Merge tag 'pm-for-3.4' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100 #include <asm/system.h>
101
102 #include <linux/kbd_kern.h>
103 #include <linux/vt_kern.h>
104 #include <linux/selection.h>
105
106 #include <linux/kmod.h>
107 #include <linux/nsproxy.h>
108
109 #undef TTY_DEBUG_HANGUP
110
111 #define TTY_PARANOIA_CHECK 1
112 #define CHECK_TTY_COUNT 1
113
114 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
115         .c_iflag = ICRNL | IXON,
116         .c_oflag = OPOST | ONLCR,
117         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
118         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
119                    ECHOCTL | ECHOKE | IEXTEN,
120         .c_cc = INIT_C_CC,
121         .c_ispeed = 38400,
122         .c_ospeed = 38400
123 };
124
125 EXPORT_SYMBOL(tty_std_termios);
126
127 /* This list gets poked at by procfs and various bits of boot up code. This
128    could do with some rationalisation such as pulling the tty proc function
129    into this file */
130
131 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
132
133 /* Mutex to protect creating and releasing a tty. This is shared with
134    vt.c for deeply disgusting hack reasons */
135 DEFINE_MUTEX(tty_mutex);
136 EXPORT_SYMBOL(tty_mutex);
137
138 /* Spinlock to protect the tty->tty_files list */
139 DEFINE_SPINLOCK(tty_files_lock);
140
141 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
142 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
143 ssize_t redirected_tty_write(struct file *, const char __user *,
144                                                         size_t, loff_t *);
145 static unsigned int tty_poll(struct file *, poll_table *);
146 static int tty_open(struct inode *, struct file *);
147 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
148 #ifdef CONFIG_COMPAT
149 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
150                                 unsigned long arg);
151 #else
152 #define tty_compat_ioctl NULL
153 #endif
154 static int __tty_fasync(int fd, struct file *filp, int on);
155 static int tty_fasync(int fd, struct file *filp, int on);
156 static void release_tty(struct tty_struct *tty, int idx);
157 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
159
160 /**
161  *      alloc_tty_struct        -       allocate a tty object
162  *
163  *      Return a new empty tty structure. The data fields have not
164  *      been initialized in any way but has been zeroed
165  *
166  *      Locking: none
167  */
168
169 struct tty_struct *alloc_tty_struct(void)
170 {
171         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
172 }
173
174 /**
175  *      free_tty_struct         -       free a disused tty
176  *      @tty: tty struct to free
177  *
178  *      Free the write buffers, tty queue and tty memory itself.
179  *
180  *      Locking: none. Must be called after tty is definitely unused
181  */
182
183 void free_tty_struct(struct tty_struct *tty)
184 {
185         if (tty->dev)
186                 put_device(tty->dev);
187         kfree(tty->write_buf);
188         tty_buffer_free_all(tty);
189         kfree(tty);
190 }
191
192 static inline struct tty_struct *file_tty(struct file *file)
193 {
194         return ((struct tty_file_private *)file->private_data)->tty;
195 }
196
197 int tty_alloc_file(struct file *file)
198 {
199         struct tty_file_private *priv;
200
201         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
202         if (!priv)
203                 return -ENOMEM;
204
205         file->private_data = priv;
206
207         return 0;
208 }
209
210 /* Associate a new file with the tty structure */
211 void tty_add_file(struct tty_struct *tty, struct file *file)
212 {
213         struct tty_file_private *priv = file->private_data;
214
215         priv->tty = tty;
216         priv->file = file;
217
218         spin_lock(&tty_files_lock);
219         list_add(&priv->list, &tty->tty_files);
220         spin_unlock(&tty_files_lock);
221 }
222
223 /**
224  * tty_free_file - free file->private_data
225  *
226  * This shall be used only for fail path handling when tty_add_file was not
227  * called yet.
228  */
229 void tty_free_file(struct file *file)
230 {
231         struct tty_file_private *priv = file->private_data;
232
233         file->private_data = NULL;
234         kfree(priv);
235 }
236
237 /* Delete file from its tty */
238 void tty_del_file(struct file *file)
239 {
240         struct tty_file_private *priv = file->private_data;
241
242         spin_lock(&tty_files_lock);
243         list_del(&priv->list);
244         spin_unlock(&tty_files_lock);
245         tty_free_file(file);
246 }
247
248
249 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
250
251 /**
252  *      tty_name        -       return tty naming
253  *      @tty: tty structure
254  *      @buf: buffer for output
255  *
256  *      Convert a tty structure into a name. The name reflects the kernel
257  *      naming policy and if udev is in use may not reflect user space
258  *
259  *      Locking: none
260  */
261
262 char *tty_name(struct tty_struct *tty, char *buf)
263 {
264         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
265                 strcpy(buf, "NULL tty");
266         else
267                 strcpy(buf, tty->name);
268         return buf;
269 }
270
271 EXPORT_SYMBOL(tty_name);
272
273 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
274                               const char *routine)
275 {
276 #ifdef TTY_PARANOIA_CHECK
277         if (!tty) {
278                 printk(KERN_WARNING
279                         "null TTY for (%d:%d) in %s\n",
280                         imajor(inode), iminor(inode), routine);
281                 return 1;
282         }
283         if (tty->magic != TTY_MAGIC) {
284                 printk(KERN_WARNING
285                         "bad magic number for tty struct (%d:%d) in %s\n",
286                         imajor(inode), iminor(inode), routine);
287                 return 1;
288         }
289 #endif
290         return 0;
291 }
292
293 static int check_tty_count(struct tty_struct *tty, const char *routine)
294 {
295 #ifdef CHECK_TTY_COUNT
296         struct list_head *p;
297         int count = 0;
298
299         spin_lock(&tty_files_lock);
300         list_for_each(p, &tty->tty_files) {
301                 count++;
302         }
303         spin_unlock(&tty_files_lock);
304         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
305             tty->driver->subtype == PTY_TYPE_SLAVE &&
306             tty->link && tty->link->count)
307                 count++;
308         if (tty->count != count) {
309                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
310                                     "!= #fd's(%d) in %s\n",
311                        tty->name, tty->count, count, routine);
312                 return count;
313         }
314 #endif
315         return 0;
316 }
317
318 /**
319  *      get_tty_driver          -       find device of a tty
320  *      @dev_t: device identifier
321  *      @index: returns the index of the tty
322  *
323  *      This routine returns a tty driver structure, given a device number
324  *      and also passes back the index number.
325  *
326  *      Locking: caller must hold tty_mutex
327  */
328
329 static struct tty_driver *get_tty_driver(dev_t device, int *index)
330 {
331         struct tty_driver *p;
332
333         list_for_each_entry(p, &tty_drivers, tty_drivers) {
334                 dev_t base = MKDEV(p->major, p->minor_start);
335                 if (device < base || device >= base + p->num)
336                         continue;
337                 *index = device - base;
338                 return tty_driver_kref_get(p);
339         }
340         return NULL;
341 }
342
343 #ifdef CONFIG_CONSOLE_POLL
344
345 /**
346  *      tty_find_polling_driver -       find device of a polled tty
347  *      @name: name string to match
348  *      @line: pointer to resulting tty line nr
349  *
350  *      This routine returns a tty driver structure, given a name
351  *      and the condition that the tty driver is capable of polled
352  *      operation.
353  */
354 struct tty_driver *tty_find_polling_driver(char *name, int *line)
355 {
356         struct tty_driver *p, *res = NULL;
357         int tty_line = 0;
358         int len;
359         char *str, *stp;
360
361         for (str = name; *str; str++)
362                 if ((*str >= '0' && *str <= '9') || *str == ',')
363                         break;
364         if (!*str)
365                 return NULL;
366
367         len = str - name;
368         tty_line = simple_strtoul(str, &str, 10);
369
370         mutex_lock(&tty_mutex);
371         /* Search through the tty devices to look for a match */
372         list_for_each_entry(p, &tty_drivers, tty_drivers) {
373                 if (strncmp(name, p->name, len) != 0)
374                         continue;
375                 stp = str;
376                 if (*stp == ',')
377                         stp++;
378                 if (*stp == '\0')
379                         stp = NULL;
380
381                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
382                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
383                         res = tty_driver_kref_get(p);
384                         *line = tty_line;
385                         break;
386                 }
387         }
388         mutex_unlock(&tty_mutex);
389
390         return res;
391 }
392 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
393 #endif
394
395 /**
396  *      tty_check_change        -       check for POSIX terminal changes
397  *      @tty: tty to check
398  *
399  *      If we try to write to, or set the state of, a terminal and we're
400  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
401  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
402  *
403  *      Locking: ctrl_lock
404  */
405
406 int tty_check_change(struct tty_struct *tty)
407 {
408         unsigned long flags;
409         int ret = 0;
410
411         if (current->signal->tty != tty)
412                 return 0;
413
414         spin_lock_irqsave(&tty->ctrl_lock, flags);
415
416         if (!tty->pgrp) {
417                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
418                 goto out_unlock;
419         }
420         if (task_pgrp(current) == tty->pgrp)
421                 goto out_unlock;
422         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
423         if (is_ignored(SIGTTOU))
424                 goto out;
425         if (is_current_pgrp_orphaned()) {
426                 ret = -EIO;
427                 goto out;
428         }
429         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
430         set_thread_flag(TIF_SIGPENDING);
431         ret = -ERESTARTSYS;
432 out:
433         return ret;
434 out_unlock:
435         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
436         return ret;
437 }
438
439 EXPORT_SYMBOL(tty_check_change);
440
441 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
442                                 size_t count, loff_t *ppos)
443 {
444         return 0;
445 }
446
447 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
448                                  size_t count, loff_t *ppos)
449 {
450         return -EIO;
451 }
452
453 /* No kernel lock held - none needed ;) */
454 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
455 {
456         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
457 }
458
459 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
460                 unsigned long arg)
461 {
462         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
463 }
464
465 static long hung_up_tty_compat_ioctl(struct file *file,
466                                      unsigned int cmd, unsigned long arg)
467 {
468         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
469 }
470
471 static const struct file_operations tty_fops = {
472         .llseek         = no_llseek,
473         .read           = tty_read,
474         .write          = tty_write,
475         .poll           = tty_poll,
476         .unlocked_ioctl = tty_ioctl,
477         .compat_ioctl   = tty_compat_ioctl,
478         .open           = tty_open,
479         .release        = tty_release,
480         .fasync         = tty_fasync,
481 };
482
483 static const struct file_operations console_fops = {
484         .llseek         = no_llseek,
485         .read           = tty_read,
486         .write          = redirected_tty_write,
487         .poll           = tty_poll,
488         .unlocked_ioctl = tty_ioctl,
489         .compat_ioctl   = tty_compat_ioctl,
490         .open           = tty_open,
491         .release        = tty_release,
492         .fasync         = tty_fasync,
493 };
494
495 static const struct file_operations hung_up_tty_fops = {
496         .llseek         = no_llseek,
497         .read           = hung_up_tty_read,
498         .write          = hung_up_tty_write,
499         .poll           = hung_up_tty_poll,
500         .unlocked_ioctl = hung_up_tty_ioctl,
501         .compat_ioctl   = hung_up_tty_compat_ioctl,
502         .release        = tty_release,
503 };
504
505 static DEFINE_SPINLOCK(redirect_lock);
506 static struct file *redirect;
507
508 /**
509  *      tty_wakeup      -       request more data
510  *      @tty: terminal
511  *
512  *      Internal and external helper for wakeups of tty. This function
513  *      informs the line discipline if present that the driver is ready
514  *      to receive more output data.
515  */
516
517 void tty_wakeup(struct tty_struct *tty)
518 {
519         struct tty_ldisc *ld;
520
521         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
522                 ld = tty_ldisc_ref(tty);
523                 if (ld) {
524                         if (ld->ops->write_wakeup)
525                                 ld->ops->write_wakeup(tty);
526                         tty_ldisc_deref(ld);
527                 }
528         }
529         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
530 }
531
532 EXPORT_SYMBOL_GPL(tty_wakeup);
533
534 /**
535  *      __tty_hangup            -       actual handler for hangup events
536  *      @work: tty device
537  *
538  *      This can be called by the "eventd" kernel thread.  That is process
539  *      synchronous but doesn't hold any locks, so we need to make sure we
540  *      have the appropriate locks for what we're doing.
541  *
542  *      The hangup event clears any pending redirections onto the hung up
543  *      device. It ensures future writes will error and it does the needed
544  *      line discipline hangup and signal delivery. The tty object itself
545  *      remains intact.
