1000);
4572         } while (ktime_before(ktime_get(), timeout));
4573
4574         if (err) {
4575                 dev_err(hba->dev,
4576                                 "%s: reading fDeviceInit flag failed with error %d\n",
4577                                 __func__, err);
4578         } else if (flag_res) {
4579                 dev_err(hba->dev,
4580                                 "%s: fDeviceInit was not cleared by the device\n",
4581                                 __func__);
4582                 err = -EBUSY;
4583         }
4584 out:
4585         return err;
4586 }
4587
4588 /**
4589  * ufshcd_make_hba_operational - Make UFS controller operational
4590  * @hba: per adapter instance
4591  *
4592  * To bring UFS host controller to operational state,
4593  * 1. Enable required interrupts
4594  * 2. Configure interrupt aggregation
4595  * 3. Program UTRL and UTMRL base address
4596  * 4. Configure run-stop-registers
4597  *
4598  * Return: 0 on success, non-zero value on failure.
4599  */
4600 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4601 {
4602         int err = 0;
4603         u32 reg;
4604
4605         /* Enable required interrupts */
4606         ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4607
4608         /* Configure interrupt aggregation */
4609         if (ufshcd_is_intr_aggr_allowed(hba))
4610                 ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4611         else
4612                 ufshcd_disable_intr_aggr(hba);
4613
4614         /* Configure UTRL and UTMRL base address registers */
4615         ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4616                         REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4617         ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4618                         REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4619         ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4620                         REG_UTP_TASK_REQ_LIST_BASE_L);
4621         ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4622                         REG_UTP_TASK_REQ_LIST_BASE_H);
4623
4624         /*
4625          * Make sure base address and interrupt setup are updated before
4626          * enabling the run/stop registers below.
4627          */
4628         wmb();
4629
4630         /*
4631          * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4632          */
4633         reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4634         if (!(ufshcd_get_lists_status(reg))) {
4635                 ufshcd_enable_run_stop_reg(hba);
4636         } else {
4637                 dev_err(hba->dev,
4638                         "Host controller not ready to process requests");
4639                 err = -EIO;
4640         }
4641
4642         return err;
4643 }
4644 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4645
4646 /**
4647  * ufshcd_hba_stop - Send controller to reset state
4648  * @hba: per adapter instance
4649  */
4650 void ufshcd_hba_stop(struct ufs_hba *hba)
4651 {
4652         unsigned long flags;
4653         int err;
4654
4655         /*
4656          * Obtain the host lock to prevent that the controller is disabled
4657          * while the UFS interrupt handler is active on another CPU.
4658          */
4659         spin_lock_irqsave(hba->host->host_lock, flags);
4660         ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4661         spin_unlock_irqrestore(hba->host->host_lock, flags);
4662
4663         err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4664                                         CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4665                                         10, 1);
4666         if (err)
4667                 dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4668 }
4669 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4670
4671 /**
4672  * ufshcd_hba_execute_hce - initialize the controller
4673  * @hba: per adapter instance
4674  *
4675  * The controller resets itself and controller firmware initialization
4676  * sequence kicks off. When controller is ready it will set
4677  * the Host Controller Enable bit to 1.
4678  *
4679  * Return: 0 on success, non-zero value on failure.
4680  */
4681 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4682 {
4683         int retry_outer = 3;
4684         int retry_inner;
4685
4686 start:
4687         if (ufshcd_is_hba_active(hba))
4688                 /* change controller state to "reset state" */
4689                 ufshcd_hba_stop(hba);
4690
4691         /* UniPro link is disabled at this point */
4692         ufshcd_set_link_off(hba);
4693
4694         ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4695
4696         /* start controller initialization sequence */
4697         ufshcd_hba_start(hba);
4698
4699         /*
4700          * To initialize a UFS host controller HCE bit must be set to 1.
4701          * During initialization the HCE bit value changes from 1->0->1.
4702          * When the host controller completes initialization sequence
4703          * it sets the value of HCE bit to 1. The same HCE bit is read back
4704          * to check if the controller has completed initialization sequence.
4705          * So without this delay the value HCE = 1, set in the previous
4706          * instruction might be read back.
4707          * This delay can be changed based on the controller.
4708          */
4709         ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4710
4711         /* wait for the host controller to complete initialization */
4712         retry_inner = 50;
4713         while (!ufshcd_is_hba_active(hba)) {
4714                 if (retry_inner) {
4715                         retry_inner--;
4716                 } else {
4717                         dev_err(hba->dev,
4718                                 "Controller enable failed\n");
4719                         if (retry_outer) {
4720                                 retry_outer--;
4721                                 goto start;
4722                         }
4723                         return -EIO;
4724                 }
4725                 usleep_range(1000, 1100);
4726         }
4727
4728         /* enable UIC related interrupts */
4729         ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4730
4731         ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4732
4733         return 0;
4734 }
4735
4736 int ufshcd_hba_enable(struct ufs_hba *hba)
4737 {
4738         int ret;
4739
4740         if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4741                 ufshcd_set_link_off(hba);
4742                 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4743
4744                 /* enable UIC related interrupts */
4745                 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4746                 ret = ufshcd_dme_reset(hba);
4747                 if (ret) {
4748                         dev_err(hba->dev, "DME_RESET failed\n");
4749                         return ret;
4750                 }
4751
4752                 ret = ufshcd_dme_enable(hba);
4753                 if (ret) {
4754                         dev_err(hba->dev, "Enabling DME failed\n");
4755                         return ret;
4756                 }
4757
4758                 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4759         } else {
4760                 ret = ufshcd_hba_execute_hce(hba);
4761         }
4762
4763         return ret;
4764 }
4765 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4766
4767 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4768 {
4769         int tx_lanes = 0, i, err = 0;
4770
4771         if (!peer)
4772                 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4773                                &tx_lanes);
4774         else
4775                 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4776                                     &tx_lanes);
4777         for (i = 0; i < tx_lanes; i++) {
4778                 if (!peer)
4779                         err = ufshcd_dme_set(hba,
4780                                 UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4781                                         UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4782                                         0);
4783                 else
4784                         err = ufshcd_dme_peer_set(hba,
4785                                 UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4786                                         UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4787                                         0);
4788                 if (err) {
4789                         dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4790                                 __func__, peer, i, err);
4791                         break;
4792                 }
4793         }
4794
4795         return err;
4796 }
4797
4798 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4799 {
4800         return ufshcd_disable_tx_lcc(hba, true);
4801 }
4802
4803 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4804 {
4805         struct ufs_event_hist *e;
4806
4807         if (id >= UFS_EVT_CNT)
4808                 return;
4809
4810         e = &hba->ufs_stats.event[id];
4811         e->val[e->pos] = val;
4812         e->tstamp[e->pos] = local_clock();
4813         e->cnt += 1;
4814         e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4815
4816         ufshcd_vops_event_notify(hba, id, &val);
4817 }
4818 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4819
4820 /**
4821  * ufshcd_link_startup - Initialize unipro link startup
4822  * @hba: per adapter instance
4823  *
4824  * Return: 0 for success, non-zero in case of failure.
4825  */
4826 static int ufshcd_link_startup(struct ufs_hba *hba)
4827 {
4828         int ret;
4829         int retries = DME_LINKSTARTUP_RETRIES;
4830         bool link_startup_again = false;
4831
4832         /*
4833          * If UFS device isn't active then we will have to issue link startup
4834          * 2 times to make sure the device state move to active.
4835          */
4836         if (!ufshcd_is_ufs_dev_active(hba))
4837                 link_startup_again = true;
4838
4839 link_startup:
4840         do {
4841                 ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4842
4843                 ret = ufshcd_dme_link_startup(hba);
4844
4845                 /* check if device is detected by inter-connect layer */
4846                 if (!ret && !ufshcd_is_device_present(hba)) {
4847                         ufshcd_update_evt_hist(hba,
4848                                                UFS_EVT_LINK_STARTUP_FAIL,
4849                                                0);
4850                         dev_err(hba->dev, "%s: Device not present\n", __func__);
4851                         ret = -ENXIO;
4852                         goto out;
4853                 }
4854
4855                 /*
4856                  * DME link lost indication is only received when link is up,
4857                  * but we can't be sure if the link is up until link startup
4858                  * succeeds. So reset the local Uni-Pro and try again.
4859                  */
4860                 if (ret && retries && ufshcd_hba_enable(hba)) {
4861                         ufshcd_update_evt_hist(hba,
4862                                                UFS_EVT_LINK_STARTUP_FAIL,
4863                                                (u32)ret);
4864                         goto out;
4865                 }
4866         } while (ret && retries--);
4867
4868         if (ret) {
4869                 /* failed to get the link up... retire */
4870                 ufshcd_update_evt_hist(hba,
4871                                        UFS_EVT_LINK_STARTUP_FAIL,
4872                                        (u32)ret);
4873                 goto out;
4874         }
4875
4876         if (link_startup_again) {
4877                 link_startup_again = false;
4878                 retries = DME_LINKSTARTUP_RETRIES;
4879                 goto link_startup;
4880         }
4881
4882         /* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4883         ufshcd_init_pwr_info(hba);
4884         ufshcd_print_pwr_info(hba);
4885
4886         if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4887                 ret = ufshcd_disable_device_tx_lcc(hba);
4888                 if (ret)
4889                         goto out;
4890         }
4891
4892         /* Include any host controller configuration via UIC commands */
4893         ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4894         if (ret)
4895                 goto out;
4896
4897         /* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
4898         ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
4899         ret = ufshcd_make_hba_operational(hba);
4900 out:
4901         if (ret) {
4902                 dev_err(hba->dev, "link startup failed %d\n", ret);
4903                 ufshcd_print_host_state(hba);
4904                 ufshcd_print_pwr_info(hba);
4905                 ufshcd_print_evt_hist(hba);
4906         }
4907         return ret;
4908 }
4909
4910 /**
4911  * ufshcd_verify_dev_init() - Verify device initialization
4912  * @hba: per-adapter instance
4913  *
4914  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
4915  * device Transport Protocol (UTP) layer is ready after a reset.
4916  * If the UTP layer at the device side is not initialized, it may
4917  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
4918  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
4919  *
4920  * Return: 0 upon success; < 0 upon failure.
4921  */
4922 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
4923 {
4924         int err = 0;
4925         int retries;
4926
4927         ufshcd_hold(hba);
4928         mutex_lock(&hba->dev_cmd.lock);
4929         for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
4930                 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
4931                                           hba->nop_out_timeout);
4932
4933                 if (!err || err == -ETIMEDOUT)
4934                         break;
4935
4936                 dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
4937         }
4938         mutex_unlock(&hba->dev_cmd.lock);
4939         ufshcd_release(hba);
4940
4941         if (err)
4942                 dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
4943         return err;
4944 }
4945
4946 /**
4947  * ufshcd_setup_links - associate link b/w device wlun and other luns
4948  * @sdev: pointer to SCSI device
4949  * @hba: pointer to ufs hba
4950  */
4951 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
4952 {
4953         struct device_link *link;
4954
4955         /*
4956          * Device wlun is the supplier & rest of the luns are consumers.
4957          * This ensures that device wlun suspends after all other luns.
4958          */
4959         if (hba->ufs_device_wlun) {
4960                 link = device_link_add(&sdev->sdev_gendev,
4961                                        &hba->ufs_device_wlun->sdev_gendev,
4962                                        DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
4963                 if (!link) {
4964                         dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
4965                                 dev_name(&hba->ufs_device_wlun->sdev_gendev));
4966                         return;
4967                 }
4968                 hba->luns_avail--;
4969                 /* Ignore REPORT_LUN wlun probing */
4970                 if (hba->luns_avail == 1) {
4971                         ufshcd_rpm_put(hba);
4972                         return;
4973                 }
4974         } else {
4975                 /*
4976                  * Device wlun is probed. The assumption is that WLUNs are
4977                  * scanned before other LUNs.
4978                  */
4979                 hba->luns_avail--;
4980         }
4981 }
4982
4983 /**
4984  * ufshcd_lu_init - Initialize the relevant parameters of the LU
4985  * @hba: per-adapter instance
4986  * @sdev: pointer to SCSI device
4987  */
4988 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
4989 {
4990         int len = QUERY_DESC_MAX_SIZE;
4991         u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
4992         u8 lun_qdepth = hba->nutrs;
4993         u8 *desc_buf;
4994         int ret;
4995
4996         desc_buf = kzalloc(len, GFP_KERNEL);
4997         if (!desc_buf)
4998                 goto set_qdepth;
4999
5000         ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5001         if (ret < 0) {
5002                 if (ret == -EOPNOTSUPP)
5003                         /* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5004                         lun_qdepth = 1;
5005                 kfree(desc_buf);
5006                 goto set_qdepth;
5007         }
5008
5009         if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5010                 /*
5011                  * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5012                  * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5013                  */
5014                 lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5015         }
5016         /*
5017          * According to UFS device specification, the write protection mode is only supported by
5018          * normal LU, not supported by WLUN.
5019          */
5020         if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5021             !hba->dev_info.is_lu_power_on_wp &&
5022             desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5023                 hba->dev_info.is_lu_power_on_wp = true;
5024
5025         /* In case of RPMB LU, check if advanced RPMB mode is enabled */
5026         if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5027             desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5028                 hba->dev_info.b_advanced_rpmb_en = true;
5029
5030
5031         kfree(desc_buf);
5032 set_qdepth:
5033         /*
5034          * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5035          * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5036          */
5037         dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5038         scsi_change_queue_depth(sdev, lun_qdepth);
5039 }
5040
5041 /**
5042  * ufshcd_slave_alloc - handle initial SCSI device configurations
5043  * @sdev: pointer to SCSI device
5044  *
5045  * Return: success.
5046  */
5047 static int ufshcd_slave_alloc(struct scsi_device *sdev)
5048 {
5049         struct ufs_hba *hba;
5050
5051         hba = shost_priv(sdev->host);
5052
5053         /* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5054         sdev->use_10_for_ms = 1;
5055
5056         /* DBD field should be set to 1 in mode sense(10) */
5057         sdev->set_dbd_for_ms = 1;
5058
5059         /* allow SCSI layer to restart the device in case of errors */
5060         sdev->allow_restart = 1;
5061
5062         /* REPORT SUPPORTED OPERATION CODES is not supported */
5063         sdev->no_report_opcodes = 1;
5064
5065         /* WRITE_SAME command is not supported */
5066         sdev->no_write_same = 1;
5067
5068         ufshcd_lu_init(hba, sdev);
5069
5070         ufshcd_setup_links(hba, sdev);
5071
5072         return 0;
5073 }
5074
5075 /**
5076  * ufshcd_change_queue_depth - change queue depth
5077  * @sdev: pointer to SCSI device
5078  * @depth: required depth to set
5079  *
5080  * Change queue depth and make sure the max. limits are not crossed.
5081  *
5082  * Return: new queue depth.
5083  */
5084 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5085 {
5086         return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5087 }
5088
5089 /**
5090  * ufshcd_slave_configure - adjust SCSI device configurations
5091  * @sdev: pointer to SCSI device
5092  *
5093  * Return: 0 (success).
5094  */
5095 static int ufshcd_slave_configure(struct scsi_device *sdev)
5096 {
5097         struct ufs_hba *hba = shost_priv(sdev->host);
5098         struct request_queue *q = sdev->request_queue;
5099
5100         blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
5101         if (hba->quirks & UFSHCD_QUIRK_4KB_DMA_ALIGNMENT)
5102                 blk_queue_update_dma_alignment(q, SZ_4K - 1);
5103         /*
5104          * Block runtime-pm until all consumers are added.
5105          * Refer ufshcd_setup_links().
5106          */
5107         if (is_device_wlun(sdev))
5108                 pm_runtime_get_noresume(&sdev->sdev_gendev);
5109         else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5110                 sdev->rpm_autosuspend = 1;
5111         /*
5112          * Do not print messages during runtime PM to avoid never-ending cycles
5113          * of messages written back to storage by user space causing runtime
5114          * resume, causing more messages and so on.
5115          */
5116         sdev->silence_suspend = 1;
5117
5118         ufshcd_crypto_register(hba, q);
5119
5120         return 0;
5121 }
5122
5123 /**
5124  * ufshcd_slave_destroy - remove SCSI device configurations
5125  * @sdev: pointer to SCSI device
5126  */
5127 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5128 {
5129         struct ufs_hba *hba;
5130         unsigned long flags;
5131
5132         hba = shost_priv(sdev->host);
5133
5134         /* Drop the reference as it won't be needed anymore */
5135         if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5136                 spin_lock_irqsave(hba->host->host_lock, flags);
5137                 hba->ufs_device_wlun = NULL;
5138                 spin_unlock_irqrestore(hba->host->host_lock, flags);
5139         } else if (hba->ufs_device_wlun) {
5140                 struct device *supplier = NULL;
5141
5142                 /* Ensure UFS Device WLUN exists and does not disappear */
5143                 spin_lock_irqsave(hba->host->host_lock, flags);
5144                 if (hba->ufs_device_wlun) {
5145                         supplier = &hba->ufs_device_wlun->sdev_gendev;
5146                         get_device(supplier);
5147                 }
5148                 spin_unlock_irqrestore(hba->host->host_lock, flags);
5149
5150                 if (supplier) {
5151                         /*
5152                          * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5153                          * device will not have been registered but can still
5154                          * have a device link holding a reference to the device.
5155                          */
5156                         device_link_remove(&sdev->sdev_gendev, supplier);
5157                         put_device(supplier);
5158                 }
5159         }
5160 }
5161
5162 /**
5163  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5164  * @lrbp: pointer to local reference block of completed command
5165  * @scsi_status: SCSI command status
5166  *
5167  * Return: value base on SCSI command status.
5168  */
5169 static inline int
5170 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5171 {
5172         int result = 0;
5173
5174         switch (scsi_status) {
5175         case SAM_STAT_CHECK_CONDITION:
5176                 ufshcd_copy_sense_data(lrbp);
5177                 fallthrough;
5178         case SAM_STAT_GOOD:
5179                 result |= DID_OK << 16 | scsi_status;
5180                 break;
5181         case SAM_STAT_TASK_SET_FULL:
5182         case SAM_STAT_BUSY:
5183         case SAM_STAT_TASK_ABORTED:
5184                 ufshcd_copy_sense_data(lrbp);
5185                 result |= scsi_status;
5186                 break;
5187         default:
5188                 result |= DID_ERROR << 16;
5189                 break;
5190         } /* end of switch */
5191
5192         return result;
5193 }
5194
5195 /**
5196  * ufshcd_transfer_rsp_status - Get overall status of the response
5197  * @hba: per adapter instance
5198  * @lrbp: pointer to local reference block of completed command
5199  * @cqe: pointer to the completion queue entry
5200  *
5201  * Return: result of the command to notify SCSI midlayer.
5202  */
5203 static inline int
5204 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5205                            struct cq_entry *cqe)
5206 {
5207         int result = 0;
5208         int scsi_status;
5209         enum utp_ocs ocs;
5210         u8 upiu_flags;
5211         u32 resid;
5212
5213         upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5214         resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5215         /*
5216          * Test !overflow instead of underflow to support UFS devices that do
5217          * not set either flag.
5218          */
5219         if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5220                 scsi_set_resid(lrbp->cmd, resid);
5221
5222         /* overall command status of utrd */
5223         ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5224
5225         if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5226                 if (lrbp->ucd_rsp_ptr->header.response ||
5227                     lrbp->ucd_rsp_ptr->header.status)
5228                         ocs = OCS_SUCCESS;
5229         }
5230
5231         switch (ocs) {
5232         case OCS_SUCCESS:
5233                 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5234                 switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5235                 case UPIU_TRANSACTION_RESPONSE:
5236                         /*
5237                          * get the result based on SCSI status response
5238                          * to notify the SCSI midlayer of the command status
5239                          */
5240                         scsi_status = lrbp->ucd_rsp_ptr->header.status;
5241                         result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5242
5243                         /*
5244                          * Currently we are only supporting BKOPs exception
5245                          * events hence we can ignore BKOPs exception event
5246                          * during power management callbacks. BKOPs exception
5247                          * event is not expected to be raised in runtime suspend
5248                          * callback as it allows the urgent bkops.
5249                          * During system suspend, we are anyway forcefully
5250                          * disabling the bkops and if urgent bkops is needed
5251                          * it will be enabled on system resume. Long term
5252                          * solution could be to abort the system suspend if
5253                          * UFS device needs urgent BKOPs.
