Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
114         .c_iflag = ICRNL | IXON,
115         .c_oflag = OPOST | ONLCR,
116         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118                    ECHOCTL | ECHOKE | IEXTEN,
119         .c_cc = INIT_C_CC,
120         .c_ispeed = 38400,
121         .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129
130 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143                                                         size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149                                 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159 /**
160  *      alloc_tty_struct        -       allocate a tty object
161  *
162  *      Return a new empty tty structure. The data fields have not
163  *      been initialized in any way but has been zeroed
164  *
165  *      Locking: none
166  */
167
168 struct tty_struct *alloc_tty_struct(void)
169 {
170         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 }
172
173 /**
174  *      free_tty_struct         -       free a disused tty
175  *      @tty: tty struct to free
176  *
177  *      Free the write buffers, tty queue and tty memory itself.
178  *
179  *      Locking: none. Must be called after tty is definitely unused
180  */
181
182 void free_tty_struct(struct tty_struct *tty)
183 {
184         if (!tty)
185                 return;
186         if (tty->dev)
187                 put_device(tty->dev);
188         kfree(tty->write_buf);
189         tty->magic = 0xDEADDEAD;
190         kfree(tty);
191 }
192
193 static inline struct tty_struct *file_tty(struct file *file)
194 {
195         return ((struct tty_file_private *)file->private_data)->tty;
196 }
197
198 int tty_alloc_file(struct file *file)
199 {
200         struct tty_file_private *priv;
201
202         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
203         if (!priv)
204                 return -ENOMEM;
205
206         file->private_data = priv;
207
208         return 0;
209 }
210
211 /* Associate a new file with the tty structure */
212 void tty_add_file(struct tty_struct *tty, struct file *file)
213 {
214         struct tty_file_private *priv = file->private_data;
215
216         priv->tty = tty;
217         priv->file = file;
218
219         spin_lock(&tty_files_lock);
220         list_add(&priv->list, &tty->tty_files);
221         spin_unlock(&tty_files_lock);
222 }
223
224 /**
225  * tty_free_file - free file->private_data
226  *
227  * This shall be used only for fail path handling when tty_add_file was not
228  * called yet.
229  */
230 void tty_free_file(struct file *file)
231 {
232         struct tty_file_private *priv = file->private_data;
233
234         file->private_data = NULL;
235         kfree(priv);
236 }
237
238 /* Delete file from its tty */
239 static void tty_del_file(struct file *file)
240 {
241         struct tty_file_private *priv = file->private_data;
242
243         spin_lock(&tty_files_lock);
244         list_del(&priv->list);
245         spin_unlock(&tty_files_lock);
246         tty_free_file(file);
247 }
248
249
250 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
251
252 /**
253  *      tty_name        -       return tty naming
254  *      @tty: tty structure
255  *      @buf: buffer for output
256  *
257  *      Convert a tty structure into a name. The name reflects the kernel
258  *      naming policy and if udev is in use may not reflect user space
259  *
260  *      Locking: none
261  */
262
263 char *tty_name(struct tty_struct *tty, char *buf)
264 {
265         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
266                 strcpy(buf, "NULL tty");
267         else
268                 strcpy(buf, tty->name);
269         return buf;
270 }
271
272 EXPORT_SYMBOL(tty_name);
273
274 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
275                               const char *routine)
276 {
277 #ifdef TTY_PARANOIA_CHECK
278         if (!tty) {
279                 printk(KERN_WARNING
280                         "null TTY for (%d:%d) in %s\n",
281                         imajor(inode), iminor(inode), routine);
282                 return 1;
283         }
284         if (tty->magic != TTY_MAGIC) {
285                 printk(KERN_WARNING
286                         "bad magic number for tty struct (%d:%d) in %s\n",
287                         imajor(inode), iminor(inode), routine);
288                 return 1;
289         }
290 #endif
291         return 0;
292 }
293
294 static int check_tty_count(struct tty_struct *tty, const char *routine)
295 {
296 #ifdef CHECK_TTY_COUNT
297         struct list_head *p;
298         int count = 0;
299
300         spin_lock(&tty_files_lock);
301         list_for_each(p, &tty->tty_files) {
302                 count++;
303         }
304         spin_unlock(&tty_files_lock);
305         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
306             tty->driver->subtype == PTY_TYPE_SLAVE &&
307             tty->link && tty->link->count)
308                 count++;
309         if (tty->count != count) {
310                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
311                                     "!= #fd's(%d) in %s\n",
312                        tty->name, tty->count, count, routine);
313                 return count;
314         }
315 #endif
316         return 0;
317 }
318
319 /**
320  *      get_tty_driver          -       find device of a tty
321  *      @dev_t: device identifier
322  *      @index: returns the index of the tty
323  *
324  *      This routine returns a tty driver structure, given a device number
325  *      and also passes back the index number.
326  *
327  *      Locking: caller must hold tty_mutex
328  */
329
330 static struct tty_driver *get_tty_driver(dev_t device, int *index)
331 {
332         struct tty_driver *p;
333
334         list_for_each_entry(p, &tty_drivers, tty_drivers) {
335                 dev_t base = MKDEV(p->major, p->minor_start);
336                 if (device < base || device >= base + p->num)
337                         continue;
338                 *index = device - base;
339                 return tty_driver_kref_get(p);
340         }
341         return NULL;
342 }
343
344 #ifdef CONFIG_CONSOLE_POLL
345
346 /**
347  *      tty_find_polling_driver -       find device of a polled tty
348  *      @name: name string to match
349  *      @line: pointer to resulting tty line nr
350  *
351  *      This routine returns a tty driver structure, given a name
352  *      and the condition that the tty driver is capable of polled
353  *      operation.
354  */
355 struct tty_driver *tty_find_polling_driver(char *name, int *line)
356 {
357         struct tty_driver *p, *res = NULL;
358         int tty_line = 0;
359         int len;
360         char *str, *stp;
361
362         for (str = name; *str; str++)
363                 if ((*str >= '0' && *str <= '9') || *str == ',')
364                         break;
365         if (!*str)
366                 return NULL;
367
368         len = str - name;
369         tty_line = simple_strtoul(str, &str, 10);
370
371         mutex_lock(&tty_mutex);
372         /* Search through the tty devices to look for a match */
373         list_for_each_entry(p, &tty_drivers, tty_drivers) {
374                 if (strncmp(name, p->name, len) != 0)
375                         continue;
376                 stp = str;
377                 if (*stp == ',')
378                         stp++;
379                 if (*stp == '\0')
380                         stp = NULL;
381
382                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
383                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
384                         res = tty_driver_kref_get(p);
385                         *line = tty_line;
386                         break;
387                 }
388         }
389         mutex_unlock(&tty_mutex);
390
391         return res;
392 }
393 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
394 #endif
395
396 /**
397  *      tty_check_change        -       check for POSIX terminal changes
398  *      @tty: tty to check
399  *
400  *      If we try to write to, or set the state of, a terminal and we're
401  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
402  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
403  *
404  *      Locking: ctrl_lock
405  */
406
407 int tty_check_change(struct tty_struct *tty)
408 {
409         unsigned long flags;
410         int ret = 0;
411
412         if (current->signal->tty != tty)
413                 return 0;
414
415         spin_lock_irqsave(&tty->ctrl_lock, flags);
416
417         if (!tty->pgrp) {
418                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
419                 goto out_unlock;
420         }
421         if (task_pgrp(current) == tty->pgrp)
422                 goto out_unlock;
423         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
424         if (is_ignored(SIGTTOU))
425                 goto out;
426         if (is_current_pgrp_orphaned()) {
427                 ret = -EIO;
428                 goto out;
429         }
430         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
431         set_thread_flag(TIF_SIGPENDING);
432         ret = -ERESTARTSYS;
433 out:
434         return ret;
435 out_unlock:
436         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
437         return ret;
438 }
439
440 EXPORT_SYMBOL(tty_check_change);
441
442 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
443                                 size_t count, loff_t *ppos)
444 {
445         return 0;
446 }
447
448 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
449                                  size_t count, loff_t *ppos)
450 {
451         return -EIO;
452 }
453
454 /* No kernel lock held - none needed ;) */
455 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
456 {
457         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
458 }
459
460 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
461                 unsigned long arg)
462 {
463         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
464 }
465
466 static long hung_up_tty_compat_ioctl(struct file *file,
467                                      unsigned int cmd, unsigned long arg)
468 {
469         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
470 }
471
472 static const struct file_operations tty_fops = {
473         .llseek         = no_llseek,
474         .read           = tty_read,
475         .write          = tty_write,
476         .poll           = tty_poll,
477         .unlocked_ioctl = tty_ioctl,
478         .compat_ioctl   = tty_compat_ioctl,
479         .open           = tty_open,
480         .release        = tty_release,
481         .fasync         = tty_fasync,
482 };
483
484 static const struct file_operations console_fops = {
485         .llseek         = no_llseek,
486         .read           = tty_read,
487         .write          = redirected_tty_write,
488         .poll           = tty_poll,
489         .unlocked_ioctl = tty_ioctl,
490         .compat_ioctl   = tty_compat_ioctl,
491         .open           = tty_open,
492         .release        = tty_release,
493         .fasync         = tty_fasync,
494 };
495
496 static const struct file_operations hung_up_tty_fops = {
497         .llseek         = no_llseek,
498         .read           = hung_up_tty_read,
499         .write          = hung_up_tty_write,
500         .poll           = hung_up_tty_poll,
501         .unlocked_ioctl = hung_up_tty_ioctl,
502         .compat_ioctl   = hung_up_tty_compat_ioctl,
503         .release        = tty_release,
504 };
505
506 static DEFINE_SPINLOCK(redirect_lock);
507 static struct file *redirect;
508
509 /**
510  *      tty_wakeup      -       request more data
511  *      @tty: terminal
512  *
513  *      Internal and external helper for wakeups of tty. This function
514  *      informs the line discipline if present that the driver is ready
515  *      to receive more output data.
516  */
517
518 void tty_wakeup(struct tty_struct *tty)
519 {
520         struct tty_ldisc *ld;
521
522         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
523                 ld = tty_ldisc_ref(tty);
524                 if (ld) {
525                         if (ld->ops->write_wakeup)
526                                 ld->ops->write_wakeup(tty);
527                         tty_ldisc_deref(ld);
528                 }
529         }
530         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
531 }
532
533 EXPORT_SYMBOL_GPL(tty_wakeup);
534
535 /**
536  *      __tty_hangup            -       actual handler for hangup events
537  *      @work: tty device
538  *
539  *      This can be called by the "eventd" kernel thread.  That is process
540  *      synchronous but doesn't hold any locks, so we need to make sure we
541  *      have the appropriate locks for what we're doing.
542  *
543  *      The hangup event clears any pending redirections onto the hung up
544  *      device. It ensures future writes will error and it does the needed
545  *      line discipline hangup and signal delivery. The tty object itself
546  *      remains intact.
547  *
548  *      Locking:
549  *              BTM
550  *                redirect lock for undoing redirection
551  *                file list lock for manipulating list of ttys
552  *                tty_ldisc_lock from called functions
553  *                termios_mutex resetting termios data
554  *                tasklist_lock to walk task list for hangup event
555  *                  ->siglock to protect ->signal/->sighand
556  */
557 static void __tty_hangup(struct tty_struct *tty)
558 {
559         struct file *cons_filp = NULL;
560         struct file *filp, *f = NULL;
561         struct task_struct *p;
562         struct tty_file_private *priv;
563         int    closecount = 0, n;
564         unsigned long flags;
565         int refs = 0;
566
567         if (!tty)
568                 return;
569
570
571         spin_lock(&redirect_lock);
572         if (redirect && file_tty(redirect) == tty) {
573                 f = redirect;
574                 redirect = NULL;
575         }
576         spin_unlock(&redirect_lock);
577
578         tty_lock(tty);
579
580         /* some functions below drop BTM, so we need this bit */
581         set_bit(TTY_HUPPING, &tty->flags);
582
583         /* inuse_filps is protected by the single tty lock,
584            this really needs to change if we want to flush the
585            workqueue with the lock held */
586         check_tty_count(tty, "tty_hangup");
587
588         spin_lock(&tty_files_lock);
589         /* This breaks for file handles being sent over AF_UNIX sockets ? */
590         list_for_each_entry(priv, &tty->tty_files, list) {
591                 filp = priv->file;
592                 if (filp->f_op->write == redirected_tty_write)
593                         cons_filp = filp;
594                 if (filp->f_op->write != tty_write)
595                         continue;
596                 closecount++;
597                 __tty_fasync(-1, filp, 0);      /* can't block */
598                 filp->f_op = &hung_up_tty_fops;
599         }
600         spin_unlock(&tty_files_lock);
601
602         /*
603          * it drops BTM and thus races with reopen
604          * we protect the race by TTY_HUPPING
605          */
606         tty_ldisc_hangup(tty);
607
608         read_lock(&tasklist_lock);
609         if (tty->session) {
610                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
611                         spin_lock_irq(&p->sighand->siglock);
612                         if (p->signal->tty == tty) {
613                                 p->signal->tty = NULL;
614                                 /* We defer the dereferences outside fo
615                                    the tasklist lock */
616                                 refs++;
617                         }
618                         if (!p->signal->leader) {
619                                 spin_unlock_irq(&p->sighand->siglock);
620                                 continue;
621                         }
622                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
623                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
624                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
625                         spin_lock_irqsave(&tty->ctrl_lock, flags);
626                         if (tty->pgrp)
627                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
628                         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
629                         spin_unlock_irq(&p->sighand->siglock);
630                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
631         }
632         read_unlock(&tasklist_lock);
633
634         spin_lock_irqsave(&tty->ctrl_lock, flags);
635         clear_bit(TTY_THROTTLED, &tty->flags);
636         clear_bit(TTY_PUSH, &tty->flags);
637         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
638         put_pid(tty->session);
639         put_pid(tty->pgrp);
640         tty->session = NULL;
641         tty->pgrp = NULL;
642         tty->ctrl_status = 0;
643         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
644
645         /* Account for the p->signal references we killed */
646         while (refs--)
647                 tty_kref_put(tty);
648
649         /*
650          * If one of the devices matches a console pointer, we
651          * cannot just call hangup() because that will cause
652          * tty->count and state->count to go out of sync.