546  *
547  *      Locking:
548  *              BTM
549  *                redirect lock for undoing redirection
550  *                file list lock for manipulating list of ttys
551  *                tty_ldisc_lock from called functions
552  *                termios_mutex resetting termios data
553  *                tasklist_lock to walk task list for hangup event
554  *                  ->siglock to protect ->signal/->sighand
555  */
556 void __tty_hangup(struct tty_struct *tty)
557 {
558         struct file *cons_filp = NULL;
559         struct file *filp, *f = NULL;
560         struct task_struct *p;
561         struct tty_file_private *priv;
562         int    closecount = 0, n;
563         unsigned long flags;
564         int refs = 0;
565
566         if (!tty)
567                 return;
568
569
570         spin_lock(&redirect_lock);
571         if (redirect && file_tty(redirect) == tty) {
572                 f = redirect;
573                 redirect = NULL;
574         }
575         spin_unlock(&redirect_lock);
576
577         tty_lock();
578
579         /* some functions below drop BTM, so we need this bit */
580         set_bit(TTY_HUPPING, &tty->flags);
581
582         /* inuse_filps is protected by the single tty lock,
583            this really needs to change if we want to flush the
584            workqueue with the lock held */
585         check_tty_count(tty, "tty_hangup");
586
587         spin_lock(&tty_files_lock);
588         /* This breaks for file handles being sent over AF_UNIX sockets ? */
589         list_for_each_entry(priv, &tty->tty_files, list) {
590                 filp = priv->file;
591                 if (filp->f_op->write == redirected_tty_write)
592                         cons_filp = filp;
593                 if (filp->f_op->write != tty_write)
594                         continue;
595                 closecount++;
596                 __tty_fasync(-1, filp, 0);      /* can't block */
597                 filp->f_op = &hung_up_tty_fops;
598         }
599         spin_unlock(&tty_files_lock);
600
601         /*
602          * it drops BTM and thus races with reopen
603          * we protect the race by TTY_HUPPING
604          */
605         tty_ldisc_hangup(tty);
606
607         read_lock(&tasklist_lock);
608         if (tty->session) {
609                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
610                         spin_lock_irq(&p->sighand->siglock);
611                         if (p->signal->tty == tty) {
612                                 p->signal->tty = NULL;
613                                 /* We defer the dereferences outside fo
614                                    the tasklist lock */
615                                 refs++;
616                         }
617                         if (!p->signal->leader) {
618                                 spin_unlock_irq(&p->sighand->siglock);
619                                 continue;
620                         }
621                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
622                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
623                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
624                         spin_lock_irqsave(&tty->ctrl_lock, flags);
625                         if (tty->pgrp)
626                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
627                         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
628                         spin_unlock_irq(&p->sighand->siglock);
629                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
630         }
631         read_unlock(&tasklist_lock);
632
633         spin_lock_irqsave(&tty->ctrl_lock, flags);
634         clear_bit(TTY_THROTTLED, &tty->flags);
635         clear_bit(TTY_PUSH, &tty->flags);
636         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
637         put_pid(tty->session);
638         put_pid(tty->pgrp);
639         tty->session = NULL;
640         tty->pgrp = NULL;
641         tty->ctrl_status = 0;
642         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
643
644         /* Account for the p->signal references we killed */
645         while (refs--)
646                 tty_kref_put(tty);
647
648         /*
649          * If one of the devices matches a console pointer, we
650          * cannot just call hangup() because that will cause
651          * tty->count and state->count to go out of sync.
652          * So we just call close() the right number of times.
653          */
654         if (cons_filp) {
655                 if (tty->ops->close)
656                         for (n = 0; n < closecount; n++)
657                                 tty->ops->close(tty, cons_filp);
658         } else if (tty->ops->hangup)
659                 (tty->ops->hangup)(tty);
660         /*
661          * We don't want to have driver/ldisc interactions beyond
662          * the ones we did here. The driver layer expects no
663          * calls after ->hangup() from the ldisc side. However we
664          * can't yet guarantee all that.
665          */
666         set_bit(TTY_HUPPED, &tty->flags);
667         clear_bit(TTY_HUPPING, &tty->flags);
668         tty_ldisc_enable(tty);
669
670         tty_unlock();
671
672         if (f)
673                 fput(f);
674 }
675
676 static void do_tty_hangup(struct work_struct *work)
677 {
678         struct tty_struct *tty =
679                 container_of(work, struct tty_struct, hangup_work);
680
681         __tty_hangup(tty);
682 }
683
684 /**
685  *      tty_hangup              -       trigger a hangup event
686  *      @tty: tty to hangup
687  *
688  *      A carrier loss (virtual or otherwise) has occurred on this like
689  *      schedule a hangup sequence to run after this event.
690  */
691
692 void tty_hangup(struct tty_struct *tty)
693 {
694 #ifdef TTY_DEBUG_HANGUP
695         char    buf[64];
696         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
697 #endif
698         schedule_work(&tty->hangup_work);
699 }
700
701 EXPORT_SYMBOL(tty_hangup);
702
703 /**
704  *      tty_vhangup             -       process vhangup
705  *      @tty: tty to hangup
706  *
707  *      The user has asked via system call for the terminal to be hung up.
708  *      We do this synchronously so that when the syscall returns the process
709  *      is complete. That guarantee is necessary for security reasons.
710  */
711
712 void tty_vhangup(struct tty_struct *tty)
713 {
714 #ifdef TTY_DEBUG_HANGUP
715         char    buf[64];
716
717         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
718 #endif
719         __tty_hangup(tty);
720 }
721
722 EXPORT_SYMBOL(tty_vhangup);
723
724
725 /**
726  *      tty_vhangup_self        -       process vhangup for own ctty
727  *
728  *      Perform a vhangup on the current controlling tty
729  */
730
731 void tty_vhangup_self(void)
732 {
733         struct tty_struct *tty;
734
735         tty = get_current_tty();
736         if (tty) {
737                 tty_vhangup(tty);
738                 tty_kref_put(tty);
739         }
740 }
741
742 /**
743  *      tty_hung_up_p           -       was tty hung up
744  *      @filp: file pointer of tty
745  *
746  *      Return true if the tty has been subject to a vhangup or a carrier
747  *      loss
748  */
749
750 int tty_hung_up_p(struct file *filp)
751 {
752         return (filp->f_op == &hung_up_tty_fops);
753 }
754
755 EXPORT_SYMBOL(tty_hung_up_p);
756
757 static void session_clear_tty(struct pid *session)
758 {
759         struct task_struct *p;
760         do_each_pid_task(session, PIDTYPE_SID, p) {
761                 proc_clear_tty(p);
762         } while_each_pid_task(session, PIDTYPE_SID, p);
763 }
764
765 /**
766  *      disassociate_ctty       -       disconnect controlling tty
767  *      @on_exit: true if exiting so need to "hang up" the session
768  *
769  *      This function is typically called only by the session leader, when
770  *      it wants to disassociate itself from its controlling tty.
771  *
772  *      It performs the following functions:
773  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
774  *      (2)  Clears the tty from being controlling the session
775  *      (3)  Clears the controlling tty for all processes in the
776  *              session group.
777  *
778  *      The argument on_exit is set to 1 if called when a process is
779  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
780  *
781  *      Locking:
782  *              BTM is taken for hysterical raisins, and held when
783  *                called from no_tty().
784  *                tty_mutex is taken to protect tty
785  *                ->siglock is taken to protect ->signal/->sighand
786  *                tasklist_lock is taken to walk process list for sessions
787  *                  ->siglock is taken to protect ->signal/->sighand
788  */
789
790 void disassociate_ctty(int on_exit)
791 {
792         struct tty_struct *tty;
793
794         if (!current->signal->leader)
795                 return;
796
797         tty = get_current_tty();
798         if (tty) {
799                 struct pid *tty_pgrp = get_pid(tty->pgrp);
800                 if (on_exit) {
801                         if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
802                                 tty_vhangup(tty);
803                 }
804                 tty_kref_put(tty);
805                 if (tty_pgrp) {
806                         kill_pgrp(tty_pgrp, SIGHUP, on_exit);
807                         if (!on_exit)
808                                 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
809                         put_pid(tty_pgrp);
810                 }
811         } else if (on_exit) {
812                 struct pid *old_pgrp;
813                 spin_lock_irq(&current->sighand->siglock);
814                 old_pgrp = current->signal->tty_old_pgrp;
815                 current->signal->tty_old_pgrp = NULL;
816                 spin_unlock_irq(&current->sighand->siglock);
817                 if (old_pgrp) {
818                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
819                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
820                         put_pid(old_pgrp);
821                 }
822                 return;
823         }
824
825         spin_lock_irq(&current->sighand->siglock);
826         put_pid(current->signal->tty_old_pgrp);
827         current->signal->tty_old_pgrp = NULL;
828         spin_unlock_irq(&current->sighand->siglock);
829
830         tty = get_current_tty();
831         if (tty) {
832                 unsigned long flags;
833                 spin_lock_irqsave(&tty->ctrl_lock, flags);
834                 put_pid(tty->session);
835                 put_pid(tty->pgrp);
836                 tty->session = NULL;
837                 tty->pgrp = NULL;
838                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
839                 tty_kref_put(tty);
840         } else {
841 #ifdef TTY_DEBUG_HANGUP
842                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
843                        " = NULL", tty);
844 #endif
845         }
846
847         /* Now clear signal->tty under the lock */
848         read_lock(&tasklist_lock);
849         session_clear_tty(task_session(current));
850         read_unlock(&tasklist_lock);
851 }
852
853 /**
854  *
855  *      no_tty  - Ensure the current process does not have a controlling tty
856  */
857 void no_tty(void)
858 {
859         struct task_struct *tsk = current;
860         tty_lock();
861         disassociate_ctty(0);
862         tty_unlock();
863         proc_clear_tty(tsk);
864 }
865
866
867 /**
868  *      stop_tty        -       propagate flow control
869  *      @tty: tty to stop
870  *
871  *      Perform flow control to the driver. For PTY/TTY pairs we
872  *      must also propagate the TIOCKPKT status. May be called
873  *      on an already stopped device and will not re-call the driver
874  *      method.
875  *
876  *      This functionality is used by both the line disciplines for
877  *      halting incoming flow and by the driver. It may therefore be
878  *      called from any context, may be under the tty atomic_write_lock
879  *      but not always.
880  *
881  *      Locking:
882  *              Uses the tty control lock internally
883  */
884
885 void stop_tty(struct tty_struct *tty)
886 {
887         unsigned long flags;
888         spin_lock_irqsave(&tty->ctrl_lock, flags);
889         if (tty->stopped) {
890                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
891                 return;
892         }
893         tty->stopped = 1;
894         if (tty->link && tty->link->packet) {
895                 tty->ctrl_status &= ~TIOCPKT_START;
896                 tty->ctrl_status |= TIOCPKT_STOP;
897                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
898         }
899         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
900         if (tty->ops->stop)
901                 (tty->ops->stop)(tty);
902 }
903
904 EXPORT_SYMBOL(stop_tty);
905
906 /**
907  *      start_tty       -       propagate flow control
908  *      @tty: tty to start
909  *
910  *      Start a tty that has been stopped if at all possible. Perform
911  *      any necessary wakeups and propagate the TIOCPKT status. If this
912  *      is the tty was previous stopped and is being started then the
913  *      driver start method is invoked and the line discipline woken.
914  *
915  *      Locking:
916  *              ctrl_lock
917  */
918
919 void start_tty(struct tty_struct *tty)
920 {
921         unsigned long flags;
922         spin_lock_irqsave(&tty->ctrl_lock, flags);
923         if (!tty->stopped || tty->flow_stopped) {
924                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
925                 return;
926         }
927         tty->stopped = 0;
928         if (tty->link && tty->link->packet) {
929                 tty->ctrl_status &= ~TIOCPKT_STOP;
930                 tty->ctrl_status |= TIOCPKT_START;
931                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
932         }
933         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
934         if (tty->ops->start)
935                 (tty->ops->start)(tty);
936         /* If we have a running line discipline it may need kicking */
937         tty_wakeup(tty);
938 }
939
940 EXPORT_SYMBOL(start_tty);
941
942 /**
943  *      tty_read        -       read method for tty device files
944  *      @file: pointer to tty file
945  *      @buf: user buffer
946  *      @count: size of user buffer
947  *      @ppos: unused
948  *
949  *      Perform the read system call function on this terminal device. Checks
950  *      for hung up devices before calling the line discipline method.
951  *
952  *      Locking:
953  *              Locks the line discipline internally while needed. Multiple
954  *      read calls may be outstanding in parallel.