5254                          */
5255                         if (!hba->pm_op_in_progress &&
5256                             !ufshcd_eh_in_progress(hba) &&
5257                             ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5258                                 /* Flushed in suspend */
5259                                 schedule_work(&hba->eeh_work);
5260                         break;
5261                 case UPIU_TRANSACTION_REJECT_UPIU:
5262                         /* TODO: handle Reject UPIU Response */
5263                         result = DID_ERROR << 16;
5264                         dev_err(hba->dev,
5265                                 "Reject UPIU not fully implemented\n");
5266                         break;
5267                 default:
5268                         dev_err(hba->dev,
5269                                 "Unexpected request response code = %x\n",
5270                                 result);
5271                         result = DID_ERROR << 16;
5272                         break;
5273                 }
5274                 break;
5275         case OCS_ABORTED:
5276                 result |= DID_ABORT << 16;
5277                 break;
5278         case OCS_INVALID_COMMAND_STATUS:
5279                 result |= DID_REQUEUE << 16;
5280                 break;
5281         case OCS_INVALID_CMD_TABLE_ATTR:
5282         case OCS_INVALID_PRDT_ATTR:
5283         case OCS_MISMATCH_DATA_BUF_SIZE:
5284         case OCS_MISMATCH_RESP_UPIU_SIZE:
5285         case OCS_PEER_COMM_FAILURE:
5286         case OCS_FATAL_ERROR:
5287         case OCS_DEVICE_FATAL_ERROR:
5288         case OCS_INVALID_CRYPTO_CONFIG:
5289         case OCS_GENERAL_CRYPTO_ERROR:
5290         default:
5291                 result |= DID_ERROR << 16;
5292                 dev_err(hba->dev,
5293                                 "OCS error from controller = %x for tag %d\n",
5294                                 ocs, lrbp->task_tag);
5295                 ufshcd_print_evt_hist(hba);
5296                 ufshcd_print_host_state(hba);
5297                 break;
5298         } /* end of switch */
5299
5300         if ((host_byte(result) != DID_OK) &&
5301             (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5302                 ufshcd_print_tr(hba, lrbp->task_tag, true);
5303         return result;
5304 }
5305
5306 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5307                                          u32 intr_mask)
5308 {
5309         if (!ufshcd_is_auto_hibern8_supported(hba) ||
5310             !ufshcd_is_auto_hibern8_enabled(hba))
5311                 return false;
5312
5313         if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5314                 return false;
5315
5316         if (hba->active_uic_cmd &&
5317             (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5318             hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5319                 return false;
5320
5321         return true;
5322 }
5323
5324 /**
5325  * ufshcd_uic_cmd_compl - handle completion of uic command
5326  * @hba: per adapter instance
5327  * @intr_status: interrupt status generated by the controller
5328  *
5329  * Return:
5330  *  IRQ_HANDLED - If interrupt is valid
5331  *  IRQ_NONE    - If invalid interrupt
5332  */
5333 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5334 {
5335         irqreturn_t retval = IRQ_NONE;
5336
5337         spin_lock(hba->host->host_lock);
5338         if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5339                 hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5340
5341         if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
5342                 hba->active_uic_cmd->argument2 |=
5343                         ufshcd_get_uic_cmd_result(hba);
5344                 hba->active_uic_cmd->argument3 =
5345                         ufshcd_get_dme_attr_val(hba);
5346                 if (!hba->uic_async_done)
5347                         hba->active_uic_cmd->cmd_active = 0;
5348                 complete(&hba->active_uic_cmd->done);
5349                 retval = IRQ_HANDLED;
5350         }
5351
5352         if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
5353                 hba->active_uic_cmd->cmd_active = 0;
5354                 complete(hba->uic_async_done);
5355                 retval = IRQ_HANDLED;
5356         }
5357
5358         if (retval == IRQ_HANDLED)
5359                 ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
5360                                              UFS_CMD_COMP);
5361         spin_unlock(hba->host->host_lock);
5362         return retval;
5363 }
5364
5365 /* Release the resources allocated for processing a SCSI command. */
5366 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5367                              struct ufshcd_lrb *lrbp)
5368 {
5369         struct scsi_cmnd *cmd = lrbp->cmd;
5370
5371         scsi_dma_unmap(cmd);
5372         ufshcd_release(hba);
5373         ufshcd_clk_scaling_update_busy(hba);
5374 }
5375
5376 /**
5377  * ufshcd_compl_one_cqe - handle a completion queue entry
5378  * @hba: per adapter instance
5379  * @task_tag: the task tag of the request to be completed
5380  * @cqe: pointer to the completion queue entry
5381  */
5382 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5383                           struct cq_entry *cqe)
5384 {
5385         struct ufshcd_lrb *lrbp;
5386         struct scsi_cmnd *cmd;
5387         enum utp_ocs ocs;
5388
5389         lrbp = &hba->lrb[task_tag];
5390         lrbp->compl_time_stamp = ktime_get();
5391         cmd = lrbp->cmd;
5392         if (cmd) {
5393                 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5394                         ufshcd_update_monitor(hba, lrbp);
5395                 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5396                 cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5397                 ufshcd_release_scsi_cmd(hba, lrbp);
5398                 /* Do not touch lrbp after scsi done */
5399                 scsi_done(cmd);
5400         } else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
5401                    lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
5402                 if (hba->dev_cmd.complete) {
5403                         if (cqe) {
5404                                 ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5405                                 lrbp->utr_descriptor_ptr->header.ocs = ocs;
5406                         }
5407                         complete(hba->dev_cmd.complete);
5408                         ufshcd_clk_scaling_update_busy(hba);
5409                 }
5410         }
5411 }
5412
5413 /**
5414  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5415  * @hba: per adapter instance
5416  * @completed_reqs: bitmask that indicates which requests to complete
5417  */
5418 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5419                                         unsigned long completed_reqs)
5420 {
5421         int tag;
5422
5423         for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5424                 ufshcd_compl_one_cqe(hba, tag, NULL);
5425 }
5426
5427 /* Any value that is not an existing queue number is fine for this constant. */
5428 enum {
5429         UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5430 };
5431
5432 static void ufshcd_clear_polled(struct ufs_hba *hba,
5433                                 unsigned long *completed_reqs)
5434 {
5435         int tag;
5436
5437         for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5438                 struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5439
5440                 if (!cmd)
5441                         continue;
5442                 if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5443                         __clear_bit(tag, completed_reqs);
5444         }
5445 }
5446
5447 /*
5448  * Return: > 0 if one or more commands have been completed or 0 if no
5449  * requests have been completed.
5450  */
5451 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5452 {
5453         struct ufs_hba *hba = shost_priv(shost);
5454         unsigned long completed_reqs, flags;
5455         u32 tr_doorbell;
5456         struct ufs_hw_queue *hwq;
5457
5458         if (is_mcq_enabled(hba)) {
5459                 hwq = &hba->uhq[queue_num];
5460
5461                 return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5462         }
5463
5464         spin_lock_irqsave(&hba->outstanding_lock, flags);
5465         tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5466         completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5467         WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5468                   "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5469                   hba->outstanding_reqs);
5470         if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5471                 /* Do not complete polled requests from interrupt context. */
5472                 ufshcd_clear_polled(hba, &completed_reqs);
5473         }
5474         hba->outstanding_reqs &= ~completed_reqs;
5475         spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5476
5477         if (completed_reqs)
5478                 __ufshcd_transfer_req_compl(hba, completed_reqs);
5479
5480         return completed_reqs != 0;
5481 }
5482
5483 /**
5484  * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5485  * invoked from the error handler context or ufshcd_host_reset_and_restore()
5486  * to complete the pending transfers and free the resources associated with
5487  * the scsi command.
5488  *
5489  * @hba: per adapter instance
5490  * @force_compl: This flag is set to true when invoked
5491  * from ufshcd_host_reset_and_restore() in which case it requires special
5492  * handling because the host controller has been reset by ufshcd_hba_stop().
5493  */
5494 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5495                                               bool force_compl)
5496 {
5497         struct ufs_hw_queue *hwq;
5498         struct ufshcd_lrb *lrbp;
5499         struct scsi_cmnd *cmd;
5500         unsigned long flags;
5501         u32 hwq_num, utag;
5502         int tag;
5503
5504         for (tag = 0; tag < hba->nutrs; tag++) {
5505                 lrbp = &hba->lrb[tag];
5506                 cmd = lrbp->cmd;
5507                 if (!ufshcd_cmd_inflight(cmd) ||
5508                     test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5509                         continue;
5510
5511                 utag = blk_mq_unique_tag(scsi_cmd_to_rq(cmd));
5512                 hwq_num = blk_mq_unique_tag_to_hwq(utag);
5513                 hwq = &hba->uhq[hwq_num];
5514
5515                 if (force_compl) {
5516                         ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5517                         /*
5518                          * For those cmds of which the cqes are not present
5519                          * in the cq, complete them explicitly.
5520                          */
5521                         if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5522                                 spin_lock_irqsave(&hwq->cq_lock, flags);
5523                                 set_host_byte(cmd, DID_REQUEUE);
5524                                 ufshcd_release_scsi_cmd(hba, lrbp);
5525                                 scsi_done(cmd);
5526                                 spin_unlock_irqrestore(&hwq->cq_lock, flags);
5527                         }
5528                 } else {
5529                         ufshcd_mcq_poll_cqe_lock(hba, hwq);
5530                 }
5531         }
5532 }
5533
5534 /**
5535  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5536  * @hba: per adapter instance
5537  *
5538  * Return:
5539  *  IRQ_HANDLED - If interrupt is valid
5540  *  IRQ_NONE    - If invalid interrupt
5541  */
5542 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5543 {
5544         /* Resetting interrupt aggregation counters first and reading the
5545          * DOOR_BELL afterward allows us to handle all the completed requests.
5546          * In order to prevent other interrupts starvation the DB is read once
5547          * after reset. The down side of this solution is the possibility of
5548          * false interrupt if device completes another request after resetting
5549          * aggregation and before reading the DB.
5550          */
5551         if (ufshcd_is_intr_aggr_allowed(hba) &&
5552             !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5553                 ufshcd_reset_intr_aggr(hba);
5554
5555         if (ufs_fail_completion())
5556                 return IRQ_HANDLED;
5557
5558         /*
5559          * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5560          * do not want polling to trigger spurious interrupt complaints.
5561          */
5562         ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5563
5564         return IRQ_HANDLED;
5565 }
5566
5567 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5568 {
5569         return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5570                                        QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5571                                        &ee_ctrl_mask);
5572 }
5573
5574 int ufshcd_write_ee_control(struct ufs_hba *hba)
5575 {
5576         int err;
5577
5578         mutex_lock(&hba->ee_ctrl_mutex);
5579         err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5580         mutex_unlock(&hba->ee_ctrl_mutex);
5581         if (err)
5582                 dev_err(hba->dev, "%s: failed to write ee control %d\n",
5583                         __func__, err);
5584         return err;
5585 }
5586
5587 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5588                              const u16 *other_mask, u16 set, u16 clr)
5589 {
5590         u16 new_mask, ee_ctrl_mask;
5591         int err = 0;
5592
5593         mutex_lock(&hba->ee_ctrl_mutex);
5594         new_mask = (*mask & ~clr) | set;
5595         ee_ctrl_mask = new_mask | *other_mask;
5596         if (ee_ctrl_mask != hba->ee_ctrl_mask)
5597                 err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5598         /* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5599         if (!err) {
5600                 hba->ee_ctrl_mask = ee_ctrl_mask;
5601                 *mask = new_mask;
5602         }
5603         mutex_unlock(&hba->ee_ctrl_mutex);
5604         return err;
5605 }
5606
5607 /**
5608  * ufshcd_disable_ee - disable exception event
5609  * @hba: per-adapter instance
5610  * @mask: exception event to disable
5611  *
5612  * Disables exception event in the device so that the EVENT_ALERT
5613  * bit is not set.
5614  *
5615  * Return: zero on success, non-zero error value on failure.
5616  */
5617 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5618 {
5619         return ufshcd_update_ee_drv_mask(hba, 0, mask);
5620 }
5621
5622 /**
5623  * ufshcd_enable_ee - enable exception event
5624  * @hba: per-adapter instance
5625  * @mask: exception event to enable
5626  *
5627  * Enable corresponding exception event in the device to allow
5628  * device to alert host in critical scenarios.
5629  *
5630  * Return: zero on success, non-zero error value on failure.
5631  */
5632 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5633 {
5634         return ufshcd_update_ee_drv_mask(hba, mask, 0);
5635 }
5636
5637 /**
5638  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5639  * @hba: per-adapter instance
5640  *
5641  * Allow device to manage background operations on its own. Enabling
5642  * this might lead to inconsistent latencies during normal data transfers
5643  * as the device is allowed to manage its own way of handling background
5644  * operations.
5645  *
5646  * Return: zero on success, non-zero on failure.
5647  */
5648 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5649 {
5650         int err = 0;
5651
5652         if (hba->auto_bkops_enabled)
5653                 goto out;
5654
5655         err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5656                         QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5657         if (err) {
5658                 dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5659                                 __func__, err);
5660                 goto out;
5661         }
5662
5663         hba->auto_bkops_enabled = true;
5664         trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5665
5666         /* No need of URGENT_BKOPS exception from the device */
5667         err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5668         if (err)
5669                 dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5670                                 __func__, err);
5671 out:
5672         return err;
5673 }
5674
5675 /**
5676  * ufshcd_disable_auto_bkops - block device in doing background operations
5677  * @hba: per-adapter instance
5678  *
5679  * Disabling background operations improves command response latency but
5680  * has drawback of device moving into critical state where the device is
5681  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5682  * host is idle so that BKOPS are managed effectively without any negative
5683  * impacts.
5684  *
5685  * Return: zero on success, non-zero on failure.
5686  */
5687 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5688 {
5689         int err = 0;
5690
5691         if (!hba->auto_bkops_enabled)
5692                 goto out;
5693
5694         /*
5695          * If host assisted BKOPs is to be enabled, make sure
5696          * urgent bkops exception is allowed.
5697          */
5698         err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5699         if (err) {
5700                 dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5701                                 __func__, err);
5702                 goto out;
5703         }
5704
5705         err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5706                         QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5707         if (err) {
5708                 dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5709                                 __func__, err);
5710                 ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5711                 goto out;
5712         }
5713
5714         hba->auto_bkops_enabled = false;
5715         trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5716         hba->is_urgent_bkops_lvl_checked = false;
5717 out:
5718         return err;
5719 }
5720
5721 /**
5722  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5723  * @hba: per adapter instance
5724  *
5725  * After a device reset the device may toggle the BKOPS_EN flag
5726  * to default value. The s/w tracking variables should be updated
5727  * as well. This function would change the auto-bkops state based on
5728  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5729  */
5730 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5731 {
5732         if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5733                 hba->auto_bkops_enabled = false;
5734                 hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5735                 ufshcd_enable_auto_bkops(hba);
5736         } else {
5737                 hba->auto_bkops_enabled = true;
5738                 hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5739                 ufshcd_disable_auto_bkops(hba);
5740         }
5741         hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5742         hba->is_urgent_bkops_lvl_checked = false;
5743 }
5744
5745 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5746 {
5747         return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5748                         QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5749 }
5750
5751 /**
5752  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5753  * @hba: per-adapter instance
5754  * @status: bkops_status value
5755  *
5756  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5757  * flag in the device to permit background operations if the device
5758  * bkops_status is greater than or equal to "status" argument passed to
5759  * this function, disable otherwise.
5760  *
5761  * Return: 0 for success, non-zero in case of failure.
5762  *
5763  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5764  * to know whether auto bkops is enabled or disabled after this function
5765  * returns control to it.
5766  */
5767 static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5768                              enum bkops_status status)
5769 {
5770         int err;
5771         u32 curr_status = 0;
5772
5773         err = ufshcd_get_bkops_status(hba, &curr_status);
5774         if (err) {
5775                 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5776                                 __func__, err);
5777                 goto out;
5778         } else if (curr_status > BKOPS_STATUS_MAX) {
5779                 dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5780                                 __func__, curr_status);
5781                 err = -EINVAL;
5782                 goto out;
5783         }
5784
5785         if (curr_status >= status)
5786                 err = ufshcd_enable_auto_bkops(hba);
5787         else
5788                 err = ufshcd_disable_auto_bkops(hba);
5789 out:
5790         return err;
5791 }
5792
5793 /**
5794  * ufshcd_urgent_bkops - handle urgent bkops exception event
5795  * @hba: per-adapter instance
5796  *
5797  * Enable fBackgroundOpsEn flag in the device to permit background
5798  * operations.
5799  *
5800  * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5801  * and negative error value for any other failure.
5802  *
5803  * Return: 0 upon success; < 0 upon failure.
5804  */
5805 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5806 {
5807         return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5808 }
5809
5810 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5811 {
5812         return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5813                         QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5814 }
5815
5816 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5817 {
5818         int err;
5819         u32 curr_status = 0;
5820
5821         if (hba->is_urgent_bkops_lvl_checked)
5822                 goto enable_auto_bkops;
5823
5824         err = ufshcd_get_bkops_status(hba, &curr_status);
5825         if (err) {
5826                 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5827                                 __func__, err);
5828                 goto out;
5829         }
5830
5831         /*
5832          * We are seeing that some devices are raising the urgent bkops
5833          * exception events even when BKOPS status doesn't indicate performace
5834          * impacted or critical. Handle these device by determining their urgent
5835          * bkops status at runtime.
5836          */
5837         if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5838                 dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5839                                 __func__, curr_status);
5840                 /* update the current status as the urgent bkops level */
5841                 hba->urgent_bkops_lvl = curr_status;
5842                 hba->is_urgent_bkops_lvl_checked = true;
5843         }
5844
5845 enable_auto_bkops:
5846         err = ufshcd_enable_auto_bkops(hba);
5847 out:
5848         if (err < 0)
5849                 dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5850                                 __func__, err);
5851 }
5852
5853 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
5854 {
5855         u32 value;
5856
5857         if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5858                                 QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
5859                 return;
5860
5861         dev_info(hba->dev, "exception Tcase %d\n", value - 80);
5862
5863         ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
5864
5865         /*
5866          * A placeholder for the platform vendors to add whatever additional
5867          * steps required
5868          */
5869 }
5870
5871 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
5872 {
5873         u8 index;
5874         enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
5875                                    UPIU_QUERY_OPCODE_CLEAR_FLAG;
5876
5877         index = ufshcd_wb_get_query_index(hba);
5878         return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
5879 }
5880
5881 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
5882 {
5883         int ret;
5884
5885         if (!ufshcd_is_wb_allowed(hba) ||
5886             hba->dev_info.wb_enabled == enable)
5887                 return 0;
5888
5889         ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
5890         if (ret) {
5891                 dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
5892                         __func__, enable ? "enabling" : "disabling", ret);
5893                 return ret;
5894         }
5895
5896         hba->dev_info.wb_enabled = enable;
5897         dev_dbg(hba->dev, "%s: Write Booster %s\n",
5898                         __func__, enable ? "enabled" : "disabled");
5899
5900         return ret;
5901 }
5902
5903 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
5904                                                  bool enable)
5905 {
5906         int ret;
5907
5908         ret = __ufshcd_wb_toggle(hba, enable,
5909                         QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
5910         if (ret) {
5911                 dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
5912                         __func__, enable ? "enabling" : "disabling", ret);
5913                 return;
5914         }
5915         dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
5916                         __func__, enable ? "enabled" : "disabled");
5917 }
5918
5919 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
5920 {
5921         int ret;
5922
5923         if (!ufshcd_is_wb_allowed(hba) ||
5924             hba->dev_info.wb_buf_flush_enabled == enable)
5925                 return 0;
5926
5927         ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
5928         if (ret) {
5929                 dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
5930                         __func__, enable ? "enabling" : "disabling", ret);
5931                 return ret;
5932         }
5933
5934         hba->dev_info.wb_buf_flush_enabled = enable;
5935         dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
5936                         __func__, enable ? "enabled" : "disabled");
5937
5938         return ret;
5939 }
5940
5941 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
5942                                                 u32 avail_buf)
5943 {
5944         u32 cur_buf;
5945         int ret;
5946         u8 index;
5947
5948         index = ufshcd_wb_get_query_index(hba);
5949         ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5950                                               QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
5951                                               index, 0, &cur_buf);
5952         if (ret) {
5953                 dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
5954                         __func__, ret);
5955                 return false;
5956         }
5957
5958         if (!cur_buf) {
5959                 dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
5960                          cur_buf);
5961                 return false;
5962         }
5963         /* Let it continue to flush when available buffer exceeds threshold */
5964         return avail_buf < hba->vps->wb_flush_threshold;
5965 }
5966
5967 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
5968 {
5969         if (ufshcd_is_wb_buf_flush_allowed(hba))
5970                 ufshcd_wb_toggle_buf_flush(hba, false);
5971
5972         ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
5973         ufshcd_wb_toggle(hba, false);
5974         hba->caps &= ~UFSHCD_CAP_WB_EN;
5975
5976         dev_info(hba->dev, "%s: WB force disabled\n", __func__);
5977 }
5978
5979 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
5980 {
5981         u32 lifetime;
5982         int ret;
5983         u8 index;
5984
5985         index = ufshcd_wb_get_query_index(hba);
5986         ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5987                                       QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
5988                                       index, 0, &lifetime);
5989         if (ret) {
5990                 dev_err(hba->dev,
5991                         "%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
5992                         __func__, ret);
5993                 return false;
5994         }
5995
5996         if (lifetime == UFS_WB_EXCEED_LIFETIME) {
5997                 dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
5998                         __func__, lifetime);
5999                 return false;
6000         }
6001
6002         dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6003                 __func__, lifetime);
6004
6005         return true;
6006 }
6007
6008 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6009 {
6010         int ret;
6011         u32 avail_buf;
6012         u8 index;
6013
6014         if (!ufshcd_is_wb_allowed(hba))
6015                 return false;
6016
6017         if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6018                 ufshcd_wb_force_disable(hba);
6019                 return false;
6020         }
6021
6022         /*
6023          * The ufs device needs the vcc to be ON to flush.
6024          * With user-space reduction enabled, it's enough to enable flush
6025          * by checking only the available buffer. The threshold
6026          * defined here is > 90% full.
6027          * With user-space preserved enabled, the current-buffer
6028          * should be checked too because the wb buffer size can reduce
6029          * when disk tends to be full. This info is provided by current
6030          * buffer (dCurrentWriteBoosterBufferSize). There's no point in
6031          * keeping vcc on when current buffer is empty.
6032          */
6033         index = ufshcd_wb_get_query_index(hba);
6034         ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6035                                       QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6036                                       index, 0, &avail_buf);
6037         if (ret) {
6038                 dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6039                          __func__, ret);
6040                 return false;
6041         }
6042
6043         if (!hba->dev_info.b_presrv_uspc_en)
6044                 return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6045
6046         return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6047 }
6048
6049 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6050 {
6051         struct ufs_hba *hba = container_of(to_delayed_work(work),
6052                                            struct ufs_hba,
6053                                            rpm_dev_flush_recheck_work);
6054         /*
6055          * To prevent unnecessary VCC power drain after device finishes
6056          * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6057          * after a certain delay to recheck the threshold by next runtime
6058          * suspend.
6059          */
6060         ufshcd_rpm_get_sync(hba);
6061         ufshcd_rpm_put_sync(hba);
6062 }
6063
6064 /**
6065  * ufshcd_exception_event_handler - handle exceptions raised by device
6066  * @work: pointer to work data
6067  *
6068  * Read bExceptionEventStatus attribute from the device and handle the
6069  * exception event accordingly.
6070  */
6071 static void ufshcd_exception_event_handler(struct work_struct *work)
6072 {
6073         struct ufs_hba *hba;
6074         int err;
6075         u32 status = 0;
6076         hba = container_of(work, struct ufs_hba, eeh_work);
6077
6078         ufshcd_scsi_block_requests(hba);
6079         err = ufshcd_get_ee_status(hba, &status);
6080         if (err) {
6081                 dev_err(hba->dev, "%s: failed to get exception status %d\n",
6082                                 __func__, err);
6083                 goto out;
6084         }
6085
6086         trace_ufshcd_exception_event(dev_name(hba->dev), status);
6087
6088         if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6089                 ufshcd_bkops_exception_event_handler(hba);
6090
6091         if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6092                 ufshcd_temp_exception_event_handler(hba, status);
6093
6094         ufs_debugfs_exception_event(hba, status);
6095 out:
6096         ufshcd_scsi_unblock_requests(hba);
6097 }
6098
6099 /* Complete requests that have door-bell cleared */
6100 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6101 {
6102         if (is_mcq_enabled(hba))
6103                 ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6104         else
6105                 ufshcd_transfer_req_compl(hba);
6106
6107         ufshcd_tmc_handler(hba);
6108 }
6109
6110 /**
6111  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6112  *                              to recover from the DL NAC errors or not.
6113  * @hba: per-adapter instance
6114  *
6115  * Return: true if error handling is required, false otherwise.
6116  */
6117 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6118 {
6119         unsigned long flags;
6120         bool err_handling = true;
6121
6122         spin_lock_irqsave(hba->host->host_lock, flags);
6123         /*
6124          * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6125          * device fatal error and/or DL NAC & REPLAY timeout errors.
6126          */
6127         if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6128                 goto out;
6129
6130         if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6131             ((hba->saved_err & UIC_ERROR) &&
6132              (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6133                 goto out;
6134
6135         if ((hba->saved_err & UIC_ERROR) &&
6136             (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6137                 int err;
6138                 /*
6139                  * wait for 50ms to see if we can get any other errors or not.
6140                  */
6141                 spin_unlock_irqrestore(hba->host->host_lock, flags);
6142                 msleep(50);
6143                 spin_lock_irqsave(hba->host->host_lock, flags);
6144
6145                 /*
6146                  * now check if we have got any other severe errors other than
6147                  * DL NAC error?
6148                  */
6149                 if ((hba->saved_err & INT_FATAL_ERRORS) ||
6150                     ((hba->saved_err & UIC_ERROR) &&
6151                     (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6152                         goto out;
6153
6154                 /*
6155                  * As DL NAC is the only error received so far, send out NOP
6156                  * command to confirm if link is still active or not.