653          * So we just call close() the right number of times.
654          */
655         if (cons_filp) {
656                 if (tty->ops->close)
657                         for (n = 0; n < closecount; n++)
658                                 tty->ops->close(tty, cons_filp);
659         } else if (tty->ops->hangup)
660                 (tty->ops->hangup)(tty);
661         /*
662          * We don't want to have driver/ldisc interactions beyond
663          * the ones we did here. The driver layer expects no
664          * calls after ->hangup() from the ldisc side. However we
665          * can't yet guarantee all that.
666          */
667         set_bit(TTY_HUPPED, &tty->flags);
668         clear_bit(TTY_HUPPING, &tty->flags);
669         tty_ldisc_enable(tty);
670
671         tty_unlock(tty);
672
673         if (f)
674                 fput(f);
675 }
676
677 static void do_tty_hangup(struct work_struct *work)
678 {
679         struct tty_struct *tty =
680                 container_of(work, struct tty_struct, hangup_work);
681
682         __tty_hangup(tty);
683 }
684
685 /**
686  *      tty_hangup              -       trigger a hangup event
687  *      @tty: tty to hangup
688  *
689  *      A carrier loss (virtual or otherwise) has occurred on this like
690  *      schedule a hangup sequence to run after this event.
691  */
692
693 void tty_hangup(struct tty_struct *tty)
694 {
695 #ifdef TTY_DEBUG_HANGUP
696         char    buf[64];
697         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
698 #endif
699         schedule_work(&tty->hangup_work);
700 }
701
702 EXPORT_SYMBOL(tty_hangup);
703
704 /**
705  *      tty_vhangup             -       process vhangup
706  *      @tty: tty to hangup
707  *
708  *      The user has asked via system call for the terminal to be hung up.
709  *      We do this synchronously so that when the syscall returns the process
710  *      is complete. That guarantee is necessary for security reasons.
711  */
712
713 void tty_vhangup(struct tty_struct *tty)
714 {
715 #ifdef TTY_DEBUG_HANGUP
716         char    buf[64];
717
718         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
719 #endif
720         __tty_hangup(tty);
721 }
722
723 EXPORT_SYMBOL(tty_vhangup);
724
725
726 /**
727  *      tty_vhangup_self        -       process vhangup for own ctty
728  *
729  *      Perform a vhangup on the current controlling tty
730  */
731
732 void tty_vhangup_self(void)
733 {
734         struct tty_struct *tty;
735
736         tty = get_current_tty();
737         if (tty) {
738                 tty_vhangup(tty);
739                 tty_kref_put(tty);
740         }
741 }
742
743 /**
744  *      tty_hung_up_p           -       was tty hung up
745  *      @filp: file pointer of tty
746  *
747  *      Return true if the tty has been subject to a vhangup or a carrier
748  *      loss
749  */
750
751 int tty_hung_up_p(struct file *filp)
752 {
753         return (filp->f_op == &hung_up_tty_fops);
754 }
755
756 EXPORT_SYMBOL(tty_hung_up_p);
757
758 static void session_clear_tty(struct pid *session)
759 {
760         struct task_struct *p;
761         do_each_pid_task(session, PIDTYPE_SID, p) {
762                 proc_clear_tty(p);
763         } while_each_pid_task(session, PIDTYPE_SID, p);
764 }
765
766 /**
767  *      disassociate_ctty       -       disconnect controlling tty
768  *      @on_exit: true if exiting so need to "hang up" the session
769  *
770  *      This function is typically called only by the session leader, when
771  *      it wants to disassociate itself from its controlling tty.
772  *
773  *      It performs the following functions:
774  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
775  *      (2)  Clears the tty from being controlling the session
776  *      (3)  Clears the controlling tty for all processes in the
777  *              session group.
778  *
779  *      The argument on_exit is set to 1 if called when a process is
780  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
781  *
782  *      Locking:
783  *              BTM is taken for hysterical raisins, and held when
784  *                called from no_tty().
785  *                tty_mutex is taken to protect tty
786  *                ->siglock is taken to protect ->signal/->sighand
787  *                tasklist_lock is taken to walk process list for sessions
788  *                  ->siglock is taken to protect ->signal/->sighand
789  */
790
791 void disassociate_ctty(int on_exit)
792 {
793         struct tty_struct *tty;
794
795         if (!current->signal->leader)
796                 return;
797
798         tty = get_current_tty();
799         if (tty) {
800                 struct pid *tty_pgrp = get_pid(tty->pgrp);
801                 if (on_exit) {
802                         if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
803                                 tty_vhangup(tty);
804                 }
805                 tty_kref_put(tty);
806                 if (tty_pgrp) {
807                         kill_pgrp(tty_pgrp, SIGHUP, on_exit);
808                         if (!on_exit)
809                                 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
810                         put_pid(tty_pgrp);
811                 }
812         } else if (on_exit) {
813                 struct pid *old_pgrp;
814                 spin_lock_irq(&current->sighand->siglock);
815                 old_pgrp = current->signal->tty_old_pgrp;
816                 current->signal->tty_old_pgrp = NULL;
817                 spin_unlock_irq(&current->sighand->siglock);
818                 if (old_pgrp) {
819                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
820                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
821                         put_pid(old_pgrp);
822                 }
823                 return;
824         }
825
826         spin_lock_irq(&current->sighand->siglock);
827         put_pid(current->signal->tty_old_pgrp);
828         current->signal->tty_old_pgrp = NULL;
829         spin_unlock_irq(&current->sighand->siglock);
830
831         tty = get_current_tty();
832         if (tty) {
833                 unsigned long flags;
834                 spin_lock_irqsave(&tty->ctrl_lock, flags);
835                 put_pid(tty->session);
836                 put_pid(tty->pgrp);
837                 tty->session = NULL;
838                 tty->pgrp = NULL;
839                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
840                 tty_kref_put(tty);
841         } else {
842 #ifdef TTY_DEBUG_HANGUP
843                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
844                        " = NULL", tty);
845 #endif
846         }
847
848         /* Now clear signal->tty under the lock */
849         read_lock(&tasklist_lock);
850         session_clear_tty(task_session(current));
851         read_unlock(&tasklist_lock);
852 }
853
854 /**
855  *
856  *      no_tty  - Ensure the current process does not have a controlling tty
857  */
858 void no_tty(void)
859 {
860         /* FIXME: Review locking here. The tty_lock never covered any race
861            between a new association and proc_clear_tty but possible we need
862            to protect against this anyway */
863         struct task_struct *tsk = current;
864         disassociate_ctty(0);
865         proc_clear_tty(tsk);
866 }
867
868
869 /**
870  *      stop_tty        -       propagate flow control
871  *      @tty: tty to stop
872  *
873  *      Perform flow control to the driver. For PTY/TTY pairs we
874  *      must also propagate the TIOCKPKT status. May be called
875  *      on an already stopped device and will not re-call the driver
876  *      method.
877  *
878  *      This functionality is used by both the line disciplines for
879  *      halting incoming flow and by the driver. It may therefore be
880  *      called from any context, may be under the tty atomic_write_lock
881  *      but not always.
882  *
883  *      Locking:
884  *              Uses the tty control lock internally
885  */
886
887 void stop_tty(struct tty_struct *tty)
888 {
889         unsigned long flags;
890         spin_lock_irqsave(&tty->ctrl_lock, flags);
891         if (tty->stopped) {
892                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
893                 return;
894         }
895         tty->stopped = 1;
896         if (tty->link && tty->link->packet) {
897                 tty->ctrl_status &= ~TIOCPKT_START;
898                 tty->ctrl_status |= TIOCPKT_STOP;
899                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
900         }
901         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
902         if (tty->ops->stop)
903                 (tty->ops->stop)(tty);
904 }
905
906 EXPORT_SYMBOL(stop_tty);
907
908 /**
909  *      start_tty       -       propagate flow control
910  *      @tty: tty to start
911  *
912  *      Start a tty that has been stopped if at all possible. Perform
913  *      any necessary wakeups and propagate the TIOCPKT status. If this
914  *      is the tty was previous stopped and is being started then the
915  *      driver start method is invoked and the line discipline woken.
916  *
917  *      Locking:
918  *              ctrl_lock
919  */
920
921 void start_tty(struct tty_struct *tty)
922 {
923         unsigned long flags;
924         spin_lock_irqsave(&tty->ctrl_lock, flags);
925         if (!tty->stopped || tty->flow_stopped) {
926                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
927                 return;
928         }
929         tty->stopped = 0;
930         if (tty->link && tty->link->packet) {
931                 tty->ctrl_status &= ~TIOCPKT_STOP;
932                 tty->ctrl_status |= TIOCPKT_START;
933                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
934         }
935         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
936         if (tty->ops->start)
937                 (tty->ops->start)(tty);
938         /* If we have a running line discipline it may need kicking */
939         tty_wakeup(tty);
940 }
941
942 EXPORT_SYMBOL(start_tty);
943
944 /**
945  *      tty_read        -       read method for tty device files
946  *      @file: pointer to tty file
947  *      @buf: user buffer
948  *      @count: size of user buffer
949  *      @ppos: unused
950  *
951  *      Perform the read system call function on this terminal device. Checks
952  *      for hung up devices before calling the line discipline method.
953  *
954  *      Locking:
955  *              Locks the line discipline internally while needed. Multiple
956  *      read calls may be outstanding in parallel.
957  */
958
959 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
960                         loff_t *ppos)
961 {
962         int i;
963         struct inode *inode = file->f_path.dentry->d_inode;
964         struct tty_struct *tty = file_tty(file);
965         struct tty_ldisc *ld;
966
967         if (tty_paranoia_check(tty, inode, "tty_read"))
968                 return -EIO;
969         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
970                 return -EIO;
971
972         /* We want to wait for the line discipline to sort out in this
973            situation */
974         ld = tty_ldisc_ref_wait(tty);
975         if (ld->ops->read)
976                 i = (ld->ops->read)(tty, file, buf, count);
977         else
978                 i = -EIO;
979         tty_ldisc_deref(ld);
980         if (i > 0)
981                 inode->i_atime = current_fs_time(inode->i_sb);
982         return i;
983 }
984
985 void tty_write_unlock(struct tty_struct *tty)
986         __releases(&tty->atomic_write_lock)
987 {
988         mutex_unlock(&tty->atomic_write_lock);
989         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
990 }
991
992 int tty_write_lock(struct tty_struct *tty, int ndelay)
993         __acquires(&tty->atomic_write_lock)
994 {
995         if (!mutex_trylock(&tty->atomic_write_lock)) {
996                 if (ndelay)
997                         return -EAGAIN;
998                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
999                         return -ERESTARTSYS;
1000         }
1001         return 0;
1002 }
1003
1004 /*
1005  * Split writes up in sane blocksizes to avoid
1006  * denial-of-service type attacks
1007  */
1008 static inline ssize_t do_tty_write(
1009         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1010         struct tty_struct *tty,
1011         struct file *file,
1012         const char __user *buf,
1013         size_t count)
1014 {
1015         ssize_t ret, written = 0;
1016         unsigned int chunk;
1017
1018         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1019         if (ret < 0)
1020                 return ret;
1021
1022         /*
1023          * We chunk up writes into a temporary buffer. This
1024          * simplifies low-level drivers immensely, since they
1025          * don't have locking issues and user mode accesses.
1026          *
1027          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1028          * big chunk-size..
1029          *
1030          * The default chunk-size is 2kB, because the NTTY
1031          * layer has problems with bigger chunks. It will
1032          * claim to be able to handle more characters than
1033          * it actually does.
1034          *
1035          * FIXME: This can probably go away now except that 64K chunks
1036          * are too likely to fail unless switched to vmalloc...