955  */
956
957 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
958                         loff_t *ppos)
959 {
960         int i;
961         struct inode *inode = file->f_path.dentry->d_inode;
962         struct tty_struct *tty = file_tty(file);
963         struct tty_ldisc *ld;
964
965         if (tty_paranoia_check(tty, inode, "tty_read"))
966                 return -EIO;
967         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
968                 return -EIO;
969
970         /* We want to wait for the line discipline to sort out in this
971            situation */
972         ld = tty_ldisc_ref_wait(tty);
973         if (ld->ops->read)
974                 i = (ld->ops->read)(tty, file, buf, count);
975         else
976                 i = -EIO;
977         tty_ldisc_deref(ld);
978         if (i > 0)
979                 inode->i_atime = current_fs_time(inode->i_sb);
980         return i;
981 }
982
983 void tty_write_unlock(struct tty_struct *tty)
984         __releases(&tty->atomic_write_lock)
985 {
986         mutex_unlock(&tty->atomic_write_lock);
987         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
988 }
989
990 int tty_write_lock(struct tty_struct *tty, int ndelay)
991         __acquires(&tty->atomic_write_lock)
992 {
993         if (!mutex_trylock(&tty->atomic_write_lock)) {
994                 if (ndelay)
995                         return -EAGAIN;
996                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
997                         return -ERESTARTSYS;
998         }
999         return 0;
1000 }
1001
1002 /*
1003  * Split writes up in sane blocksizes to avoid
1004  * denial-of-service type attacks
1005  */
1006 static inline ssize_t do_tty_write(
1007         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1008         struct tty_struct *tty,
1009         struct file *file,
1010         const char __user *buf,
1011         size_t count)
1012 {
1013         ssize_t ret, written = 0;
1014         unsigned int chunk;
1015
1016         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1017         if (ret < 0)
1018                 return ret;
1019
1020         /*
1021          * We chunk up writes into a temporary buffer. This
1022          * simplifies low-level drivers immensely, since they
1023          * don't have locking issues and user mode accesses.
1024          *
1025          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1026          * big chunk-size..
1027          *
1028          * The default chunk-size is 2kB, because the NTTY
1029          * layer has problems with bigger chunks. It will
1030          * claim to be able to handle more characters than
1031          * it actually does.
1032          *
1033          * FIXME: This can probably go away now except that 64K chunks
1034          * are too likely to fail unless switched to vmalloc...
1035          */
1036         chunk = 2048;
1037         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1038                 chunk = 65536;
1039         if (count < chunk)
1040                 chunk = count;
1041
1042         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1043         if (tty->write_cnt < chunk) {
1044                 unsigned char *buf_chunk;
1045
1046                 if (chunk < 1024)
1047                         chunk = 1024;
1048
1049                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1050                 if (!buf_chunk) {
1051                         ret = -ENOMEM;
1052                         goto out;
1053                 }
1054                 kfree(tty->write_buf);
1055                 tty->write_cnt = chunk;
1056                 tty->write_buf = buf_chunk;
1057         }
1058
1059         /* Do the write .. */
1060         for (;;) {
1061                 size_t size = count;
1062                 if (size > chunk)
1063                         size = chunk;
1064                 ret = -EFAULT;
1065                 if (copy_from_user(tty->write_buf, buf, size))
1066                         break;
1067                 ret = write(tty, file, tty->write_buf, size);
1068                 if (ret <= 0)
1069                         break;
1070                 written += ret;
1071                 buf += ret;
1072                 count -= ret;
1073                 if (!count)
1074                         break;
1075                 ret = -ERESTARTSYS;
1076                 if (signal_pending(current))
1077                         break;
1078                 cond_resched();
1079         }
1080         if (written) {
1081                 struct inode *inode = file->f_path.dentry->d_inode;
1082                 inode->i_mtime = current_fs_time(inode->i_sb);
1083                 ret = written;
1084         }
1085 out:
1086         tty_write_unlock(tty);
1087         return ret;
1088 }
1089
1090 /**
1091  * tty_write_message - write a message to a certain tty, not just the console.
1092  * @tty: the destination tty_struct
1093  * @msg: the message to write
1094  *
1095  * This is used for messages that need to be redirected to a specific tty.
1096  * We don't put it into the syslog queue right now maybe in the future if
1097  * really needed.
1098  *
1099  * We must still hold the BTM and test the CLOSING flag for the moment.
1100  */
1101
1102 void tty_write_message(struct tty_struct *tty, char *msg)
1103 {
1104         if (tty) {
1105                 mutex_lock(&tty->atomic_write_lock);
1106                 tty_lock();
1107                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1108                         tty_unlock();
1109                         tty->ops->write(tty, msg, strlen(msg));
1110                 } else
1111                         tty_unlock();
1112                 tty_write_unlock(tty);
1113         }
1114         return;
1115 }
1116
1117
1118 /**
1119  *      tty_write               -       write method for tty device file
1120  *      @file: tty file pointer
1121  *      @buf: user data to write
1122  *      @count: bytes to write
1123  *      @ppos: unused
1124  *
1125  *      Write data to a tty device via the line discipline.
1126  *
1127  *      Locking:
1128  *              Locks the line discipline as required
1129  *              Writes to the tty driver are serialized by the atomic_write_lock
1130  *      and are then processed in chunks to the device. The line discipline
1131  *      write method will not be invoked in parallel for each device.
1132  */
1133
1134 static ssize_t tty_write(struct file *file, const char __user *buf,
1135                                                 size_t count, loff_t *ppos)
1136 {
1137         struct inode *inode = file->f_path.dentry->d_inode;
1138         struct tty_struct *tty = file_tty(file);
1139         struct tty_ldisc *ld;
1140         ssize_t ret;
1141
1142         if (tty_paranoia_check(tty, inode, "tty_write"))
1143                 return -EIO;
1144         if (!tty || !tty->ops->write ||
1145                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1146                         return -EIO;
1147         /* Short term debug to catch buggy drivers */
1148         if (tty->ops->write_room == NULL)
1149                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1150                         tty->driver->name);
1151         ld = tty_ldisc_ref_wait(tty);
1152         if (!ld->ops->write)
1153                 ret = -EIO;
1154         else
1155                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1156         tty_ldisc_deref(ld);
1157         return ret;
1158 }
1159
1160 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1161                                                 size_t count, loff_t *ppos)
1162 {
1163         struct file *p = NULL;
1164
1165         spin_lock(&redirect_lock);
1166         if (redirect) {
1167                 get_file(redirect);
1168                 p = redirect;
1169         }
1170         spin_unlock(&redirect_lock);
1171
1172         if (p) {
1173                 ssize_t res;
1174                 res = vfs_write(p, buf, count, &p->f_pos);
1175                 fput(p);
1176                 return res;
1177         }
1178         return tty_write(file, buf, count, ppos);
1179 }
1180
1181 static char ptychar[] = "pqrstuvwxyzabcde";
1182
1183 /**
1184  *      pty_line_name   -       generate name for a pty
1185  *      @driver: the tty driver in use
1186  *      @index: the minor number
1187  *      @p: output buffer of at least 6 bytes
1188  *
1189  *      Generate a name from a driver reference and write it to the output
1190  *      buffer.
1191  *
1192  *      Locking: None
1193  */
1194 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1195 {
1196         int i = index + driver->name_base;
1197         /* ->name is initialized to "ttyp", but "tty" is expected */
1198         sprintf(p, "%s%c%x",
1199                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1200                 ptychar[i >> 4 & 0xf], i & 0xf);
1201 }
1202
1203 /**
1204  *      tty_line_name   -       generate name for a tty
1205  *      @driver: the tty driver in use
1206  *      @index: the minor number
1207  *      @p: output buffer of at least 7 bytes
1208  *
1209  *      Generate a name from a driver reference and write it to the output
1210  *      buffer.
1211  *
1212  *      Locking: None
1213  */
1214 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1215 {
1216         sprintf(p, "%s%d", driver->name, index + driver->name_base);
1217 }
1218
1219 /**
1220  *      tty_driver_lookup_tty() - find an existing tty, if any
1221  *      @driver: the driver for the tty
1222  *      @idx:    the minor number
1223  *
1224  *      Return the tty, if found or ERR_PTR() otherwise.
1225  *
1226  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1227  *      be held until the 'fast-open' is also done. Will change once we
1228  *      have refcounting in the driver and per driver locking
1229  */
1230 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1231                 struct inode *inode, int idx)
1232 {
1233         if (driver->ops->lookup)
1234                 return driver->ops->lookup(driver, inode, idx);
1235
1236         return driver->ttys[idx];
1237 }
1238
1239 /**
1240  *      tty_init_termios        -  helper for termios setup
1241  *      @tty: the tty to set up
1242  *
1243  *      Initialise the termios structures for this tty. Thus runs under
1244  *      the tty_mutex currently so we can be relaxed about ordering.
1245  */
1246
1247 int tty_init_termios(struct tty_struct *tty)
1248 {
1249         struct ktermios *tp;
1250         int idx = tty->index;
1251
1252         tp = tty->driver->termios[idx];
1253         if (tp == NULL) {
1254                 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1255                 if (tp == NULL)
1256                         return -ENOMEM;
1257                 memcpy(tp, &tty->driver->init_termios,
1258                                                 sizeof(struct ktermios));
1259                 tty->driver->termios[idx] = tp;
1260         }
1261         tty->termios = tp;
1262         tty->termios_locked = tp + 1;
1263
1264         /* Compatibility until drivers always set this */
1265         tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1266         tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1267         return 0;
1268 }
1269 EXPORT_SYMBOL_GPL(tty_init_termios);
1270
1271 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1272 {
1273         int ret = tty_init_termios(tty);
1274         if (ret)
1275                 return ret;
1276
1277         tty_driver_kref_get(driver);
1278         tty->count++;
1279         driver->ttys[tty->index] = tty;
1280         return 0;
1281 }
1282 EXPORT_SYMBOL_GPL(tty_standard_install);
1283
1284 /**
1285  *      tty_driver_install_tty() - install a tty entry in the driver
1286  *      @driver: the driver for the tty
1287  *      @tty: the tty
1288  *
1289  *      Install a tty object into the driver tables. The tty->index field
1290  *      will be set by the time this is called. This method is responsible
1291  *      for ensuring any need additional structures are allocated and
1292  *      configured.
1293  *
1294  *      Locking: tty_mutex for now
1295  */
1296 static int tty_driver_install_tty(struct tty_driver *driver,
1297                                                 struct tty_struct *tty)
1298 {
1299         return driver->ops->install ? driver->ops->install(driver, tty) :
1300                 tty_standard_install(driver, tty);
1301 }
1302
1303 /**
1304  *      tty_driver_remove_tty() - remove a tty from the driver tables
1305  *      @driver: the driver for the tty
1306  *      @idx:    the minor number
1307  *
1308  *      Remvoe a tty object from the driver tables. The tty->index field
1309  *      will be set by the time this is called.
1310  *
1311  *      Locking: tty_mutex for now
1312  */
1313 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1314 {
1315         if (driver->ops->remove)
1316                 driver->ops->remove(driver, tty);
1317         else
1318                 driver->ttys[tty->index] = NULL;
1319 }
1320
1321 /*
1322  *      tty_reopen()    - fast re-open of an open tty
1323  *      @tty    - the tty to open
1324  *
1325  *      Return 0 on success, -errno on error.
1326  *
1327  *      Locking: tty_mutex must be held from the time the tty was found
1328  *               till this open completes.
1329  */
1330 static int tty_reopen(struct tty_struct *tty)
1331 {
1332         struct tty_driver *driver = tty->driver;
1333
1334         if (test_bit(TTY_CLOSING, &tty->flags) ||
1335                         test_bit(TTY_HUPPING, &tty->flags) ||
1336                         test_bit(TTY_LDISC_CHANGING, &tty->flags))
1337                 return -EIO;
1338
1339         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1340             driver->subtype == PTY_TYPE_MASTER) {
1341                 /*
1342                  * special case for PTY masters: only one open permitted,
1343                  * and the slave side open count is incremented as well.
1344                  */
1345                 if (tty->count)
1346                         return -EIO;
1347
1348                 tty->link->count++;
1349         }
1350         tty->count++;
1351
1352         mutex_lock(&tty->ldisc_mutex);
1353         WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1354         mutex_unlock(&tty->ldisc_mutex);
1355
1356         return 0;
1357 }
1358
1359 /**
1360  *      tty_init_dev            -       initialise a tty device
1361  *      @driver: tty driver we are opening a device on
1362  *      @idx: device index
1363  *      @ret_tty: returned tty structure
1364  *
1365  *      Prepare a tty device. This may not be a "new" clean device but
1366  *      could also be an active device. The pty drivers require special
1367  *      handling because of this.
1368  *
1369  *      Locking:
1370  *              The function is called under the tty_mutex, which
1371  *      protects us from the tty struct or driver itself going away.
1372  *
1373  *      On exit the tty device has the line discipline attached and
1374  *      a reference count of 1. If a pair was created for pty/tty use
1375  *      and the other was a pty master then it too has a reference count of 1.
1376  *
1377  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1378  * failed open.  The new code protects the open with a mutex, so it's
1379  * really quite straightforward.  The mutex locking can probably be
1380  * relaxed for the (most common) case of reopening a tty.