6157                  *   - If we don't get any response then do error recovery.
6158                  *   - If we get response then clear the DL NAC error bit.
6159                  */
6160
6161                 spin_unlock_irqrestore(hba->host->host_lock, flags);
6162                 err = ufshcd_verify_dev_init(hba);
6163                 spin_lock_irqsave(hba->host->host_lock, flags);
6164
6165                 if (err)
6166                         goto out;
6167
6168                 /* Link seems to be alive hence ignore the DL NAC errors */
6169                 if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6170                         hba->saved_err &= ~UIC_ERROR;
6171                 /* clear NAC error */
6172                 hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6173                 if (!hba->saved_uic_err)
6174                         err_handling = false;
6175         }
6176 out:
6177         spin_unlock_irqrestore(hba->host->host_lock, flags);
6178         return err_handling;
6179 }
6180
6181 /* host lock must be held before calling this func */
6182 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6183 {
6184         return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6185                (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6186 }
6187
6188 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6189 {
6190         lockdep_assert_held(hba->host->host_lock);
6191
6192         /* handle fatal errors only when link is not in error state */
6193         if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6194                 if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6195                     ufshcd_is_saved_err_fatal(hba))
6196                         hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6197                 else
6198                         hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6199                 queue_work(hba->eh_wq, &hba->eh_work);
6200         }
6201 }
6202
6203 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6204 {
6205         spin_lock_irq(hba->host->host_lock);
6206         hba->force_reset = true;
6207         ufshcd_schedule_eh_work(hba);
6208         spin_unlock_irq(hba->host->host_lock);
6209 }
6210
6211 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6212 {
6213         mutex_lock(&hba->wb_mutex);
6214         down_write(&hba->clk_scaling_lock);
6215         hba->clk_scaling.is_allowed = allow;
6216         up_write(&hba->clk_scaling_lock);
6217         mutex_unlock(&hba->wb_mutex);
6218 }
6219
6220 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6221 {
6222         if (suspend) {
6223                 if (hba->clk_scaling.is_enabled)
6224                         ufshcd_suspend_clkscaling(hba);
6225                 ufshcd_clk_scaling_allow(hba, false);
6226         } else {
6227                 ufshcd_clk_scaling_allow(hba, true);
6228                 if (hba->clk_scaling.is_enabled)
6229                         ufshcd_resume_clkscaling(hba);
6230         }
6231 }
6232
6233 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6234 {
6235         ufshcd_rpm_get_sync(hba);
6236         if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6237             hba->is_sys_suspended) {
6238                 enum ufs_pm_op pm_op;
6239
6240                 /*
6241                  * Don't assume anything of resume, if
6242                  * resume fails, irq and clocks can be OFF, and powers
6243                  * can be OFF or in LPM.
6244                  */
6245                 ufshcd_setup_hba_vreg(hba, true);
6246                 ufshcd_enable_irq(hba);
6247                 ufshcd_setup_vreg(hba, true);
6248                 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6249                 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6250                 ufshcd_hold(hba);
6251                 if (!ufshcd_is_clkgating_allowed(hba))
6252                         ufshcd_setup_clocks(hba, true);
6253                 ufshcd_release(hba);
6254                 pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6255                 ufshcd_vops_resume(hba, pm_op);
6256         } else {
6257                 ufshcd_hold(hba);
6258                 if (ufshcd_is_clkscaling_supported(hba) &&
6259                     hba->clk_scaling.is_enabled)
6260                         ufshcd_suspend_clkscaling(hba);
6261                 ufshcd_clk_scaling_allow(hba, false);
6262         }
6263         ufshcd_scsi_block_requests(hba);
6264         /* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6265         blk_mq_wait_quiesce_done(&hba->host->tag_set);
6266         cancel_work_sync(&hba->eeh_work);
6267 }
6268
6269 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6270 {
6271         ufshcd_scsi_unblock_requests(hba);
6272         ufshcd_release(hba);
6273         if (ufshcd_is_clkscaling_supported(hba))
6274                 ufshcd_clk_scaling_suspend(hba, false);
6275         ufshcd_rpm_put(hba);
6276 }
6277
6278 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6279 {
6280         return (!hba->is_powered || hba->shutting_down ||
6281                 !hba->ufs_device_wlun ||
6282                 hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6283                 (!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6284                    ufshcd_is_link_broken(hba))));
6285 }
6286
6287 #ifdef CONFIG_PM
6288 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6289 {
6290         struct Scsi_Host *shost = hba->host;
6291         struct scsi_device *sdev;
6292         struct request_queue *q;
6293         int ret;
6294
6295         hba->is_sys_suspended = false;
6296         /*
6297          * Set RPM status of wlun device to RPM_ACTIVE,
6298          * this also clears its runtime error.
6299          */
6300         ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6301
6302         /* hba device might have a runtime error otherwise */
6303         if (ret)
6304                 ret = pm_runtime_set_active(hba->dev);
6305         /*
6306          * If wlun device had runtime error, we also need to resume those
6307          * consumer scsi devices in case any of them has failed to be
6308          * resumed due to supplier runtime resume failure. This is to unblock
6309          * blk_queue_enter in case there are bios waiting inside it.
6310          */
6311         if (!ret) {
6312                 shost_for_each_device(sdev, shost) {
6313                         q = sdev->request_queue;
6314                         if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6315                                        q->rpm_status == RPM_SUSPENDING))
6316                                 pm_request_resume(q->dev);
6317                 }
6318         }
6319 }
6320 #else
6321 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6322 {
6323 }
6324 #endif
6325
6326 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6327 {
6328         struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6329         u32 mode;
6330
6331         ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6332
6333         if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6334                 return true;
6335
6336         if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6337                 return true;
6338
6339         return false;
6340 }
6341
6342 static bool ufshcd_abort_one(struct request *rq, void *priv)
6343 {
6344         int *ret = priv;
6345         u32 tag = rq->tag;
6346         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6347         struct scsi_device *sdev = cmd->device;
6348         struct Scsi_Host *shost = sdev->host;
6349         struct ufs_hba *hba = shost_priv(shost);
6350
6351         *ret = ufshcd_try_to_abort_task(hba, tag);
6352         dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6353                 hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6354                 *ret ? "failed" : "succeeded");
6355         return *ret == 0;
6356 }
6357
6358 /**
6359  * ufshcd_abort_all - Abort all pending commands.
6360  * @hba: Host bus adapter pointer.
6361  *
6362  * Return: true if and only if the host controller needs to be reset.
6363  */
6364 static bool ufshcd_abort_all(struct ufs_hba *hba)
6365 {
6366         int tag, ret = 0;
6367
6368         blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6369         if (ret)
6370                 goto out;
6371
6372         /* Clear pending task management requests */
6373         for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6374                 ret = ufshcd_clear_tm_cmd(hba, tag);
6375                 if (ret)
6376                         goto out;
6377         }
6378
6379 out:
6380         /* Complete the requests that are cleared by s/w */
6381         ufshcd_complete_requests(hba, false);
6382
6383         return ret != 0;
6384 }
6385
6386 /**
6387  * ufshcd_err_handler - handle UFS errors that require s/w attention
6388  * @work: pointer to work structure
6389  */
6390 static void ufshcd_err_handler(struct work_struct *work)
6391 {
6392         int retries = MAX_ERR_HANDLER_RETRIES;
6393         struct ufs_hba *hba;
6394         unsigned long flags;
6395         bool needs_restore;
6396         bool needs_reset;
6397         int pmc_err;
6398
6399         hba = container_of(work, struct ufs_hba, eh_work);
6400
6401         dev_info(hba->dev,
6402                  "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6403                  __func__, ufshcd_state_name[hba->ufshcd_state],
6404                  hba->is_powered, hba->shutting_down, hba->saved_err,
6405                  hba->saved_uic_err, hba->force_reset,
6406                  ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6407
6408         down(&hba->host_sem);
6409         spin_lock_irqsave(hba->host->host_lock, flags);
6410         if (ufshcd_err_handling_should_stop(hba)) {
6411                 if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6412                         hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6413                 spin_unlock_irqrestore(hba->host->host_lock, flags);
6414                 up(&hba->host_sem);
6415                 return;
6416         }
6417         ufshcd_set_eh_in_progress(hba);
6418         spin_unlock_irqrestore(hba->host->host_lock, flags);
6419         ufshcd_err_handling_prepare(hba);
6420         /* Complete requests that have door-bell cleared by h/w */
6421         ufshcd_complete_requests(hba, false);
6422         spin_lock_irqsave(hba->host->host_lock, flags);
6423 again:
6424         needs_restore = false;
6425         needs_reset = false;
6426
6427         if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6428                 hba->ufshcd_state = UFSHCD_STATE_RESET;
6429         /*
6430          * A full reset and restore might have happened after preparation
6431          * is finished, double check whether we should stop.
6432          */
6433         if (ufshcd_err_handling_should_stop(hba))
6434                 goto skip_err_handling;
6435
6436         if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6437                 bool ret;
6438
6439                 spin_unlock_irqrestore(hba->host->host_lock, flags);
6440                 /* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6441                 ret = ufshcd_quirk_dl_nac_errors(hba);
6442                 spin_lock_irqsave(hba->host->host_lock, flags);
6443                 if (!ret && ufshcd_err_handling_should_stop(hba))
6444                         goto skip_err_handling;
6445         }
6446
6447         if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6448             (hba->saved_uic_err &&
6449              (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6450                 bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6451
6452                 spin_unlock_irqrestore(hba->host->host_lock, flags);
6453                 ufshcd_print_host_state(hba);
6454                 ufshcd_print_pwr_info(hba);
6455                 ufshcd_print_evt_hist(hba);
6456                 ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6457                 ufshcd_print_trs_all(hba, pr_prdt);
6458                 spin_lock_irqsave(hba->host->host_lock, flags);
6459         }
6460
6461         /*
6462          * if host reset is required then skip clearing the pending
6463          * transfers forcefully because they will get cleared during
6464          * host reset and restore
6465          */
6466         if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6467             ufshcd_is_saved_err_fatal(hba) ||
6468             ((hba->saved_err & UIC_ERROR) &&
6469              (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6470                                     UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6471                 needs_reset = true;
6472                 goto do_reset;
6473         }
6474
6475         /*
6476          * If LINERESET was caught, UFS might have been put to PWM mode,
6477          * check if power mode restore is needed.
6478          */
6479         if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6480                 hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6481                 if (!hba->saved_uic_err)
6482                         hba->saved_err &= ~UIC_ERROR;
6483                 spin_unlock_irqrestore(hba->host->host_lock, flags);
6484                 if (ufshcd_is_pwr_mode_restore_needed(hba))
6485                         needs_restore = true;
6486                 spin_lock_irqsave(hba->host->host_lock, flags);
6487                 if (!hba->saved_err && !needs_restore)
6488                         goto skip_err_handling;
6489         }
6490
6491         hba->silence_err_logs = true;
6492         /* release lock as clear command might sleep */
6493         spin_unlock_irqrestore(hba->host->host_lock, flags);
6494
6495         needs_reset = ufshcd_abort_all(hba);
6496
6497         spin_lock_irqsave(hba->host->host_lock, flags);
6498         hba->silence_err_logs = false;
6499         if (needs_reset)
6500                 goto do_reset;
6501
6502         /*
6503          * After all reqs and tasks are cleared from doorbell,
6504          * now it is safe to retore power mode.
6505          */
6506         if (needs_restore) {
6507                 spin_unlock_irqrestore(hba->host->host_lock, flags);
6508                 /*
6509                  * Hold the scaling lock just in case dev cmds
6510                  * are sent via bsg and/or sysfs.
6511                  */
6512                 down_write(&hba->clk_scaling_lock);
6513                 hba->force_pmc = true;
6514                 pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6515                 if (pmc_err) {
6516                         needs_reset = true;
6517                         dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6518                                         __func__, pmc_err);
6519                 }
6520                 hba->force_pmc = false;
6521                 ufshcd_print_pwr_info(hba);
6522                 up_write(&hba->clk_scaling_lock);
6523                 spin_lock_irqsave(hba->host->host_lock, flags);
6524         }
6525
6526 do_reset:
6527         /* Fatal errors need reset */
6528         if (needs_reset) {
6529                 int err;
6530
6531                 hba->force_reset = false;
6532                 spin_unlock_irqrestore(hba->host->host_lock, flags);
6533                 err = ufshcd_reset_and_restore(hba);
6534                 if (err)
6535                         dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6536                                         __func__, err);
6537                 else
6538                         ufshcd_recover_pm_error(hba);
6539                 spin_lock_irqsave(hba->host->host_lock, flags);
6540         }
6541
6542 skip_err_handling:
6543         if (!needs_reset) {
6544                 if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6545                         hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6546                 if (hba->saved_err || hba->saved_uic_err)
6547                         dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6548                             __func__, hba->saved_err, hba->saved_uic_err);
6549         }
6550         /* Exit in an operational state or dead */
6551         if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6552             hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6553                 if (--retries)
6554                         goto again;
6555                 hba->ufshcd_state = UFSHCD_STATE_ERROR;
6556         }
6557         ufshcd_clear_eh_in_progress(hba);
6558         spin_unlock_irqrestore(hba->host->host_lock, flags);
6559         ufshcd_err_handling_unprepare(hba);
6560         up(&hba->host_sem);
6561
6562         dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6563                  ufshcd_state_name[hba->ufshcd_state]);
6564 }
6565
6566 /**
6567  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6568  * @hba: per-adapter instance
6569  *
6570  * Return:
6571  *  IRQ_HANDLED - If interrupt is valid
6572  *  IRQ_NONE    - If invalid interrupt
6573  */
6574 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6575 {
6576         u32 reg;
6577         irqreturn_t retval = IRQ_NONE;
6578
6579         /* PHY layer error */
6580         reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6581         if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6582             (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6583                 ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6584                 /*
6585                  * To know whether this error is fatal or not, DB timeout
6586                  * must be checked but this error is handled separately.
6587                  */
6588                 if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6589                         dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6590                                         __func__);
6591
6592                 /* Got a LINERESET indication. */
6593                 if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6594                         struct uic_command *cmd = NULL;
6595
6596                         hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6597                         if (hba->uic_async_done && hba->active_uic_cmd)
6598                                 cmd = hba->active_uic_cmd;
6599                         /*
6600                          * Ignore the LINERESET during power mode change
6601                          * operation via DME_SET command.
6602                          */
6603                         if (cmd && (cmd->command == UIC_CMD_DME_SET))
6604                                 hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6605                 }
6606                 retval |= IRQ_HANDLED;
6607         }
6608
6609         /* PA_INIT_ERROR is fatal and needs UIC reset */
6610         reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6611         if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6612             (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6613                 ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6614
6615                 if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6616                         hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6617                 else if (hba->dev_quirks &
6618                                 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6619                         if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6620                                 hba->uic_error |=
6621                                         UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6622                         else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6623                                 hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6624                 }
6625                 retval |= IRQ_HANDLED;
6626         }
6627
6628         /* UIC NL/TL/DME errors needs software retry */
6629         reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6630         if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6631             (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6632                 ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6633                 hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6634                 retval |= IRQ_HANDLED;
6635         }
6636
6637         reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6638         if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6639             (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6640                 ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6641                 hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6642                 retval |= IRQ_HANDLED;
6643         }
6644
6645         reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6646         if ((reg & UIC_DME_ERROR) &&
6647             (reg & UIC_DME_ERROR_CODE_MASK)) {
6648                 ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6649                 hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6650                 retval |= IRQ_HANDLED;
6651         }
6652
6653         dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6654                         __func__, hba->uic_error);
6655         return retval;
6656 }
6657
6658 /**
6659  * ufshcd_check_errors - Check for errors that need s/w attention
6660  * @hba: per-adapter instance
6661  * @intr_status: interrupt status generated by the controller
6662  *
6663  * Return:
6664  *  IRQ_HANDLED - If interrupt is valid
6665  *  IRQ_NONE    - If invalid interrupt
6666  */
6667 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6668 {
6669         bool queue_eh_work = false;
6670         irqreturn_t retval = IRQ_NONE;
6671
6672         spin_lock(hba->host->host_lock);
6673         hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6674
6675         if (hba->errors & INT_FATAL_ERRORS) {
6676                 ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6677                                        hba->errors);
6678                 queue_eh_work = true;
6679         }
6680
6681         if (hba->errors & UIC_ERROR) {
6682                 hba->uic_error = 0;
6683                 retval = ufshcd_update_uic_error(hba);
6684                 if (hba->uic_error)
6685                         queue_eh_work = true;
6686         }
6687
6688         if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6689                 dev_err(hba->dev,
6690                         "%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6691                         __func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6692                         "Enter" : "Exit",
6693                         hba->errors, ufshcd_get_upmcrs(hba));
6694                 ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6695                                        hba->errors);
6696                 ufshcd_set_link_broken(hba);
6697                 queue_eh_work = true;
6698         }
6699
6700         if (queue_eh_work) {
6701                 /*
6702                  * update the transfer error masks to sticky bits, let's do this
6703                  * irrespective of current ufshcd_state.
6704                  */
6705                 hba->saved_err |= hba->errors;
6706                 hba->saved_uic_err |= hba->uic_error;
6707
6708                 /* dump controller state before resetting */
6709                 if ((hba->saved_err &
6710                      (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6711                     (hba->saved_uic_err &&
6712                      (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6713                         dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6714                                         __func__, hba->saved_err,
6715                                         hba->saved_uic_err);
6716                         ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6717                                          "host_regs: ");
6718                         ufshcd_print_pwr_info(hba);
6719                 }
6720                 ufshcd_schedule_eh_work(hba);
6721                 retval |= IRQ_HANDLED;
6722         }
6723         /*
6724          * if (!queue_eh_work) -
6725          * Other errors are either non-fatal where host recovers
6726          * itself without s/w intervention or errors that will be
6727          * handled by the SCSI core layer.
6728          */
6729         hba->errors = 0;
6730         hba->uic_error = 0;
6731         spin_unlock(hba->host->host_lock);
6732         return retval;
6733 }
6734
6735 /**
6736  * ufshcd_tmc_handler - handle task management function completion
6737  * @hba: per adapter instance
6738  *
6739  * Return:
6740  *  IRQ_HANDLED - If interrupt is valid
6741  *  IRQ_NONE    - If invalid interrupt
6742  */
6743 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6744 {
6745         unsigned long flags, pending, issued;
6746         irqreturn_t ret = IRQ_NONE;
6747         int tag;
6748
6749         spin_lock_irqsave(hba->host->host_lock, flags);
6750         pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6751         issued = hba->outstanding_tasks & ~pending;
6752         for_each_set_bit(tag, &issued, hba->nutmrs) {
6753                 struct request *req = hba->tmf_rqs[tag];
6754                 struct completion *c = req->end_io_data;
6755
6756                 complete(c);
6757                 ret = IRQ_HANDLED;
6758         }
6759         spin_unlock_irqrestore(hba->host->host_lock, flags);
6760
6761         return ret;
6762 }
6763
6764 /**
6765  * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6766  * @hba: per adapter instance
6767  *
6768  * Return: IRQ_HANDLED if interrupt is handled.
6769  */
6770 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6771 {
6772         struct ufs_hw_queue *hwq;
6773         unsigned long outstanding_cqs;
6774         unsigned int nr_queues;
6775         int i, ret;
6776         u32 events;
6777
6778         ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6779         if (ret)
6780                 outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6781
6782         /* Exclude the poll queues */
6783         nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6784         for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6785                 hwq = &hba->uhq[i];
6786
6787                 events = ufshcd_mcq_read_cqis(hba, i);
6788                 if (events)
6789                         ufshcd_mcq_write_cqis(hba, events, i);
6790
6791                 if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6792                         ufshcd_mcq_poll_cqe_lock(hba, hwq);
6793         }
6794
6795         return IRQ_HANDLED;
6796 }
6797
6798 /**
6799  * ufshcd_sl_intr - Interrupt service routine
6800  * @hba: per adapter instance
6801  * @intr_status: contains interrupts generated by the controller
6802  *
6803  * Return:
6804  *  IRQ_HANDLED - If interrupt is valid
6805  *  IRQ_NONE    - If invalid interrupt
6806  */
6807 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6808 {
6809         irqreturn_t retval = IRQ_NONE;
6810
6811         if (intr_status & UFSHCD_UIC_MASK)
6812                 retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6813
6814         if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6815                 retval |= ufshcd_check_errors(hba, intr_status);
6816
6817         if (intr_status & UTP_TASK_REQ_COMPL)
6818                 retval |= ufshcd_tmc_handler(hba);
6819
6820         if (intr_status & UTP_TRANSFER_REQ_COMPL)
6821                 retval |= ufshcd_transfer_req_compl(hba);
6822
6823         if (intr_status & MCQ_CQ_EVENT_STATUS)
6824                 retval |= ufshcd_handle_mcq_cq_events(hba);
6825
6826         return retval;
6827 }
6828
6829 /**
6830  * ufshcd_intr - Main interrupt service routine
6831  * @irq: irq number
6832  * @__hba: pointer to adapter instance
6833  *
6834  * Return:
6835  *  IRQ_HANDLED - If interrupt is valid
6836  *  IRQ_NONE    - If invalid interrupt
6837  */
6838 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6839 {
6840         u32 intr_status, enabled_intr_status = 0;
6841         irqreturn_t retval = IRQ_NONE;
6842         struct ufs_hba *hba = __hba;
6843         int retries = hba->nutrs;
6844
6845         intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6846         hba->ufs_stats.last_intr_status = intr_status;
6847         hba->ufs_stats.last_intr_ts = local_clock();
6848
6849         /*
6850          * There could be max of hba->nutrs reqs in flight and in worst case
6851          * if the reqs get finished 1 by 1 after the interrupt status is
6852          * read, make sure we handle them by checking the interrupt status
6853          * again in a loop until we process all of the reqs before returning.
6854          */
6855         while (intr_status && retries--) {
6856                 enabled_intr_status =
6857                         intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6858                 ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6859                 if (enabled_intr_status)
6860                         retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6861
6862                 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6863         }
6864
6865         if (enabled_intr_status && retval == IRQ_NONE &&
6866             (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
6867              hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
6868                 dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6869                                         __func__,
6870                                         intr_status,
6871                                         hba->ufs_stats.last_intr_status,
6872                                         enabled_intr_status);
6873                 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6874         }
6875
6876         return retval;
6877 }
6878
6879 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6880 {
6881         int err = 0;
6882         u32 mask = 1 << tag;
6883         unsigned long flags;
6884
6885         if (!test_bit(tag, &hba->outstanding_tasks))
6886                 goto out;
6887
6888         spin_lock_irqsave(hba->host->host_lock, flags);
6889         ufshcd_utmrl_clear(hba, tag);
6890         spin_unlock_irqrestore(hba->host->host_lock, flags);
6891
6892         /* poll for max. 1 sec to clear door bell register by h/w */
6893         err = ufshcd_wait_for_register(hba,
6894                         REG_UTP_TASK_REQ_DOOR_BELL,
6895                         mask, 0, 1000, 1000);
6896
6897         dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
6898                 tag, err < 0 ? "failed" : "succeeded");
6899
6900 out:
6901         return err;
6902 }
6903
6904 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
6905                 struct utp_task_req_desc *treq, u8 tm_function)
6906 {
6907         struct request_queue *q = hba->tmf_queue;
6908         struct Scsi_Host *host = hba->host;
6909         DECLARE_COMPLETION_ONSTACK(wait);
6910         struct request *req;
6911         unsigned long flags;
6912         int task_tag, err;
6913
6914         /*
6915          * blk_mq_alloc_request() is used here only to get a free tag.