1037          */
1038         chunk = 2048;
1039         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1040                 chunk = 65536;
1041         if (count < chunk)
1042                 chunk = count;
1043
1044         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1045         if (tty->write_cnt < chunk) {
1046                 unsigned char *buf_chunk;
1047
1048                 if (chunk < 1024)
1049                         chunk = 1024;
1050
1051                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1052                 if (!buf_chunk) {
1053                         ret = -ENOMEM;
1054                         goto out;
1055                 }
1056                 kfree(tty->write_buf);
1057                 tty->write_cnt = chunk;
1058                 tty->write_buf = buf_chunk;
1059         }
1060
1061         /* Do the write .. */
1062         for (;;) {
1063                 size_t size = count;
1064                 if (size > chunk)
1065                         size = chunk;
1066                 ret = -EFAULT;
1067                 if (copy_from_user(tty->write_buf, buf, size))
1068                         break;
1069                 ret = write(tty, file, tty->write_buf, size);
1070                 if (ret <= 0)
1071                         break;
1072                 written += ret;
1073                 buf += ret;
1074                 count -= ret;
1075                 if (!count)
1076                         break;
1077                 ret = -ERESTARTSYS;
1078                 if (signal_pending(current))
1079                         break;
1080                 cond_resched();
1081         }
1082         if (written) {
1083                 struct inode *inode = file->f_path.dentry->d_inode;
1084                 inode->i_mtime = current_fs_time(inode->i_sb);
1085                 ret = written;
1086         }
1087 out:
1088         tty_write_unlock(tty);
1089         return ret;
1090 }
1091
1092 /**
1093  * tty_write_message - write a message to a certain tty, not just the console.
1094  * @tty: the destination tty_struct
1095  * @msg: the message to write
1096  *
1097  * This is used for messages that need to be redirected to a specific tty.
1098  * We don't put it into the syslog queue right now maybe in the future if
1099  * really needed.
1100  *
1101  * We must still hold the BTM and test the CLOSING flag for the moment.
1102  */
1103
1104 void tty_write_message(struct tty_struct *tty, char *msg)
1105 {
1106         if (tty) {
1107                 mutex_lock(&tty->atomic_write_lock);
1108                 tty_lock(tty);
1109                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1110                         tty_unlock(tty);
1111                         tty->ops->write(tty, msg, strlen(msg));
1112                 } else
1113                         tty_unlock(tty);
1114                 tty_write_unlock(tty);
1115         }
1116         return;
1117 }
1118
1119
1120 /**
1121  *      tty_write               -       write method for tty device file
1122  *      @file: tty file pointer
1123  *      @buf: user data to write
1124  *      @count: bytes to write
1125  *      @ppos: unused
1126  *
1127  *      Write data to a tty device via the line discipline.
1128  *
1129  *      Locking:
1130  *              Locks the line discipline as required
1131  *              Writes to the tty driver are serialized by the atomic_write_lock
1132  *      and are then processed in chunks to the device. The line discipline
1133  *      write method will not be invoked in parallel for each device.
1134  */
1135
1136 static ssize_t tty_write(struct file *file, const char __user *buf,
1137                                                 size_t count, loff_t *ppos)
1138 {
1139         struct inode *inode = file->f_path.dentry->d_inode;
1140         struct tty_struct *tty = file_tty(file);
1141         struct tty_ldisc *ld;
1142         ssize_t ret;
1143
1144         if (tty_paranoia_check(tty, inode, "tty_write"))
1145                 return -EIO;
1146         if (!tty || !tty->ops->write ||
1147                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1148                         return -EIO;
1149         /* Short term debug to catch buggy drivers */
1150         if (tty->ops->write_room == NULL)
1151                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1152                         tty->driver->name);
1153         ld = tty_ldisc_ref_wait(tty);
1154         if (!ld->ops->write)
1155                 ret = -EIO;
1156         else
1157                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1158         tty_ldisc_deref(ld);
1159         return ret;
1160 }
1161
1162 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1163                                                 size_t count, loff_t *ppos)
1164 {
1165         struct file *p = NULL;
1166
1167         spin_lock(&redirect_lock);
1168         if (redirect)
1169                 p = get_file(redirect);
1170         spin_unlock(&redirect_lock);
1171
1172         if (p) {
1173                 ssize_t res;
1174                 res = vfs_write(p, buf, count, &p->f_pos);
1175                 fput(p);
1176                 return res;
1177         }
1178         return tty_write(file, buf, count, ppos);
1179 }
1180
1181 static char ptychar[] = "pqrstuvwxyzabcde";
1182
1183 /**
1184  *      pty_line_name   -       generate name for a pty
1185  *      @driver: the tty driver in use
1186  *      @index: the minor number
1187  *      @p: output buffer of at least 6 bytes
1188  *
1189  *      Generate a name from a driver reference and write it to the output
1190  *      buffer.
1191  *
1192  *      Locking: None
1193  */
1194 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1195 {
1196         int i = index + driver->name_base;
1197         /* ->name is initialized to "ttyp", but "tty" is expected */
1198         sprintf(p, "%s%c%x",
1199                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1200                 ptychar[i >> 4 & 0xf], i & 0xf);
1201 }
1202
1203 /**
1204  *      tty_line_name   -       generate name for a tty
1205  *      @driver: the tty driver in use
1206  *      @index: the minor number
1207  *      @p: output buffer of at least 7 bytes
1208  *
1209  *      Generate a name from a driver reference and write it to the output
1210  *      buffer.
1211  *
1212  *      Locking: None
1213  */
1214 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1215 {
1216         if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1217                 strcpy(p, driver->name);
1218         else
1219                 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1220 }
1221
1222 /**
1223  *      tty_driver_lookup_tty() - find an existing tty, if any
1224  *      @driver: the driver for the tty
1225  *      @idx:    the minor number
1226  *
1227  *      Return the tty, if found or ERR_PTR() otherwise.
1228  *
1229  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1230  *      be held until the 'fast-open' is also done. Will change once we
1231  *      have refcounting in the driver and per driver locking
1232  */
1233 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1234                 struct inode *inode, int idx)
1235 {
1236         if (driver->ops->lookup)
1237                 return driver->ops->lookup(driver, inode, idx);
1238
1239         return driver->ttys[idx];
1240 }
1241
1242 /**
1243  *      tty_init_termios        -  helper for termios setup
1244  *      @tty: the tty to set up
1245  *
1246  *      Initialise the termios structures for this tty. Thus runs under
1247  *      the tty_mutex currently so we can be relaxed about ordering.
1248  */
1249
1250 int tty_init_termios(struct tty_struct *tty)
1251 {
1252         struct ktermios *tp;
1253         int idx = tty->index;
1254
1255         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1256                 tty->termios = tty->driver->init_termios;
1257         else {
1258                 /* Check for lazy saved data */
1259                 tp = tty->driver->termios[idx];
1260                 if (tp != NULL)
1261                         tty->termios = *tp;
1262                 else
1263                         tty->termios = tty->driver->init_termios;
1264         }
1265         /* Compatibility until drivers always set this */
1266         tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1267         tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1268         return 0;
1269 }
1270 EXPORT_SYMBOL_GPL(tty_init_termios);
1271
1272 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1273 {
1274         int ret = tty_init_termios(tty);
1275         if (ret)
1276                 return ret;
1277
1278         tty_driver_kref_get(driver);
1279         tty->count++;
1280         driver->ttys[tty->index] = tty;
1281         return 0;
1282 }
1283 EXPORT_SYMBOL_GPL(tty_standard_install);
1284
1285 /**
1286  *      tty_driver_install_tty() - install a tty entry in the driver
1287  *      @driver: the driver for the tty
1288  *      @tty: the tty
1289  *
1290  *      Install a tty object into the driver tables. The tty->index field
1291  *      will be set by the time this is called. This method is responsible
1292  *      for ensuring any need additional structures are allocated and
1293  *      configured.
1294  *
1295  *      Locking: tty_mutex for now
1296  */
1297 static int tty_driver_install_tty(struct tty_driver *driver,
1298                                                 struct tty_struct *tty)
1299 {
1300         return driver->ops->install ? driver->ops->install(driver, tty) :
1301                 tty_standard_install(driver, tty);
1302 }
1303
1304 /**
1305  *      tty_driver_remove_tty() - remove a tty from the driver tables
1306  *      @driver: the driver for the tty
1307  *      @idx:    the minor number
1308  *
1309  *      Remvoe a tty object from the driver tables. The tty->index field
1310  *      will be set by the time this is called.
1311  *
1312  *      Locking: tty_mutex for now
1313  */
1314 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1315 {
1316         if (driver->ops->remove)
1317                 driver->ops->remove(driver, tty);
1318         else
1319                 driver->ttys[tty->index] = NULL;
1320 }
1321
1322 /*
1323  *      tty_reopen()    - fast re-open of an open tty
1324  *      @tty    - the tty to open
1325  *
1326  *      Return 0 on success, -errno on error.
1327  *
1328  *      Locking: tty_mutex must be held from the time the tty was found
1329  *               till this open completes.
1330  */
1331 static int tty_reopen(struct tty_struct *tty)
1332 {
1333         struct tty_driver *driver = tty->driver;
1334
1335         if (test_bit(TTY_CLOSING, &tty->flags) ||
1336                         test_bit(TTY_HUPPING, &tty->flags) ||
1337                         test_bit(TTY_LDISC_CHANGING, &tty->flags))
1338                 return -EIO;
1339
1340         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1341             driver->subtype == PTY_TYPE_MASTER) {
1342                 /*
1343                  * special case for PTY masters: only one open permitted,
1344                  * and the slave side open count is incremented as well.
1345                  */
1346                 if (tty->count)
1347                         return -EIO;
1348
1349                 tty->link->count++;
1350         }
1351         tty->count++;
1352
1353         mutex_lock(&tty->ldisc_mutex);
1354         WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1355         mutex_unlock(&tty->ldisc_mutex);
1356
1357         return 0;
1358 }
1359
1360 /**
1361  *      tty_init_dev            -       initialise a tty device
1362  *      @driver: tty driver we are opening a device on
1363  *      @idx: device index
1364  *      @ret_tty: returned tty structure
1365  *
1366  *      Prepare a tty device. This may not be a "new" clean device but
1367  *      could also be an active device. The pty drivers require special
1368  *      handling because of this.
1369  *
1370  *      Locking:
1371  *              The function is called under the tty_mutex, which
1372  *      protects us from the tty struct or driver itself going away.
1373  *
1374  *      On exit the tty device has the line discipline attached and
1375  *      a reference count of 1. If a pair was created for pty/tty use
1376  *      and the other was a pty master then it too has a reference count of 1.
1377  *
1378  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1379  * failed open.  The new code protects the open with a mutex, so it's
1380  * really quite straightforward.  The mutex locking can probably be
1381  * relaxed for the (most common) case of reopening a tty.
1382  */
1383
1384 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1385 {
1386         struct tty_struct *tty;
1387         int retval;
1388
1389         /*
1390          * First time open is complex, especially for PTY devices.
1391          * This code guarantees that either everything succeeds and the
1392          * TTY is ready for operation, or else the table slots are vacated
1393          * and the allocated memory released.  (Except that the termios
1394          * and locked termios may be retained.)
1395          */
1396
1397         if (!try_module_get(driver->owner))
1398                 return ERR_PTR(-ENODEV);
1399
1400         tty = alloc_tty_struct();
1401         if (!tty) {
1402                 retval = -ENOMEM;
1403                 goto err_module_put;
1404         }
1405         initialize_tty_struct(tty, driver, idx);
1406
1407         tty_lock(tty);
1408         retval = tty_driver_install_tty(driver, tty);
1409         if (retval < 0)
1410                 goto err_deinit_tty;
1411
1412         if (!tty->port)
1413                 tty->port = driver->ports[idx];
1414
1415         WARN_RATELIMIT(!tty->port,
1416                         "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1417                         __func__, tty->driver->name);
1418
1419         tty->port->itty = tty;
1420
1421         /*
1422          * Structures all installed ... call the ldisc open routines.
1423          * If we fail here just call release_tty to clean up.  No need
1424          * to decrement the use counts, as release_tty doesn't care.
1425          */
1426         retval = tty_ldisc_setup(tty, tty->link);
1427         if (retval)
1428                 goto err_release_tty;
1429         /* Return the tty locked so that it cannot vanish under the caller */
1430         return tty;
1431
1432 err_deinit_tty:
1433         tty_unlock(tty);
1434         deinitialize_tty_struct(tty);
1435         free_tty_struct(tty);
1436 err_module_put:
1437         module_put(driver->owner);
1438         return ERR_PTR(retval);
1439
1440         /* call the tty release_tty routine to clean out this slot */
1441 err_release_tty:
1442         tty_unlock(tty);
1443         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1444                                  "clearing slot %d\n", idx);
1445         release_tty(tty, idx);
1446         return ERR_PTR(retval);
1447 }
1448
1449 void tty_free_termios(struct tty_struct *tty)
1450 {
1451         struct ktermios *tp;
1452         int idx = tty->index;
1453
1454         /* If the port is going to reset then it has no termios to save */
1455         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1456                 return;
1457
1458         /* Stash the termios data */
1459         tp = tty->driver->termios[idx];
1460         if (tp == NULL) {
1461                 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1462                 if (tp == NULL) {
1463                         pr_warn("tty: no memory to save termios state.\n");
1464                         return;
1465                 }
1466                 tty->driver->termios[idx] = tp;
1467         }
1468         *tp = tty->termios;
1469 }
1470 EXPORT_SYMBOL(tty_free_termios);
1471
1472
1473 /**
1474  *      release_one_tty         -       release tty structure memory
1475  *      @kref: kref of tty we are obliterating
1476  *
1477  *      Releases memory associated with a tty structure, and clears out the
1478  *      driver table slots. This function is called when a device is no longer
1479  *      in use. It also gets called when setup of a device fails.