1381  */
1382
1383 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1384 {
1385         struct tty_struct *tty;
1386         int retval;
1387
1388         /*
1389          * First time open is complex, especially for PTY devices.
1390          * This code guarantees that either everything succeeds and the
1391          * TTY is ready for operation, or else the table slots are vacated
1392          * and the allocated memory released.  (Except that the termios
1393          * and locked termios may be retained.)
1394          */
1395
1396         if (!try_module_get(driver->owner))
1397                 return ERR_PTR(-ENODEV);
1398
1399         tty = alloc_tty_struct();
1400         if (!tty) {
1401                 retval = -ENOMEM;
1402                 goto err_module_put;
1403         }
1404         initialize_tty_struct(tty, driver, idx);
1405
1406         retval = tty_driver_install_tty(driver, tty);
1407         if (retval < 0)
1408                 goto err_deinit_tty;
1409
1410         /*
1411          * Structures all installed ... call the ldisc open routines.
1412          * If we fail here just call release_tty to clean up.  No need
1413          * to decrement the use counts, as release_tty doesn't care.
1414          */
1415         retval = tty_ldisc_setup(tty, tty->link);
1416         if (retval)
1417                 goto err_release_tty;
1418         return tty;
1419
1420 err_deinit_tty:
1421         deinitialize_tty_struct(tty);
1422         free_tty_struct(tty);
1423 err_module_put:
1424         module_put(driver->owner);
1425         return ERR_PTR(retval);
1426
1427         /* call the tty release_tty routine to clean out this slot */
1428 err_release_tty:
1429         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1430                                  "clearing slot %d\n", idx);
1431         release_tty(tty, idx);
1432         return ERR_PTR(retval);
1433 }
1434
1435 void tty_free_termios(struct tty_struct *tty)
1436 {
1437         struct ktermios *tp;
1438         int idx = tty->index;
1439         /* Kill this flag and push into drivers for locking etc */
1440         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1441                 /* FIXME: Locking on ->termios array */
1442                 tp = tty->termios;
1443                 tty->driver->termios[idx] = NULL;
1444                 kfree(tp);
1445         }
1446 }
1447 EXPORT_SYMBOL(tty_free_termios);
1448
1449 void tty_shutdown(struct tty_struct *tty)
1450 {
1451         tty_driver_remove_tty(tty->driver, tty);
1452         tty_free_termios(tty);
1453 }
1454 EXPORT_SYMBOL(tty_shutdown);
1455
1456 /**
1457  *      release_one_tty         -       release tty structure memory
1458  *      @kref: kref of tty we are obliterating
1459  *
1460  *      Releases memory associated with a tty structure, and clears out the
1461  *      driver table slots. This function is called when a device is no longer
1462  *      in use. It also gets called when setup of a device fails.
1463  *
1464  *      Locking:
1465  *              tty_mutex - sometimes only
1466  *              takes the file list lock internally when working on the list
1467  *      of ttys that the driver keeps.
1468  *
1469  *      This method gets called from a work queue so that the driver private
1470  *      cleanup ops can sleep (needed for USB at least)
1471  */
1472 static void release_one_tty(struct work_struct *work)
1473 {
1474         struct tty_struct *tty =
1475                 container_of(work, struct tty_struct, hangup_work);
1476         struct tty_driver *driver = tty->driver;
1477
1478         if (tty->ops->cleanup)
1479                 tty->ops->cleanup(tty);
1480
1481         tty->magic = 0;
1482         tty_driver_kref_put(driver);
1483         module_put(driver->owner);
1484
1485         spin_lock(&tty_files_lock);
1486         list_del_init(&tty->tty_files);
1487         spin_unlock(&tty_files_lock);
1488
1489         put_pid(tty->pgrp);
1490         put_pid(tty->session);
1491         free_tty_struct(tty);
1492 }
1493
1494 static void queue_release_one_tty(struct kref *kref)
1495 {
1496         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1497
1498         if (tty->ops->shutdown)
1499                 tty->ops->shutdown(tty);
1500         else
1501                 tty_shutdown(tty);
1502
1503         /* The hangup queue is now free so we can reuse it rather than
1504            waste a chunk of memory for each port */
1505         INIT_WORK(&tty->hangup_work, release_one_tty);
1506         schedule_work(&tty->hangup_work);
1507 }
1508
1509 /**
1510  *      tty_kref_put            -       release a tty kref
1511  *      @tty: tty device
1512  *
1513  *      Release a reference to a tty device and if need be let the kref
1514  *      layer destruct the object for us
1515  */
1516
1517 void tty_kref_put(struct tty_struct *tty)
1518 {
1519         if (tty)
1520                 kref_put(&tty->kref, queue_release_one_tty);
1521 }
1522 EXPORT_SYMBOL(tty_kref_put);
1523
1524 /**
1525  *      release_tty             -       release tty structure memory
1526  *
1527  *      Release both @tty and a possible linked partner (think pty pair),
1528  *      and decrement the refcount of the backing module.
1529  *
1530  *      Locking:
1531  *              tty_mutex - sometimes only
1532  *              takes the file list lock internally when working on the list
1533  *      of ttys that the driver keeps.
1534  *              FIXME: should we require tty_mutex is held here ??
1535  *
1536  */
1537 static void release_tty(struct tty_struct *tty, int idx)
1538 {
1539         /* This should always be true but check for the moment */
1540         WARN_ON(tty->index != idx);
1541
1542         if (tty->link)
1543                 tty_kref_put(tty->link);
1544         tty_kref_put(tty);
1545 }
1546
1547 /**
1548  *      tty_release_checks - check a tty before real release
1549  *      @tty: tty to check
1550  *      @o_tty: link of @tty (if any)
1551  *      @idx: index of the tty
1552  *
1553  *      Performs some paranoid checking before true release of the @tty.
1554  *      This is a no-op unless TTY_PARANOIA_CHECK is defined.
1555  */
1556 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1557                 int idx)
1558 {
1559 #ifdef TTY_PARANOIA_CHECK
1560         if (idx < 0 || idx >= tty->driver->num) {
1561                 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1562                                 __func__, tty->name);
1563                 return -1;
1564         }
1565
1566         /* not much to check for devpts */
1567         if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1568                 return 0;
1569
1570         if (tty != tty->driver->ttys[idx]) {
1571                 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1572                                 __func__, idx, tty->name);
1573                 return -1;
1574         }
1575         if (tty->termios != tty->driver->termios[idx]) {
1576                 printk(KERN_DEBUG "%s: driver.termios[%d] not termios for (%s)\n",
1577                                 __func__, idx, tty->name);
1578                 return -1;
1579         }
1580         if (tty->driver->other) {
1581                 if (o_tty != tty->driver->other->ttys[idx]) {
1582                         printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1583                                         __func__, idx, tty->name);
1584                         return -1;
1585                 }
1586                 if (o_tty->termios != tty->driver->other->termios[idx]) {
1587                         printk(KERN_DEBUG "%s: other->termios[%d] not o_termios for (%s)\n",
1588                                         __func__, idx, tty->name);
1589                         return -1;
1590                 }
1591                 if (o_tty->link != tty) {
1592                         printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1593                         return -1;
1594                 }
1595         }
1596 #endif
1597         return 0;
1598 }
1599
1600 /**
1601  *      tty_release             -       vfs callback for close
1602  *      @inode: inode of tty
1603  *      @filp: file pointer for handle to tty
1604  *
1605  *      Called the last time each file handle is closed that references
1606  *      this tty. There may however be several such references.
1607  *
1608  *      Locking:
1609  *              Takes bkl. See tty_release_dev
1610  *
1611  * Even releasing the tty structures is a tricky business.. We have
1612  * to be very careful that the structures are all released at the
1613  * same time, as interrupts might otherwise get the wrong pointers.
1614  *
1615  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1616  * lead to double frees or releasing memory still in use.
1617  */
1618
1619 int tty_release(struct inode *inode, struct file *filp)
1620 {
1621         struct tty_struct *tty = file_tty(filp);
1622         struct tty_struct *o_tty;
1623         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1624         int     devpts;
1625         int     idx;
1626         char    buf[64];
1627
1628         if (tty_paranoia_check(tty, inode, __func__))
1629                 return 0;
1630
1631         tty_lock();
1632         check_tty_count(tty, __func__);
1633
1634         __tty_fasync(-1, filp, 0);
1635
1636         idx = tty->index;
1637         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1638                       tty->driver->subtype == PTY_TYPE_MASTER);
1639         devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1640         o_tty = tty->link;
1641
1642         if (tty_release_checks(tty, o_tty, idx)) {
1643                 tty_unlock();
1644                 return 0;
1645         }
1646
1647 #ifdef TTY_DEBUG_HANGUP
1648         printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1649                         tty_name(tty, buf), tty->count);
1650 #endif
1651
1652         if (tty->ops->close)
1653                 tty->ops->close(tty, filp);
1654
1655         tty_unlock();
1656         /*
1657          * Sanity check: if tty->count is going to zero, there shouldn't be
1658          * any waiters on tty->read_wait or tty->write_wait.  We test the
1659          * wait queues and kick everyone out _before_ actually starting to
1660          * close.  This ensures that we won't block while releasing the tty
1661          * structure.
1662          *
1663          * The test for the o_tty closing is necessary, since the master and
1664          * slave sides may close in any order.  If the slave side closes out
1665          * first, its count will be one, since the master side holds an open.
1666          * Thus this test wouldn't be triggered at the time the slave closes,
1667          * so we do it now.
1668          *
1669          * Note that it's possible for the tty to be opened again while we're
1670          * flushing out waiters.  By recalculating the closing flags before
1671          * each iteration we avoid any problems.
1672          */
1673         while (1) {
1674                 /* Guard against races with tty->count changes elsewhere and
1675                    opens on /dev/tty */
1676
1677                 mutex_lock(&tty_mutex);
1678                 tty_lock();
1679                 tty_closing = tty->count <= 1;
1680                 o_tty_closing = o_tty &&
1681                         (o_tty->count <= (pty_master ? 1 : 0));
1682                 do_sleep = 0;
1683
1684                 if (tty_closing) {
1685                         if (waitqueue_active(&tty->read_wait)) {
1686                                 wake_up_poll(&tty->read_wait, POLLIN);
1687                                 do_sleep++;
1688                         }
1689                         if (waitqueue_active(&tty->write_wait)) {
1690                                 wake_up_poll(&tty->write_wait, POLLOUT);
1691                                 do_sleep++;
1692                         }
1693                 }
1694                 if (o_tty_closing) {
1695                         if (waitqueue_active(&o_tty->read_wait)) {
1696                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1697                                 do_sleep++;
1698                         }
1699                         if (waitqueue_active(&o_tty->write_wait)) {
1700                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1701                                 do_sleep++;
1702                         }
1703                 }
1704                 if (!do_sleep)
1705                         break;
1706
1707                 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1708                                 __func__, tty_name(tty, buf));
1709                 tty_unlock();
1710                 mutex_unlock(&tty_mutex);
1711                 schedule();
1712         }
1713
1714         /*
1715          * The closing flags are now consistent with the open counts on
1716          * both sides, and we've completed the last operation that could
1717          * block, so it's safe to proceed with closing.
1718          */
1719         if (pty_master) {
1720                 if (--o_tty->count < 0) {
1721                         printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1722                                 __func__, o_tty->count, tty_name(o_tty, buf));
1723                         o_tty->count = 0;
1724                 }
1725         }
1726         if (--tty->count < 0) {
1727                 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1728                                 __func__, tty->count, tty_name(tty, buf));
1729                 tty->count = 0;
1730         }
1731
1732         /*
1733          * We've decremented tty->count, so we need to remove this file
1734          * descriptor off the tty->tty_files list; this serves two
1735          * purposes:
1736          *  - check_tty_count sees the correct number of file descriptors
1737          *    associated with this tty.
1738          *  - do_tty_hangup no longer sees this file descriptor as
1739          *    something that needs to be handled for hangups.
1740          */
1741         tty_del_file(filp);
1742
1743         /*
1744          * Perform some housekeeping before deciding whether to return.
1745          *
1746          * Set the TTY_CLOSING flag if this was the last open.  In the
1747          * case of a pty we may have to wait around for the other side
1748          * to close, and TTY_CLOSING makes sure we can't be reopened.
1749          */
1750         if (tty_closing)
1751                 set_bit(TTY_CLOSING, &tty->flags);
1752         if (o_tty_closing)
1753                 set_bit(TTY_CLOSING, &o_tty->flags);
1754
1755         /*
1756          * If _either_ side is closing, make sure there aren't any
1757          * processes that still think tty or o_tty is their controlling
1758          * tty.