6916          */
6917         req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
6918         if (IS_ERR(req))
6919                 return PTR_ERR(req);
6920
6921         req->end_io_data = &wait;
6922         ufshcd_hold(hba);
6923
6924         spin_lock_irqsave(host->host_lock, flags);
6925
6926         task_tag = req->tag;
6927         WARN_ONCE(task_tag < 0 || task_tag >= hba->nutmrs, "Invalid tag %d\n",
6928                   task_tag);
6929         hba->tmf_rqs[req->tag] = req;
6930         treq->upiu_req.req_header.task_tag = task_tag;
6931
6932         memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
6933         ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
6934
6935         /* send command to the controller */
6936         __set_bit(task_tag, &hba->outstanding_tasks);
6937
6938         ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
6939         /* Make sure that doorbell is committed immediately */
6940         wmb();
6941
6942         spin_unlock_irqrestore(host->host_lock, flags);
6943
6944         ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
6945
6946         /* wait until the task management command is completed */
6947         err = wait_for_completion_io_timeout(&wait,
6948                         msecs_to_jiffies(TM_CMD_TIMEOUT));
6949         if (!err) {
6950                 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
6951                 dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
6952                                 __func__, tm_function);
6953                 if (ufshcd_clear_tm_cmd(hba, task_tag))
6954                         dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
6955                                         __func__, task_tag);
6956                 err = -ETIMEDOUT;
6957         } else {
6958                 err = 0;
6959                 memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
6960
6961                 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
6962         }
6963
6964         spin_lock_irqsave(hba->host->host_lock, flags);
6965         hba->tmf_rqs[req->tag] = NULL;
6966         __clear_bit(task_tag, &hba->outstanding_tasks);
6967         spin_unlock_irqrestore(hba->host->host_lock, flags);
6968
6969         ufshcd_release(hba);
6970         blk_mq_free_request(req);
6971
6972         return err;
6973 }
6974
6975 /**
6976  * ufshcd_issue_tm_cmd - issues task management commands to controller
6977  * @hba: per adapter instance
6978  * @lun_id: LUN ID to which TM command is sent
6979  * @task_id: task ID to which the TM command is applicable
6980  * @tm_function: task management function opcode
6981  * @tm_response: task management service response return value
6982  *
6983  * Return: non-zero value on error, zero on success.
6984  */
6985 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
6986                 u8 tm_function, u8 *tm_response)
6987 {
6988         struct utp_task_req_desc treq = { };
6989         enum utp_ocs ocs_value;
6990         int err;
6991
6992         /* Configure task request descriptor */
6993         treq.header.interrupt = 1;
6994         treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
6995
6996         /* Configure task request UPIU */
6997         treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
6998         treq.upiu_req.req_header.lun = lun_id;
6999         treq.upiu_req.req_header.tm_function = tm_function;
7000
7001         /*
7002          * The host shall provide the same value for LUN field in the basic
7003          * header and for Input Parameter.
7004          */
7005         treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7006         treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7007
7008         err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7009         if (err == -ETIMEDOUT)
7010                 return err;
7011
7012         ocs_value = treq.header.ocs & MASK_OCS;
7013         if (ocs_value != OCS_SUCCESS)
7014                 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7015                                 __func__, ocs_value);
7016         else if (tm_response)
7017                 *tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7018                                 MASK_TM_SERVICE_RESP;
7019         return err;
7020 }
7021
7022 /**
7023  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7024  * @hba:        per-adapter instance
7025  * @req_upiu:   upiu request
7026  * @rsp_upiu:   upiu reply
7027  * @desc_buff:  pointer to descriptor buffer, NULL if NA
7028  * @buff_len:   descriptor size, 0 if NA
7029  * @cmd_type:   specifies the type (NOP, Query...)
7030  * @desc_op:    descriptor operation
7031  *
7032  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7033  * Therefore, it "rides" the device management infrastructure: uses its tag and
7034  * tasks work queues.
7035  *
7036  * Since there is only one available tag for device management commands,
7037  * the caller is expected to hold the hba->dev_cmd.lock mutex.
7038  *
7039  * Return: 0 upon success; < 0 upon failure.
7040  */
7041 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7042                                         struct utp_upiu_req *req_upiu,
7043                                         struct utp_upiu_req *rsp_upiu,
7044                                         u8 *desc_buff, int *buff_len,
7045                                         enum dev_cmd_type cmd_type,
7046                                         enum query_opcode desc_op)
7047 {
7048         DECLARE_COMPLETION_ONSTACK(wait);
7049         const u32 tag = hba->reserved_slot;
7050         struct ufshcd_lrb *lrbp;
7051         int err = 0;
7052         u8 upiu_flags;
7053
7054         /* Protects use of hba->reserved_slot. */
7055         lockdep_assert_held(&hba->dev_cmd.lock);
7056
7057         down_read(&hba->clk_scaling_lock);
7058
7059         lrbp = &hba->lrb[tag];
7060         lrbp->cmd = NULL;
7061         lrbp->task_tag = tag;
7062         lrbp->lun = 0;
7063         lrbp->intr_cmd = true;
7064         ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7065         hba->dev_cmd.type = cmd_type;
7066
7067         if (hba->ufs_version <= ufshci_version(1, 1))
7068                 lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
7069         else
7070                 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7071
7072         /* update the task tag in the request upiu */
7073         req_upiu->header.task_tag = tag;
7074
7075         ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
7076
7077         /* just copy the upiu request as it is */
7078         memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7079         if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7080                 /* The Data Segment Area is optional depending upon the query
7081                  * function value. for WRITE DESCRIPTOR, the data segment
7082                  * follows right after the tsf.
7083                  */
7084                 memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7085                 *buff_len = 0;
7086         }
7087
7088         memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7089
7090         hba->dev_cmd.complete = &wait;
7091
7092         ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
7093
7094         ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7095         /*
7096          * ignore the returning value here - ufshcd_check_query_response is
7097          * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7098          * read the response directly ignoring all errors.
7099          */
7100         ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
7101
7102         /* just copy the upiu response as it is */
7103         memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7104         if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7105                 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7106                 u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7107                                            .data_segment_length);
7108
7109                 if (*buff_len >= resp_len) {
7110                         memcpy(desc_buff, descp, resp_len);
7111                         *buff_len = resp_len;
7112                 } else {
7113                         dev_warn(hba->dev,
7114                                  "%s: rsp size %d is bigger than buffer size %d",
7115                                  __func__, resp_len, *buff_len);
7116                         *buff_len = 0;
7117                         err = -EINVAL;
7118                 }
7119         }
7120         ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
7121                                     (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
7122
7123         up_read(&hba->clk_scaling_lock);
7124         return err;
7125 }
7126
7127 /**
7128  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7129  * @hba:        per-adapter instance
7130  * @req_upiu:   upiu request
7131  * @rsp_upiu:   upiu reply - only 8 DW as we do not support scsi commands
7132  * @msgcode:    message code, one of UPIU Transaction Codes Initiator to Target
7133  * @desc_buff:  pointer to descriptor buffer, NULL if NA
7134  * @buff_len:   descriptor size, 0 if NA
7135  * @desc_op:    descriptor operation
7136  *
7137  * Supports UTP Transfer requests (nop and query), and UTP Task
7138  * Management requests.
7139  * It is up to the caller to fill the upiu conent properly, as it will
7140  * be copied without any further input validations.
7141  *
7142  * Return: 0 upon success; < 0 upon failure.
7143  */
7144 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7145                              struct utp_upiu_req *req_upiu,
7146                              struct utp_upiu_req *rsp_upiu,
7147                              enum upiu_request_transaction msgcode,
7148                              u8 *desc_buff, int *buff_len,
7149                              enum query_opcode desc_op)
7150 {
7151         int err;
7152         enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7153         struct utp_task_req_desc treq = { };
7154         enum utp_ocs ocs_value;
7155         u8 tm_f = req_upiu->header.tm_function;
7156
7157         switch (msgcode) {
7158         case UPIU_TRANSACTION_NOP_OUT:
7159                 cmd_type = DEV_CMD_TYPE_NOP;
7160                 fallthrough;
7161         case UPIU_TRANSACTION_QUERY_REQ:
7162                 ufshcd_hold(hba);
7163                 mutex_lock(&hba->dev_cmd.lock);
7164                 err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7165                                                    desc_buff, buff_len,
7166                                                    cmd_type, desc_op);
7167                 mutex_unlock(&hba->dev_cmd.lock);
7168                 ufshcd_release(hba);
7169
7170                 break;
7171         case UPIU_TRANSACTION_TASK_REQ:
7172                 treq.header.interrupt = 1;
7173                 treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7174
7175                 memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7176
7177                 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7178                 if (err == -ETIMEDOUT)
7179                         break;
7180
7181                 ocs_value = treq.header.ocs & MASK_OCS;
7182                 if (ocs_value != OCS_SUCCESS) {
7183                         dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7184                                 ocs_value);
7185                         break;
7186                 }
7187
7188                 memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7189
7190                 break;
7191         default:
7192                 err = -EINVAL;
7193
7194                 break;
7195         }
7196
7197         return err;
7198 }
7199
7200 /**
7201  * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7202  * @hba:        per adapter instance
7203  * @req_upiu:   upiu request
7204  * @rsp_upiu:   upiu reply
7205  * @req_ehs:    EHS field which contains Advanced RPMB Request Message
7206  * @rsp_ehs:    EHS field which returns Advanced RPMB Response Message
7207  * @sg_cnt:     The number of sg lists actually used
7208  * @sg_list:    Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7209  * @dir:        DMA direction
7210  *
7211  * Return: zero on success, non-zero on failure.
7212  */
7213 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7214                          struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7215                          struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7216                          enum dma_data_direction dir)
7217 {
7218         DECLARE_COMPLETION_ONSTACK(wait);
7219         const u32 tag = hba->reserved_slot;
7220         struct ufshcd_lrb *lrbp;
7221         int err = 0;
7222         int result;
7223         u8 upiu_flags;
7224         u8 *ehs_data;
7225         u16 ehs_len;
7226
7227         /* Protects use of hba->reserved_slot. */
7228         ufshcd_hold(hba);
7229         mutex_lock(&hba->dev_cmd.lock);
7230         down_read(&hba->clk_scaling_lock);
7231
7232         lrbp = &hba->lrb[tag];
7233         lrbp->cmd = NULL;
7234         lrbp->task_tag = tag;
7235         lrbp->lun = UFS_UPIU_RPMB_WLUN;
7236
7237         lrbp->intr_cmd = true;
7238         ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7239         hba->dev_cmd.type = DEV_CMD_TYPE_RPMB;
7240
7241         /* Advanced RPMB starts from UFS 4.0, so its command type is UTP_CMD_TYPE_UFS_STORAGE */
7242         lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7243
7244         /*
7245          * According to UFSHCI 4.0 specification page 24, if EHSLUTRDS is 0, host controller takes
7246          * EHS length from CMD UPIU, and SW driver use EHS Length field in CMD UPIU. if it is 1,
7247          * HW controller takes EHS length from UTRD.
7248          */
7249         if (hba->capabilities & MASK_EHSLUTRD_SUPPORTED)
7250                 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 2);
7251         else
7252                 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 0);
7253
7254         /* update the task tag */
7255         req_upiu->header.task_tag = tag;
7256
7257         /* copy the UPIU(contains CDB) request as it is */
7258         memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7259         /* Copy EHS, starting with byte32, immediately after the CDB package */
7260         memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7261
7262         if (dir != DMA_NONE && sg_list)
7263                 ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7264
7265         memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7266
7267         hba->dev_cmd.complete = &wait;
7268
7269         ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7270
7271         err = ufshcd_wait_for_dev_cmd(hba, lrbp, ADVANCED_RPMB_REQ_TIMEOUT);
7272
7273         if (!err) {
7274                 /* Just copy the upiu response as it is */
7275                 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7276                 /* Get the response UPIU result */
7277                 result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7278                         lrbp->ucd_rsp_ptr->header.status;
7279
7280                 ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7281                 /*
7282                  * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7283                  * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7284                  * Message is 02h
7285                  */
7286                 if (ehs_len == 2 && rsp_ehs) {
7287                         /*
7288                          * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7289                          * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7290                          */
7291                         ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7292                         memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7293                 }
7294         }
7295
7296         up_read(&hba->clk_scaling_lock);
7297         mutex_unlock(&hba->dev_cmd.lock);
7298         ufshcd_release(hba);
7299         return err ? : result;
7300 }
7301
7302 /**
7303  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7304  * @cmd: SCSI command pointer
7305  *
7306  * Return: SUCCESS or FAILED.
7307  */
7308 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7309 {
7310         unsigned long flags, pending_reqs = 0, not_cleared = 0;
7311         struct Scsi_Host *host;
7312         struct ufs_hba *hba;
7313         struct ufs_hw_queue *hwq;
7314         struct ufshcd_lrb *lrbp;
7315         u32 pos, not_cleared_mask = 0;
7316         int err;
7317         u8 resp = 0xF, lun;
7318
7319         host = cmd->device->host;
7320         hba = shost_priv(host);
7321
7322         lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7323         err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7324         if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7325                 if (!err)
7326                         err = resp;
7327                 goto out;
7328         }
7329
7330         if (is_mcq_enabled(hba)) {
7331                 for (pos = 0; pos < hba->nutrs; pos++) {
7332                         lrbp = &hba->lrb[pos];
7333                         if (ufshcd_cmd_inflight(lrbp->cmd) &&
7334                             lrbp->lun == lun) {
7335                                 ufshcd_clear_cmd(hba, pos);
7336                                 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7337                                 ufshcd_mcq_poll_cqe_lock(hba, hwq);
7338                         }
7339                 }
7340                 err = 0;
7341                 goto out;
7342         }
7343
7344         /* clear the commands that were pending for corresponding LUN */
7345         spin_lock_irqsave(&hba->outstanding_lock, flags);
7346         for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7347                 if (hba->lrb[pos].lun == lun)
7348                         __set_bit(pos, &pending_reqs);
7349         hba->outstanding_reqs &= ~pending_reqs;
7350         spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7351
7352         for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7353                 if (ufshcd_clear_cmd(hba, pos) < 0) {
7354                         spin_lock_irqsave(&hba->outstanding_lock, flags);
7355                         not_cleared = 1U << pos &
7356                                 ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7357                         hba->outstanding_reqs |= not_cleared;
7358                         not_cleared_mask |= not_cleared;
7359                         spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7360
7361                         dev_err(hba->dev, "%s: failed to clear request %d\n",
7362                                 __func__, pos);
7363                 }
7364         }
7365         __ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7366
7367 out:
7368         hba->req_abort_count = 0;
7369         ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7370         if (!err) {
7371                 err = SUCCESS;
7372         } else {
7373                 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7374                 err = FAILED;
7375         }
7376         return err;
7377 }
7378
7379 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7380 {
7381         struct ufshcd_lrb *lrbp;
7382         int tag;
7383
7384         for_each_set_bit(tag, &bitmap, hba->nutrs) {
7385                 lrbp = &hba->lrb[tag];
7386                 lrbp->req_abort_skip = true;
7387         }
7388 }
7389
7390 /**
7391  * ufshcd_try_to_abort_task - abort a specific task
7392  * @hba: Pointer to adapter instance
7393  * @tag: Task tag/index to be aborted
7394  *
7395  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7396  * command, and in host controller by clearing the door-bell register. There can
7397  * be race between controller sending the command to the device while abort is
7398  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7399  * really issued and then try to abort it.
7400  *
7401  * Return: zero on success, non-zero on failure.
7402  */
7403 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7404 {
7405         struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7406         int err = 0;
7407         int poll_cnt;
7408         u8 resp = 0xF;
7409         u32 reg;
7410
7411         for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7412                 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7413                                 UFS_QUERY_TASK, &resp);
7414                 if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7415                         /* cmd pending in the device */
7416                         dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7417                                 __func__, tag);
7418                         break;
7419                 } else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7420                         /*
7421                          * cmd not pending in the device, check if it is
7422                          * in transition.
7423                          */
7424                         dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
7425                                 __func__, tag);
7426                         if (is_mcq_enabled(hba)) {
7427                                 /* MCQ mode */
7428                                 if (ufshcd_cmd_inflight(lrbp->cmd)) {
7429                                         /* sleep for max. 200us same delay as in SDB mode */
7430                                         usleep_range(100, 200);
7431                                         continue;
7432                                 }
7433                                 /* command completed already */
7434                                 dev_err(hba->dev, "%s: cmd at tag=%d is cleared.\n",
7435                                         __func__, tag);
7436                                 goto out;
7437                         }
7438
7439                         /* Single Doorbell Mode */
7440                         reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7441                         if (reg & (1 << tag)) {
7442                                 /* sleep for max. 200us to stabilize */
7443                                 usleep_range(100, 200);
7444                                 continue;
7445                         }
7446                         /* command completed already */
7447                         dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
7448                                 __func__, tag);
7449                         goto out;
7450                 } else {
7451                         dev_err(hba->dev,
7452                                 "%s: no response from device. tag = %d, err %d\n",
7453                                 __func__, tag, err);
7454                         if (!err)
7455                                 err = resp; /* service response error */
7456                         goto out;
7457                 }
7458         }
7459
7460         if (!poll_cnt) {
7461                 err = -EBUSY;
7462                 goto out;
7463         }
7464
7465         err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7466                         UFS_ABORT_TASK, &resp);
7467         if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7468                 if (!err) {
7469                         err = resp; /* service response error */
7470                         dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7471                                 __func__, tag, err);
7472                 }
7473                 goto out;
7474         }
7475
7476         err = ufshcd_clear_cmd(hba, tag);
7477         if (err)
7478                 dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7479                         __func__, tag, err);
7480
7481 out:
7482         return err;
7483 }
7484
7485 /**
7486  * ufshcd_abort - scsi host template eh_abort_handler callback
7487  * @cmd: SCSI command pointer
7488  *
7489  * Return: SUCCESS or FAILED.
7490  */
7491 static int ufshcd_abort(struct scsi_cmnd *cmd)
7492 {
7493         struct Scsi_Host *host = cmd->device->host;
7494         struct ufs_hba *hba = shost_priv(host);
7495         int tag = scsi_cmd_to_rq(cmd)->tag;
7496         struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7497         unsigned long flags;
7498         int err = FAILED;
7499         bool outstanding;
7500         u32 reg;
7501
7502         WARN_ONCE(tag < 0, "Invalid tag %d\n", tag);
7503
7504         ufshcd_hold(hba);
7505
7506         if (!is_mcq_enabled(hba)) {
7507                 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7508                 if (!test_bit(tag, &hba->outstanding_reqs)) {
7509                         /* If command is already aborted/completed, return FAILED. */
7510                         dev_err(hba->dev,
7511                                 "%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7512                                 __func__, tag, hba->outstanding_reqs, reg);
7513                         goto release;
7514                 }
7515         }
7516
7517         /* Print Transfer Request of aborted task */
7518         dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7519
7520         /*
7521          * Print detailed info about aborted request.
7522          * As more than one request might get aborted at the same time,
7523          * print full information only for the first aborted request in order
7524          * to reduce repeated printouts. For other aborted requests only print
7525          * basic details.
7526          */
7527         scsi_print_command(cmd);
7528         if (!hba->req_abort_count) {
7529                 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7530                 ufshcd_print_evt_hist(hba);
7531                 ufshcd_print_host_state(hba);
7532                 ufshcd_print_pwr_info(hba);
7533                 ufshcd_print_tr(hba, tag, true);
7534         } else {
7535                 ufshcd_print_tr(hba, tag, false);
7536         }
7537         hba->req_abort_count++;
7538
7539         if (!is_mcq_enabled(hba) && !(reg & (1 << tag))) {
7540                 /* only execute this code in single doorbell mode */
7541                 dev_err(hba->dev,
7542                 "%s: cmd was completed, but without a notifying intr, tag = %d",
7543                 __func__, tag);
7544                 __ufshcd_transfer_req_compl(hba, 1UL << tag);
7545                 goto release;
7546         }
7547
7548         /*
7549          * Task abort to the device W-LUN is illegal. When this command
7550          * will fail, due to spec violation, scsi err handling next step
7551          * will be to send LU reset which, again, is a spec violation.
7552          * To avoid these unnecessary/illegal steps, first we clean up
7553          * the lrb taken by this cmd and re-set it in outstanding_reqs,
7554          * then queue the eh_work and bail.
7555          */
7556         if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7557                 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7558
7559                 spin_lock_irqsave(host->host_lock, flags);
7560                 hba->force_reset = true;
7561                 ufshcd_schedule_eh_work(hba);
7562                 spin_unlock_irqrestore(host->host_lock, flags);
7563                 goto release;
7564         }
7565
7566         if (is_mcq_enabled(hba)) {
7567                 /* MCQ mode. Branch off to handle abort for mcq mode */
7568                 err = ufshcd_mcq_abort(cmd);
7569                 goto release;
7570         }
7571
7572         /* Skip task abort in case previous aborts failed and report failure */
7573         if (lrbp->req_abort_skip) {
7574                 dev_err(hba->dev, "%s: skipping abort\n", __func__);
7575                 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7576                 goto release;
7577         }
7578
7579         err = ufshcd_try_to_abort_task(hba, tag);
7580         if (err) {
7581                 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7582                 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7583                 err = FAILED;
7584                 goto release;
7585         }
7586
7587         /*
7588          * Clear the corresponding bit from outstanding_reqs since the command
7589          * has been aborted successfully.
7590          */
7591         spin_lock_irqsave(&hba->outstanding_lock, flags);
7592         outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7593         spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7594
7595         if (outstanding)
7596                 ufshcd_release_scsi_cmd(hba, lrbp);
7597
7598         err = SUCCESS;
7599
7600 release:
7601         /* Matches the ufshcd_hold() call at the start of this function. */
7602         ufshcd_release(hba);
7603         return err;
7604 }
7605
7606 /**
7607  * ufshcd_host_reset_and_restore - reset and restore host controller
7608  * @hba: per-adapter instance
7609  *
7610  * Note that host controller reset may issue DME_RESET to
7611  * local and remote (device) Uni-Pro stack and the attributes
7612  * are reset to default state.
7613  *
7614  * Return: zero on success, non-zero on failure.
7615  */
7616 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7617 {
7618         int err;
7619
7620         /*
7621          * Stop the host controller and complete the requests
7622          * cleared by h/w
7623          */
7624         ufshcd_hba_stop(hba);
7625         hba->silence_err_logs = true;
7626         ufshcd_complete_requests(hba, true);
7627         hba->silence_err_logs = false;
7628
7629         /* scale up clocks to max frequency before full reinitialization */
7630         ufshcd_scale_clks(hba, true);
7631
7632         err = ufshcd_hba_enable(hba);
7633
7634         /* Establish the link again and restore the device */
7635         if (!err)
7636                 err = ufshcd_probe_hba(hba, false);
7637
7638         if (err)
7639                 dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7640         ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7641         return err;
7642 }
7643
7644 /**
7645  * ufshcd_reset_and_restore - reset and re-initialize host/device
7646  * @hba: per-adapter instance
7647  *
7648  * Reset and recover device, host and re-establish link. This
7649  * is helpful to recover the communication in fatal error conditions.