1480  *
1481  *      Locking:
1482  *              takes the file list lock internally when working on the list
1483  *      of ttys that the driver keeps.
1484  *
1485  *      This method gets called from a work queue so that the driver private
1486  *      cleanup ops can sleep (needed for USB at least)
1487  */
1488 static void release_one_tty(struct work_struct *work)
1489 {
1490         struct tty_struct *tty =
1491                 container_of(work, struct tty_struct, hangup_work);
1492         struct tty_driver *driver = tty->driver;
1493
1494         if (tty->ops->cleanup)
1495                 tty->ops->cleanup(tty);
1496
1497         tty->magic = 0;
1498         tty_driver_kref_put(driver);
1499         module_put(driver->owner);
1500
1501         spin_lock(&tty_files_lock);
1502         list_del_init(&tty->tty_files);
1503         spin_unlock(&tty_files_lock);
1504
1505         put_pid(tty->pgrp);
1506         put_pid(tty->session);
1507         free_tty_struct(tty);
1508 }
1509
1510 static void queue_release_one_tty(struct kref *kref)
1511 {
1512         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1513
1514         /* The hangup queue is now free so we can reuse it rather than
1515            waste a chunk of memory for each port */
1516         INIT_WORK(&tty->hangup_work, release_one_tty);
1517         schedule_work(&tty->hangup_work);
1518 }
1519
1520 /**
1521  *      tty_kref_put            -       release a tty kref
1522  *      @tty: tty device
1523  *
1524  *      Release a reference to a tty device and if need be let the kref
1525  *      layer destruct the object for us
1526  */
1527
1528 void tty_kref_put(struct tty_struct *tty)
1529 {
1530         if (tty)
1531                 kref_put(&tty->kref, queue_release_one_tty);
1532 }
1533 EXPORT_SYMBOL(tty_kref_put);
1534
1535 /**
1536  *      release_tty             -       release tty structure memory
1537  *
1538  *      Release both @tty and a possible linked partner (think pty pair),
1539  *      and decrement the refcount of the backing module.
1540  *
1541  *      Locking:
1542  *              tty_mutex
1543  *              takes the file list lock internally when working on the list
1544  *      of ttys that the driver keeps.
1545  *
1546  */
1547 static void release_tty(struct tty_struct *tty, int idx)
1548 {
1549         /* This should always be true but check for the moment */
1550         WARN_ON(tty->index != idx);
1551         WARN_ON(!mutex_is_locked(&tty_mutex));
1552         if (tty->ops->shutdown)
1553                 tty->ops->shutdown(tty);
1554         tty_free_termios(tty);
1555         tty_driver_remove_tty(tty->driver, tty);
1556         tty->port->itty = NULL;
1557
1558         if (tty->link)
1559                 tty_kref_put(tty->link);
1560         tty_kref_put(tty);
1561 }
1562
1563 /**
1564  *      tty_release_checks - check a tty before real release
1565  *      @tty: tty to check
1566  *      @o_tty: link of @tty (if any)
1567  *      @idx: index of the tty
1568  *
1569  *      Performs some paranoid checking before true release of the @tty.
1570  *      This is a no-op unless TTY_PARANOIA_CHECK is defined.
1571  */
1572 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1573                 int idx)
1574 {
1575 #ifdef TTY_PARANOIA_CHECK
1576         if (idx < 0 || idx >= tty->driver->num) {
1577                 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1578                                 __func__, tty->name);
1579                 return -1;
1580         }
1581
1582         /* not much to check for devpts */
1583         if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1584                 return 0;
1585
1586         if (tty != tty->driver->ttys[idx]) {
1587                 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1588                                 __func__, idx, tty->name);
1589                 return -1;
1590         }
1591         if (tty->driver->other) {
1592                 if (o_tty != tty->driver->other->ttys[idx]) {
1593                         printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1594                                         __func__, idx, tty->name);
1595                         return -1;
1596                 }
1597                 if (o_tty->link != tty) {
1598                         printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1599                         return -1;
1600                 }
1601         }
1602 #endif
1603         return 0;
1604 }
1605
1606 /**
1607  *      tty_release             -       vfs callback for close
1608  *      @inode: inode of tty
1609  *      @filp: file pointer for handle to tty
1610  *
1611  *      Called the last time each file handle is closed that references
1612  *      this tty. There may however be several such references.
1613  *
1614  *      Locking:
1615  *              Takes bkl. See tty_release_dev
1616  *
1617  * Even releasing the tty structures is a tricky business.. We have
1618  * to be very careful that the structures are all released at the
1619  * same time, as interrupts might otherwise get the wrong pointers.
1620  *
1621  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1622  * lead to double frees or releasing memory still in use.
1623  */
1624
1625 int tty_release(struct inode *inode, struct file *filp)
1626 {
1627         struct tty_struct *tty = file_tty(filp);
1628         struct tty_struct *o_tty;
1629         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1630         int     idx;
1631         char    buf[64];
1632
1633         if (tty_paranoia_check(tty, inode, __func__))
1634                 return 0;
1635
1636         tty_lock(tty);
1637         check_tty_count(tty, __func__);
1638
1639         __tty_fasync(-1, filp, 0);
1640
1641         idx = tty->index;
1642         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1643                       tty->driver->subtype == PTY_TYPE_MASTER);
1644         /* Review: parallel close */
1645         o_tty = tty->link;
1646
1647         if (tty_release_checks(tty, o_tty, idx)) {
1648                 tty_unlock(tty);
1649                 return 0;
1650         }
1651
1652 #ifdef TTY_DEBUG_HANGUP
1653         printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1654                         tty_name(tty, buf), tty->count);
1655 #endif
1656
1657         if (tty->ops->close)
1658                 tty->ops->close(tty, filp);
1659
1660         tty_unlock(tty);
1661         /*
1662          * Sanity check: if tty->count is going to zero, there shouldn't be
1663          * any waiters on tty->read_wait or tty->write_wait.  We test the
1664          * wait queues and kick everyone out _before_ actually starting to
1665          * close.  This ensures that we won't block while releasing the tty
1666          * structure.
1667          *
1668          * The test for the o_tty closing is necessary, since the master and
1669          * slave sides may close in any order.  If the slave side closes out
1670          * first, its count will be one, since the master side holds an open.
1671          * Thus this test wouldn't be triggered at the time the slave closes,
1672          * so we do it now.
1673          *
1674          * Note that it's possible for the tty to be opened again while we're
1675          * flushing out waiters.  By recalculating the closing flags before
1676          * each iteration we avoid any problems.
1677          */
1678         while (1) {
1679                 /* Guard against races with tty->count changes elsewhere and
1680                    opens on /dev/tty */
1681
1682                 mutex_lock(&tty_mutex);
1683                 tty_lock_pair(tty, o_tty);
1684                 tty_closing = tty->count <= 1;
1685                 o_tty_closing = o_tty &&
1686                         (o_tty->count <= (pty_master ? 1 : 0));
1687                 do_sleep = 0;
1688
1689                 if (tty_closing) {
1690                         if (waitqueue_active(&tty->read_wait)) {
1691                                 wake_up_poll(&tty->read_wait, POLLIN);
1692                                 do_sleep++;
1693                         }
1694                         if (waitqueue_active(&tty->write_wait)) {
1695                                 wake_up_poll(&tty->write_wait, POLLOUT);
1696                                 do_sleep++;
1697                         }
1698                 }
1699                 if (o_tty_closing) {
1700                         if (waitqueue_active(&o_tty->read_wait)) {
1701                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1702                                 do_sleep++;
1703                         }
1704                         if (waitqueue_active(&o_tty->write_wait)) {
1705                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1706                                 do_sleep++;
1707                         }
1708                 }
1709                 if (!do_sleep)
1710                         break;
1711
1712                 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1713                                 __func__, tty_name(tty, buf));
1714                 tty_unlock_pair(tty, o_tty);
1715                 mutex_unlock(&tty_mutex);
1716                 schedule();
1717         }
1718
1719         /*
1720          * The closing flags are now consistent with the open counts on
1721          * both sides, and we've completed the last operation that could
1722          * block, so it's safe to proceed with closing.
1723          *
1724          * We must *not* drop the tty_mutex until we ensure that a further
1725          * entry into tty_open can not pick up this tty.
1726          */
1727         if (pty_master) {
1728                 if (--o_tty->count < 0) {
1729                         printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1730                                 __func__, o_tty->count, tty_name(o_tty, buf));
1731                         o_tty->count = 0;
1732                 }
1733         }
1734         if (--tty->count < 0) {
1735                 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1736                                 __func__, tty->count, tty_name(tty, buf));
1737                 tty->count = 0;
1738         }
1739
1740         /*
1741          * We've decremented tty->count, so we need to remove this file
1742          * descriptor off the tty->tty_files list; this serves two
1743          * purposes:
1744          *  - check_tty_count sees the correct number of file descriptors
1745          *    associated with this tty.
1746          *  - do_tty_hangup no longer sees this file descriptor as
1747          *    something that needs to be handled for hangups.
1748          */
1749         tty_del_file(filp);
1750
1751         /*
1752          * Perform some housekeeping before deciding whether to return.
1753          *
1754          * Set the TTY_CLOSING flag if this was the last open.  In the
1755          * case of a pty we may have to wait around for the other side
1756          * to close, and TTY_CLOSING makes sure we can't be reopened.
1757          */
1758         if (tty_closing)
1759                 set_bit(TTY_CLOSING, &tty->flags);
1760         if (o_tty_closing)
1761                 set_bit(TTY_CLOSING, &o_tty->flags);
1762
1763         /*
1764          * If _either_ side is closing, make sure there aren't any
1765          * processes that still think tty or o_tty is their controlling
1766          * tty.
1767          */
1768         if (tty_closing || o_tty_closing) {
1769                 read_lock(&tasklist_lock);
1770                 session_clear_tty(tty->session);
1771                 if (o_tty)
1772                         session_clear_tty(o_tty->session);
1773                 read_unlock(&tasklist_lock);
1774         }
1775
1776         mutex_unlock(&tty_mutex);
1777         tty_unlock_pair(tty, o_tty);
1778         /* At this point the TTY_CLOSING flag should ensure a dead tty
1779            cannot be re-opened by a racing opener */
1780
1781         /* check whether both sides are closing ... */
1782         if (!tty_closing || (o_tty && !o_tty_closing))
1783                 return 0;
1784
1785 #ifdef TTY_DEBUG_HANGUP
1786         printk(KERN_DEBUG "%s: freeing tty structure...\n", __func__);
1787 #endif
1788         /*
1789          * Ask the line discipline code to release its structures
1790          */
1791         tty_ldisc_release(tty, o_tty);
1792         /*
1793          * The release_tty function takes care of the details of clearing
1794          * the slots and preserving the termios structure. The tty_unlock_pair
1795          * should be safe as we keep a kref while the tty is locked (so the
1796          * unlock never unlocks a freed tty).
1797          */
1798         mutex_lock(&tty_mutex);
1799         release_tty(tty, idx);
1800         mutex_unlock(&tty_mutex);
1801
1802         return 0;
1803 }
1804
1805 /**
1806  *      tty_open_current_tty - get tty of current task for open
1807  *      @device: device number
1808  *      @filp: file pointer to tty
1809  *      @return: tty of the current task iff @device is /dev/tty
1810  *
1811  *      We cannot return driver and index like for the other nodes because
1812  *      devpts will not work then. It expects inodes to be from devpts FS.
1813  *
1814  *      We need to move to returning a refcounted object from all the lookup
1815  *      paths including this one.
1816  */
1817 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1818 {
1819         struct tty_struct *tty;
1820
1821         if (device != MKDEV(TTYAUX_MAJOR, 0))
1822                 return NULL;
1823
1824         tty = get_current_tty();
1825         if (!tty)
1826                 return ERR_PTR(-ENXIO);
1827
1828         filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1829         /* noctty = 1; */
1830         tty_kref_put(tty);
1831         /* FIXME: we put a reference and return a TTY! */
1832         /* This is only safe because the caller holds tty_mutex */
1833         return tty;
1834 }
1835
1836 /**
1837  *      tty_lookup_driver - lookup a tty driver for a given device file
1838  *      @device: device number
1839  *      @filp: file pointer to tty
1840  *      @noctty: set if the device should not become a controlling tty
1841  *      @index: index for the device in the @return driver
1842  *      @return: driver for this inode (with increased refcount)
1843  *
1844  *      If @return is not erroneous, the caller is responsible to decrement the
1845  *      refcount by tty_driver_kref_put.