1759          */
1760         if (tty_closing || o_tty_closing) {
1761                 read_lock(&tasklist_lock);
1762                 session_clear_tty(tty->session);
1763                 if (o_tty)
1764                         session_clear_tty(o_tty->session);
1765                 read_unlock(&tasklist_lock);
1766         }
1767
1768         mutex_unlock(&tty_mutex);
1769
1770         /* check whether both sides are closing ... */
1771         if (!tty_closing || (o_tty && !o_tty_closing)) {
1772                 tty_unlock();
1773                 return 0;
1774         }
1775
1776 #ifdef TTY_DEBUG_HANGUP
1777         printk(KERN_DEBUG "%s: freeing tty structure...\n", __func__);
1778 #endif
1779         /*
1780          * Ask the line discipline code to release its structures
1781          */
1782         tty_ldisc_release(tty, o_tty);
1783         /*
1784          * The release_tty function takes care of the details of clearing
1785          * the slots and preserving the termios structure.
1786          */
1787         release_tty(tty, idx);
1788
1789         /* Make this pty number available for reallocation */
1790         if (devpts)
1791                 devpts_kill_index(inode, idx);
1792         tty_unlock();
1793         return 0;
1794 }
1795
1796 /**
1797  *      tty_open_current_tty - get tty of current task for open
1798  *      @device: device number
1799  *      @filp: file pointer to tty
1800  *      @return: tty of the current task iff @device is /dev/tty
1801  *
1802  *      We cannot return driver and index like for the other nodes because
1803  *      devpts will not work then. It expects inodes to be from devpts FS.
1804  */
1805 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1806 {
1807         struct tty_struct *tty;
1808
1809         if (device != MKDEV(TTYAUX_MAJOR, 0))
1810                 return NULL;
1811
1812         tty = get_current_tty();
1813         if (!tty)
1814                 return ERR_PTR(-ENXIO);
1815
1816         filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1817         /* noctty = 1; */
1818         tty_kref_put(tty);
1819         /* FIXME: we put a reference and return a TTY! */
1820         return tty;
1821 }
1822
1823 /**
1824  *      tty_lookup_driver - lookup a tty driver for a given device file
1825  *      @device: device number
1826  *      @filp: file pointer to tty
1827  *      @noctty: set if the device should not become a controlling tty
1828  *      @index: index for the device in the @return driver
1829  *      @return: driver for this inode (with increased refcount)
1830  *
1831  *      If @return is not erroneous, the caller is responsible to decrement the
1832  *      refcount by tty_driver_kref_put.
1833  *
1834  *      Locking: tty_mutex protects get_tty_driver
1835  */
1836 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1837                 int *noctty, int *index)
1838 {
1839         struct tty_driver *driver;
1840
1841         switch (device) {
1842 #ifdef CONFIG_VT
1843         case MKDEV(TTY_MAJOR, 0): {
1844                 extern struct tty_driver *console_driver;
1845                 driver = tty_driver_kref_get(console_driver);
1846                 *index = fg_console;
1847                 *noctty = 1;
1848                 break;
1849         }
1850 #endif
1851         case MKDEV(TTYAUX_MAJOR, 1): {
1852                 struct tty_driver *console_driver = console_device(index);
1853                 if (console_driver) {
1854                         driver = tty_driver_kref_get(console_driver);
1855                         if (driver) {
1856                                 /* Don't let /dev/console block */
1857                                 filp->f_flags |= O_NONBLOCK;
1858                                 *noctty = 1;
1859                                 break;
1860                         }
1861                 }
1862                 return ERR_PTR(-ENODEV);
1863         }
1864         default:
1865                 driver = get_tty_driver(device, index);
1866                 if (!driver)
1867                         return ERR_PTR(-ENODEV);
1868                 break;
1869         }
1870         return driver;
1871 }
1872
1873 /**
1874  *      tty_open                -       open a tty device
1875  *      @inode: inode of device file
1876  *      @filp: file pointer to tty
1877  *
1878  *      tty_open and tty_release keep up the tty count that contains the
1879  *      number of opens done on a tty. We cannot use the inode-count, as
1880  *      different inodes might point to the same tty.
1881  *
1882  *      Open-counting is needed for pty masters, as well as for keeping
1883  *      track of serial lines: DTR is dropped when the last close happens.
1884  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1885  *
1886  *      The termios state of a pty is reset on first open so that
1887  *      settings don't persist across reuse.
1888  *
1889  *      Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1890  *               tty->count should protect the rest.
1891  *               ->siglock protects ->signal/->sighand
1892  */
1893
1894 static int tty_open(struct inode *inode, struct file *filp)
1895 {
1896         struct tty_struct *tty;
1897         int noctty, retval;
1898         struct tty_driver *driver = NULL;
1899         int index;
1900         dev_t device = inode->i_rdev;
1901         unsigned saved_flags = filp->f_flags;
1902
1903         nonseekable_open(inode, filp);
1904
1905 retry_open:
1906         retval = tty_alloc_file(filp);
1907         if (retval)
1908                 return -ENOMEM;
1909
1910         noctty = filp->f_flags & O_NOCTTY;
1911         index  = -1;
1912         retval = 0;
1913
1914         mutex_lock(&tty_mutex);
1915         tty_lock();
1916
1917         tty = tty_open_current_tty(device, filp);
1918         if (IS_ERR(tty)) {
1919                 retval = PTR_ERR(tty);
1920                 goto err_unlock;
1921         } else if (!tty) {
1922                 driver = tty_lookup_driver(device, filp, &noctty, &index);
1923                 if (IS_ERR(driver)) {
1924                         retval = PTR_ERR(driver);
1925                         goto err_unlock;
1926                 }
1927
1928                 /* check whether we're reopening an existing tty */
1929                 tty = tty_driver_lookup_tty(driver, inode, index);
1930                 if (IS_ERR(tty)) {
1931                         retval = PTR_ERR(tty);
1932                         goto err_unlock;
1933                 }
1934         }
1935
1936         if (tty) {
1937                 retval = tty_reopen(tty);
1938                 if (retval)
1939                         tty = ERR_PTR(retval);
1940         } else
1941                 tty = tty_init_dev(driver, index);
1942
1943         mutex_unlock(&tty_mutex);
1944         if (driver)
1945                 tty_driver_kref_put(driver);
1946         if (IS_ERR(tty)) {
1947                 tty_unlock();
1948                 retval = PTR_ERR(tty);
1949                 goto err_file;
1950         }
1951
1952         tty_add_file(tty, filp);
1953
1954         check_tty_count(tty, __func__);
1955         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1956             tty->driver->subtype == PTY_TYPE_MASTER)
1957                 noctty = 1;
1958 #ifdef TTY_DEBUG_HANGUP
1959         printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
1960 #endif
1961         if (tty->ops->open)
1962                 retval = tty->ops->open(tty, filp);
1963         else
1964                 retval = -ENODEV;
1965         filp->f_flags = saved_flags;
1966
1967         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1968                                                 !capable(CAP_SYS_ADMIN))
1969                 retval = -EBUSY;
1970
1971         if (retval) {
1972 #ifdef TTY_DEBUG_HANGUP
1973                 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
1974                                 retval, tty->name);
1975 #endif
1976                 tty_unlock(); /* need to call tty_release without BTM */
1977                 tty_release(inode, filp);
1978                 if (retval != -ERESTARTSYS)
1979                         return retval;
1980
1981                 if (signal_pending(current))
1982                         return retval;
1983
1984                 schedule();
1985                 /*
1986                  * Need to reset f_op in case a hangup happened.
1987                  */
1988                 tty_lock();
1989                 if (filp->f_op == &hung_up_tty_fops)
1990                         filp->f_op = &tty_fops;
1991                 tty_unlock();
1992                 goto retry_open;
1993         }
1994         tty_unlock();
1995
1996
1997         mutex_lock(&tty_mutex);
1998         tty_lock();
1999         spin_lock_irq(&current->sighand->siglock);
2000         if (!noctty &&
2001             current->signal->leader &&
2002             !current->signal->tty &&
2003             tty->session == NULL)
2004                 __proc_set_tty(current, tty);
2005         spin_unlock_irq(&current->sighand->siglock);
2006         tty_unlock();
2007         mutex_unlock(&tty_mutex);
2008         return 0;
2009 err_unlock:
2010         tty_unlock();
2011         mutex_unlock(&tty_mutex);
2012         /* after locks to avoid deadlock */
2013         if (!IS_ERR_OR_NULL(driver))
2014                 tty_driver_kref_put(driver);
2015 err_file:
2016         tty_free_file(filp);
2017         return retval;
2018 }
2019
2020
2021
2022 /**
2023  *      tty_poll        -       check tty status
2024  *      @filp: file being polled
2025  *      @wait: poll wait structures to update
2026  *
2027  *      Call the line discipline polling method to obtain the poll
2028  *      status of the device.
2029  *
2030  *      Locking: locks called line discipline but ldisc poll method
2031  *      may be re-entered freely by other callers.
2032  */
2033
2034 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2035 {
2036         struct tty_struct *tty = file_tty(filp);
2037         struct tty_ldisc *ld;
2038         int ret = 0;
2039
2040         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2041                 return 0;
2042
2043         ld = tty_ldisc_ref_wait(tty);
2044         if (ld->ops->poll)
2045                 ret = (ld->ops->poll)(tty, filp, wait);
2046         tty_ldisc_deref(ld);
2047         return ret;
2048 }
2049
2050 static int __tty_fasync(int fd, struct file *filp, int on)
2051 {
2052         struct tty_struct *tty = file_tty(filp);
2053         unsigned long flags;
2054         int retval = 0;
2055
2056         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2057                 goto out;
2058
2059         retval = fasync_helper(fd, filp, on, &tty->fasync);
2060         if (retval <= 0)
2061                 goto out;
2062
2063         if (on) {
2064                 enum pid_type type;
2065                 struct pid *pid;
2066                 if (!waitqueue_active(&tty->read_wait))
2067                         tty->minimum_to_wake = 1;
2068                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2069                 if (tty->pgrp) {
2070                         pid = tty->pgrp;
2071                         type = PIDTYPE_PGID;
2072                 } else {
2073                         pid = task_pid(current);
2074                         type = PIDTYPE_PID;
2075                 }
2076                 get_pid(pid);
2077                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2078                 retval = __f_setown(filp, pid, type, 0);
2079                 put_pid(pid);
2080                 if (retval)
2081                         goto out;
2082         } else {
2083                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2084                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
2085         }
2086         retval = 0;
2087 out:
2088         return retval;
2089 }
2090
2091 static int tty_fasync(int fd, struct file *filp, int on)
2092 {
2093         int retval;
2094         tty_lock();
2095         retval = __tty_fasync(fd, filp, on);
2096         tty_unlock();
2097         return retval;
2098 }
2099
2100 /**
2101  *      tiocsti                 -       fake input character
2102  *      @tty: tty to fake input into
2103  *      @p: pointer to character
2104  *
2105  *      Fake input to a tty device. Does the necessary locking and
2106  *      input management.
2107  *
2108  *      FIXME: does not honour flow control ??
2109  *
2110  *      Locking:
2111  *              Called functions take tty_ldisc_lock
2112  *              current->signal->tty check is safe without locks
2113  *
2114  *      FIXME: may race normal receive processing
2115  */
2116
2117 static int tiocsti(struct tty_struct *tty, char __user *p)
2118 {
2119         char ch, mbz = 0;
2120         struct tty_ldisc *ld;
2121
2122         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2123                 return -EPERM;
2124         if (get_user(ch, p))
2125                 return -EFAULT;
2126         tty_audit_tiocsti(tty, ch);
2127         ld = tty_ldisc_ref_wait(tty);
2128         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2129         tty_ldisc_deref(ld);
2130         return 0;
2131 }
2132
2133 /**
2134  *      tiocgwinsz              -       implement window query ioctl
2135  *      @tty; tty
2136  *      @arg: user buffer for result
2137  *
2138  *      Copies the kernel idea of the window size into the user buffer.
2139  *
2140  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2141  *              is consistent.
2142  */
2143
2144 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2145 {
2146         int err;
2147
2148         mutex_lock(&tty->termios_mutex);
2149         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2150         mutex_unlock(&tty->termios_mutex);
2151
2152         return err ? -EFAULT: 0;
2153 }
2154
2155 /**
2156  *      tty_do_resize           -       resize event
2157  *      @tty: tty being resized
2158  *      @rows: rows (character)
2159  *      @cols: cols (character)
2160  *
2161  *      Update the termios variables and send the necessary signals to
2162  *      peform a terminal resize correctly
2163  */
2164
2165 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2166 {
2167         struct pid *pgrp;
2168         unsigned long flags;
2169
2170         /* Lock the tty */
2171         mutex_lock(&tty->termios_mutex);
2172         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2173                 goto done;
2174         /* Get the PID values and reference them so we can
2175            avoid holding the tty ctrl lock while sending signals */
2176         spin_lock_irqsave(&tty->ctrl_lock, flags);
2177         pgrp = get_pid(tty->pgrp);
2178         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2179
2180         if (pgrp)
2181                 kill_pgrp(pgrp, SIGWINCH, 1);
2182         put_pid(pgrp);
2183
2184         tty->winsize = *ws;
2185 done:
2186         mutex_unlock(&tty->termios_mutex);
2187         return 0;
2188 }
2189
2190 /**
2191  *      tiocswinsz              -       implement window size set ioctl
2192  *      @tty; tty side of tty
2193  *      @arg: user buffer for result
2194  *
2195  *      Copies the user idea of the window size to the kernel. Traditionally
2196  *      this is just advisory information but for the Linux console it
2197  *      actually has driver level meaning and triggers a VC resize.