7650  *
7651  * Return: zero on success, non-zero on failure.
7652  */
7653 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7654 {
7655         u32 saved_err = 0;
7656         u32 saved_uic_err = 0;
7657         int err = 0;
7658         unsigned long flags;
7659         int retries = MAX_HOST_RESET_RETRIES;
7660
7661         spin_lock_irqsave(hba->host->host_lock, flags);
7662         do {
7663                 /*
7664                  * This is a fresh start, cache and clear saved error first,
7665                  * in case new error generated during reset and restore.
7666                  */
7667                 saved_err |= hba->saved_err;
7668                 saved_uic_err |= hba->saved_uic_err;
7669                 hba->saved_err = 0;
7670                 hba->saved_uic_err = 0;
7671                 hba->force_reset = false;
7672                 hba->ufshcd_state = UFSHCD_STATE_RESET;
7673                 spin_unlock_irqrestore(hba->host->host_lock, flags);
7674
7675                 /* Reset the attached device */
7676                 ufshcd_device_reset(hba);
7677
7678                 err = ufshcd_host_reset_and_restore(hba);
7679
7680                 spin_lock_irqsave(hba->host->host_lock, flags);
7681                 if (err)
7682                         continue;
7683                 /* Do not exit unless operational or dead */
7684                 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7685                     hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7686                     hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7687                         err = -EAGAIN;
7688         } while (err && --retries);
7689
7690         /*
7691          * Inform scsi mid-layer that we did reset and allow to handle
7692          * Unit Attention properly.
7693          */
7694         scsi_report_bus_reset(hba->host, 0);
7695         if (err) {
7696                 hba->ufshcd_state = UFSHCD_STATE_ERROR;
7697                 hba->saved_err |= saved_err;
7698                 hba->saved_uic_err |= saved_uic_err;
7699         }
7700         spin_unlock_irqrestore(hba->host->host_lock, flags);
7701
7702         return err;
7703 }
7704
7705 /**
7706  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7707  * @cmd: SCSI command pointer
7708  *
7709  * Return: SUCCESS or FAILED.
7710  */
7711 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7712 {
7713         int err = SUCCESS;
7714         unsigned long flags;
7715         struct ufs_hba *hba;
7716
7717         hba = shost_priv(cmd->device->host);
7718
7719         spin_lock_irqsave(hba->host->host_lock, flags);
7720         hba->force_reset = true;
7721         ufshcd_schedule_eh_work(hba);
7722         dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7723         spin_unlock_irqrestore(hba->host->host_lock, flags);
7724
7725         flush_work(&hba->eh_work);
7726
7727         spin_lock_irqsave(hba->host->host_lock, flags);
7728         if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7729                 err = FAILED;
7730         spin_unlock_irqrestore(hba->host->host_lock, flags);
7731
7732         return err;
7733 }
7734
7735 /**
7736  * ufshcd_get_max_icc_level - calculate the ICC level
7737  * @sup_curr_uA: max. current supported by the regulator
7738  * @start_scan: row at the desc table to start scan from
7739  * @buff: power descriptor buffer
7740  *
7741  * Return: calculated max ICC level for specific regulator.
7742  */
7743 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7744                                     const char *buff)
7745 {
7746         int i;
7747         int curr_uA;
7748         u16 data;
7749         u16 unit;
7750
7751         for (i = start_scan; i >= 0; i--) {
7752                 data = get_unaligned_be16(&buff[2 * i]);
7753                 unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7754                                                 ATTR_ICC_LVL_UNIT_OFFSET;
7755                 curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7756                 switch (unit) {
7757                 case UFSHCD_NANO_AMP:
7758                         curr_uA = curr_uA / 1000;
7759                         break;
7760                 case UFSHCD_MILI_AMP:
7761                         curr_uA = curr_uA * 1000;
7762                         break;
7763                 case UFSHCD_AMP:
7764                         curr_uA = curr_uA * 1000 * 1000;
7765                         break;
7766                 case UFSHCD_MICRO_AMP:
7767                 default:
7768                         break;
7769                 }
7770                 if (sup_curr_uA >= curr_uA)
7771                         break;
7772         }
7773         if (i < 0) {
7774                 i = 0;
7775                 pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7776         }
7777
7778         return (u32)i;
7779 }
7780
7781 /**
7782  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7783  * In case regulators are not initialized we'll return 0
7784  * @hba: per-adapter instance
7785  * @desc_buf: power descriptor buffer to extract ICC levels from.
7786  *
7787  * Return: calculated ICC level.
7788  */
7789 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7790                                                 const u8 *desc_buf)
7791 {
7792         u32 icc_level = 0;
7793
7794         if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7795                                                 !hba->vreg_info.vccq2) {
7796                 /*
7797                  * Using dev_dbg to avoid messages during runtime PM to avoid
7798                  * never-ending cycles of messages written back to storage by
7799                  * user space causing runtime resume, causing more messages and
7800                  * so on.
7801                  */
7802                 dev_dbg(hba->dev,
7803                         "%s: Regulator capability was not set, actvIccLevel=%d",
7804                                                         __func__, icc_level);
7805                 goto out;
7806         }
7807
7808         if (hba->vreg_info.vcc->max_uA)
7809                 icc_level = ufshcd_get_max_icc_level(
7810                                 hba->vreg_info.vcc->max_uA,
7811                                 POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7812                                 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7813
7814         if (hba->vreg_info.vccq->max_uA)
7815                 icc_level = ufshcd_get_max_icc_level(
7816                                 hba->vreg_info.vccq->max_uA,
7817                                 icc_level,
7818                                 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7819
7820         if (hba->vreg_info.vccq2->max_uA)
7821                 icc_level = ufshcd_get_max_icc_level(
7822                                 hba->vreg_info.vccq2->max_uA,
7823                                 icc_level,
7824                                 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7825 out:
7826         return icc_level;
7827 }
7828
7829 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7830 {
7831         int ret;
7832         u8 *desc_buf;
7833         u32 icc_level;
7834
7835         desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7836         if (!desc_buf)
7837                 return;
7838
7839         ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7840                                      desc_buf, QUERY_DESC_MAX_SIZE);
7841         if (ret) {
7842                 dev_err(hba->dev,
7843                         "%s: Failed reading power descriptor ret = %d",
7844                         __func__, ret);
7845                 goto out;
7846         }
7847
7848         icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
7849         dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7850
7851         ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7852                 QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7853
7854         if (ret)
7855                 dev_err(hba->dev,
7856                         "%s: Failed configuring bActiveICCLevel = %d ret = %d",
7857                         __func__, icc_level, ret);
7858
7859 out:
7860         kfree(desc_buf);
7861 }
7862
7863 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7864 {
7865         scsi_autopm_get_device(sdev);
7866         blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7867         if (sdev->rpm_autosuspend)
7868                 pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7869                                                  RPM_AUTOSUSPEND_DELAY_MS);
7870         scsi_autopm_put_device(sdev);
7871 }
7872
7873 /**
7874  * ufshcd_scsi_add_wlus - Adds required W-LUs
7875  * @hba: per-adapter instance
7876  *
7877  * UFS device specification requires the UFS devices to support 4 well known
7878  * logical units:
7879  *      "REPORT_LUNS" (address: 01h)
7880  *      "UFS Device" (address: 50h)
7881  *      "RPMB" (address: 44h)
7882  *      "BOOT" (address: 30h)
7883  * UFS device's power management needs to be controlled by "POWER CONDITION"
7884  * field of SSU (START STOP UNIT) command. But this "power condition" field
7885  * will take effect only when its sent to "UFS device" well known logical unit
7886  * hence we require the scsi_device instance to represent this logical unit in
7887  * order for the UFS host driver to send the SSU command for power management.
7888  *
7889  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7890  * Block) LU so user space process can control this LU. User space may also
7891  * want to have access to BOOT LU.
7892  *
7893  * This function adds scsi device instances for each of all well known LUs
7894  * (except "REPORT LUNS" LU).
7895  *
7896  * Return: zero on success (all required W-LUs are added successfully),
7897  * non-zero error value on failure (if failed to add any of the required W-LU).
7898  */
7899 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
7900 {
7901         int ret = 0;
7902         struct scsi_device *sdev_boot, *sdev_rpmb;
7903
7904         hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
7905                 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
7906         if (IS_ERR(hba->ufs_device_wlun)) {
7907                 ret = PTR_ERR(hba->ufs_device_wlun);
7908                 hba->ufs_device_wlun = NULL;
7909                 goto out;
7910         }
7911         scsi_device_put(hba->ufs_device_wlun);
7912
7913         sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
7914                 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
7915         if (IS_ERR(sdev_rpmb)) {
7916                 ret = PTR_ERR(sdev_rpmb);
7917                 goto remove_ufs_device_wlun;
7918         }
7919         ufshcd_blk_pm_runtime_init(sdev_rpmb);
7920         scsi_device_put(sdev_rpmb);
7921
7922         sdev_boot = __scsi_add_device(hba->host, 0, 0,
7923                 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
7924         if (IS_ERR(sdev_boot)) {
7925                 dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
7926         } else {
7927                 ufshcd_blk_pm_runtime_init(sdev_boot);
7928                 scsi_device_put(sdev_boot);
7929         }
7930         goto out;
7931
7932 remove_ufs_device_wlun:
7933         scsi_remove_device(hba->ufs_device_wlun);
7934 out:
7935         return ret;
7936 }
7937
7938 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
7939 {
7940         struct ufs_dev_info *dev_info = &hba->dev_info;
7941         u8 lun;
7942         u32 d_lu_wb_buf_alloc;
7943         u32 ext_ufs_feature;
7944
7945         if (!ufshcd_is_wb_allowed(hba))
7946                 return;
7947
7948         /*
7949          * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
7950          * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
7951          * enabled
7952          */
7953         if (!(dev_info->wspecversion >= 0x310 ||
7954               dev_info->wspecversion == 0x220 ||
7955              (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
7956                 goto wb_disabled;
7957
7958         ext_ufs_feature = get_unaligned_be32(desc_buf +
7959                                         DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7960
7961         if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
7962                 goto wb_disabled;
7963
7964         /*
7965          * WB may be supported but not configured while provisioning. The spec
7966          * says, in dedicated wb buffer mode, a max of 1 lun would have wb
7967          * buffer configured.
7968          */
7969         dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
7970
7971         dev_info->b_presrv_uspc_en =
7972                 desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
7973
7974         if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
7975                 if (!get_unaligned_be32(desc_buf +
7976                                    DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
7977                         goto wb_disabled;
7978         } else {
7979                 for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
7980                         d_lu_wb_buf_alloc = 0;
7981                         ufshcd_read_unit_desc_param(hba,
7982                                         lun,
7983                                         UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
7984                                         (u8 *)&d_lu_wb_buf_alloc,
7985                                         sizeof(d_lu_wb_buf_alloc));
7986                         if (d_lu_wb_buf_alloc) {
7987                                 dev_info->wb_dedicated_lu = lun;
7988                                 break;
7989                         }
7990                 }
7991
7992                 if (!d_lu_wb_buf_alloc)
7993                         goto wb_disabled;
7994         }
7995
7996         if (!ufshcd_is_wb_buf_lifetime_available(hba))
7997                 goto wb_disabled;
7998
7999         return;
8000
8001 wb_disabled:
8002         hba->caps &= ~UFSHCD_CAP_WB_EN;
8003 }
8004
8005 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8006 {
8007         struct ufs_dev_info *dev_info = &hba->dev_info;
8008         u32 ext_ufs_feature;
8009         u8 mask = 0;
8010
8011         if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8012                 return;
8013
8014         ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8015
8016         if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8017                 mask |= MASK_EE_TOO_LOW_TEMP;
8018
8019         if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8020                 mask |= MASK_EE_TOO_HIGH_TEMP;
8021
8022         if (mask) {
8023                 ufshcd_enable_ee(hba, mask);
8024                 ufs_hwmon_probe(hba, mask);
8025         }
8026 }
8027
8028 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf)
8029 {
8030         struct ufs_dev_info *dev_info = &hba->dev_info;
8031         u32 ext_ufs_feature;
8032         u32 ext_iid_en = 0;
8033         int err;
8034
8035         /* Only UFS-4.0 and above may support EXT_IID */
8036         if (dev_info->wspecversion < 0x400)
8037                 goto out;
8038
8039         ext_ufs_feature = get_unaligned_be32(desc_buf +
8040                                      DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8041         if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP))
8042                 goto out;
8043
8044         err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8045                                       QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en);
8046         if (err)
8047                 dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err);
8048
8049 out:
8050         dev_info->b_ext_iid_en = ext_iid_en;
8051 }
8052
8053 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8054                              const struct ufs_dev_quirk *fixups)
8055 {
8056         const struct ufs_dev_quirk *f;
8057         struct ufs_dev_info *dev_info = &hba->dev_info;
8058
8059         if (!fixups)
8060                 return;
8061
8062         for (f = fixups; f->quirk; f++) {
8063                 if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8064                      f->wmanufacturerid == UFS_ANY_VENDOR) &&
8065                      ((dev_info->model &&
8066                        STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8067                       !strcmp(f->model, UFS_ANY_MODEL)))
8068                         hba->dev_quirks |= f->quirk;
8069         }
8070 }
8071 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8072
8073 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8074 {
8075         /* fix by general quirk table */
8076         ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8077
8078         /* allow vendors to fix quirks */
8079         ufshcd_vops_fixup_dev_quirks(hba);
8080 }
8081
8082 static int ufs_get_device_desc(struct ufs_hba *hba)
8083 {
8084         int err;
8085         u8 model_index;
8086         u8 *desc_buf;
8087         struct ufs_dev_info *dev_info = &hba->dev_info;
8088
8089         desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8090         if (!desc_buf) {
8091                 err = -ENOMEM;
8092                 goto out;
8093         }
8094
8095         err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8096                                      QUERY_DESC_MAX_SIZE);
8097         if (err) {
8098                 dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8099                         __func__, err);
8100                 goto out;
8101         }
8102
8103         /*
8104          * getting vendor (manufacturerID) and Bank Index in big endian
8105          * format
8106          */
8107         dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8108                                      desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8109
8110         /* getting Specification Version in big endian format */
8111         dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8112                                       desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8113         dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8114
8115         model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8116
8117         err = ufshcd_read_string_desc(hba, model_index,
8118                                       &dev_info->model, SD_ASCII_STD);
8119         if (err < 0) {
8120                 dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8121                         __func__, err);
8122                 goto out;
8123         }
8124
8125         hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8126                 desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8127
8128         ufs_fixup_device_setup(hba);
8129
8130         ufshcd_wb_probe(hba, desc_buf);
8131
8132         ufshcd_temp_notif_probe(hba, desc_buf);
8133
8134         if (hba->ext_iid_sup)
8135                 ufshcd_ext_iid_probe(hba, desc_buf);
8136
8137         /*
8138          * ufshcd_read_string_desc returns size of the string
8139          * reset the error value
8140          */
8141         err = 0;
8142
8143 out:
8144         kfree(desc_buf);
8145         return err;
8146 }
8147
8148 static void ufs_put_device_desc(struct ufs_hba *hba)
8149 {
8150         struct ufs_dev_info *dev_info = &hba->dev_info;
8151
8152         kfree(dev_info->model);
8153         dev_info->model = NULL;
8154 }
8155
8156 /**
8157  * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
8158  * @hba: per-adapter instance
8159  *
8160  * PA_TActivate parameter can be tuned manually if UniPro version is less than
8161  * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
8162  * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
8163  * the hibern8 exit latency.
8164  *
8165  * Return: zero on success, non-zero error value on failure.
8166  */
8167 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
8168 {
8169         int ret = 0;
8170         u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
8171
8172         ret = ufshcd_dme_peer_get(hba,
8173                                   UIC_ARG_MIB_SEL(
8174                                         RX_MIN_ACTIVATETIME_CAPABILITY,
8175                                         UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8176                                   &peer_rx_min_activatetime);
8177         if (ret)
8178                 goto out;
8179
8180         /* make sure proper unit conversion is applied */
8181         tuned_pa_tactivate =
8182                 ((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
8183                  / PA_TACTIVATE_TIME_UNIT_US);
8184         ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8185                              tuned_pa_tactivate);
8186
8187 out:
8188         return ret;
8189 }
8190
8191 /**
8192  * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
8193  * @hba: per-adapter instance
8194  *
8195  * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
8196  * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
8197  * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
8198  * This optimal value can help reduce the hibern8 exit latency.
8199  *
8200  * Return: zero on success, non-zero error value on failure.
8201  */
8202 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
8203 {
8204         int ret = 0;
8205         u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
8206         u32 max_hibern8_time, tuned_pa_hibern8time;
8207
8208         ret = ufshcd_dme_get(hba,
8209                              UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
8210                                         UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
8211                                   &local_tx_hibern8_time_cap);
8212         if (ret)
8213                 goto out;
8214
8215         ret = ufshcd_dme_peer_get(hba,
8216                                   UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
8217                                         UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8218                                   &peer_rx_hibern8_time_cap);
8219         if (ret)
8220                 goto out;
8221
8222         max_hibern8_time = max(local_tx_hibern8_time_cap,
8223                                peer_rx_hibern8_time_cap);
8224         /* make sure proper unit conversion is applied */
8225         tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
8226                                 / PA_HIBERN8_TIME_UNIT_US);
8227         ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
8228                              tuned_pa_hibern8time);
8229 out:
8230         return ret;
8231 }
8232
8233 /**
8234  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8235  * less than device PA_TACTIVATE time.
8236  * @hba: per-adapter instance
8237  *
8238  * Some UFS devices require host PA_TACTIVATE to be lower than device
8239  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8240  * for such devices.
8241  *
8242  * Return: zero on success, non-zero error value on failure.
8243  */
8244 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8245 {
8246         int ret = 0;
8247         u32 granularity, peer_granularity;
8248         u32 pa_tactivate, peer_pa_tactivate;
8249         u32 pa_tactivate_us, peer_pa_tactivate_us;
8250         static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8251
8252         ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8253                                   &granularity);
8254         if (ret)
8255                 goto out;
8256
8257         ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8258                                   &peer_granularity);
8259         if (ret)
8260                 goto out;
8261
8262         if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8263             (granularity > PA_GRANULARITY_MAX_VAL)) {
8264                 dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8265                         __func__, granularity);
8266                 return -EINVAL;
8267         }
8268
8269         if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8270             (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8271                 dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8272                         __func__, peer_granularity);
8273                 return -EINVAL;
8274         }
8275
8276         ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8277         if (ret)
8278                 goto out;
8279
8280         ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8281                                   &peer_pa_tactivate);
8282         if (ret)
8283                 goto out;
8284
8285         pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8286         peer_pa_tactivate_us = peer_pa_tactivate *
8287                              gran_to_us_table[peer_granularity - 1];
8288
8289         if (pa_tactivate_us >= peer_pa_tactivate_us) {
8290                 u32 new_peer_pa_tactivate;
8291
8292                 new_peer_pa_tactivate = pa_tactivate_us /
8293                                       gran_to_us_table[peer_granularity - 1];
8294                 new_peer_pa_tactivate++;
8295                 ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8296                                           new_peer_pa_tactivate);
8297         }
8298
8299 out:
8300         return ret;
8301 }
8302
8303 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8304 {
8305         if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
8306                 ufshcd_tune_pa_tactivate(hba);
8307                 ufshcd_tune_pa_hibern8time(hba);
8308         }
8309
8310         ufshcd_vops_apply_dev_quirks(hba);
8311
8312         if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8313                 /* set 1ms timeout for PA_TACTIVATE */
8314                 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8315
8316         if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8317                 ufshcd_quirk_tune_host_pa_tactivate(hba);
8318 }
8319
8320 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8321 {
8322         hba->ufs_stats.hibern8_exit_cnt = 0;
8323         hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8324         hba->req_abort_count = 0;
8325 }
8326
8327 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8328 {
8329         int err;
8330         u8 *desc_buf;
8331
8332         desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8333         if (!desc_buf) {
8334                 err = -ENOMEM;
8335                 goto out;
8336         }
8337
8338         err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8339                                      desc_buf, QUERY_DESC_MAX_SIZE);
8340         if (err) {
8341                 dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8342                                 __func__, err);
8343                 goto out;
8344         }
8345
8346         if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8347                 hba->dev_info.max_lu_supported = 32;
8348         else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8349                 hba->dev_info.max_lu_supported = 8;
8350
8351 out:
8352         kfree(desc_buf);
8353         return err;
8354 }
8355
8356 struct ufs_ref_clk {
8357         unsigned long freq_hz;
8358         enum ufs_ref_clk_freq val;
8359 };
8360
8361 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8362         {19200000, REF_CLK_FREQ_19_2_MHZ},
8363         {26000000, REF_CLK_FREQ_26_MHZ},
8364         {38400000, REF_CLK_FREQ_38_4_MHZ},
8365         {52000000, REF_CLK_FREQ_52_MHZ},
8366         {0, REF_CLK_FREQ_INVAL},
8367 };
8368
8369 static enum ufs_ref_clk_freq
8370 ufs_get_bref_clk_from_hz(unsigned long freq)
8371 {
8372         int i;
8373
8374         for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8375                 if (ufs_ref_clk_freqs[i].freq_hz == freq)
8376                         return ufs_ref_clk_freqs[i].val;
8377
8378         return REF_CLK_FREQ_INVAL;
8379 }
8380
8381 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8382 {
8383         unsigned long freq;
8384
8385         freq = clk_get_rate(refclk);
8386
8387         hba->dev_ref_clk_freq =
8388                 ufs_get_bref_clk_from_hz(freq);
8389
8390         if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8391                 dev_err(hba->dev,
8392                 "invalid ref_clk setting = %ld\n", freq);
8393 }
8394
8395 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8396 {
8397         int err;
8398         u32 ref_clk;
8399         u32 freq = hba->dev_ref_clk_freq;
8400
8401         err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8402                         QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8403
8404         if (err) {
8405                 dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8406                         err);
8407                 goto out;
8408         }
8409
8410         if (ref_clk == freq)
8411                 goto out; /* nothing to update */
8412
8413         err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8414                         QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8415
8416         if (err) {
8417                 dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8418                         ufs_ref_clk_freqs[freq].freq_hz);
8419                 goto out;
8420         }
8421
8422         dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8423                         ufs_ref_clk_freqs[freq].freq_hz);
8424
8425 out:
8426         return err;
8427 }
8428
8429 static int ufshcd_device_params_init(struct ufs_hba *hba)
8430 {
8431         bool flag;
8432         int ret;
8433
8434         /* Init UFS geometry descriptor related parameters */
8435         ret = ufshcd_device_geo_params_init(hba);
8436         if (ret)
8437                 goto out;
8438
8439         /* Check and apply UFS device quirks */
8440         ret = ufs_get_device_desc(hba);
8441         if (ret) {
8442                 dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8443                         __func__, ret);
8444                 goto out;
8445         }
8446
8447         ufshcd_get_ref_clk_gating_wait(hba);
8448
8449         if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8450                         QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8451                 hba->dev_info.f_power_on_wp_en = flag;
8452
8453         /* Probe maximum power mode co-supported by both UFS host and device */
8454         if (ufshcd_get_max_pwr_mode(hba))
8455                 dev_err(hba->dev,
8456                         "%s: Failed getting max supported power mode\n",
8457                         __func__);
8458 out:
8459         return ret;
8460 }
8461
8462 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8463 {
8464         int err;
8465         struct ufs_query_req *request = NULL;
8466         struct ufs_query_res *response = NULL;
8467         struct ufs_dev_info *dev_info = &hba->dev_info;
8468         struct utp_upiu_query_v4_0 *upiu_data;
8469
8470         if (dev_info->wspecversion < 0x400)
8471                 return;
8472
8473         ufshcd_hold(hba);
8474
8475         mutex_lock(&hba->dev_cmd.lock);
8476
8477         ufshcd_init_query(hba, &request, &response,
8478                           UPIU_QUERY_OPCODE_WRITE_ATTR,
8479                           QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8480
8481         request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8482
8483         upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8484
8485         put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8486
8487         err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
8488
8489         if (err)
8490                 dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8491                         __func__, err);
8492
8493         mutex_unlock(&hba->dev_cmd.lock);
8494         ufshcd_release(hba);
8495 }
8496
8497 /**
8498  * ufshcd_add_lus - probe and add UFS logical units
8499  * @hba: per-adapter instance
8500  *
8501  * Return: 0 upon success; < 0 upon failure.