1846  *
1847  *      Locking: tty_mutex protects get_tty_driver
1848  */
1849 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1850                 int *noctty, int *index)
1851 {
1852         struct tty_driver *driver;
1853
1854         switch (device) {
1855 #ifdef CONFIG_VT
1856         case MKDEV(TTY_MAJOR, 0): {
1857                 extern struct tty_driver *console_driver;
1858                 driver = tty_driver_kref_get(console_driver);
1859                 *index = fg_console;
1860                 *noctty = 1;
1861                 break;
1862         }
1863 #endif
1864         case MKDEV(TTYAUX_MAJOR, 1): {
1865                 struct tty_driver *console_driver = console_device(index);
1866                 if (console_driver) {
1867                         driver = tty_driver_kref_get(console_driver);
1868                         if (driver) {
1869                                 /* Don't let /dev/console block */
1870                                 filp->f_flags |= O_NONBLOCK;
1871                                 *noctty = 1;
1872                                 break;
1873                         }
1874                 }
1875                 return ERR_PTR(-ENODEV);
1876         }
1877         default:
1878                 driver = get_tty_driver(device, index);
1879                 if (!driver)
1880                         return ERR_PTR(-ENODEV);
1881                 break;
1882         }
1883         return driver;
1884 }
1885
1886 /**
1887  *      tty_open                -       open a tty device
1888  *      @inode: inode of device file
1889  *      @filp: file pointer to tty
1890  *
1891  *      tty_open and tty_release keep up the tty count that contains the
1892  *      number of opens done on a tty. We cannot use the inode-count, as
1893  *      different inodes might point to the same tty.
1894  *
1895  *      Open-counting is needed for pty masters, as well as for keeping
1896  *      track of serial lines: DTR is dropped when the last close happens.
1897  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1898  *
1899  *      The termios state of a pty is reset on first open so that
1900  *      settings don't persist across reuse.
1901  *
1902  *      Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1903  *               tty->count should protect the rest.
1904  *               ->siglock protects ->signal/->sighand
1905  *
1906  *      Note: the tty_unlock/lock cases without a ref are only safe due to
1907  *      tty_mutex
1908  */
1909
1910 static int tty_open(struct inode *inode, struct file *filp)
1911 {
1912         struct tty_struct *tty;
1913         int noctty, retval;
1914         struct tty_driver *driver = NULL;
1915         int index;
1916         dev_t device = inode->i_rdev;
1917         unsigned saved_flags = filp->f_flags;
1918
1919         nonseekable_open(inode, filp);
1920
1921 retry_open:
1922         retval = tty_alloc_file(filp);
1923         if (retval)
1924                 return -ENOMEM;
1925
1926         noctty = filp->f_flags & O_NOCTTY;
1927         index  = -1;
1928         retval = 0;
1929
1930         mutex_lock(&tty_mutex);
1931         /* This is protected by the tty_mutex */
1932         tty = tty_open_current_tty(device, filp);
1933         if (IS_ERR(tty)) {
1934                 retval = PTR_ERR(tty);
1935                 goto err_unlock;
1936         } else if (!tty) {
1937                 driver = tty_lookup_driver(device, filp, &noctty, &index);
1938                 if (IS_ERR(driver)) {
1939                         retval = PTR_ERR(driver);
1940                         goto err_unlock;
1941                 }
1942
1943                 /* check whether we're reopening an existing tty */
1944                 tty = tty_driver_lookup_tty(driver, inode, index);
1945                 if (IS_ERR(tty)) {
1946                         retval = PTR_ERR(tty);
1947                         goto err_unlock;
1948                 }
1949         }
1950
1951         if (tty) {
1952                 tty_lock(tty);
1953                 retval = tty_reopen(tty);
1954                 if (retval < 0) {
1955                         tty_unlock(tty);
1956                         tty = ERR_PTR(retval);
1957                 }
1958         } else  /* Returns with the tty_lock held for now */
1959                 tty = tty_init_dev(driver, index);
1960
1961         mutex_unlock(&tty_mutex);
1962         if (driver)
1963                 tty_driver_kref_put(driver);
1964         if (IS_ERR(tty)) {
1965                 retval = PTR_ERR(tty);
1966                 goto err_file;
1967         }
1968
1969         tty_add_file(tty, filp);
1970
1971         check_tty_count(tty, __func__);
1972         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1973             tty->driver->subtype == PTY_TYPE_MASTER)
1974                 noctty = 1;
1975 #ifdef TTY_DEBUG_HANGUP
1976         printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
1977 #endif
1978         if (tty->ops->open)
1979                 retval = tty->ops->open(tty, filp);
1980         else
1981                 retval = -ENODEV;
1982         filp->f_flags = saved_flags;
1983
1984         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1985                                                 !capable(CAP_SYS_ADMIN))
1986                 retval = -EBUSY;
1987
1988         if (retval) {
1989 #ifdef TTY_DEBUG_HANGUP
1990                 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
1991                                 retval, tty->name);
1992 #endif
1993                 tty_unlock(tty); /* need to call tty_release without BTM */
1994                 tty_release(inode, filp);
1995                 if (retval != -ERESTARTSYS)
1996                         return retval;
1997
1998                 if (signal_pending(current))
1999                         return retval;
2000
2001                 schedule();
2002                 /*
2003                  * Need to reset f_op in case a hangup happened.
2004                  */
2005                 if (filp->f_op == &hung_up_tty_fops)
2006                         filp->f_op = &tty_fops;
2007                 goto retry_open;
2008         }
2009         tty_unlock(tty);
2010
2011
2012         mutex_lock(&tty_mutex);
2013         tty_lock(tty);
2014         spin_lock_irq(&current->sighand->siglock);
2015         if (!noctty &&
2016             current->signal->leader &&
2017             !current->signal->tty &&
2018             tty->session == NULL)
2019                 __proc_set_tty(current, tty);
2020         spin_unlock_irq(&current->sighand->siglock);
2021         tty_unlock(tty);
2022         mutex_unlock(&tty_mutex);
2023         return 0;
2024 err_unlock:
2025         mutex_unlock(&tty_mutex);
2026         /* after locks to avoid deadlock */
2027         if (!IS_ERR_OR_NULL(driver))
2028                 tty_driver_kref_put(driver);
2029 err_file:
2030         tty_free_file(filp);
2031         return retval;
2032 }
2033
2034
2035
2036 /**
2037  *      tty_poll        -       check tty status
2038  *      @filp: file being polled
2039  *      @wait: poll wait structures to update
2040  *
2041  *      Call the line discipline polling method to obtain the poll
2042  *      status of the device.
2043  *
2044  *      Locking: locks called line discipline but ldisc poll method
2045  *      may be re-entered freely by other callers.
2046  */
2047
2048 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2049 {
2050         struct tty_struct *tty = file_tty(filp);
2051         struct tty_ldisc *ld;
2052         int ret = 0;
2053
2054         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2055                 return 0;
2056
2057         ld = tty_ldisc_ref_wait(tty);
2058         if (ld->ops->poll)
2059                 ret = (ld->ops->poll)(tty, filp, wait);
2060         tty_ldisc_deref(ld);
2061         return ret;
2062 }
2063
2064 static int __tty_fasync(int fd, struct file *filp, int on)
2065 {
2066         struct tty_struct *tty = file_tty(filp);
2067         unsigned long flags;
2068         int retval = 0;
2069
2070         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2071                 goto out;
2072
2073         retval = fasync_helper(fd, filp, on, &tty->fasync);
2074         if (retval <= 0)
2075                 goto out;
2076
2077         if (on) {
2078                 enum pid_type type;
2079                 struct pid *pid;
2080                 if (!waitqueue_active(&tty->read_wait))
2081                         tty->minimum_to_wake = 1;
2082                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2083                 if (tty->pgrp) {
2084                         pid = tty->pgrp;
2085                         type = PIDTYPE_PGID;
2086                 } else {
2087                         pid = task_pid(current);
2088                         type = PIDTYPE_PID;
2089                 }
2090                 get_pid(pid);
2091                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2092                 retval = __f_setown(filp, pid, type, 0);
2093                 put_pid(pid);
2094                 if (retval)
2095                         goto out;
2096         } else {
2097                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2098                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
2099         }
2100         retval = 0;
2101 out:
2102         return retval;
2103 }
2104
2105 static int tty_fasync(int fd, struct file *filp, int on)
2106 {
2107         struct tty_struct *tty = file_tty(filp);
2108         int retval;
2109
2110         tty_lock(tty);
2111         retval = __tty_fasync(fd, filp, on);
2112         tty_unlock(tty);
2113
2114         return retval;
2115 }
2116
2117 /**
2118  *      tiocsti                 -       fake input character
2119  *      @tty: tty to fake input into
2120  *      @p: pointer to character
2121  *
2122  *      Fake input to a tty device. Does the necessary locking and
2123  *      input management.
2124  *
2125  *      FIXME: does not honour flow control ??
2126  *
2127  *      Locking:
2128  *              Called functions take tty_ldisc_lock
2129  *              current->signal->tty check is safe without locks
2130  *
2131  *      FIXME: may race normal receive processing
2132  */
2133
2134 static int tiocsti(struct tty_struct *tty, char __user *p)
2135 {
2136         char ch, mbz = 0;
2137         struct tty_ldisc *ld;
2138
2139         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2140                 return -EPERM;
2141         if (get_user(ch, p))
2142                 return -EFAULT;
2143         tty_audit_tiocsti(tty, ch);
2144         ld = tty_ldisc_ref_wait(tty);
2145         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2146         tty_ldisc_deref(ld);
2147         return 0;
2148 }
2149
2150 /**
2151  *      tiocgwinsz              -       implement window query ioctl
2152  *      @tty; tty
2153  *      @arg: user buffer for result
2154  *
2155  *      Copies the kernel idea of the window size into the user buffer.
2156  *
2157  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2158  *              is consistent.
2159  */
2160
2161 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2162 {
2163         int err;
2164
2165         mutex_lock(&tty->termios_mutex);
2166         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2167         mutex_unlock(&tty->termios_mutex);
2168
2169         return err ? -EFAULT: 0;
2170 }
2171
2172 /**
2173  *      tty_do_resize           -       resize event
2174  *      @tty: tty being resized
2175  *      @rows: rows (character)
2176  *      @cols: cols (character)
2177  *
2178  *      Update the termios variables and send the necessary signals to
2179  *      peform a terminal resize correctly
2180  */
2181
2182 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2183 {
2184         struct pid *pgrp;
2185         unsigned long flags;
2186
2187         /* Lock the tty */
2188         mutex_lock(&tty->termios_mutex);
2189         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2190                 goto done;
2191         /* Get the PID values and reference them so we can
2192            avoid holding the tty ctrl lock while sending signals */
2193         spin_lock_irqsave(&tty->ctrl_lock, flags);
2194         pgrp = get_pid(tty->pgrp);
2195         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2196
2197         if (pgrp)
2198                 kill_pgrp(pgrp, SIGWINCH, 1);
2199         put_pid(pgrp);
2200
2201         tty->winsize = *ws;
2202 done:
2203         mutex_unlock(&tty->termios_mutex);
2204         return 0;
2205 }
2206
2207 /**
2208  *      tiocswinsz              -       implement window size set ioctl
2209  *      @tty; tty side of tty
2210  *      @arg: user buffer for result
2211  *
2212  *      Copies the user idea of the window size to the kernel. Traditionally
2213  *      this is just advisory information but for the Linux console it
2214  *      actually has driver level meaning and triggers a VC resize.
2215  *
2216  *      Locking:
2217  *              Driver dependent. The default do_resize method takes the
2218  *      tty termios mutex and ctrl_lock. The console takes its own lock
2219  *      then calls into the default method.
2220  */
2221
2222 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2223 {
2224         struct winsize tmp_ws;
2225         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2226                 return -EFAULT;
2227
2228         if (tty->ops->resize)
2229                 return tty->ops->resize(tty, &tmp_ws);
2230         else
2231                 return tty_do_resize(tty, &tmp_ws);
2232 }
2233
2234 /**
2235  *      tioccons        -       allow admin to move logical console
2236  *      @file: the file to become console
2237  *
2238  *      Allow the administrator to move the redirected console device
2239  *
2240  *      Locking: uses redirect_lock to guard the redirect information
2241  */
2242
2243 static int tioccons(struct file *file)
2244 {
2245         if (!capable(CAP_SYS_ADMIN))
2246                 return -EPERM;
2247         if (file->f_op->write == redirected_tty_write) {
2248                 struct file *f;
2249                 spin_lock(&redirect_lock);
2250                 f = redirect;
2251                 redirect = NULL;
2252                 spin_unlock(&redirect_lock);
2253                 if (f)
2254                         fput(f);
2255                 return 0;
2256         }
2257         spin_lock(&redirect_lock);
2258         if (redirect) {
2259                 spin_unlock(&redirect_lock);
2260                 return -EBUSY;
2261         }
2262         redirect = get_file(file);
2263         spin_unlock(&redirect_lock);
2264         return 0;
2265 }
2266
2267 /**
2268  *      fionbio         -       non blocking ioctl
2269  *      @file: file to set blocking value
2270  *      @p: user parameter
2271  *
2272  *      Historical tty interfaces had a blocking control ioctl before
2273  *      the generic functionality existed. This piece of history is preserved
2274  *      in the expected tty API of posix OS's.