2198  *
2199  *      Locking:
2200  *              Driver dependent. The default do_resize method takes the
2201  *      tty termios mutex and ctrl_lock. The console takes its own lock
2202  *      then calls into the default method.
2203  */
2204
2205 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2206 {
2207         struct winsize tmp_ws;
2208         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2209                 return -EFAULT;
2210
2211         if (tty->ops->resize)
2212                 return tty->ops->resize(tty, &tmp_ws);
2213         else
2214                 return tty_do_resize(tty, &tmp_ws);
2215 }
2216
2217 /**
2218  *      tioccons        -       allow admin to move logical console
2219  *      @file: the file to become console
2220  *
2221  *      Allow the administrator to move the redirected console device
2222  *
2223  *      Locking: uses redirect_lock to guard the redirect information
2224  */
2225
2226 static int tioccons(struct file *file)
2227 {
2228         if (!capable(CAP_SYS_ADMIN))
2229                 return -EPERM;
2230         if (file->f_op->write == redirected_tty_write) {
2231                 struct file *f;
2232                 spin_lock(&redirect_lock);
2233                 f = redirect;
2234                 redirect = NULL;
2235                 spin_unlock(&redirect_lock);
2236                 if (f)
2237                         fput(f);
2238                 return 0;
2239         }
2240         spin_lock(&redirect_lock);
2241         if (redirect) {
2242                 spin_unlock(&redirect_lock);
2243                 return -EBUSY;
2244         }
2245         get_file(file);
2246         redirect = file;
2247         spin_unlock(&redirect_lock);
2248         return 0;
2249 }
2250
2251 /**
2252  *      fionbio         -       non blocking ioctl
2253  *      @file: file to set blocking value
2254  *      @p: user parameter
2255  *
2256  *      Historical tty interfaces had a blocking control ioctl before
2257  *      the generic functionality existed. This piece of history is preserved
2258  *      in the expected tty API of posix OS's.
2259  *
2260  *      Locking: none, the open file handle ensures it won't go away.
2261  */
2262
2263 static int fionbio(struct file *file, int __user *p)
2264 {
2265         int nonblock;
2266
2267         if (get_user(nonblock, p))
2268                 return -EFAULT;
2269
2270         spin_lock(&file->f_lock);
2271         if (nonblock)
2272                 file->f_flags |= O_NONBLOCK;
2273         else
2274                 file->f_flags &= ~O_NONBLOCK;
2275         spin_unlock(&file->f_lock);
2276         return 0;
2277 }
2278
2279 /**
2280  *      tiocsctty       -       set controlling tty
2281  *      @tty: tty structure
2282  *      @arg: user argument
2283  *
2284  *      This ioctl is used to manage job control. It permits a session
2285  *      leader to set this tty as the controlling tty for the session.
2286  *
2287  *      Locking:
2288  *              Takes tty_mutex() to protect tty instance
2289  *              Takes tasklist_lock internally to walk sessions
2290  *              Takes ->siglock() when updating signal->tty
2291  */
2292
2293 static int tiocsctty(struct tty_struct *tty, int arg)
2294 {
2295         int ret = 0;
2296         if (current->signal->leader && (task_session(current) == tty->session))
2297                 return ret;
2298
2299         mutex_lock(&tty_mutex);
2300         /*
2301          * The process must be a session leader and
2302          * not have a controlling tty already.
2303          */
2304         if (!current->signal->leader || current->signal->tty) {
2305                 ret = -EPERM;
2306                 goto unlock;
2307         }
2308
2309         if (tty->session) {
2310                 /*
2311                  * This tty is already the controlling
2312                  * tty for another session group!
2313                  */
2314                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2315                         /*
2316                          * Steal it away
2317                          */
2318                         read_lock(&tasklist_lock);
2319                         session_clear_tty(tty->session);
2320                         read_unlock(&tasklist_lock);
2321                 } else {
2322                         ret = -EPERM;
2323                         goto unlock;
2324                 }
2325         }
2326         proc_set_tty(current, tty);
2327 unlock:
2328         mutex_unlock(&tty_mutex);
2329         return ret;
2330 }
2331
2332 /**
2333  *      tty_get_pgrp    -       return a ref counted pgrp pid
2334  *      @tty: tty to read
2335  *
2336  *      Returns a refcounted instance of the pid struct for the process
2337  *      group controlling the tty.
2338  */
2339
2340 struct pid *tty_get_pgrp(struct tty_struct *tty)
2341 {
2342         unsigned long flags;
2343         struct pid *pgrp;
2344
2345         spin_lock_irqsave(&tty->ctrl_lock, flags);
2346         pgrp = get_pid(tty->pgrp);
2347         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2348
2349         return pgrp;
2350 }
2351 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2352
2353 /**
2354  *      tiocgpgrp               -       get process group
2355  *      @tty: tty passed by user
2356  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2357  *      @p: returned pid
2358  *
2359  *      Obtain the process group of the tty. If there is no process group
2360  *      return an error.
2361  *
2362  *      Locking: none. Reference to current->signal->tty is safe.
2363  */
2364
2365 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2366 {
2367         struct pid *pid;
2368         int ret;
2369         /*
2370          * (tty == real_tty) is a cheap way of
2371          * testing if the tty is NOT a master pty.
2372          */
2373         if (tty == real_tty && current->signal->tty != real_tty)
2374                 return -ENOTTY;
2375         pid = tty_get_pgrp(real_tty);
2376         ret =  put_user(pid_vnr(pid), p);
2377         put_pid(pid);
2378         return ret;
2379 }
2380
2381 /**
2382  *      tiocspgrp               -       attempt to set process group
2383  *      @tty: tty passed by user
2384  *      @real_tty: tty side device matching tty passed by user
2385  *      @p: pid pointer
2386  *
2387  *      Set the process group of the tty to the session passed. Only
2388  *      permitted where the tty session is our session.
2389  *
2390  *      Locking: RCU, ctrl lock
2391  */
2392
2393 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2394 {
2395         struct pid *pgrp;
2396         pid_t pgrp_nr;
2397         int retval = tty_check_change(real_tty);
2398         unsigned long flags;
2399
2400         if (retval == -EIO)
2401                 return -ENOTTY;
2402         if (retval)
2403                 return retval;
2404         if (!current->signal->tty ||
2405             (current->signal->tty != real_tty) ||
2406             (real_tty->session != task_session(current)))
2407                 return -ENOTTY;
2408         if (get_user(pgrp_nr, p))
2409                 return -EFAULT;
2410         if (pgrp_nr < 0)
2411                 return -EINVAL;
2412         rcu_read_lock();
2413         pgrp = find_vpid(pgrp_nr);
2414         retval = -ESRCH;
2415         if (!pgrp)
2416                 goto out_unlock;
2417         retval = -EPERM;
2418         if (session_of_pgrp(pgrp) != task_session(current))
2419                 goto out_unlock;
2420         retval = 0;
2421         spin_lock_irqsave(&tty->ctrl_lock, flags);
2422         put_pid(real_tty->pgrp);
2423         real_tty->pgrp = get_pid(pgrp);
2424         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2425 out_unlock:
2426         rcu_read_unlock();
2427         return retval;
2428 }
2429
2430 /**
2431  *      tiocgsid                -       get session id
2432  *      @tty: tty passed by user
2433  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2434  *      @p: pointer to returned session id
2435  *
2436  *      Obtain the session id of the tty. If there is no session
2437  *      return an error.
2438  *
2439  *      Locking: none. Reference to current->signal->tty is safe.
2440  */
2441
2442 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2443 {
2444         /*
2445          * (tty == real_tty) is a cheap way of
2446          * testing if the tty is NOT a master pty.
2447         */
2448         if (tty == real_tty && current->signal->tty != real_tty)
2449                 return -ENOTTY;
2450         if (!real_tty->session)
2451                 return -ENOTTY;
2452         return put_user(pid_vnr(real_tty->session), p);
2453 }
2454
2455 /**
2456  *      tiocsetd        -       set line discipline
2457  *      @tty: tty device
2458  *      @p: pointer to user data
2459  *
2460  *      Set the line discipline according to user request.
2461  *
2462  *      Locking: see tty_set_ldisc, this function is just a helper
2463  */
2464
2465 static int tiocsetd(struct tty_struct *tty, int __user *p)
2466 {
2467         int ldisc;
2468         int ret;
2469
2470         if (get_user(ldisc, p))
2471                 return -EFAULT;
2472
2473         ret = tty_set_ldisc(tty, ldisc);
2474
2475         return ret;
2476 }
2477
2478 /**
2479  *      send_break      -       performed time break
2480  *      @tty: device to break on
2481  *      @duration: timeout in mS
2482  *
2483  *      Perform a timed break on hardware that lacks its own driver level
2484  *      timed break functionality.
2485  *
2486  *      Locking:
2487  *              atomic_write_lock serializes
2488  *
2489  */
2490
2491 static int send_break(struct tty_struct *tty, unsigned int duration)
2492 {
2493         int retval;
2494
2495         if (tty->ops->break_ctl == NULL)
2496                 return 0;
2497
2498         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2499                 retval = tty->ops->break_ctl(tty, duration);
2500         else {
2501                 /* Do the work ourselves */
2502                 if (tty_write_lock(tty, 0) < 0)
2503                         return -EINTR;
2504                 retval = tty->ops->break_ctl(tty, -1);
2505                 if (retval)
2506                         goto out;
2507                 if (!signal_pending(current))
2508                         msleep_interruptible(duration);
2509                 retval = tty->ops->break_ctl(tty, 0);
2510 out:
2511                 tty_write_unlock(tty);
2512                 if (signal_pending(current))
2513                         retval = -EINTR;
2514         }
2515         return retval;
2516 }
2517
2518 /**
2519  *      tty_tiocmget            -       get modem status
2520  *      @tty: tty device
2521  *      @file: user file pointer
2522  *      @p: pointer to result
2523  *
2524  *      Obtain the modem status bits from the tty driver if the feature
2525  *      is supported. Return -EINVAL if it is not available.
2526  *
2527  *      Locking: none (up to the driver)
2528  */
2529
2530 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2531 {
2532         int retval = -EINVAL;
2533
2534         if (tty->ops->tiocmget) {
2535                 retval = tty->ops->tiocmget(tty);
2536
2537                 if (retval >= 0)
2538                         retval = put_user(retval, p);
2539         }
2540         return retval;
2541 }
2542
2543 /**
2544  *      tty_tiocmset            -       set modem status
2545  *      @tty: tty device
2546  *      @cmd: command - clear bits, set bits or set all
2547  *      @p: pointer to desired bits
2548  *
2549  *      Set the modem status bits from the tty driver if the feature
2550  *      is supported. Return -EINVAL if it is not available.
2551  *
2552  *      Locking: none (up to the driver)
2553  */
2554
2555 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2556              unsigned __user *p)
2557 {
2558         int retval;
2559         unsigned int set, clear, val;
2560
2561         if (tty->ops->tiocmset == NULL)
2562                 return -EINVAL;
2563
2564         retval = get_user(val, p);
2565         if (retval)
2566                 return retval;
2567         set = clear = 0;
2568         switch (cmd) {
2569         case TIOCMBIS:
2570                 set = val;
2571                 break;
2572         case TIOCMBIC:
2573                 clear = val;
2574                 break;
2575         case TIOCMSET:
2576                 set = val;
2577                 clear = ~val;
2578                 break;
2579         }
2580         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2581         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2582         return tty->ops->tiocmset(tty, set, clear);
2583 }
2584
2585 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2586 {
2587         int retval = -EINVAL;
2588         struct serial_icounter_struct icount;
2589         memset(&icount, 0, sizeof(icount));
2590         if (tty->ops->get_icount)
2591                 retval = tty->ops->get_icount(tty, &icount);
2592         if (retval != 0)
2593                 return retval;
2594         if (copy_to_user(arg, &icount, sizeof(icount)))
2595                 return -EFAULT;
2596         return 0;
2597 }
2598
2599 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2600 {
2601         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2602             tty->driver->subtype == PTY_TYPE_MASTER)
2603                 tty = tty->link;
2604         return tty;
2605 }
2606 EXPORT_SYMBOL(tty_pair_get_tty);
2607
2608 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2609 {
2610         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2611             tty->driver->subtype == PTY_TYPE_MASTER)
2612             return tty;
2613         return tty->link;
2614 }
2615 EXPORT_SYMBOL(tty_pair_get_pty);
2616
2617 /*
2618  * Split this up, as gcc can choke on it otherwise..