8502  */
8503 static int ufshcd_add_lus(struct ufs_hba *hba)
8504 {
8505         int ret;
8506
8507         /* Add required well known logical units to scsi mid layer */
8508         ret = ufshcd_scsi_add_wlus(hba);
8509         if (ret)
8510                 goto out;
8511
8512         /* Initialize devfreq after UFS device is detected */
8513         if (ufshcd_is_clkscaling_supported(hba)) {
8514                 memcpy(&hba->clk_scaling.saved_pwr_info,
8515                         &hba->pwr_info,
8516                         sizeof(struct ufs_pa_layer_attr));
8517                 hba->clk_scaling.is_allowed = true;
8518
8519                 ret = ufshcd_devfreq_init(hba);
8520                 if (ret)
8521                         goto out;
8522
8523                 hba->clk_scaling.is_enabled = true;
8524                 ufshcd_init_clk_scaling_sysfs(hba);
8525         }
8526
8527         ufs_bsg_probe(hba);
8528         scsi_scan_host(hba->host);
8529         pm_runtime_put_sync(hba->dev);
8530
8531 out:
8532         return ret;
8533 }
8534
8535 /* SDB - Single Doorbell */
8536 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8537 {
8538         size_t ucdl_size, utrdl_size;
8539
8540         ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8541         dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8542                            hba->ucdl_dma_addr);
8543
8544         utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8545         dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8546                            hba->utrdl_dma_addr);
8547
8548         devm_kfree(hba->dev, hba->lrb);
8549 }
8550
8551 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8552 {
8553         int ret;
8554         int old_nutrs = hba->nutrs;
8555
8556         ret = ufshcd_mcq_decide_queue_depth(hba);
8557         if (ret < 0)
8558                 return ret;
8559
8560         hba->nutrs = ret;
8561         ret = ufshcd_mcq_init(hba);
8562         if (ret)
8563                 goto err;
8564
8565         /*
8566          * Previously allocated memory for nutrs may not be enough in MCQ mode.
8567          * Number of supported tags in MCQ mode may be larger than SDB mode.
8568          */
8569         if (hba->nutrs != old_nutrs) {
8570                 ufshcd_release_sdb_queue(hba, old_nutrs);
8571                 ret = ufshcd_memory_alloc(hba);
8572                 if (ret)
8573                         goto err;
8574                 ufshcd_host_memory_configure(hba);
8575         }
8576
8577         ret = ufshcd_mcq_memory_alloc(hba);
8578         if (ret)
8579                 goto err;
8580
8581         return 0;
8582 err:
8583         hba->nutrs = old_nutrs;
8584         return ret;
8585 }
8586
8587 static void ufshcd_config_mcq(struct ufs_hba *hba)
8588 {
8589         int ret;
8590         u32 intrs;
8591
8592         ret = ufshcd_mcq_vops_config_esi(hba);
8593         dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8594
8595         intrs = UFSHCD_ENABLE_MCQ_INTRS;
8596         if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
8597                 intrs &= ~MCQ_CQ_EVENT_STATUS;
8598         ufshcd_enable_intr(hba, intrs);
8599         ufshcd_mcq_make_queues_operational(hba);
8600         ufshcd_mcq_config_mac(hba, hba->nutrs);
8601
8602         hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8603         hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8604
8605         /* Select MCQ mode */
8606         ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_MEM_CFG) | 0x1,
8607                       REG_UFS_MEM_CFG);
8608         hba->mcq_enabled = true;
8609
8610         dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8611                  hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8612                  hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8613                  hba->nutrs);
8614 }
8615
8616 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8617 {
8618         int ret;
8619         struct Scsi_Host *host = hba->host;
8620
8621         hba->ufshcd_state = UFSHCD_STATE_RESET;
8622
8623         ret = ufshcd_link_startup(hba);
8624         if (ret)
8625                 return ret;
8626
8627         if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8628                 return ret;
8629
8630         /* Debug counters initialization */
8631         ufshcd_clear_dbg_ufs_stats(hba);
8632
8633         /* UniPro link is active now */
8634         ufshcd_set_link_active(hba);
8635
8636         /* Reconfigure MCQ upon reset */
8637         if (is_mcq_enabled(hba) && !init_dev_params)
8638                 ufshcd_config_mcq(hba);
8639
8640         /* Verify device initialization by sending NOP OUT UPIU */
8641         ret = ufshcd_verify_dev_init(hba);
8642         if (ret)
8643                 return ret;
8644
8645         /* Initiate UFS initialization, and waiting until completion */
8646         ret = ufshcd_complete_dev_init(hba);
8647         if (ret)
8648                 return ret;
8649
8650         /*
8651          * Initialize UFS device parameters used by driver, these
8652          * parameters are associated with UFS descriptors.
8653          */
8654         if (init_dev_params) {
8655                 ret = ufshcd_device_params_init(hba);
8656                 if (ret)
8657                         return ret;
8658                 if (is_mcq_supported(hba) && !hba->scsi_host_added) {
8659                         ret = ufshcd_alloc_mcq(hba);
8660                         if (!ret) {
8661                                 ufshcd_config_mcq(hba);
8662                         } else {
8663                                 /* Continue with SDB mode */
8664                                 use_mcq_mode = false;
8665                                 dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
8666                                          ret);
8667                         }
8668                         ret = scsi_add_host(host, hba->dev);
8669                         if (ret) {
8670                                 dev_err(hba->dev, "scsi_add_host failed\n");
8671                                 return ret;
8672                         }
8673                         hba->scsi_host_added = true;
8674                 } else if (is_mcq_supported(hba)) {
8675                         /* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */
8676                         ufshcd_config_mcq(hba);
8677                 }
8678         }
8679
8680         ufshcd_tune_unipro_params(hba);
8681
8682         /* UFS device is also active now */
8683         ufshcd_set_ufs_dev_active(hba);
8684         ufshcd_force_reset_auto_bkops(hba);
8685
8686         ufshcd_set_timestamp_attr(hba);
8687
8688         /* Gear up to HS gear if supported */
8689         if (hba->max_pwr_info.is_valid) {
8690                 /*
8691                  * Set the right value to bRefClkFreq before attempting to
8692                  * switch to HS gears.
8693                  */
8694                 if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8695                         ufshcd_set_dev_ref_clk(hba);
8696                 ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8697                 if (ret) {
8698                         dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8699                                         __func__, ret);
8700                         return ret;
8701                 }
8702         }
8703
8704         return 0;
8705 }
8706
8707 /**
8708  * ufshcd_probe_hba - probe hba to detect device and initialize it
8709  * @hba: per-adapter instance
8710  * @init_dev_params: whether or not to call ufshcd_device_params_init().
8711  *
8712  * Execute link-startup and verify device initialization
8713  *
8714  * Return: 0 upon success; < 0 upon failure.
8715  */
8716 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8717 {
8718         ktime_t start = ktime_get();
8719         unsigned long flags;
8720         int ret;
8721
8722         ret = ufshcd_device_init(hba, init_dev_params);
8723         if (ret)
8724                 goto out;
8725
8726         if (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH) {
8727                 /* Reset the device and controller before doing reinit */
8728                 ufshcd_device_reset(hba);
8729                 ufshcd_hba_stop(hba);
8730                 ufshcd_vops_reinit_notify(hba);
8731                 ret = ufshcd_hba_enable(hba);
8732                 if (ret) {
8733                         dev_err(hba->dev, "Host controller enable failed\n");
8734                         ufshcd_print_evt_hist(hba);
8735                         ufshcd_print_host_state(hba);
8736                         goto out;
8737                 }
8738
8739                 /* Reinit the device */
8740                 ret = ufshcd_device_init(hba, init_dev_params);
8741                 if (ret)
8742                         goto out;
8743         }
8744
8745         ufshcd_print_pwr_info(hba);
8746
8747         /*
8748          * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8749          * and for removable UFS card as well, hence always set the parameter.
8750          * Note: Error handler may issue the device reset hence resetting
8751          * bActiveICCLevel as well so it is always safe to set this here.
8752          */
8753         ufshcd_set_active_icc_lvl(hba);
8754
8755         /* Enable UFS Write Booster if supported */
8756         ufshcd_configure_wb(hba);
8757
8758         if (hba->ee_usr_mask)
8759                 ufshcd_write_ee_control(hba);
8760         /* Enable Auto-Hibernate if configured */
8761         ufshcd_auto_hibern8_enable(hba);
8762
8763 out:
8764         spin_lock_irqsave(hba->host->host_lock, flags);
8765         if (ret)
8766                 hba->ufshcd_state = UFSHCD_STATE_ERROR;
8767         else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
8768                 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
8769         spin_unlock_irqrestore(hba->host->host_lock, flags);
8770
8771         trace_ufshcd_init(dev_name(hba->dev), ret,
8772                 ktime_to_us(ktime_sub(ktime_get(), start)),
8773                 hba->curr_dev_pwr_mode, hba->uic_link_state);
8774         return ret;
8775 }
8776
8777 /**
8778  * ufshcd_async_scan - asynchronous execution for probing hba
8779  * @data: data pointer to pass to this function
8780  * @cookie: cookie data
8781  */
8782 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8783 {
8784         struct ufs_hba *hba = (struct ufs_hba *)data;
8785         int ret;
8786
8787         down(&hba->host_sem);
8788         /* Initialize hba, detect and initialize UFS device */
8789         ret = ufshcd_probe_hba(hba, true);
8790         up(&hba->host_sem);
8791         if (ret)
8792                 goto out;
8793
8794         /* Probe and add UFS logical units  */
8795         ret = ufshcd_add_lus(hba);
8796 out:
8797         /*
8798          * If we failed to initialize the device or the device is not
8799          * present, turn off the power/clocks etc.
8800          */
8801         if (ret) {
8802                 pm_runtime_put_sync(hba->dev);
8803                 ufshcd_hba_exit(hba);
8804         }
8805 }
8806
8807 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
8808 {
8809         struct ufs_hba *hba = shost_priv(scmd->device->host);
8810
8811         if (!hba->system_suspending) {
8812                 /* Activate the error handler in the SCSI core. */
8813                 return SCSI_EH_NOT_HANDLED;
8814         }
8815
8816         /*
8817          * If we get here we know that no TMFs are outstanding and also that
8818          * the only pending command is a START STOP UNIT command. Handle the
8819          * timeout of that command directly to prevent a deadlock between
8820          * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
8821          */
8822         ufshcd_link_recovery(hba);
8823         dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
8824                  __func__, hba->outstanding_tasks);
8825
8826         return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
8827 }
8828
8829 static const struct attribute_group *ufshcd_driver_groups[] = {
8830         &ufs_sysfs_unit_descriptor_group,
8831         &ufs_sysfs_lun_attributes_group,
8832         NULL,
8833 };
8834
8835 static struct ufs_hba_variant_params ufs_hba_vps = {
8836         .hba_enable_delay_us            = 1000,
8837         .wb_flush_threshold             = UFS_WB_BUF_REMAIN_PERCENT(40),
8838         .devfreq_profile.polling_ms     = 100,
8839         .devfreq_profile.target         = ufshcd_devfreq_target,
8840         .devfreq_profile.get_dev_status = ufshcd_devfreq_get_dev_status,
8841         .ondemand_data.upthreshold      = 70,
8842         .ondemand_data.downdifferential = 5,
8843 };
8844
8845 static const struct scsi_host_template ufshcd_driver_template = {
8846         .module                 = THIS_MODULE,
8847         .name                   = UFSHCD,
8848         .proc_name              = UFSHCD,
8849         .map_queues             = ufshcd_map_queues,
8850         .queuecommand           = ufshcd_queuecommand,
8851         .mq_poll                = ufshcd_poll,
8852         .slave_alloc            = ufshcd_slave_alloc,
8853         .slave_configure        = ufshcd_slave_configure,
8854         .slave_destroy          = ufshcd_slave_destroy,
8855         .change_queue_depth     = ufshcd_change_queue_depth,
8856         .eh_abort_handler       = ufshcd_abort,
8857         .eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8858         .eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
8859         .eh_timed_out           = ufshcd_eh_timed_out,
8860         .this_id                = -1,
8861         .sg_tablesize           = SG_ALL,
8862         .cmd_per_lun            = UFSHCD_CMD_PER_LUN,
8863         .can_queue              = UFSHCD_CAN_QUEUE,
8864         .max_segment_size       = PRDT_DATA_BYTE_COUNT_MAX,
8865         .max_sectors            = SZ_1M / SECTOR_SIZE,
8866         .max_host_blocked       = 1,
8867         .track_queue_depth      = 1,
8868         .skip_settle_delay      = 1,
8869         .sdev_groups            = ufshcd_driver_groups,
8870         .rpm_autosuspend_delay  = RPM_AUTOSUSPEND_DELAY_MS,
8871 };
8872
8873 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8874                                    int ua)
8875 {
8876         int ret;
8877
8878         if (!vreg)
8879                 return 0;
8880
8881         /*
8882          * "set_load" operation shall be required on those regulators
8883          * which specifically configured current limitation. Otherwise
8884          * zero max_uA may cause unexpected behavior when regulator is
8885          * enabled or set as high power mode.
8886          */
8887         if (!vreg->max_uA)
8888                 return 0;
8889
8890         ret = regulator_set_load(vreg->reg, ua);
8891         if (ret < 0) {
8892                 dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
8893                                 __func__, vreg->name, ua, ret);
8894         }
8895
8896         return ret;
8897 }
8898
8899 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
8900                                          struct ufs_vreg *vreg)
8901 {
8902         return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
8903 }
8904
8905 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
8906                                          struct ufs_vreg *vreg)
8907 {
8908         if (!vreg)
8909                 return 0;
8910
8911         return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
8912 }
8913
8914 static int ufshcd_config_vreg(struct device *dev,
8915                 struct ufs_vreg *vreg, bool on)
8916 {
8917         if (regulator_count_voltages(vreg->reg) <= 0)
8918                 return 0;
8919
8920         return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
8921 }
8922
8923 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
8924 {
8925         int ret = 0;
8926
8927         if (!vreg || vreg->enabled)
8928                 goto out;
8929
8930         ret = ufshcd_config_vreg(dev, vreg, true);
8931         if (!ret)
8932                 ret = regulator_enable(vreg->reg);
8933
8934         if (!ret)
8935                 vreg->enabled = true;
8936         else
8937                 dev_err(dev, "%s: %s enable failed, err=%d\n",
8938                                 __func__, vreg->name, ret);
8939 out:
8940         return ret;
8941 }
8942
8943 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
8944 {
8945         int ret = 0;
8946
8947         if (!vreg || !vreg->enabled || vreg->always_on)
8948                 goto out;
8949
8950         ret = regulator_disable(vreg->reg);
8951
8952         if (!ret) {
8953                 /* ignore errors on applying disable config */
8954                 ufshcd_config_vreg(dev, vreg, false);
8955                 vreg->enabled = false;
8956         } else {
8957                 dev_err(dev, "%s: %s disable failed, err=%d\n",
8958                                 __func__, vreg->name, ret);
8959         }
8960 out:
8961         return ret;
8962 }
8963
8964 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
8965 {
8966         int ret = 0;
8967         struct device *dev = hba->dev;
8968         struct ufs_vreg_info *info = &hba->vreg_info;
8969
8970         ret = ufshcd_toggle_vreg(dev, info->vcc, on);
8971         if (ret)
8972                 goto out;
8973
8974         ret = ufshcd_toggle_vreg(dev, info->vccq, on);
8975         if (ret)
8976                 goto out;
8977
8978         ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
8979
8980 out:
8981         if (ret) {
8982                 ufshcd_toggle_vreg(dev, info->vccq2, false);
8983                 ufshcd_toggle_vreg(dev, info->vccq, false);
8984                 ufshcd_toggle_vreg(dev, info->vcc, false);
8985         }
8986         return ret;
8987 }
8988
8989 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
8990 {
8991         struct ufs_vreg_info *info = &hba->vreg_info;
8992
8993         return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
8994 }
8995
8996 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
8997 {
8998         int ret = 0;
8999
9000         if (!vreg)
9001                 goto out;
9002
9003         vreg->reg = devm_regulator_get(dev, vreg->name);
9004         if (IS_ERR(vreg->reg)) {
9005                 ret = PTR_ERR(vreg->reg);
9006                 dev_err(dev, "%s: %s get failed, err=%d\n",
9007                                 __func__, vreg->name, ret);
9008         }
9009 out:
9010         return ret;
9011 }
9012 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9013
9014 static int ufshcd_init_vreg(struct ufs_hba *hba)
9015 {
9016         int ret = 0;
9017         struct device *dev = hba->dev;
9018         struct ufs_vreg_info *info = &hba->vreg_info;
9019
9020         ret = ufshcd_get_vreg(dev, info->vcc);
9021         if (ret)
9022                 goto out;
9023
9024         ret = ufshcd_get_vreg(dev, info->vccq);
9025         if (!ret)
9026                 ret = ufshcd_get_vreg(dev, info->vccq2);
9027 out:
9028         return ret;
9029 }
9030
9031 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9032 {
9033         struct ufs_vreg_info *info = &hba->vreg_info;
9034
9035         return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9036 }
9037
9038 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9039 {
9040         int ret = 0;
9041         struct ufs_clk_info *clki;
9042         struct list_head *head = &hba->clk_list_head;
9043         unsigned long flags;
9044         ktime_t start = ktime_get();
9045         bool clk_state_changed = false;
9046
9047         if (list_empty(head))
9048                 goto out;
9049
9050         ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9051         if (ret)
9052                 return ret;
9053
9054         list_for_each_entry(clki, head, list) {
9055                 if (!IS_ERR_OR_NULL(clki->clk)) {
9056                         /*
9057                          * Don't disable clocks which are needed
9058                          * to keep the link active.
9059                          */
9060                         if (ufshcd_is_link_active(hba) &&
9061                             clki->keep_link_active)
9062                                 continue;
9063
9064                         clk_state_changed = on ^ clki->enabled;
9065                         if (on && !clki->enabled) {
9066                                 ret = clk_prepare_enable(clki->clk);
9067                                 if (ret) {
9068                                         dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9069                                                 __func__, clki->name, ret);
9070                                         goto out;
9071                                 }
9072                         } else if (!on && clki->enabled) {
9073                                 clk_disable_unprepare(clki->clk);
9074                         }
9075                         clki->enabled = on;
9076                         dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9077                                         clki->name, on ? "en" : "dis");
9078                 }
9079         }
9080
9081         ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9082         if (ret)
9083                 return ret;
9084
9085 out:
9086         if (ret) {
9087                 list_for_each_entry(clki, head, list) {
9088                         if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9089                                 clk_disable_unprepare(clki->clk);
9090                 }
9091         } else if (!ret && on) {
9092                 spin_lock_irqsave(hba->host->host_lock, flags);
9093                 hba->clk_gating.state = CLKS_ON;
9094                 trace_ufshcd_clk_gating(dev_name(hba->dev),
9095                                         hba->clk_gating.state);
9096                 spin_unlock_irqrestore(hba->host->host_lock, flags);
9097         }
9098
9099         if (clk_state_changed)
9100                 trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
9101                         (on ? "on" : "off"),
9102                         ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9103         return ret;
9104 }
9105
9106 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9107 {
9108         u32 freq;
9109         int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9110
9111         if (ret) {
9112                 dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9113                 return REF_CLK_FREQ_INVAL;
9114         }
9115
9116         return ufs_get_bref_clk_from_hz(freq);
9117 }
9118
9119 static int ufshcd_init_clocks(struct ufs_hba *hba)
9120 {
9121         int ret = 0;
9122         struct ufs_clk_info *clki;
9123         struct device *dev = hba->dev;
9124         struct list_head *head = &hba->clk_list_head;
9125
9126         if (list_empty(head))
9127                 goto out;
9128
9129         list_for_each_entry(clki, head, list) {
9130                 if (!clki->name)
9131                         continue;
9132
9133                 clki->clk = devm_clk_get(dev, clki->name);
9134                 if (IS_ERR(clki->clk)) {
9135                         ret = PTR_ERR(clki->clk);
9136                         dev_err(dev, "%s: %s clk get failed, %d\n",
9137                                         __func__, clki->name, ret);
9138                         goto out;
9139                 }
9140
9141                 /*
9142                  * Parse device ref clk freq as per device tree "ref_clk".
9143                  * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9144                  * in ufshcd_alloc_host().
9145                  */
9146                 if (!strcmp(clki->name, "ref_clk"))
9147                         ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9148
9149                 if (clki->max_freq) {
9150                         ret = clk_set_rate(clki->clk, clki->max_freq);
9151                         if (ret) {
9152                                 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9153                                         __func__, clki->name,
9154                                         clki->max_freq, ret);
9155                                 goto out;
9156                         }
9157                         clki->curr_freq = clki->max_freq;
9158                 }
9159                 dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9160                                 clki->name, clk_get_rate(clki->clk));
9161         }
9162 out:
9163         return ret;
9164 }
9165
9166 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9167 {
9168         int err = 0;
9169
9170         if (!hba->vops)
9171                 goto out;
9172
9173         err = ufshcd_vops_init(hba);
9174         if (err)
9175                 dev_err_probe(hba->dev, err,
9176                               "%s: variant %s init failed with err %d\n",
9177                               __func__, ufshcd_get_var_name(hba), err);
9178 out:
9179         return err;
9180 }
9181
9182 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9183 {
9184         if (!hba->vops)
9185                 return;
9186
9187         ufshcd_vops_exit(hba);
9188 }
9189
9190 static int ufshcd_hba_init(struct ufs_hba *hba)
9191 {
9192         int err;
9193
9194         /*
9195          * Handle host controller power separately from the UFS device power
9196          * rails as it will help controlling the UFS host controller power
9197          * collapse easily which is different than UFS device power collapse.
9198          * Also, enable the host controller power before we go ahead with rest
9199          * of the initialization here.