2275  *
2276  *      Locking: none, the open file handle ensures it won't go away.
2277  */
2278
2279 static int fionbio(struct file *file, int __user *p)
2280 {
2281         int nonblock;
2282
2283         if (get_user(nonblock, p))
2284                 return -EFAULT;
2285
2286         spin_lock(&file->f_lock);
2287         if (nonblock)
2288                 file->f_flags |= O_NONBLOCK;
2289         else
2290                 file->f_flags &= ~O_NONBLOCK;
2291         spin_unlock(&file->f_lock);
2292         return 0;
2293 }
2294
2295 /**
2296  *      tiocsctty       -       set controlling tty
2297  *      @tty: tty structure
2298  *      @arg: user argument
2299  *
2300  *      This ioctl is used to manage job control. It permits a session
2301  *      leader to set this tty as the controlling tty for the session.
2302  *
2303  *      Locking:
2304  *              Takes tty_mutex() to protect tty instance
2305  *              Takes tasklist_lock internally to walk sessions
2306  *              Takes ->siglock() when updating signal->tty
2307  */
2308
2309 static int tiocsctty(struct tty_struct *tty, int arg)
2310 {
2311         int ret = 0;
2312         if (current->signal->leader && (task_session(current) == tty->session))
2313                 return ret;
2314
2315         mutex_lock(&tty_mutex);
2316         /*
2317          * The process must be a session leader and
2318          * not have a controlling tty already.
2319          */
2320         if (!current->signal->leader || current->signal->tty) {
2321                 ret = -EPERM;
2322                 goto unlock;
2323         }
2324
2325         if (tty->session) {
2326                 /*
2327                  * This tty is already the controlling
2328                  * tty for another session group!
2329                  */
2330                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2331                         /*
2332                          * Steal it away
2333                          */
2334                         read_lock(&tasklist_lock);
2335                         session_clear_tty(tty->session);
2336                         read_unlock(&tasklist_lock);
2337                 } else {
2338                         ret = -EPERM;
2339                         goto unlock;
2340                 }
2341         }
2342         proc_set_tty(current, tty);
2343 unlock:
2344         mutex_unlock(&tty_mutex);
2345         return ret;
2346 }
2347
2348 /**
2349  *      tty_get_pgrp    -       return a ref counted pgrp pid
2350  *      @tty: tty to read
2351  *
2352  *      Returns a refcounted instance of the pid struct for the process
2353  *      group controlling the tty.
2354  */
2355
2356 struct pid *tty_get_pgrp(struct tty_struct *tty)
2357 {
2358         unsigned long flags;
2359         struct pid *pgrp;
2360
2361         spin_lock_irqsave(&tty->ctrl_lock, flags);
2362         pgrp = get_pid(tty->pgrp);
2363         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2364
2365         return pgrp;
2366 }
2367 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2368
2369 /**
2370  *      tiocgpgrp               -       get process group
2371  *      @tty: tty passed by user
2372  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2373  *      @p: returned pid
2374  *
2375  *      Obtain the process group of the tty. If there is no process group
2376  *      return an error.
2377  *
2378  *      Locking: none. Reference to current->signal->tty is safe.
2379  */
2380
2381 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2382 {
2383         struct pid *pid;
2384         int ret;
2385         /*
2386          * (tty == real_tty) is a cheap way of
2387          * testing if the tty is NOT a master pty.
2388          */
2389         if (tty == real_tty && current->signal->tty != real_tty)
2390                 return -ENOTTY;
2391         pid = tty_get_pgrp(real_tty);
2392         ret =  put_user(pid_vnr(pid), p);
2393         put_pid(pid);
2394         return ret;
2395 }
2396
2397 /**
2398  *      tiocspgrp               -       attempt to set process group
2399  *      @tty: tty passed by user
2400  *      @real_tty: tty side device matching tty passed by user
2401  *      @p: pid pointer
2402  *
2403  *      Set the process group of the tty to the session passed. Only
2404  *      permitted where the tty session is our session.
2405  *
2406  *      Locking: RCU, ctrl lock
2407  */
2408
2409 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2410 {
2411         struct pid *pgrp;
2412         pid_t pgrp_nr;
2413         int retval = tty_check_change(real_tty);
2414         unsigned long flags;
2415
2416         if (retval == -EIO)
2417                 return -ENOTTY;
2418         if (retval)
2419                 return retval;
2420         if (!current->signal->tty ||
2421             (current->signal->tty != real_tty) ||
2422             (real_tty->session != task_session(current)))
2423                 return -ENOTTY;
2424         if (get_user(pgrp_nr, p))
2425                 return -EFAULT;
2426         if (pgrp_nr < 0)
2427                 return -EINVAL;
2428         rcu_read_lock();
2429         pgrp = find_vpid(pgrp_nr);
2430         retval = -ESRCH;
2431         if (!pgrp)
2432                 goto out_unlock;
2433         retval = -EPERM;
2434         if (session_of_pgrp(pgrp) != task_session(current))
2435                 goto out_unlock;
2436         retval = 0;
2437         spin_lock_irqsave(&tty->ctrl_lock, flags);
2438         put_pid(real_tty->pgrp);
2439         real_tty->pgrp = get_pid(pgrp);
2440         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2441 out_unlock:
2442         rcu_read_unlock();
2443         return retval;
2444 }
2445
2446 /**
2447  *      tiocgsid                -       get session id
2448  *      @tty: tty passed by user
2449  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2450  *      @p: pointer to returned session id
2451  *
2452  *      Obtain the session id of the tty. If there is no session
2453  *      return an error.
2454  *
2455  *      Locking: none. Reference to current->signal->tty is safe.
2456  */
2457
2458 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2459 {
2460         /*
2461          * (tty == real_tty) is a cheap way of
2462          * testing if the tty is NOT a master pty.
2463         */
2464         if (tty == real_tty && current->signal->tty != real_tty)
2465                 return -ENOTTY;
2466         if (!real_tty->session)
2467                 return -ENOTTY;
2468         return put_user(pid_vnr(real_tty->session), p);
2469 }
2470
2471 /**
2472  *      tiocsetd        -       set line discipline
2473  *      @tty: tty device
2474  *      @p: pointer to user data
2475  *
2476  *      Set the line discipline according to user request.
2477  *
2478  *      Locking: see tty_set_ldisc, this function is just a helper
2479  */
2480
2481 static int tiocsetd(struct tty_struct *tty, int __user *p)
2482 {
2483         int ldisc;
2484         int ret;
2485
2486         if (get_user(ldisc, p))
2487                 return -EFAULT;
2488
2489         ret = tty_set_ldisc(tty, ldisc);
2490
2491         return ret;
2492 }
2493
2494 /**
2495  *      send_break      -       performed time break
2496  *      @tty: device to break on
2497  *      @duration: timeout in mS
2498  *
2499  *      Perform a timed break on hardware that lacks its own driver level
2500  *      timed break functionality.
2501  *
2502  *      Locking:
2503  *              atomic_write_lock serializes
2504  *
2505  */
2506
2507 static int send_break(struct tty_struct *tty, unsigned int duration)
2508 {
2509         int retval;
2510
2511         if (tty->ops->break_ctl == NULL)
2512                 return 0;
2513
2514         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2515                 retval = tty->ops->break_ctl(tty, duration);
2516         else {
2517                 /* Do the work ourselves */
2518                 if (tty_write_lock(tty, 0) < 0)
2519                         return -EINTR;
2520                 retval = tty->ops->break_ctl(tty, -1);
2521                 if (retval)
2522                         goto out;
2523                 if (!signal_pending(current))
2524                         msleep_interruptible(duration);
2525                 retval = tty->ops->break_ctl(tty, 0);
2526 out:
2527                 tty_write_unlock(tty);
2528                 if (signal_pending(current))
2529                         retval = -EINTR;
2530         }
2531         return retval;
2532 }
2533
2534 /**
2535  *      tty_tiocmget            -       get modem status
2536  *      @tty: tty device
2537  *      @file: user file pointer
2538  *      @p: pointer to result
2539  *
2540  *      Obtain the modem status bits from the tty driver if the feature
2541  *      is supported. Return -EINVAL if it is not available.
2542  *
2543  *      Locking: none (up to the driver)
2544  */
2545
2546 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2547 {
2548         int retval = -EINVAL;
2549
2550         if (tty->ops->tiocmget) {
2551                 retval = tty->ops->tiocmget(tty);
2552
2553                 if (retval >= 0)
2554                         retval = put_user(retval, p);
2555         }
2556         return retval;
2557 }
2558
2559 /**
2560  *      tty_tiocmset            -       set modem status
2561  *      @tty: tty device
2562  *      @cmd: command - clear bits, set bits or set all
2563  *      @p: pointer to desired bits
2564  *
2565  *      Set the modem status bits from the tty driver if the feature
2566  *      is supported. Return -EINVAL if it is not available.
2567  *
2568  *      Locking: none (up to the driver)
2569  */
2570
2571 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2572              unsigned __user *p)
2573 {
2574         int retval;
2575         unsigned int set, clear, val;
2576
2577         if (tty->ops->tiocmset == NULL)
2578                 return -EINVAL;
2579
2580         retval = get_user(val, p);
2581         if (retval)
2582                 return retval;
2583         set = clear = 0;
2584         switch (cmd) {
2585         case TIOCMBIS:
2586                 set = val;
2587                 break;
2588         case TIOCMBIC:
2589                 clear = val;
2590                 break;
2591         case TIOCMSET:
2592                 set = val;
2593                 clear = ~val;
2594                 break;
2595         }
2596         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2597         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2598         return tty->ops->tiocmset(tty, set, clear);
2599 }
2600
2601 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2602 {
2603         int retval = -EINVAL;
2604         struct serial_icounter_struct icount;
2605         memset(&icount, 0, sizeof(icount));
2606         if (tty->ops->get_icount)
2607                 retval = tty->ops->get_icount(tty, &icount);
2608         if (retval != 0)
2609                 return retval;
2610         if (copy_to_user(arg, &icount, sizeof(icount)))
2611                 return -EFAULT;
2612         return 0;
2613 }
2614
2615 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2616 {
2617         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2618             tty->driver->subtype == PTY_TYPE_MASTER)
2619                 tty = tty->link;
2620         return tty;
2621 }
2622 EXPORT_SYMBOL(tty_pair_get_tty);
2623
2624 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2625 {
2626         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2627             tty->driver->subtype == PTY_TYPE_MASTER)
2628             return tty;
2629         return tty->link;
2630 }
2631 EXPORT_SYMBOL(tty_pair_get_pty);
2632
2633 /*
2634  * Split this up, as gcc can choke on it otherwise..
2635  */
2636 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2637 {
2638         struct tty_struct *tty = file_tty(file);
2639         struct tty_struct *real_tty;
2640         void __user *p = (void __user *)arg;
2641         int retval;
2642         struct tty_ldisc *ld;
2643         struct inode *inode = file->f_dentry->d_inode;
2644
2645         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2646                 return -EINVAL;
2647
2648         real_tty = tty_pair_get_tty(tty);
2649
2650         /*
2651          * Factor out some common prep work
2652          */
2653         switch (cmd) {
2654         case TIOCSETD:
2655         case TIOCSBRK:
2656         case TIOCCBRK:
2657         case TCSBRK:
2658         case TCSBRKP:
2659                 retval = tty_check_change(tty);
2660                 if (retval)
2661                         return retval;
2662                 if (cmd != TIOCCBRK) {
2663                         tty_wait_until_sent(tty, 0);
2664                         if (signal_pending(current))
2665                                 return -EINTR;
2666                 }
2667                 break;
2668         }
2669
2670         /*
2671          *      Now do the stuff.