2619  */
2620 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2621 {
2622         struct tty_struct *tty = file_tty(file);
2623         struct tty_struct *real_tty;
2624         void __user *p = (void __user *)arg;
2625         int retval;
2626         struct tty_ldisc *ld;
2627         struct inode *inode = file->f_dentry->d_inode;
2628
2629         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2630                 return -EINVAL;
2631
2632         real_tty = tty_pair_get_tty(tty);
2633
2634         /*
2635          * Factor out some common prep work
2636          */
2637         switch (cmd) {
2638         case TIOCSETD:
2639         case TIOCSBRK:
2640         case TIOCCBRK:
2641         case TCSBRK:
2642         case TCSBRKP:
2643                 retval = tty_check_change(tty);
2644                 if (retval)
2645                         return retval;
2646                 if (cmd != TIOCCBRK) {
2647                         tty_wait_until_sent(tty, 0);
2648                         if (signal_pending(current))
2649                                 return -EINTR;
2650                 }
2651                 break;
2652         }
2653
2654         /*
2655          *      Now do the stuff.
2656          */
2657         switch (cmd) {
2658         case TIOCSTI:
2659                 return tiocsti(tty, p);
2660         case TIOCGWINSZ:
2661                 return tiocgwinsz(real_tty, p);
2662         case TIOCSWINSZ:
2663                 return tiocswinsz(real_tty, p);
2664         case TIOCCONS:
2665                 return real_tty != tty ? -EINVAL : tioccons(file);
2666         case FIONBIO:
2667                 return fionbio(file, p);
2668         case TIOCEXCL:
2669                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2670                 return 0;
2671         case TIOCNXCL:
2672                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2673                 return 0;
2674         case TIOCNOTTY:
2675                 if (current->signal->tty != tty)
2676                         return -ENOTTY;
2677                 no_tty();
2678                 return 0;
2679         case TIOCSCTTY:
2680                 return tiocsctty(tty, arg);
2681         case TIOCGPGRP:
2682                 return tiocgpgrp(tty, real_tty, p);
2683         case TIOCSPGRP:
2684                 return tiocspgrp(tty, real_tty, p);
2685         case TIOCGSID:
2686                 return tiocgsid(tty, real_tty, p);
2687         case TIOCGETD:
2688                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2689         case TIOCSETD:
2690                 return tiocsetd(tty, p);
2691         case TIOCVHANGUP:
2692                 if (!capable(CAP_SYS_ADMIN))
2693                         return -EPERM;
2694                 tty_vhangup(tty);
2695                 return 0;
2696         case TIOCGDEV:
2697         {
2698                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2699                 return put_user(ret, (unsigned int __user *)p);
2700         }
2701         /*
2702          * Break handling
2703          */
2704         case TIOCSBRK:  /* Turn break on, unconditionally */
2705                 if (tty->ops->break_ctl)
2706                         return tty->ops->break_ctl(tty, -1);
2707                 return 0;
2708         case TIOCCBRK:  /* Turn break off, unconditionally */
2709                 if (tty->ops->break_ctl)
2710                         return tty->ops->break_ctl(tty, 0);
2711                 return 0;
2712         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2713                 /* non-zero arg means wait for all output data
2714                  * to be sent (performed above) but don't send break.
2715                  * This is used by the tcdrain() termios function.
2716                  */
2717                 if (!arg)
2718                         return send_break(tty, 250);
2719                 return 0;
2720         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2721                 return send_break(tty, arg ? arg*100 : 250);
2722
2723         case TIOCMGET:
2724                 return tty_tiocmget(tty, p);
2725         case TIOCMSET:
2726         case TIOCMBIC:
2727         case TIOCMBIS:
2728                 return tty_tiocmset(tty, cmd, p);
2729         case TIOCGICOUNT:
2730                 retval = tty_tiocgicount(tty, p);
2731                 /* For the moment allow fall through to the old method */
2732                 if (retval != -EINVAL)
2733                         return retval;
2734                 break;
2735         case TCFLSH:
2736                 switch (arg) {
2737                 case TCIFLUSH:
2738                 case TCIOFLUSH:
2739                 /* flush tty buffer and allow ldisc to process ioctl */
2740                         tty_buffer_flush(tty);
2741                         break;
2742                 }
2743                 break;
2744         }
2745         if (tty->ops->ioctl) {
2746                 retval = (tty->ops->ioctl)(tty, cmd, arg);
2747                 if (retval != -ENOIOCTLCMD)
2748                         return retval;
2749         }
2750         ld = tty_ldisc_ref_wait(tty);
2751         retval = -EINVAL;
2752         if (ld->ops->ioctl) {
2753                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2754                 if (retval == -ENOIOCTLCMD)
2755                         retval = -EINVAL;
2756         }
2757         tty_ldisc_deref(ld);
2758         return retval;
2759 }
2760
2761 #ifdef CONFIG_COMPAT
2762 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2763                                 unsigned long arg)
2764 {
2765         struct inode *inode = file->f_dentry->d_inode;
2766         struct tty_struct *tty = file_tty(file);
2767         struct tty_ldisc *ld;
2768         int retval = -ENOIOCTLCMD;
2769
2770         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2771                 return -EINVAL;
2772
2773         if (tty->ops->compat_ioctl) {
2774                 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2775                 if (retval != -ENOIOCTLCMD)
2776                         return retval;
2777         }
2778
2779         ld = tty_ldisc_ref_wait(tty);
2780         if (ld->ops->compat_ioctl)
2781                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2782         else
2783                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2784         tty_ldisc_deref(ld);
2785
2786         return retval;
2787 }
2788 #endif
2789
2790 /*
2791  * This implements the "Secure Attention Key" ---  the idea is to
2792  * prevent trojan horses by killing all processes associated with this
2793  * tty when the user hits the "Secure Attention Key".  Required for
2794  * super-paranoid applications --- see the Orange Book for more details.
2795  *
2796  * This code could be nicer; ideally it should send a HUP, wait a few
2797  * seconds, then send a INT, and then a KILL signal.  But you then
2798  * have to coordinate with the init process, since all processes associated
2799  * with the current tty must be dead before the new getty is allowed
2800  * to spawn.
2801  *
2802  * Now, if it would be correct ;-/ The current code has a nasty hole -
2803  * it doesn't catch files in flight. We may send the descriptor to ourselves
2804  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2805  *
2806  * Nasty bug: do_SAK is being called in interrupt context.  This can
2807  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2808  */
2809 void __do_SAK(struct tty_struct *tty)
2810 {
2811 #ifdef TTY_SOFT_SAK
2812         tty_hangup(tty);
2813 #else
2814         struct task_struct *g, *p;
2815         struct pid *session;
2816         int             i;
2817         struct file     *filp;
2818         struct fdtable *fdt;
2819
2820         if (!tty)
2821                 return;
2822         session = tty->session;
2823
2824         tty_ldisc_flush(tty);
2825
2826         tty_driver_flush_buffer(tty);
2827
2828         read_lock(&tasklist_lock);
2829         /* Kill the entire session */
2830         do_each_pid_task(session, PIDTYPE_SID, p) {
2831                 printk(KERN_NOTICE "SAK: killed process %d"
2832                         " (%s): task_session(p)==tty->session\n",
2833                         task_pid_nr(p), p->comm);
2834                 send_sig(SIGKILL, p, 1);
2835         } while_each_pid_task(session, PIDTYPE_SID, p);
2836         /* Now kill any processes that happen to have the
2837          * tty open.
2838          */
2839         do_each_thread(g, p) {
2840                 if (p->signal->tty == tty) {
2841                         printk(KERN_NOTICE "SAK: killed process %d"
2842                             " (%s): task_session(p)==tty->session\n",
2843                             task_pid_nr(p), p->comm);
2844                         send_sig(SIGKILL, p, 1);
2845                         continue;
2846                 }
2847                 task_lock(p);
2848                 if (p->files) {
2849                         /*
2850                          * We don't take a ref to the file, so we must
2851                          * hold ->file_lock instead.
2852                          */
2853                         spin_lock(&p->files->file_lock);
2854                         fdt = files_fdtable(p->files);
2855                         for (i = 0; i < fdt->max_fds; i++) {
2856                                 filp = fcheck_files(p->files, i);
2857                                 if (!filp)
2858                                         continue;
2859                                 if (filp->f_op->read == tty_read &&
2860                                     file_tty(filp) == tty) {
2861                                         printk(KERN_NOTICE "SAK: killed process %d"
2862                                             " (%s): fd#%d opened to the tty\n",
2863                                             task_pid_nr(p), p->comm, i);
2864                                         force_sig(SIGKILL, p);
2865                                         break;
2866                                 }
2867                         }
2868                         spin_unlock(&p->files->file_lock);
2869                 }
2870                 task_unlock(p);
2871         } while_each_thread(g, p);
2872         read_unlock(&tasklist_lock);
2873 #endif
2874 }
2875
2876 static void do_SAK_work(struct work_struct *work)
2877 {
2878         struct tty_struct *tty =
2879                 container_of(work, struct tty_struct, SAK_work);
2880         __do_SAK(tty);
2881 }
2882
2883 /*
2884  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2885  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2886  * the values which we write to it will be identical to the values which it
2887  * already has. --akpm
2888  */
2889 void do_SAK(struct tty_struct *tty)
2890 {
2891         if (!tty)
2892                 return;
2893         schedule_work(&tty->SAK_work);
2894 }
2895
2896 EXPORT_SYMBOL(do_SAK);
2897
2898 static int dev_match_devt(struct device *dev, void *data)
2899 {
2900         dev_t *devt = data;
2901         return dev->devt == *devt;
2902 }
2903
2904 /* Must put_device() after it's unused! */
2905 static struct device *tty_get_device(struct tty_struct *tty)
2906 {
2907         dev_t devt = tty_devnum(tty);
2908         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2909 }
2910
2911
2912 /**
2913  *      initialize_tty_struct
2914  *      @tty: tty to initialize
2915  *
2916  *      This subroutine initializes a tty structure that has been newly
2917  *      allocated.
2918  *
2919  *      Locking: none - tty in question must not be exposed at this point
2920  */
2921
2922 void initialize_tty_struct(struct tty_struct *tty,
2923                 struct tty_driver *driver, int idx)
2924 {
2925         memset(tty, 0, sizeof(struct tty_struct));
2926         kref_init(&tty->kref);
2927         tty->magic = TTY_MAGIC;
2928         tty_ldisc_init(tty);
2929         tty->session = NULL;
2930         tty->pgrp = NULL;
2931         tty->overrun_time = jiffies;
2932         tty_buffer_init(tty);
2933         mutex_init(&tty->termios_mutex);
2934         mutex_init(&tty->ldisc_mutex);
2935         init_waitqueue_head(&tty->write_wait);
2936         init_waitqueue_head(&tty->read_wait);
2937         INIT_WORK(&tty->hangup_work, do_tty_hangup);
2938         mutex_init(&tty->atomic_read_lock);
2939         mutex_init(&tty->atomic_write_lock);
2940         mutex_init(&tty->output_lock);
2941         mutex_init(&tty->echo_lock);
2942         spin_lock_init(&tty->read_lock);
2943         spin_lock_init(&tty->ctrl_lock);
2944         INIT_LIST_HEAD(&tty->tty_files);
2945         INIT_WORK(&tty->SAK_work, do_SAK_work);
2946
2947         tty->driver = driver;
2948         tty->ops = driver->ops;
2949         tty->index = idx;
2950         tty_line_name(driver, idx, tty->name);
2951         tty->dev = tty_get_device(tty);
2952 }
2953
2954 /**
2955  *      deinitialize_tty_struct
2956  *      @tty: tty to deinitialize
2957  *
2958  *      This subroutine deinitializes a tty structure that has been newly
2959  *      allocated but tty_release cannot be called on that yet.
2960  *
2961  *      Locking: none - tty in question must not be exposed at this point
2962  */
2963 void deinitialize_tty_struct(struct tty_struct *tty)
2964 {
2965         tty_ldisc_deinit(tty);
2966 }
2967
2968 /**
2969  *      tty_put_char    -       write one character to a tty
2970  *      @tty: tty
2971  *      @ch: character
2972  *
2973  *      Write one byte to the tty using the provided put_char method
2974  *      if present. Returns the number of characters successfully output.