9200          */
9201         err = ufshcd_init_hba_vreg(hba);
9202         if (err)
9203                 goto out;
9204
9205         err = ufshcd_setup_hba_vreg(hba, true);
9206         if (err)
9207                 goto out;
9208
9209         err = ufshcd_init_clocks(hba);
9210         if (err)
9211                 goto out_disable_hba_vreg;
9212
9213         if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9214                 hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9215
9216         err = ufshcd_setup_clocks(hba, true);
9217         if (err)
9218                 goto out_disable_hba_vreg;
9219
9220         err = ufshcd_init_vreg(hba);
9221         if (err)
9222                 goto out_disable_clks;
9223
9224         err = ufshcd_setup_vreg(hba, true);
9225         if (err)
9226                 goto out_disable_clks;
9227
9228         err = ufshcd_variant_hba_init(hba);
9229         if (err)
9230                 goto out_disable_vreg;
9231
9232         ufs_debugfs_hba_init(hba);
9233
9234         hba->is_powered = true;
9235         goto out;
9236
9237 out_disable_vreg:
9238         ufshcd_setup_vreg(hba, false);
9239 out_disable_clks:
9240         ufshcd_setup_clocks(hba, false);
9241 out_disable_hba_vreg:
9242         ufshcd_setup_hba_vreg(hba, false);
9243 out:
9244         return err;
9245 }
9246
9247 static void ufshcd_hba_exit(struct ufs_hba *hba)
9248 {
9249         if (hba->is_powered) {
9250                 ufshcd_exit_clk_scaling(hba);
9251                 ufshcd_exit_clk_gating(hba);
9252                 if (hba->eh_wq)
9253                         destroy_workqueue(hba->eh_wq);
9254                 ufs_debugfs_hba_exit(hba);
9255                 ufshcd_variant_hba_exit(hba);
9256                 ufshcd_setup_vreg(hba, false);
9257                 ufshcd_setup_clocks(hba, false);
9258                 ufshcd_setup_hba_vreg(hba, false);
9259                 hba->is_powered = false;
9260                 ufs_put_device_desc(hba);
9261         }
9262 }
9263
9264 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9265                                      enum ufs_dev_pwr_mode pwr_mode,
9266                                      struct scsi_sense_hdr *sshdr)
9267 {
9268         const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9269         const struct scsi_exec_args args = {
9270                 .sshdr = sshdr,
9271                 .req_flags = BLK_MQ_REQ_PM,
9272                 .scmd_flags = SCMD_FAIL_IF_RECOVERING,
9273         };
9274
9275         return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9276                         /*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9277                         &args);
9278 }
9279
9280 /**
9281  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9282  *                           power mode
9283  * @hba: per adapter instance
9284  * @pwr_mode: device power mode to set
9285  *
9286  * Return: 0 if requested power mode is set successfully;
9287  *         < 0 if failed to set the requested power mode.
9288  */
9289 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9290                                      enum ufs_dev_pwr_mode pwr_mode)
9291 {
9292         struct scsi_sense_hdr sshdr;
9293         struct scsi_device *sdp;
9294         unsigned long flags;
9295         int ret, retries;
9296
9297         spin_lock_irqsave(hba->host->host_lock, flags);
9298         sdp = hba->ufs_device_wlun;
9299         if (sdp && scsi_device_online(sdp))
9300                 ret = scsi_device_get(sdp);
9301         else
9302                 ret = -ENODEV;
9303         spin_unlock_irqrestore(hba->host->host_lock, flags);
9304
9305         if (ret)
9306                 return ret;
9307
9308         /*
9309          * If scsi commands fail, the scsi mid-layer schedules scsi error-
9310          * handling, which would wait for host to be resumed. Since we know
9311          * we are functional while we are here, skip host resume in error
9312          * handling context.
9313          */
9314         hba->host->eh_noresume = 1;
9315
9316         /*
9317          * Current function would be generally called from the power management
9318          * callbacks hence set the RQF_PM flag so that it doesn't resume the
9319          * already suspended childs.
9320          */
9321         for (retries = 3; retries > 0; --retries) {
9322                 ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9323                 /*
9324                  * scsi_execute() only returns a negative value if the request
9325                  * queue is dying.
9326                  */
9327                 if (ret <= 0)
9328                         break;
9329         }
9330         if (ret) {
9331                 sdev_printk(KERN_WARNING, sdp,
9332                             "START_STOP failed for power mode: %d, result %x\n",
9333                             pwr_mode, ret);
9334                 if (ret > 0) {
9335                         if (scsi_sense_valid(&sshdr))
9336                                 scsi_print_sense_hdr(sdp, NULL, &sshdr);
9337                         ret = -EIO;
9338                 }
9339         } else {
9340                 hba->curr_dev_pwr_mode = pwr_mode;
9341         }
9342
9343         scsi_device_put(sdp);
9344         hba->host->eh_noresume = 0;
9345         return ret;
9346 }
9347
9348 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9349                                         enum uic_link_state req_link_state,
9350                                         bool check_for_bkops)
9351 {
9352         int ret = 0;
9353
9354         if (req_link_state == hba->uic_link_state)
9355                 return 0;
9356
9357         if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9358                 ret = ufshcd_uic_hibern8_enter(hba);
9359                 if (!ret) {
9360                         ufshcd_set_link_hibern8(hba);
9361                 } else {
9362                         dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9363                                         __func__, ret);
9364                         goto out;
9365                 }
9366         }
9367         /*
9368          * If autobkops is enabled, link can't be turned off because
9369          * turning off the link would also turn off the device, except in the
9370          * case of DeepSleep where the device is expected to remain powered.
9371          */
9372         else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9373                  (!check_for_bkops || !hba->auto_bkops_enabled)) {
9374                 /*
9375                  * Let's make sure that link is in low power mode, we are doing
9376                  * this currently by putting the link in Hibern8. Otherway to
9377                  * put the link in low power mode is to send the DME end point
9378                  * to device and then send the DME reset command to local
9379                  * unipro. But putting the link in hibern8 is much faster.
9380                  *
9381                  * Note also that putting the link in Hibern8 is a requirement
9382                  * for entering DeepSleep.
9383                  */
9384                 ret = ufshcd_uic_hibern8_enter(hba);
9385                 if (ret) {
9386                         dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9387                                         __func__, ret);
9388                         goto out;
9389                 }
9390                 /*
9391                  * Change controller state to "reset state" which
9392                  * should also put the link in off/reset state
9393                  */
9394                 ufshcd_hba_stop(hba);
9395                 /*
9396                  * TODO: Check if we need any delay to make sure that
9397                  * controller is reset
9398                  */
9399                 ufshcd_set_link_off(hba);
9400         }
9401
9402 out:
9403         return ret;
9404 }
9405
9406 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9407 {
9408         bool vcc_off = false;
9409
9410         /*
9411          * It seems some UFS devices may keep drawing more than sleep current
9412          * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9413          * To avoid this situation, add 2ms delay before putting these UFS
9414          * rails in LPM mode.
9415          */
9416         if (!ufshcd_is_link_active(hba) &&
9417             hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9418                 usleep_range(2000, 2100);
9419
9420         /*
9421          * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9422          * power.
9423          *
9424          * If UFS device and link is in OFF state, all power supplies (VCC,
9425          * VCCQ, VCCQ2) can be turned off if power on write protect is not
9426          * required. If UFS link is inactive (Hibern8 or OFF state) and device
9427          * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9428          *
9429          * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9430          * in low power state which would save some power.
9431          *
9432          * If Write Booster is enabled and the device needs to flush the WB
9433          * buffer OR if bkops status is urgent for WB, keep Vcc on.
9434          */
9435         if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9436             !hba->dev_info.is_lu_power_on_wp) {
9437                 ufshcd_setup_vreg(hba, false);
9438                 vcc_off = true;
9439         } else if (!ufshcd_is_ufs_dev_active(hba)) {
9440                 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9441                 vcc_off = true;
9442                 if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9443                         ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9444                         ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9445                 }
9446         }
9447
9448         /*
9449          * Some UFS devices require delay after VCC power rail is turned-off.
9450          */
9451         if (vcc_off && hba->vreg_info.vcc &&
9452                 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9453                 usleep_range(5000, 5100);
9454 }
9455
9456 #ifdef CONFIG_PM
9457 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9458 {
9459         int ret = 0;
9460
9461         if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9462             !hba->dev_info.is_lu_power_on_wp) {
9463                 ret = ufshcd_setup_vreg(hba, true);
9464         } else if (!ufshcd_is_ufs_dev_active(hba)) {
9465                 if (!ufshcd_is_link_active(hba)) {
9466                         ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9467                         if (ret)
9468                                 goto vcc_disable;
9469                         ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9470                         if (ret)
9471                                 goto vccq_lpm;
9472                 }
9473                 ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9474         }
9475         goto out;
9476
9477 vccq_lpm:
9478         ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9479 vcc_disable:
9480         ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9481 out:
9482         return ret;
9483 }
9484 #endif /* CONFIG_PM */
9485
9486 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9487 {
9488         if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9489                 ufshcd_setup_hba_vreg(hba, false);
9490 }
9491
9492 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9493 {
9494         if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9495                 ufshcd_setup_hba_vreg(hba, true);
9496 }
9497
9498 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9499 {
9500         int ret = 0;
9501         bool check_for_bkops;
9502         enum ufs_pm_level pm_lvl;
9503         enum ufs_dev_pwr_mode req_dev_pwr_mode;
9504         enum uic_link_state req_link_state;
9505
9506         hba->pm_op_in_progress = true;
9507         if (pm_op != UFS_SHUTDOWN_PM) {
9508                 pm_lvl = pm_op == UFS_RUNTIME_PM ?
9509                          hba->rpm_lvl : hba->spm_lvl;
9510                 req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9511                 req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9512         } else {
9513                 req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9514                 req_link_state = UIC_LINK_OFF_STATE;
9515         }
9516
9517         /*
9518          * If we can't transition into any of the low power modes
9519          * just gate the clocks.
9520          */
9521         ufshcd_hold(hba);
9522         hba->clk_gating.is_suspended = true;
9523
9524         if (ufshcd_is_clkscaling_supported(hba))
9525                 ufshcd_clk_scaling_suspend(hba, true);
9526
9527         if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9528                         req_link_state == UIC_LINK_ACTIVE_STATE) {
9529                 goto vops_suspend;
9530         }
9531
9532         if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9533             (req_link_state == hba->uic_link_state))
9534                 goto enable_scaling;
9535
9536         /* UFS device & link must be active before we enter in this function */
9537         if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9538                 ret = -EINVAL;
9539                 goto enable_scaling;
9540         }
9541
9542         if (pm_op == UFS_RUNTIME_PM) {
9543                 if (ufshcd_can_autobkops_during_suspend(hba)) {
9544                         /*
9545                          * The device is idle with no requests in the queue,
9546                          * allow background operations if bkops status shows
9547                          * that performance might be impacted.
9548                          */
9549                         ret = ufshcd_urgent_bkops(hba);
9550                         if (ret) {
9551                                 /*
9552                                  * If return err in suspend flow, IO will hang.
9553                                  * Trigger error handler and break suspend for
9554                                  * error recovery.
9555                                  */
9556                                 ufshcd_force_error_recovery(hba);
9557                                 ret = -EBUSY;
9558                                 goto enable_scaling;
9559                         }
9560                 } else {
9561                         /* make sure that auto bkops is disabled */
9562                         ufshcd_disable_auto_bkops(hba);
9563                 }
9564                 /*
9565                  * If device needs to do BKOP or WB buffer flush during
9566                  * Hibern8, keep device power mode as "active power mode"
9567                  * and VCC supply.
9568                  */
9569                 hba->dev_info.b_rpm_dev_flush_capable =
9570                         hba->auto_bkops_enabled ||
9571                         (((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9572                         ((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9573                         ufshcd_is_auto_hibern8_enabled(hba))) &&
9574                         ufshcd_wb_need_flush(hba));
9575         }
9576
9577         flush_work(&hba->eeh_work);
9578
9579         ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9580         if (ret)
9581                 goto enable_scaling;
9582
9583         if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9584                 if (pm_op != UFS_RUNTIME_PM)
9585                         /* ensure that bkops is disabled */
9586                         ufshcd_disable_auto_bkops(hba);
9587
9588                 if (!hba->dev_info.b_rpm_dev_flush_capable) {
9589                         ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9590                         if (ret && pm_op != UFS_SHUTDOWN_PM) {
9591                                 /*
9592                                  * If return err in suspend flow, IO will hang.
9593                                  * Trigger error handler and break suspend for
9594                                  * error recovery.
9595                                  */
9596                                 ufshcd_force_error_recovery(hba);
9597                                 ret = -EBUSY;
9598                         }
9599                         if (ret)
9600                                 goto enable_scaling;
9601                 }
9602         }
9603
9604         /*
9605          * In the case of DeepSleep, the device is expected to remain powered
9606          * with the link off, so do not check for bkops.
9607          */
9608         check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9609         ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9610         if (ret && pm_op != UFS_SHUTDOWN_PM) {
9611                 /*
9612                  * If return err in suspend flow, IO will hang.
9613                  * Trigger error handler and break suspend for
9614                  * error recovery.
9615                  */
9616                 ufshcd_force_error_recovery(hba);
9617                 ret = -EBUSY;
9618         }
9619         if (ret)
9620                 goto set_dev_active;
9621
9622 vops_suspend:
9623         /*
9624          * Call vendor specific suspend callback. As these callbacks may access
9625          * vendor specific host controller register space call them before the
9626          * host clocks are ON.
9627          */
9628         ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9629         if (ret)
9630                 goto set_link_active;
9631         goto out;
9632
9633 set_link_active:
9634         /*
9635          * Device hardware reset is required to exit DeepSleep. Also, for
9636          * DeepSleep, the link is off so host reset and restore will be done
9637          * further below.
9638          */
9639         if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9640                 ufshcd_device_reset(hba);
9641                 WARN_ON(!ufshcd_is_link_off(hba));
9642         }
9643         if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9644                 ufshcd_set_link_active(hba);
9645         else if (ufshcd_is_link_off(hba))
9646                 ufshcd_host_reset_and_restore(hba);
9647 set_dev_active:
9648         /* Can also get here needing to exit DeepSleep */
9649         if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9650                 ufshcd_device_reset(hba);
9651                 ufshcd_host_reset_and_restore(hba);
9652         }
9653         if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9654                 ufshcd_disable_auto_bkops(hba);
9655 enable_scaling:
9656         if (ufshcd_is_clkscaling_supported(hba))
9657                 ufshcd_clk_scaling_suspend(hba, false);
9658
9659         hba->dev_info.b_rpm_dev_flush_capable = false;
9660 out:
9661         if (hba->dev_info.b_rpm_dev_flush_capable) {
9662                 schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9663                         msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9664         }
9665
9666         if (ret) {
9667                 ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9668                 hba->clk_gating.is_suspended = false;
9669                 ufshcd_release(hba);
9670         }
9671         hba->pm_op_in_progress = false;
9672         return ret;
9673 }
9674
9675 #ifdef CONFIG_PM
9676 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9677 {
9678         int ret;
9679         enum uic_link_state old_link_state = hba->uic_link_state;
9680
9681         hba->pm_op_in_progress = true;
9682
9683         /*
9684          * Call vendor specific resume callback. As these callbacks may access
9685          * vendor specific host controller register space call them when the
9686          * host clocks are ON.
9687          */
9688         ret = ufshcd_vops_resume(hba, pm_op);
9689         if (ret)
9690                 goto out;
9691
9692         /* For DeepSleep, the only supported option is to have the link off */
9693         WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9694
9695         if (ufshcd_is_link_hibern8(hba)) {
9696                 ret = ufshcd_uic_hibern8_exit(hba);
9697                 if (!ret) {
9698                         ufshcd_set_link_active(hba);
9699                 } else {
9700                         dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9701                                         __func__, ret);
9702                         goto vendor_suspend;
9703                 }
9704         } else if (ufshcd_is_link_off(hba)) {
9705                 /*
9706                  * A full initialization of the host and the device is
9707                  * required since the link was put to off during suspend.
9708                  * Note, in the case of DeepSleep, the device will exit
9709                  * DeepSleep due to device reset.
9710                  */
9711                 ret = ufshcd_reset_and_restore(hba);
9712                 /*
9713                  * ufshcd_reset_and_restore() should have already
9714                  * set the link state as active
9715                  */
9716                 if (ret || !ufshcd_is_link_active(hba))
9717                         goto vendor_suspend;
9718         }
9719
9720         if (!ufshcd_is_ufs_dev_active(hba)) {
9721                 ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9722                 if (ret)
9723                         goto set_old_link_state;
9724                 ufshcd_set_timestamp_attr(hba);
9725         }
9726
9727         if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9728                 ufshcd_enable_auto_bkops(hba);
9729         else
9730                 /*
9731                  * If BKOPs operations are urgently needed at this moment then
9732                  * keep auto-bkops enabled or else disable it.
9733                  */
9734                 ufshcd_urgent_bkops(hba);
9735
9736         if (hba->ee_usr_mask)
9737                 ufshcd_write_ee_control(hba);
9738
9739         if (ufshcd_is_clkscaling_supported(hba))
9740                 ufshcd_clk_scaling_suspend(hba, false);
9741
9742         if (hba->dev_info.b_rpm_dev_flush_capable) {
9743                 hba->dev_info.b_rpm_dev_flush_capable = false;
9744                 cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9745         }
9746
9747         /* Enable Auto-Hibernate if configured */
9748         ufshcd_auto_hibern8_enable(hba);
9749
9750         goto out;
9751
9752 set_old_link_state:
9753         ufshcd_link_state_transition(hba, old_link_state, 0);
9754 vendor_suspend:
9755         ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9756         ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9757 out:
9758         if (ret)
9759                 ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9760         hba->clk_gating.is_suspended = false;
9761         ufshcd_release(hba);
9762         hba->pm_op_in_progress = false;
9763         return ret;
9764 }
9765
9766 static int ufshcd_wl_runtime_suspend(struct device *dev)
9767 {
9768         struct scsi_device *sdev = to_scsi_device(dev);
9769         struct ufs_hba *hba;
9770         int ret;
9771         ktime_t start = ktime_get();
9772
9773         hba = shost_priv(sdev->host);
9774
9775         ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9776         if (ret)
9777                 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9778
9779         trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
9780                 ktime_to_us(ktime_sub(ktime_get(), start)),
9781                 hba->curr_dev_pwr_mode, hba->uic_link_state);
9782
9783         return ret;
9784 }
9785
9786 static int ufshcd_wl_runtime_resume(struct device *dev)
9787 {
9788         struct scsi_device *sdev = to_scsi_device(dev);
9789         struct ufs_hba *hba;
9790         int ret = 0;
9791         ktime_t start = ktime_get();
9792
9793         hba = shost_priv(sdev->host);
9794
9795         ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9796         if (ret)
9797                 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9798
9799         trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
9800                 ktime_to_us(ktime_sub(ktime_get(), start)),
9801                 hba->curr_dev_pwr_mode, hba->uic_link_state);
9802
9803         return ret;
9804 }
9805 #endif
9806
9807 #ifdef CONFIG_PM_SLEEP
9808 static int ufshcd_wl_suspend(struct device *dev)
9809 {
9810         struct scsi_device *sdev = to_scsi_device(dev);
9811         struct ufs_hba *hba;
9812         int ret = 0;
9813         ktime_t start = ktime_get();
9814
9815         hba = shost_priv(sdev->host);
9816         down(&hba->host_sem);
9817         hba->system_suspending = true;
9818
9819         if (pm_runtime_suspended(dev))
9820                 goto out;
9821
9822         ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9823         if (ret) {
9824                 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
9825                 up(&hba->host_sem);
9826         }
9827
9828 out:
9829         if (!ret)
9830                 hba->is_sys_suspended = true;
9831         trace_ufshcd_wl_suspend(dev_name(dev), ret,
9832                 ktime_to_us(ktime_sub(ktime_get(), start)),
9833                 hba->curr_dev_pwr_mode, hba->uic_link_state);
9834
9835         return ret;
9836 }
9837
9838 static int ufshcd_wl_resume(struct device *dev)
9839 {
9840         struct scsi_device *sdev = to_scsi_device(dev);
9841         struct ufs_hba *hba;
9842         int ret = 0;
9843         ktime_t start = ktime_get();
9844
9845         hba = shost_priv(sdev->host);
9846
9847         if (pm_runtime_suspended(dev))
9848                 goto out;
9849
9850         ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
9851         if (ret)
9852                 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9853 out:
9854         trace_ufshcd_wl_resume(dev_name(dev), ret,
9855                 ktime_to_us(ktime_sub(ktime_get(), start)),
9856                 hba->curr_dev_pwr_mode, hba->uic_link_state);
9857         if (!ret)
9858                 hba->is_sys_suspended = false;
9859         hba->system_suspending = false;
9860         up(&hba->host_sem);
9861         return ret;
9862 }
9863 #endif
9864
9865 /**
9866  * ufshcd_suspend - helper function for suspend operations
9867  * @hba: per adapter instance
9868  *
9869  * This function will put disable irqs, turn off clocks
9870  * and set vreg and hba-vreg in lpm mode.
9871  *
9872  * Return: 0 upon success; < 0 upon failure.
9873  */
9874 static int ufshcd_suspend(struct ufs_hba *hba)
9875 {
9876         int ret;
9877
9878         if (!hba->is_powered)
9879                 return 0;
9880         /*
9881          * Disable the host irq as host controller as there won't be any
9882          * host controller transaction expected till resume.
9883          */
9884         ufshcd_disable_irq(hba);
9885         ret = ufshcd_setup_clocks(hba, false);
9886         if (ret) {
9887                 ufshcd_enable_irq(hba);
9888                 return ret;
9889         }
9890         if (ufshcd_is_clkgating_allowed(hba)) {
9891                 hba->clk_gating.state = CLKS_OFF;
9892                 trace_ufshcd_clk_gating(dev_name(hba->dev),
9893                                         hba->clk_gating.state);
9894         }
9895
9896         ufshcd_vreg_set_lpm(hba);
9897         /* Put the host controller in low power mode if possible */
9898         ufshcd_hba_vreg_set_lpm(hba);
9899         return ret;
9900 }
9901
9902 #ifdef CONFIG_PM
9903 /**
9904  * ufshcd_resume - helper function for resume operations
9905  * @hba: per adapter instance
9906  *
9907  * This function basically turns on the regulators, clocks and
9908  * irqs of the hba.
9909  *
9910  * Return: 0 for success and non-zero for failure.
9911  */
9912 static int ufshcd_resume(struct ufs_hba *hba)
9913 {
9914         int ret;
9915
9916         if (!hba->is_powered)
9917                 return 0;
9918
9919         ufshcd_hba_vreg_set_hpm(hba);
9920         ret = ufshcd_vreg_set_hpm(hba);
9921         if (ret)
9922                 goto out;
9923
9924         /* Make sure clocks are enabled before accessing controller */
9925         ret = ufshcd_setup_clocks(hba, true);
9926         if (ret)
9927                 goto disable_vreg;
9928
9929         /* enable the host irq as host controller would be active soon */
9930         ufshcd_enable_irq(hba);
9931
9932         goto out;
9933
9934 disable_vreg:
9935         ufshcd_vreg_set_lpm(hba);
9936 out:
9937         if (ret)
9938                 ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
9939         return ret;
9940 }
9941 #endif /* CONFIG_PM */
9942
9943 #ifdef CONFIG_PM_SLEEP
9944 /**
9945  * ufshcd_system_suspend - system suspend callback
9946  * @dev: Device associated with the UFS controller.