2672          */
2673         switch (cmd) {
2674         case TIOCSTI:
2675                 return tiocsti(tty, p);
2676         case TIOCGWINSZ:
2677                 return tiocgwinsz(real_tty, p);
2678         case TIOCSWINSZ:
2679                 return tiocswinsz(real_tty, p);
2680         case TIOCCONS:
2681                 return real_tty != tty ? -EINVAL : tioccons(file);
2682         case FIONBIO:
2683                 return fionbio(file, p);
2684         case TIOCEXCL:
2685                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2686                 return 0;
2687         case TIOCNXCL:
2688                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2689                 return 0;
2690         case TIOCGEXCL:
2691         {
2692                 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2693                 return put_user(excl, (int __user *)p);
2694         }
2695         case TIOCNOTTY:
2696                 if (current->signal->tty != tty)
2697                         return -ENOTTY;
2698                 no_tty();
2699                 return 0;
2700         case TIOCSCTTY:
2701                 return tiocsctty(tty, arg);
2702         case TIOCGPGRP:
2703                 return tiocgpgrp(tty, real_tty, p);
2704         case TIOCSPGRP:
2705                 return tiocspgrp(tty, real_tty, p);
2706         case TIOCGSID:
2707                 return tiocgsid(tty, real_tty, p);
2708         case TIOCGETD:
2709                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2710         case TIOCSETD:
2711                 return tiocsetd(tty, p);
2712         case TIOCVHANGUP:
2713                 if (!capable(CAP_SYS_ADMIN))
2714                         return -EPERM;
2715                 tty_vhangup(tty);
2716                 return 0;
2717         case TIOCGDEV:
2718         {
2719                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2720                 return put_user(ret, (unsigned int __user *)p);
2721         }
2722         /*
2723          * Break handling
2724          */
2725         case TIOCSBRK:  /* Turn break on, unconditionally */
2726                 if (tty->ops->break_ctl)
2727                         return tty->ops->break_ctl(tty, -1);
2728                 return 0;
2729         case TIOCCBRK:  /* Turn break off, unconditionally */
2730                 if (tty->ops->break_ctl)
2731                         return tty->ops->break_ctl(tty, 0);
2732                 return 0;
2733         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2734                 /* non-zero arg means wait for all output data
2735                  * to be sent (performed above) but don't send break.
2736                  * This is used by the tcdrain() termios function.
2737                  */
2738                 if (!arg)
2739                         return send_break(tty, 250);
2740                 return 0;
2741         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2742                 return send_break(tty, arg ? arg*100 : 250);
2743
2744         case TIOCMGET:
2745                 return tty_tiocmget(tty, p);
2746         case TIOCMSET:
2747         case TIOCMBIC:
2748         case TIOCMBIS:
2749                 return tty_tiocmset(tty, cmd, p);
2750         case TIOCGICOUNT:
2751                 retval = tty_tiocgicount(tty, p);
2752                 /* For the moment allow fall through to the old method */
2753                 if (retval != -EINVAL)
2754                         return retval;
2755                 break;
2756         case TCFLSH:
2757                 switch (arg) {
2758                 case TCIFLUSH:
2759                 case TCIOFLUSH:
2760                 /* flush tty buffer and allow ldisc to process ioctl */
2761                         tty_buffer_flush(tty);
2762                         break;
2763                 }
2764                 break;
2765         }
2766         if (tty->ops->ioctl) {
2767                 retval = (tty->ops->ioctl)(tty, cmd, arg);
2768                 if (retval != -ENOIOCTLCMD)
2769                         return retval;
2770         }
2771         ld = tty_ldisc_ref_wait(tty);
2772         retval = -EINVAL;
2773         if (ld->ops->ioctl) {
2774                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2775                 if (retval == -ENOIOCTLCMD)
2776                         retval = -ENOTTY;
2777         }
2778         tty_ldisc_deref(ld);
2779         return retval;
2780 }
2781
2782 #ifdef CONFIG_COMPAT
2783 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2784                                 unsigned long arg)
2785 {
2786         struct inode *inode = file->f_dentry->d_inode;
2787         struct tty_struct *tty = file_tty(file);
2788         struct tty_ldisc *ld;
2789         int retval = -ENOIOCTLCMD;
2790
2791         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2792                 return -EINVAL;
2793
2794         if (tty->ops->compat_ioctl) {
2795                 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2796                 if (retval != -ENOIOCTLCMD)
2797                         return retval;
2798         }
2799
2800         ld = tty_ldisc_ref_wait(tty);
2801         if (ld->ops->compat_ioctl)
2802                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2803         else
2804                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2805         tty_ldisc_deref(ld);
2806
2807         return retval;
2808 }
2809 #endif
2810
2811 static int this_tty(const void *t, struct file *file, unsigned fd)
2812 {
2813         if (likely(file->f_op->read != tty_read))
2814                 return 0;
2815         return file_tty(file) != t ? 0 : fd + 1;
2816 }
2817         
2818 /*
2819  * This implements the "Secure Attention Key" ---  the idea is to
2820  * prevent trojan horses by killing all processes associated with this
2821  * tty when the user hits the "Secure Attention Key".  Required for
2822  * super-paranoid applications --- see the Orange Book for more details.
2823  *
2824  * This code could be nicer; ideally it should send a HUP, wait a few
2825  * seconds, then send a INT, and then a KILL signal.  But you then
2826  * have to coordinate with the init process, since all processes associated
2827  * with the current tty must be dead before the new getty is allowed
2828  * to spawn.
2829  *
2830  * Now, if it would be correct ;-/ The current code has a nasty hole -
2831  * it doesn't catch files in flight. We may send the descriptor to ourselves
2832  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2833  *
2834  * Nasty bug: do_SAK is being called in interrupt context.  This can
2835  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2836  */
2837 void __do_SAK(struct tty_struct *tty)
2838 {
2839 #ifdef TTY_SOFT_SAK
2840         tty_hangup(tty);
2841 #else
2842         struct task_struct *g, *p;
2843         struct pid *session;
2844         int             i;
2845
2846         if (!tty)
2847                 return;
2848         session = tty->session;
2849
2850         tty_ldisc_flush(tty);
2851
2852         tty_driver_flush_buffer(tty);
2853
2854         read_lock(&tasklist_lock);
2855         /* Kill the entire session */
2856         do_each_pid_task(session, PIDTYPE_SID, p) {
2857                 printk(KERN_NOTICE "SAK: killed process %d"
2858                         " (%s): task_session(p)==tty->session\n",
2859                         task_pid_nr(p), p->comm);
2860                 send_sig(SIGKILL, p, 1);
2861         } while_each_pid_task(session, PIDTYPE_SID, p);
2862         /* Now kill any processes that happen to have the
2863          * tty open.
2864          */
2865         do_each_thread(g, p) {
2866                 if (p->signal->tty == tty) {
2867                         printk(KERN_NOTICE "SAK: killed process %d"
2868                             " (%s): task_session(p)==tty->session\n",
2869                             task_pid_nr(p), p->comm);
2870                         send_sig(SIGKILL, p, 1);
2871                         continue;
2872                 }
2873                 task_lock(p);
2874                 i = iterate_fd(p->files, 0, this_tty, tty);
2875                 if (i != 0) {
2876                         printk(KERN_NOTICE "SAK: killed process %d"
2877                             " (%s): fd#%d opened to the tty\n",
2878                                     task_pid_nr(p), p->comm, i - 1);
2879                         force_sig(SIGKILL, p);
2880                 }
2881                 task_unlock(p);
2882         } while_each_thread(g, p);
2883         read_unlock(&tasklist_lock);
2884 #endif
2885 }
2886
2887 static void do_SAK_work(struct work_struct *work)
2888 {
2889         struct tty_struct *tty =
2890                 container_of(work, struct tty_struct, SAK_work);
2891         __do_SAK(tty);
2892 }
2893
2894 /*
2895  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2896  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2897  * the values which we write to it will be identical to the values which it
2898  * already has. --akpm
2899  */
2900 void do_SAK(struct tty_struct *tty)
2901 {
2902         if (!tty)
2903                 return;
2904         schedule_work(&tty->SAK_work);
2905 }
2906
2907 EXPORT_SYMBOL(do_SAK);
2908
2909 static int dev_match_devt(struct device *dev, void *data)
2910 {
2911         dev_t *devt = data;
2912         return dev->devt == *devt;
2913 }
2914
2915 /* Must put_device() after it's unused! */
2916 static struct device *tty_get_device(struct tty_struct *tty)
2917 {
2918         dev_t devt = tty_devnum(tty);
2919         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2920 }
2921
2922
2923 /**
2924  *      initialize_tty_struct
2925  *      @tty: tty to initialize
2926  *
2927  *      This subroutine initializes a tty structure that has been newly
2928  *      allocated.
2929  *
2930  *      Locking: none - tty in question must not be exposed at this point
2931  */
2932
2933 void initialize_tty_struct(struct tty_struct *tty,
2934                 struct tty_driver *driver, int idx)
2935 {
2936         memset(tty, 0, sizeof(struct tty_struct));
2937         kref_init(&tty->kref);
2938         tty->magic = TTY_MAGIC;
2939         tty_ldisc_init(tty);
2940         tty->session = NULL;
2941         tty->pgrp = NULL;
2942         mutex_init(&tty->legacy_mutex);
2943         mutex_init(&tty->termios_mutex);
2944         mutex_init(&tty->ldisc_mutex);
2945         init_waitqueue_head(&tty->write_wait);
2946         init_waitqueue_head(&tty->read_wait);
2947         INIT_WORK(&tty->hangup_work, do_tty_hangup);
2948         mutex_init(&tty->atomic_write_lock);
2949         spin_lock_init(&tty->ctrl_lock);
2950         INIT_LIST_HEAD(&tty->tty_files);
2951         INIT_WORK(&tty->SAK_work, do_SAK_work);
2952
2953         tty->driver = driver;
2954         tty->ops = driver->ops;
2955         tty->index = idx;
2956         tty_line_name(driver, idx, tty->name);
2957         tty->dev = tty_get_device(tty);
2958 }
2959
2960 /**
2961  *      deinitialize_tty_struct
2962  *      @tty: tty to deinitialize
2963  *
2964  *      This subroutine deinitializes a tty structure that has been newly
2965  *      allocated but tty_release cannot be called on that yet.
2966  *
2967  *      Locking: none - tty in question must not be exposed at this point
2968  */
2969 void deinitialize_tty_struct(struct tty_struct *tty)
2970 {
2971         tty_ldisc_deinit(tty);
2972 }
2973
2974 /**
2975  *      tty_put_char    -       write one character to a tty
2976  *      @tty: tty
2977  *      @ch: character
2978  *
2979  *      Write one byte to the tty using the provided put_char method
2980  *      if present. Returns the number of characters successfully output.
2981  *
2982  *      Note: the specific put_char operation in the driver layer may go
2983  *      away soon. Don't call it directly, use this method
2984  */
2985
2986 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2987 {
2988         if (tty->ops->put_char)
2989                 return tty->ops->put_char(tty, ch);
2990         return tty->ops->write(tty, &ch, 1);
2991 }
2992 EXPORT_SYMBOL_GPL(tty_put_char);
2993
2994 struct class *tty_class;
2995
2996 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
2997                 unsigned int index, unsigned int count)
2998 {
2999         /* init here, since reused cdevs cause crashes */
3000         cdev_init(&driver->cdevs[index], &tty_fops);
3001         driver->cdevs[index].owner = driver->owner;
3002         return cdev_add(&driver->cdevs[index], dev, count);
3003 }
3004
3005 /**
3006  *      tty_register_device - register a tty device
3007  *      @driver: the tty driver that describes the tty device
3008  *      @index: the index in the tty driver for this tty device
3009  *      @device: a struct device that is associated with this tty device.
3010  *              This field is optional, if there is no known struct device
3011  *              for this tty device it can be set to NULL safely.
3012  *
3013  *      Returns a pointer to the struct device for this tty device
3014  *      (or ERR_PTR(-EFOO) on error).
3015  *
3016  *      This call is required to be made to register an individual tty device
3017  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3018  *      that bit is not set, this function should not be called by a tty
3019  *      driver.
3020  *
3021  *      Locking: ??
3022  */
3023
3024 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3025                                    struct device *device)
3026 {
3027         return tty_register_device_attr(driver, index, device, NULL, NULL);
3028 }
3029 EXPORT_SYMBOL(tty_register_device);
3030
3031 static void tty_device_create_release(struct device *dev)
3032 {
3033         pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3034         kfree(dev);
3035 }
3036
3037 /**
3038  *      tty_register_device_attr - register a tty device
3039  *      @driver: the tty driver that describes the tty device
3040  *      @index: the index in the tty driver for this tty device
3041  *      @device: a struct device that is associated with this tty device.
3042  *              This field is optional, if there is no known struct device
3043  *              for this tty device it can be set to NULL safely.
3044  *      @drvdata: Driver data to be set to device.
3045  *      @attr_grp: Attribute group to be set on device.
3046  *
3047  *      Returns a pointer to the struct device for this tty device
3048  *      (or ERR_PTR(-EFOO) on error).
3049  *
3050  *      This call is required to be made to register an individual tty device
3051  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3052  *      that bit is not set, this function should not be called by a tty
3053  *      driver.
3054  *
3055  *      Locking: ??