2975  *
2976  *      Note: the specific put_char operation in the driver layer may go
2977  *      away soon. Don't call it directly, use this method
2978  */
2979
2980 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2981 {
2982         if (tty->ops->put_char)
2983                 return tty->ops->put_char(tty, ch);
2984         return tty->ops->write(tty, &ch, 1);
2985 }
2986 EXPORT_SYMBOL_GPL(tty_put_char);
2987
2988 struct class *tty_class;
2989
2990 /**
2991  *      tty_register_device - register a tty device
2992  *      @driver: the tty driver that describes the tty device
2993  *      @index: the index in the tty driver for this tty device
2994  *      @device: a struct device that is associated with this tty device.
2995  *              This field is optional, if there is no known struct device
2996  *              for this tty device it can be set to NULL safely.
2997  *
2998  *      Returns a pointer to the struct device for this tty device
2999  *      (or ERR_PTR(-EFOO) on error).
3000  *
3001  *      This call is required to be made to register an individual tty device
3002  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3003  *      that bit is not set, this function should not be called by a tty
3004  *      driver.
3005  *
3006  *      Locking: ??
3007  */
3008
3009 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3010                                    struct device *device)
3011 {
3012         char name[64];
3013         dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3014
3015         if (index >= driver->num) {
3016                 printk(KERN_ERR "Attempt to register invalid tty line number "
3017                        " (%d).\n", index);
3018                 return ERR_PTR(-EINVAL);
3019         }
3020
3021         if (driver->type == TTY_DRIVER_TYPE_PTY)
3022                 pty_line_name(driver, index, name);
3023         else
3024                 tty_line_name(driver, index, name);
3025
3026         return device_create(tty_class, device, dev, NULL, name);
3027 }
3028 EXPORT_SYMBOL(tty_register_device);
3029
3030 /**
3031  *      tty_unregister_device - unregister a tty device
3032  *      @driver: the tty driver that describes the tty device
3033  *      @index: the index in the tty driver for this tty device
3034  *
3035  *      If a tty device is registered with a call to tty_register_device() then
3036  *      this function must be called when the tty device is gone.
3037  *
3038  *      Locking: ??
3039  */
3040
3041 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3042 {
3043         device_destroy(tty_class,
3044                 MKDEV(driver->major, driver->minor_start) + index);
3045 }
3046 EXPORT_SYMBOL(tty_unregister_device);
3047
3048 struct tty_driver *__alloc_tty_driver(int lines, struct module *owner)
3049 {
3050         struct tty_driver *driver;
3051
3052         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3053         if (driver) {
3054                 kref_init(&driver->kref);
3055                 driver->magic = TTY_DRIVER_MAGIC;
3056                 driver->num = lines;
3057                 driver->owner = owner;
3058                 /* later we'll move allocation of tables here */
3059         }
3060         return driver;
3061 }
3062 EXPORT_SYMBOL(__alloc_tty_driver);
3063
3064 static void destruct_tty_driver(struct kref *kref)
3065 {
3066         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3067         int i;
3068         struct ktermios *tp;
3069         void *p;
3070
3071         if (driver->flags & TTY_DRIVER_INSTALLED) {
3072                 /*
3073                  * Free the termios and termios_locked structures because
3074                  * we don't want to get memory leaks when modular tty
3075                  * drivers are removed from the kernel.
3076                  */
3077                 for (i = 0; i < driver->num; i++) {
3078                         tp = driver->termios[i];
3079                         if (tp) {
3080                                 driver->termios[i] = NULL;
3081                                 kfree(tp);
3082                         }
3083                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3084                                 tty_unregister_device(driver, i);
3085                 }
3086                 p = driver->ttys;
3087                 proc_tty_unregister_driver(driver);
3088                 driver->ttys = NULL;
3089                 driver->termios = NULL;
3090                 kfree(p);
3091                 cdev_del(&driver->cdev);
3092         }
3093         kfree(driver);
3094 }
3095
3096 void tty_driver_kref_put(struct tty_driver *driver)
3097 {
3098         kref_put(&driver->kref, destruct_tty_driver);
3099 }
3100 EXPORT_SYMBOL(tty_driver_kref_put);
3101
3102 void tty_set_operations(struct tty_driver *driver,
3103                         const struct tty_operations *op)
3104 {
3105         driver->ops = op;
3106 };
3107 EXPORT_SYMBOL(tty_set_operations);
3108
3109 void put_tty_driver(struct tty_driver *d)
3110 {
3111         tty_driver_kref_put(d);
3112 }
3113 EXPORT_SYMBOL(put_tty_driver);
3114
3115 /*
3116  * Called by a tty driver to register itself.
3117  */
3118 int tty_register_driver(struct tty_driver *driver)
3119 {
3120         int error;
3121         int i;
3122         dev_t dev;
3123         void **p = NULL;
3124         struct device *d;
3125
3126         if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3127                 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3128                 if (!p)
3129                         return -ENOMEM;
3130         }
3131
3132         if (!driver->major) {
3133                 error = alloc_chrdev_region(&dev, driver->minor_start,
3134                                                 driver->num, driver->name);
3135                 if (!error) {
3136                         driver->major = MAJOR(dev);
3137                         driver->minor_start = MINOR(dev);
3138                 }
3139         } else {
3140                 dev = MKDEV(driver->major, driver->minor_start);
3141                 error = register_chrdev_region(dev, driver->num, driver->name);
3142         }
3143         if (error < 0) {
3144                 kfree(p);
3145                 return error;
3146         }
3147
3148         if (p) {
3149                 driver->ttys = (struct tty_struct **)p;
3150                 driver->termios = (struct ktermios **)(p + driver->num);
3151         } else {
3152                 driver->ttys = NULL;
3153                 driver->termios = NULL;
3154         }
3155
3156         cdev_init(&driver->cdev, &tty_fops);
3157         driver->cdev.owner = driver->owner;
3158         error = cdev_add(&driver->cdev, dev, driver->num);
3159         if (error) {
3160                 unregister_chrdev_region(dev, driver->num);
3161                 driver->ttys = NULL;
3162                 driver->termios = NULL;
3163                 kfree(p);
3164                 return error;
3165         }
3166
3167         mutex_lock(&tty_mutex);
3168         list_add(&driver->tty_drivers, &tty_drivers);
3169         mutex_unlock(&tty_mutex);
3170
3171         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3172                 for (i = 0; i < driver->num; i++) {
3173                         d = tty_register_device(driver, i, NULL);
3174                         if (IS_ERR(d)) {
3175                                 error = PTR_ERR(d);
3176                                 goto err;
3177                         }
3178                 }
3179         }
3180         proc_tty_register_driver(driver);
3181         driver->flags |= TTY_DRIVER_INSTALLED;
3182         return 0;
3183
3184 err:
3185         for (i--; i >= 0; i--)
3186                 tty_unregister_device(driver, i);
3187
3188         mutex_lock(&tty_mutex);
3189         list_del(&driver->tty_drivers);
3190         mutex_unlock(&tty_mutex);
3191
3192         unregister_chrdev_region(dev, driver->num);
3193         driver->ttys = NULL;
3194         driver->termios = NULL;
3195         kfree(p);
3196         return error;
3197 }
3198
3199 EXPORT_SYMBOL(tty_register_driver);
3200
3201 /*
3202  * Called by a tty driver to unregister itself.
3203  */
3204 int tty_unregister_driver(struct tty_driver *driver)
3205 {
3206 #if 0
3207         /* FIXME */
3208         if (driver->refcount)
3209                 return -EBUSY;
3210 #endif
3211         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3212                                 driver->num);
3213         mutex_lock(&tty_mutex);
3214         list_del(&driver->tty_drivers);
3215         mutex_unlock(&tty_mutex);
3216         return 0;
3217 }
3218
3219 EXPORT_SYMBOL(tty_unregister_driver);
3220
3221 dev_t tty_devnum(struct tty_struct *tty)
3222 {
3223         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3224 }
3225 EXPORT_SYMBOL(tty_devnum);
3226
3227 void proc_clear_tty(struct task_struct *p)
3228 {
3229         unsigned long flags;
3230         struct tty_struct *tty;
3231         spin_lock_irqsave(&p->sighand->siglock, flags);
3232         tty = p->signal->tty;
3233         p->signal->tty = NULL;
3234         spin_unlock_irqrestore(&p->sighand->siglock, flags);
3235         tty_kref_put(tty);
3236 }
3237
3238 /* Called under the sighand lock */
3239
3240 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3241 {
3242         if (tty) {
3243                 unsigned long flags;
3244                 /* We should not have a session or pgrp to put here but.... */
3245                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3246                 put_pid(tty->session);
3247                 put_pid(tty->pgrp);
3248                 tty->pgrp = get_pid(task_pgrp(tsk));
3249                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3250                 tty->session = get_pid(task_session(tsk));
3251                 if (tsk->signal->tty) {
3252                         printk(KERN_DEBUG "tty not NULL!!\n");
3253                         tty_kref_put(tsk->signal->tty);
3254                 }
3255         }
3256         put_pid(tsk->signal->tty_old_pgrp);
3257         tsk->signal->tty = tty_kref_get(tty);
3258         tsk->signal->tty_old_pgrp = NULL;
3259 }
3260
3261 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3262 {
3263         spin_lock_irq(&tsk->sighand->siglock);
3264         __proc_set_tty(tsk, tty);
3265         spin_unlock_irq(&tsk->sighand->siglock);
3266 }
3267
3268 struct tty_struct *get_current_tty(void)
3269 {
3270         struct tty_struct *tty;
3271         unsigned long flags;
3272
3273         spin_lock_irqsave(&current->sighand->siglock, flags);
3274         tty = tty_kref_get(current->signal->tty);
3275         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3276         return tty;
3277 }
3278 EXPORT_SYMBOL_GPL(get_current_tty);
3279
3280 void tty_default_fops(struct file_operations *fops)
3281 {
3282         *fops = tty_fops;
3283 }
3284
3285 /*
3286  * Initialize the console device. This is called *early*, so
3287  * we can't necessarily depend on lots of kernel help here.
3288  * Just do some early initializations, and do the complex setup
3289  * later.
3290  */
3291 void __init console_init(void)
3292 {
3293         initcall_t *call;
3294
3295         /* Setup the default TTY line discipline. */
3296         tty_ldisc_begin();
3297
3298         /*
3299          * set up the console device so that later boot sequences can
3300          * inform about problems etc..
3301          */
3302         call = __con_initcall_start;
3303         while (call < __con_initcall_end) {
3304                 (*call)();
3305                 call++;
3306         }
3307 }
3308
3309 static char *tty_devnode(struct device *dev, umode_t *mode)
3310 {
3311         if (!mode)
3312                 return NULL;
3313         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3314             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3315                 *mode = 0666;
3316         return NULL;
3317 }
3318
3319 static int __init tty_class_init(void)
3320 {
3321         tty_class = class_create(THIS_MODULE, "tty");
3322         if (IS_ERR(tty_class))
3323                 return PTR_ERR(tty_class);
3324         tty_class->devnode = tty_devnode;
3325         return 0;
3326 }
3327
3328 postcore_initcall(tty_class_init);
3329
3330 /* 3/2004 jmc: why do these devices exist? */
3331 static struct cdev tty_cdev, console_cdev;
3332
3333 static ssize_t show_cons_active(struct device *dev,
3334                                 struct device_attribute *attr, char *buf)
3335 {
3336         struct console *cs[16];
3337         int i = 0;
3338         struct console *c;
3339         ssize_t count = 0;
3340
3341         console_lock();
3342         for_each_console(c) {
3343                 if (!c->device)
3344                         continue;
3345                 if (!c->write)
3346                         continue;
3347                 if ((c->flags & CON_ENABLED) == 0)
3348                         continue;
3349                 cs[i++] = c;
3350                 if (i >= ARRAY_SIZE(cs))
3351                         break;
3352         }
3353         while (i--)
3354                 count += sprintf(buf + count, "%s%d%c",
3355                                  cs[i]->name, cs[i]->index, i ? ' ':'\n');
3356         console_unlock();
3357
3358         return count;
3359 }
3360 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3361
3362 static struct device *consdev;
3363
3364 void console_sysfs_notify(void)
3365 {
3366         if (consdev)
3367                 sysfs_notify(&consdev->kobj, NULL, "active");
3368 }
3369
3370 /*
3371  * Ok, now we can initialize the rest of the tty devices and can count
3372  * on memory allocations, interrupts etc..
3373  */
3374 int __init tty_init(void)
3375 {
3376         cdev_init(&tty_cdev, &tty_fops);
3377         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3378             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3379                 panic("Couldn't register /dev/tty driver\n");
3380         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3381
3382         cdev_init(&console_cdev, &console_fops);
3383         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3384             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3385                 panic("Couldn't register /dev/console driver\n");
3386         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3387                               "console");
3388         if (IS_ERR(consdev))
3389                 consdev = NULL;
3390         else
3391                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3392
3393 #ifdef CONFIG_VT
3394         vty_init(&console_fops);
3395 #endif
3396         return 0;
3397 }
3398