9947  *
9948  * Executed before putting the system into a sleep state in which the contents
9949  * of main memory are preserved.
9950  *
9951  * Return: 0 for success and non-zero for failure.
9952  */
9953 int ufshcd_system_suspend(struct device *dev)
9954 {
9955         struct ufs_hba *hba = dev_get_drvdata(dev);
9956         int ret = 0;
9957         ktime_t start = ktime_get();
9958
9959         if (pm_runtime_suspended(hba->dev))
9960                 goto out;
9961
9962         ret = ufshcd_suspend(hba);
9963 out:
9964         trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
9965                 ktime_to_us(ktime_sub(ktime_get(), start)),
9966                 hba->curr_dev_pwr_mode, hba->uic_link_state);
9967         return ret;
9968 }
9969 EXPORT_SYMBOL(ufshcd_system_suspend);
9970
9971 /**
9972  * ufshcd_system_resume - system resume callback
9973  * @dev: Device associated with the UFS controller.
9974  *
9975  * Executed after waking the system up from a sleep state in which the contents
9976  * of main memory were preserved.
9977  *
9978  * Return: 0 for success and non-zero for failure.
9979  */
9980 int ufshcd_system_resume(struct device *dev)
9981 {
9982         struct ufs_hba *hba = dev_get_drvdata(dev);
9983         ktime_t start = ktime_get();
9984         int ret = 0;
9985
9986         if (pm_runtime_suspended(hba->dev))
9987                 goto out;
9988
9989         ret = ufshcd_resume(hba);
9990
9991 out:
9992         trace_ufshcd_system_resume(dev_name(hba->dev), ret,
9993                 ktime_to_us(ktime_sub(ktime_get(), start)),
9994                 hba->curr_dev_pwr_mode, hba->uic_link_state);
9995
9996         return ret;
9997 }
9998 EXPORT_SYMBOL(ufshcd_system_resume);
9999 #endif /* CONFIG_PM_SLEEP */
10000
10001 #ifdef CONFIG_PM
10002 /**
10003  * ufshcd_runtime_suspend - runtime suspend callback
10004  * @dev: Device associated with the UFS controller.
10005  *
10006  * Check the description of ufshcd_suspend() function for more details.
10007  *
10008  * Return: 0 for success and non-zero for failure.
10009  */
10010 int ufshcd_runtime_suspend(struct device *dev)
10011 {
10012         struct ufs_hba *hba = dev_get_drvdata(dev);
10013         int ret;
10014         ktime_t start = ktime_get();
10015
10016         ret = ufshcd_suspend(hba);
10017
10018         trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
10019                 ktime_to_us(ktime_sub(ktime_get(), start)),
10020                 hba->curr_dev_pwr_mode, hba->uic_link_state);
10021         return ret;
10022 }
10023 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10024
10025 /**
10026  * ufshcd_runtime_resume - runtime resume routine
10027  * @dev: Device associated with the UFS controller.
10028  *
10029  * This function basically brings controller
10030  * to active state. Following operations are done in this function:
10031  *
10032  * 1. Turn on all the controller related clocks
10033  * 2. Turn ON VCC rail
10034  *
10035  * Return: 0 upon success; < 0 upon failure.
10036  */
10037 int ufshcd_runtime_resume(struct device *dev)
10038 {
10039         struct ufs_hba *hba = dev_get_drvdata(dev);
10040         int ret;
10041         ktime_t start = ktime_get();
10042
10043         ret = ufshcd_resume(hba);
10044
10045         trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
10046                 ktime_to_us(ktime_sub(ktime_get(), start)),
10047                 hba->curr_dev_pwr_mode, hba->uic_link_state);
10048         return ret;
10049 }
10050 EXPORT_SYMBOL(ufshcd_runtime_resume);
10051 #endif /* CONFIG_PM */
10052
10053 static void ufshcd_wl_shutdown(struct device *dev)
10054 {
10055         struct scsi_device *sdev = to_scsi_device(dev);
10056         struct ufs_hba *hba = shost_priv(sdev->host);
10057
10058         down(&hba->host_sem);
10059         hba->shutting_down = true;
10060         up(&hba->host_sem);
10061
10062         /* Turn on everything while shutting down */
10063         ufshcd_rpm_get_sync(hba);
10064         scsi_device_quiesce(sdev);
10065         shost_for_each_device(sdev, hba->host) {
10066                 if (sdev == hba->ufs_device_wlun)
10067                         continue;
10068                 scsi_device_quiesce(sdev);
10069         }
10070         __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10071
10072         /*
10073          * Next, turn off the UFS controller and the UFS regulators. Disable
10074          * clocks.
10075          */
10076         if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10077                 ufshcd_suspend(hba);
10078
10079         hba->is_powered = false;
10080 }
10081
10082 /**
10083  * ufshcd_remove - de-allocate SCSI host and host memory space
10084  *              data structure memory
10085  * @hba: per adapter instance
10086  */
10087 void ufshcd_remove(struct ufs_hba *hba)
10088 {
10089         if (hba->ufs_device_wlun)
10090                 ufshcd_rpm_get_sync(hba);
10091         ufs_hwmon_remove(hba);
10092         ufs_bsg_remove(hba);
10093         ufs_sysfs_remove_nodes(hba->dev);
10094         blk_mq_destroy_queue(hba->tmf_queue);
10095         blk_put_queue(hba->tmf_queue);
10096         blk_mq_free_tag_set(&hba->tmf_tag_set);
10097         scsi_remove_host(hba->host);
10098         /* disable interrupts */
10099         ufshcd_disable_intr(hba, hba->intr_mask);
10100         ufshcd_hba_stop(hba);
10101         ufshcd_hba_exit(hba);
10102 }
10103 EXPORT_SYMBOL_GPL(ufshcd_remove);
10104
10105 #ifdef CONFIG_PM_SLEEP
10106 int ufshcd_system_freeze(struct device *dev)
10107 {
10108
10109         return ufshcd_system_suspend(dev);
10110
10111 }
10112 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10113
10114 int ufshcd_system_restore(struct device *dev)
10115 {
10116
10117         struct ufs_hba *hba = dev_get_drvdata(dev);
10118         int ret;
10119
10120         ret = ufshcd_system_resume(dev);
10121         if (ret)
10122                 return ret;
10123
10124         /* Configure UTRL and UTMRL base address registers */
10125         ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10126                         REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10127         ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10128                         REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10129         ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10130                         REG_UTP_TASK_REQ_LIST_BASE_L);
10131         ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10132                         REG_UTP_TASK_REQ_LIST_BASE_H);
10133         /*
10134          * Make sure that UTRL and UTMRL base address registers
10135          * are updated with the latest queue addresses. Only after
10136          * updating these addresses, we can queue the new commands.
10137          */
10138         mb();
10139
10140         /* Resuming from hibernate, assume that link was OFF */
10141         ufshcd_set_link_off(hba);
10142
10143         return 0;
10144
10145 }
10146 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10147
10148 int ufshcd_system_thaw(struct device *dev)
10149 {
10150         return ufshcd_system_resume(dev);
10151 }
10152 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10153 #endif /* CONFIG_PM_SLEEP  */
10154
10155 /**
10156  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
10157  * @hba: pointer to Host Bus Adapter (HBA)
10158  */
10159 void ufshcd_dealloc_host(struct ufs_hba *hba)
10160 {
10161         scsi_host_put(hba->host);
10162 }
10163 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
10164
10165 /**
10166  * ufshcd_set_dma_mask - Set dma mask based on the controller
10167  *                       addressing capability
10168  * @hba: per adapter instance
10169  *
10170  * Return: 0 for success, non-zero for failure.
10171  */
10172 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10173 {
10174         if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10175                 if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10176                         return 0;
10177         }
10178         return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10179 }
10180
10181 /**
10182  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10183  * @dev: pointer to device handle
10184  * @hba_handle: driver private handle
10185  *
10186  * Return: 0 on success, non-zero value on failure.
10187  */
10188 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10189 {
10190         struct Scsi_Host *host;
10191         struct ufs_hba *hba;
10192         int err = 0;
10193
10194         if (!dev) {
10195                 dev_err(dev,
10196                 "Invalid memory reference for dev is NULL\n");
10197                 err = -ENODEV;
10198                 goto out_error;
10199         }
10200
10201         host = scsi_host_alloc(&ufshcd_driver_template,
10202                                 sizeof(struct ufs_hba));
10203         if (!host) {
10204                 dev_err(dev, "scsi_host_alloc failed\n");
10205                 err = -ENOMEM;
10206                 goto out_error;
10207         }
10208         host->nr_maps = HCTX_TYPE_POLL + 1;
10209         hba = shost_priv(host);
10210         hba->host = host;
10211         hba->dev = dev;
10212         hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10213         hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10214         ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10215         INIT_LIST_HEAD(&hba->clk_list_head);
10216         spin_lock_init(&hba->outstanding_lock);
10217
10218         *hba_handle = hba;
10219
10220 out_error:
10221         return err;
10222 }
10223 EXPORT_SYMBOL(ufshcd_alloc_host);
10224
10225 /* This function exists because blk_mq_alloc_tag_set() requires this. */
10226 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10227                                      const struct blk_mq_queue_data *qd)
10228 {
10229         WARN_ON_ONCE(true);
10230         return BLK_STS_NOTSUPP;
10231 }
10232
10233 static const struct blk_mq_ops ufshcd_tmf_ops = {
10234         .queue_rq = ufshcd_queue_tmf,
10235 };
10236
10237 /**
10238  * ufshcd_init - Driver initialization routine
10239  * @hba: per-adapter instance
10240  * @mmio_base: base register address
10241  * @irq: Interrupt line of device
10242  *
10243  * Return: 0 on success, non-zero value on failure.
10244  */
10245 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10246 {
10247         int err;
10248         struct Scsi_Host *host = hba->host;
10249         struct device *dev = hba->dev;
10250         char eh_wq_name[sizeof("ufs_eh_wq_00")];
10251
10252         /*
10253          * dev_set_drvdata() must be called before any callbacks are registered
10254          * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10255          * sysfs).
10256          */
10257         dev_set_drvdata(dev, hba);
10258
10259         if (!mmio_base) {
10260                 dev_err(hba->dev,
10261                 "Invalid memory reference for mmio_base is NULL\n");
10262                 err = -ENODEV;
10263                 goto out_error;
10264         }
10265
10266         hba->mmio_base = mmio_base;
10267         hba->irq = irq;
10268         hba->vps = &ufs_hba_vps;
10269
10270         err = ufshcd_hba_init(hba);
10271         if (err)
10272                 goto out_error;
10273
10274         /* Read capabilities registers */
10275         err = ufshcd_hba_capabilities(hba);
10276         if (err)
10277                 goto out_disable;
10278
10279         /* Get UFS version supported by the controller */
10280         hba->ufs_version = ufshcd_get_ufs_version(hba);
10281
10282         /* Get Interrupt bit mask per version */
10283         hba->intr_mask = ufshcd_get_intr_mask(hba);
10284
10285         err = ufshcd_set_dma_mask(hba);
10286         if (err) {
10287                 dev_err(hba->dev, "set dma mask failed\n");
10288                 goto out_disable;
10289         }
10290
10291         /* Allocate memory for host memory space */
10292         err = ufshcd_memory_alloc(hba);
10293         if (err) {
10294                 dev_err(hba->dev, "Memory allocation failed\n");
10295                 goto out_disable;
10296         }
10297
10298         /* Configure LRB */
10299         ufshcd_host_memory_configure(hba);
10300
10301         host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10302         host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10303         host->max_id = UFSHCD_MAX_ID;
10304         host->max_lun = UFS_MAX_LUNS;
10305         host->max_channel = UFSHCD_MAX_CHANNEL;
10306         host->unique_id = host->host_no;
10307         host->max_cmd_len = UFS_CDB_SIZE;
10308         host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10309
10310         hba->max_pwr_info.is_valid = false;
10311
10312         /* Initialize work queues */
10313         snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
10314                  hba->host->host_no);
10315         hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
10316         if (!hba->eh_wq) {
10317                 dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10318                         __func__);
10319                 err = -ENOMEM;
10320                 goto out_disable;
10321         }
10322         INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10323         INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10324
10325         sema_init(&hba->host_sem, 1);
10326
10327         /* Initialize UIC command mutex */
10328         mutex_init(&hba->uic_cmd_mutex);
10329
10330         /* Initialize mutex for device management commands */
10331         mutex_init(&hba->dev_cmd.lock);
10332
10333         /* Initialize mutex for exception event control */
10334         mutex_init(&hba->ee_ctrl_mutex);
10335
10336         mutex_init(&hba->wb_mutex);
10337         init_rwsem(&hba->clk_scaling_lock);
10338
10339         ufshcd_init_clk_gating(hba);
10340
10341         ufshcd_init_clk_scaling(hba);
10342
10343         /*
10344          * In order to avoid any spurious interrupt immediately after
10345          * registering UFS controller interrupt handler, clear any pending UFS
10346          * interrupt status and disable all the UFS interrupts.
10347          */
10348         ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10349                       REG_INTERRUPT_STATUS);
10350         ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10351         /*
10352          * Make sure that UFS interrupts are disabled and any pending interrupt
10353          * status is cleared before registering UFS interrupt handler.
10354          */
10355         mb();
10356
10357         /* IRQ registration */
10358         err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10359         if (err) {
10360                 dev_err(hba->dev, "request irq failed\n");
10361                 goto out_disable;
10362         } else {
10363                 hba->is_irq_enabled = true;
10364         }
10365
10366         if (!is_mcq_supported(hba)) {
10367                 err = scsi_add_host(host, hba->dev);
10368                 if (err) {
10369                         dev_err(hba->dev, "scsi_add_host failed\n");
10370                         goto out_disable;
10371                 }
10372         }
10373
10374         hba->tmf_tag_set = (struct blk_mq_tag_set) {
10375                 .nr_hw_queues   = 1,
10376                 .queue_depth    = hba->nutmrs,
10377                 .ops            = &ufshcd_tmf_ops,
10378                 .flags          = BLK_MQ_F_NO_SCHED,
10379         };
10380         err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10381         if (err < 0)
10382                 goto out_remove_scsi_host;
10383         hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set);
10384         if (IS_ERR(hba->tmf_queue)) {
10385                 err = PTR_ERR(hba->tmf_queue);
10386                 goto free_tmf_tag_set;
10387         }
10388         hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10389                                     sizeof(*hba->tmf_rqs), GFP_KERNEL);
10390         if (!hba->tmf_rqs) {
10391                 err = -ENOMEM;
10392                 goto free_tmf_queue;
10393         }
10394
10395         /* Reset the attached device */
10396         ufshcd_device_reset(hba);
10397
10398         ufshcd_init_crypto(hba);
10399
10400         /* Host controller enable */
10401         err = ufshcd_hba_enable(hba);
10402         if (err) {
10403                 dev_err(hba->dev, "Host controller enable failed\n");
10404                 ufshcd_print_evt_hist(hba);
10405                 ufshcd_print_host_state(hba);
10406                 goto free_tmf_queue;
10407         }
10408
10409         /*
10410          * Set the default power management level for runtime and system PM.
10411          * Default power saving mode is to keep UFS link in Hibern8 state
10412          * and UFS device in sleep state.
10413          */
10414         hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10415                                                 UFS_SLEEP_PWR_MODE,
10416                                                 UIC_LINK_HIBERN8_STATE);
10417         hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10418                                                 UFS_SLEEP_PWR_MODE,
10419                                                 UIC_LINK_HIBERN8_STATE);
10420
10421         INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work,
10422                           ufshcd_rpm_dev_flush_recheck_work);
10423
10424         /* Set the default auto-hiberate idle timer value to 150 ms */
10425         if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10426                 hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10427                             FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10428         }
10429
10430         /* Hold auto suspend until async scan completes */
10431         pm_runtime_get_sync(dev);
10432         atomic_set(&hba->scsi_block_reqs_cnt, 0);
10433         /*
10434          * We are assuming that device wasn't put in sleep/power-down
10435          * state exclusively during the boot stage before kernel.
10436          * This assumption helps avoid doing link startup twice during
10437          * ufshcd_probe_hba().
10438          */
10439         ufshcd_set_ufs_dev_active(hba);
10440
10441         async_schedule(ufshcd_async_scan, hba);
10442         ufs_sysfs_add_nodes(hba->dev);
10443
10444         device_enable_async_suspend(dev);
10445         return 0;
10446
10447 free_tmf_queue:
10448         blk_mq_destroy_queue(hba->tmf_queue);
10449         blk_put_queue(hba->tmf_queue);
10450 free_tmf_tag_set:
10451         blk_mq_free_tag_set(&hba->tmf_tag_set);
10452 out_remove_scsi_host:
10453         scsi_remove_host(hba->host);
10454 out_disable:
10455         hba->is_irq_enabled = false;
10456         ufshcd_hba_exit(hba);
10457 out_error:
10458         return err;
10459 }
10460 EXPORT_SYMBOL_GPL(ufshcd_init);
10461
10462 void ufshcd_resume_complete(struct device *dev)
10463 {
10464         struct ufs_hba *hba = dev_get_drvdata(dev);
10465
10466         if (hba->complete_put) {
10467                 ufshcd_rpm_put(hba);
10468                 hba->complete_put = false;
10469         }
10470 }
10471 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10472
10473 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10474 {
10475         struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10476         enum ufs_dev_pwr_mode dev_pwr_mode;
10477         enum uic_link_state link_state;
10478         unsigned long flags;
10479         bool res;
10480
10481         spin_lock_irqsave(&dev->power.lock, flags);
10482         dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10483         link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10484         res = pm_runtime_suspended(dev) &&
10485               hba->curr_dev_pwr_mode == dev_pwr_mode &&
10486               hba->uic_link_state == link_state &&
10487               !hba->dev_info.b_rpm_dev_flush_capable;
10488         spin_unlock_irqrestore(&dev->power.lock, flags);
10489
10490         return res;
10491 }
10492
10493 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10494 {
10495         struct ufs_hba *hba = dev_get_drvdata(dev);
10496         int ret;
10497
10498         /*
10499          * SCSI assumes that runtime-pm and system-pm for scsi drivers
10500          * are same. And it doesn't wake up the device for system-suspend
10501          * if it's runtime suspended. But ufs doesn't follow that.
10502          * Refer ufshcd_resume_complete()
10503          */
10504         if (hba->ufs_device_wlun) {
10505                 /* Prevent runtime suspend */
10506                 ufshcd_rpm_get_noresume(hba);
10507                 /*
10508                  * Check if already runtime suspended in same state as system
10509                  * suspend would be.
10510                  */
10511                 if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10512                         /* RPM state is not ok for SPM, so runtime resume */
10513                         ret = ufshcd_rpm_resume(hba);
10514                         if (ret < 0 && ret != -EACCES) {
10515                                 ufshcd_rpm_put(hba);
10516                                 return ret;
10517                         }
10518                 }
10519                 hba->complete_put = true;
10520         }
10521         return 0;
10522 }
10523 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10524
10525 int ufshcd_suspend_prepare(struct device *dev)
10526 {
10527         return __ufshcd_suspend_prepare(dev, true);
10528 }
10529 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10530
10531 #ifdef CONFIG_PM_SLEEP
10532 static int ufshcd_wl_poweroff(struct device *dev)
10533 {
10534         struct scsi_device *sdev = to_scsi_device(dev);
10535         struct ufs_hba *hba = shost_priv(sdev->host);
10536
10537         __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10538         return 0;
10539 }
10540 #endif
10541
10542 static int ufshcd_wl_probe(struct device *dev)
10543 {
10544         struct scsi_device *sdev = to_scsi_device(dev);
10545
10546         if (!is_device_wlun(sdev))
10547                 return -ENODEV;
10548
10549         blk_pm_runtime_init(sdev->request_queue, dev);
10550         pm_runtime_set_autosuspend_delay(dev, 0);
10551         pm_runtime_allow(dev);
10552
10553         return  0;
10554 }
10555
10556 static int ufshcd_wl_remove(struct device *dev)
10557 {
10558         pm_runtime_forbid(dev);
10559         return 0;
10560 }
10561
10562 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10563 #ifdef CONFIG_PM_SLEEP
10564         .suspend = ufshcd_wl_suspend,
10565         .resume = ufshcd_wl_resume,
10566         .freeze = ufshcd_wl_suspend,
10567         .thaw = ufshcd_wl_resume,
10568         .poweroff = ufshcd_wl_poweroff,
10569         .restore = ufshcd_wl_resume,
10570 #endif
10571         SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10572 };
10573
10574 static void ufshcd_check_header_layout(void)
10575 {
10576         /*
10577          * gcc compilers before version 10 cannot do constant-folding for
10578          * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
10579          * before.
10580          */
10581         if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
10582                 return;
10583
10584         BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10585                                 .cci = 3})[0] != 3);
10586
10587         BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10588                                 .ehs_length = 2})[1] != 2);
10589
10590         BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10591                                 .enable_crypto = 1})[2]
10592                      != 0x80);
10593
10594         BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
10595                                         .command_type = 5,
10596                                         .data_direction = 3,
10597                                         .interrupt = 1,
10598                                 })[3]) != ((5 << 4) | (3 << 1) | 1));
10599
10600         BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10601                                 .dunl = cpu_to_le32(0xdeadbeef)})[1] !=
10602                 cpu_to_le32(0xdeadbeef));
10603
10604         BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10605                                 .ocs = 4})[8] != 4);
10606
10607         BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10608                                 .cds = 5})[9] != 5);
10609
10610         BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10611                                 .dunu = cpu_to_le32(0xbadcafe)})[3] !=
10612                 cpu_to_le32(0xbadcafe));
10613
10614         BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10615                              .iid = 0xf })[4] != 0xf0);
10616
10617         BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10618                              .command_set_type = 0xf })[4] != 0xf);
10619 }
10620
10621 /*
10622  * ufs_dev_wlun_template - describes ufs device wlun
10623  * ufs-device wlun - used to send pm commands
10624  * All luns are consumers of ufs-device wlun.
10625  *
10626  * Currently, no sd driver is present for wluns.
10627  * Hence the no specific pm operations are performed.
10628  * With ufs design, SSU should be sent to ufs-device wlun.
10629  * Hence register a scsi driver for ufs wluns only.
10630  */
10631 static struct scsi_driver ufs_dev_wlun_template = {
10632         .gendrv = {
10633                 .name = "ufs_device_wlun",
10634                 .owner = THIS_MODULE,
10635                 .probe = ufshcd_wl_probe,
10636                 .remove = ufshcd_wl_remove,
10637                 .pm = &ufshcd_wl_pm_ops,
10638                 .shutdown = ufshcd_wl_shutdown,
10639         },
10640 };
10641
10642 static int __init ufshcd_core_init(void)
10643 {
10644         int ret;
10645
10646         ufshcd_check_header_layout();
10647
10648         ufs_debugfs_init();
10649
10650         ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10651         if (ret)
10652                 ufs_debugfs_exit();
10653         return ret;
10654 }
10655
10656 static void __exit ufshcd_core_exit(void)
10657 {
10658         ufs_debugfs_exit();
10659         scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10660 }
10661
10662 module_init(ufshcd_core_init);
10663 module_exit(ufshcd_core_exit);
10664
10665 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10666 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10667 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10668 MODULE_SOFTDEP("pre: governor_simpleondemand");
10669 MODULE_LICENSE("GPL");