3056  */
3057 struct device *tty_register_device_attr(struct tty_driver *driver,
3058                                    unsigned index, struct device *device,
3059                                    void *drvdata,
3060                                    const struct attribute_group **attr_grp)
3061 {
3062         char name[64];
3063         dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3064         struct device *dev = NULL;
3065         int retval = -ENODEV;
3066         bool cdev = false;
3067
3068         if (index >= driver->num) {
3069                 printk(KERN_ERR "Attempt to register invalid tty line number "
3070                        " (%d).\n", index);
3071                 return ERR_PTR(-EINVAL);
3072         }
3073
3074         if (driver->type == TTY_DRIVER_TYPE_PTY)
3075                 pty_line_name(driver, index, name);
3076         else
3077                 tty_line_name(driver, index, name);
3078
3079         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3080                 retval = tty_cdev_add(driver, devt, index, 1);
3081                 if (retval)
3082                         goto error;
3083                 cdev = true;
3084         }
3085
3086         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3087         if (!dev) {
3088                 retval = -ENOMEM;
3089                 goto error;
3090         }
3091
3092         dev->devt = devt;
3093         dev->class = tty_class;
3094         dev->parent = device;
3095         dev->release = tty_device_create_release;
3096         dev_set_name(dev, "%s", name);
3097         dev->groups = attr_grp;
3098         dev_set_drvdata(dev, drvdata);
3099
3100         retval = device_register(dev);
3101         if (retval)
3102                 goto error;
3103
3104         return dev;
3105
3106 error:
3107         put_device(dev);
3108         if (cdev)
3109                 cdev_del(&driver->cdevs[index]);
3110         return ERR_PTR(retval);
3111 }
3112 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3113
3114 /**
3115  *      tty_unregister_device - unregister a tty device
3116  *      @driver: the tty driver that describes the tty device
3117  *      @index: the index in the tty driver for this tty device
3118  *
3119  *      If a tty device is registered with a call to tty_register_device() then
3120  *      this function must be called when the tty device is gone.
3121  *
3122  *      Locking: ??
3123  */
3124
3125 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3126 {
3127         device_destroy(tty_class,
3128                 MKDEV(driver->major, driver->minor_start) + index);
3129         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3130                 cdev_del(&driver->cdevs[index]);
3131 }
3132 EXPORT_SYMBOL(tty_unregister_device);
3133
3134 /**
3135  * __tty_alloc_driver -- allocate tty driver
3136  * @lines: count of lines this driver can handle at most
3137  * @owner: module which is repsonsible for this driver
3138  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3139  *
3140  * This should not be called directly, some of the provided macros should be
3141  * used instead. Use IS_ERR and friends on @retval.
3142  */
3143 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3144                 unsigned long flags)
3145 {
3146         struct tty_driver *driver;
3147         unsigned int cdevs = 1;
3148         int err;
3149
3150         if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3151                 return ERR_PTR(-EINVAL);
3152
3153         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3154         if (!driver)
3155                 return ERR_PTR(-ENOMEM);
3156
3157         kref_init(&driver->kref);
3158         driver->magic = TTY_DRIVER_MAGIC;
3159         driver->num = lines;
3160         driver->owner = owner;
3161         driver->flags = flags;
3162
3163         if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3164                 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3165                                 GFP_KERNEL);
3166                 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3167                                 GFP_KERNEL);
3168                 if (!driver->ttys || !driver->termios) {
3169                         err = -ENOMEM;
3170                         goto err_free_all;
3171                 }
3172         }
3173
3174         if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3175                 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3176                                 GFP_KERNEL);
3177                 if (!driver->ports) {
3178                         err = -ENOMEM;
3179                         goto err_free_all;
3180                 }
3181                 cdevs = lines;
3182         }
3183
3184         driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3185         if (!driver->cdevs) {
3186                 err = -ENOMEM;
3187                 goto err_free_all;
3188         }
3189
3190         return driver;
3191 err_free_all:
3192         kfree(driver->ports);
3193         kfree(driver->ttys);
3194         kfree(driver->termios);
3195         kfree(driver);
3196         return ERR_PTR(err);
3197 }
3198 EXPORT_SYMBOL(__tty_alloc_driver);
3199
3200 static void destruct_tty_driver(struct kref *kref)
3201 {
3202         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3203         int i;
3204         struct ktermios *tp;
3205
3206         if (driver->flags & TTY_DRIVER_INSTALLED) {
3207                 /*
3208                  * Free the termios and termios_locked structures because
3209                  * we don't want to get memory leaks when modular tty
3210                  * drivers are removed from the kernel.
3211                  */
3212                 for (i = 0; i < driver->num; i++) {
3213                         tp = driver->termios[i];
3214                         if (tp) {
3215                                 driver->termios[i] = NULL;
3216                                 kfree(tp);
3217                         }
3218                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3219                                 tty_unregister_device(driver, i);
3220                 }
3221                 proc_tty_unregister_driver(driver);
3222                 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3223                         cdev_del(&driver->cdevs[0]);
3224         }
3225         kfree(driver->cdevs);
3226         kfree(driver->ports);
3227         kfree(driver->termios);
3228         kfree(driver->ttys);
3229         kfree(driver);
3230 }
3231
3232 void tty_driver_kref_put(struct tty_driver *driver)
3233 {
3234         kref_put(&driver->kref, destruct_tty_driver);
3235 }
3236 EXPORT_SYMBOL(tty_driver_kref_put);
3237
3238 void tty_set_operations(struct tty_driver *driver,
3239                         const struct tty_operations *op)
3240 {
3241         driver->ops = op;
3242 };
3243 EXPORT_SYMBOL(tty_set_operations);
3244
3245 void put_tty_driver(struct tty_driver *d)
3246 {
3247         tty_driver_kref_put(d);
3248 }
3249 EXPORT_SYMBOL(put_tty_driver);
3250
3251 /*
3252  * Called by a tty driver to register itself.
3253  */
3254 int tty_register_driver(struct tty_driver *driver)
3255 {
3256         int error;
3257         int i;
3258         dev_t dev;
3259         struct device *d;
3260
3261         if (!driver->major) {
3262                 error = alloc_chrdev_region(&dev, driver->minor_start,
3263                                                 driver->num, driver->name);
3264                 if (!error) {
3265                         driver->major = MAJOR(dev);
3266                         driver->minor_start = MINOR(dev);
3267                 }
3268         } else {
3269                 dev = MKDEV(driver->major, driver->minor_start);
3270                 error = register_chrdev_region(dev, driver->num, driver->name);
3271         }
3272         if (error < 0)
3273                 goto err;
3274
3275         if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3276                 error = tty_cdev_add(driver, dev, 0, driver->num);
3277                 if (error)
3278                         goto err_unreg_char;
3279         }
3280
3281         mutex_lock(&tty_mutex);
3282         list_add(&driver->tty_drivers, &tty_drivers);
3283         mutex_unlock(&tty_mutex);
3284
3285         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3286                 for (i = 0; i < driver->num; i++) {
3287                         d = tty_register_device(driver, i, NULL);
3288                         if (IS_ERR(d)) {
3289                                 error = PTR_ERR(d);
3290                                 goto err_unreg_devs;
3291                         }
3292                 }
3293         }
3294         proc_tty_register_driver(driver);
3295         driver->flags |= TTY_DRIVER_INSTALLED;
3296         return 0;
3297
3298 err_unreg_devs:
3299         for (i--; i >= 0; i--)
3300                 tty_unregister_device(driver, i);
3301
3302         mutex_lock(&tty_mutex);
3303         list_del(&driver->tty_drivers);
3304         mutex_unlock(&tty_mutex);
3305
3306 err_unreg_char:
3307         unregister_chrdev_region(dev, driver->num);
3308 err:
3309         return error;
3310 }
3311 EXPORT_SYMBOL(tty_register_driver);
3312
3313 /*
3314  * Called by a tty driver to unregister itself.
3315  */
3316 int tty_unregister_driver(struct tty_driver *driver)
3317 {
3318 #if 0
3319         /* FIXME */
3320         if (driver->refcount)
3321                 return -EBUSY;
3322 #endif
3323         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3324                                 driver->num);
3325         mutex_lock(&tty_mutex);
3326         list_del(&driver->tty_drivers);
3327         mutex_unlock(&tty_mutex);
3328         return 0;
3329 }
3330
3331 EXPORT_SYMBOL(tty_unregister_driver);
3332
3333 dev_t tty_devnum(struct tty_struct *tty)
3334 {
3335         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3336 }
3337 EXPORT_SYMBOL(tty_devnum);
3338
3339 void proc_clear_tty(struct task_struct *p)
3340 {
3341         unsigned long flags;
3342         struct tty_struct *tty;
3343         spin_lock_irqsave(&p->sighand->siglock, flags);
3344         tty = p->signal->tty;
3345         p->signal->tty = NULL;
3346         spin_unlock_irqrestore(&p->sighand->siglock, flags);
3347         tty_kref_put(tty);
3348 }
3349
3350 /* Called under the sighand lock */
3351
3352 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3353 {
3354         if (tty) {
3355                 unsigned long flags;
3356                 /* We should not have a session or pgrp to put here but.... */
3357                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3358                 put_pid(tty->session);
3359                 put_pid(tty->pgrp);
3360                 tty->pgrp = get_pid(task_pgrp(tsk));
3361                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3362                 tty->session = get_pid(task_session(tsk));
3363                 if (tsk->signal->tty) {
3364                         printk(KERN_DEBUG "tty not NULL!!\n");
3365                         tty_kref_put(tsk->signal->tty);
3366                 }
3367         }
3368         put_pid(tsk->signal->tty_old_pgrp);
3369         tsk->signal->tty = tty_kref_get(tty);
3370         tsk->signal->tty_old_pgrp = NULL;
3371 }
3372
3373 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3374 {
3375         spin_lock_irq(&tsk->sighand->siglock);
3376         __proc_set_tty(tsk, tty);
3377         spin_unlock_irq(&tsk->sighand->siglock);
3378 }
3379
3380 struct tty_struct *get_current_tty(void)
3381 {
3382         struct tty_struct *tty;
3383         unsigned long flags;
3384
3385         spin_lock_irqsave(&current->sighand->siglock, flags);
3386         tty = tty_kref_get(current->signal->tty);
3387         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3388         return tty;
3389 }
3390 EXPORT_SYMBOL_GPL(get_current_tty);
3391
3392 void tty_default_fops(struct file_operations *fops)
3393 {
3394         *fops = tty_fops;
3395 }
3396
3397 /*
3398  * Initialize the console device. This is called *early*, so
3399  * we can't necessarily depend on lots of kernel help here.
3400  * Just do some early initializations, and do the complex setup
3401  * later.
3402  */
3403 void __init console_init(void)
3404 {
3405         initcall_t *call;
3406
3407         /* Setup the default TTY line discipline. */
3408         tty_ldisc_begin();
3409
3410         /*
3411          * set up the console device so that later boot sequences can
3412          * inform about problems etc..
3413          */
3414         call = __con_initcall_start;
3415         while (call < __con_initcall_end) {
3416                 (*call)();
3417                 call++;
3418         }
3419 }
3420
3421 static char *tty_devnode(struct device *dev, umode_t *mode)
3422 {
3423         if (!mode)
3424                 return NULL;
3425         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3426             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3427                 *mode = 0666;
3428         return NULL;
3429 }
3430
3431 static int __init tty_class_init(void)
3432 {
3433         tty_class = class_create(THIS_MODULE, "tty");
3434         if (IS_ERR(tty_class))
3435                 return PTR_ERR(tty_class);
3436         tty_class->devnode = tty_devnode;
3437         return 0;
3438 }
3439
3440 postcore_initcall(tty_class_init);
3441
3442 /* 3/2004 jmc: why do these devices exist? */
3443 static struct cdev tty_cdev, console_cdev;
3444
3445 static ssize_t show_cons_active(struct device *dev,
3446                                 struct device_attribute *attr, char *buf)
3447 {
3448         struct console *cs[16];
3449         int i = 0;
3450         struct console *c;
3451         ssize_t count = 0;
3452
3453         console_lock();
3454         for_each_console(c) {
3455                 if (!c->device)
3456                         continue;
3457                 if (!c->write)
3458                         continue;
3459                 if ((c->flags & CON_ENABLED) == 0)
3460                         continue;
3461                 cs[i++] = c;
3462                 if (i >= ARRAY_SIZE(cs))
3463                         break;
3464         }
3465         while (i--)
3466                 count += sprintf(buf + count, "%s%d%c",
3467                                  cs[i]->name, cs[i]->index, i ? ' ':'\n');
3468         console_unlock();
3469
3470         return count;
3471 }
3472 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3473
3474 static struct device *consdev;
3475
3476 void console_sysfs_notify(void)
3477 {
3478         if (consdev)
3479                 sysfs_notify(&consdev->kobj, NULL, "active");
3480 }
3481
3482 /*
3483  * Ok, now we can initialize the rest of the tty devices and can count
3484  * on memory allocations, interrupts etc..
3485  */
3486 int __init tty_init(void)
3487 {
3488         cdev_init(&tty_cdev, &tty_fops);
3489         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3490             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3491                 panic("Couldn't register /dev/tty driver\n");
3492         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3493
3494         cdev_init(&console_cdev, &console_fops);
3495         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3496             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3497                 panic("Couldn't register /dev/console driver\n");
3498         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3499                               "console");
3500         if (IS_ERR(consdev))
3501                 consdev = NULL;
3502         else
3503                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3504
3505 #ifdef CONFIG_VT
3506         vty_init(&console_fops);
3507 #endif
3508         return 0;
3509 }
3510