tty/serial/sirf: fix MODULE_DEVICE_TABLE
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
114         .c_iflag = ICRNL | IXON,
115         .c_oflag = OPOST | ONLCR,
116         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118                    ECHOCTL | ECHOKE | IEXTEN,
119         .c_cc = INIT_C_CC,
120         .c_ispeed = 38400,
121         .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129
130 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143                                                         size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149                                 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159 /**
160  *      alloc_tty_struct        -       allocate a tty object
161  *
162  *      Return a new empty tty structure. The data fields have not
163  *      been initialized in any way but has been zeroed
164  *
165  *      Locking: none
166  */
167
168 struct tty_struct *alloc_tty_struct(void)
169 {
170         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 }
172
173 /**
174  *      free_tty_struct         -       free a disused tty
175  *      @tty: tty struct to free
176  *
177  *      Free the write buffers, tty queue and tty memory itself.
178  *
179  *      Locking: none. Must be called after tty is definitely unused
180  */
181
182 void free_tty_struct(struct tty_struct *tty)
183 {
184         if (!tty)
185                 return;
186         if (tty->dev)
187                 put_device(tty->dev);
188         kfree(tty->write_buf);
189         tty->magic = 0xDEADDEAD;
190         kfree(tty);
191 }
192
193 static inline struct tty_struct *file_tty(struct file *file)
194 {
195         return ((struct tty_file_private *)file->private_data)->tty;
196 }
197
198 int tty_alloc_file(struct file *file)
199 {
200         struct tty_file_private *priv;
201
202         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
203         if (!priv)
204                 return -ENOMEM;
205
206         file->private_data = priv;
207
208         return 0;
209 }
210
211 /* Associate a new file with the tty structure */
212 void tty_add_file(struct tty_struct *tty, struct file *file)
213 {
214         struct tty_file_private *priv = file->private_data;
215
216         priv->tty = tty;
217         priv->file = file;
218
219         spin_lock(&tty_files_lock);
220         list_add(&priv->list, &tty->tty_files);
221         spin_unlock(&tty_files_lock);
222 }
223
224 /**
225  * tty_free_file - free file->private_data
226  *
227  * This shall be used only for fail path handling when tty_add_file was not
228  * called yet.
229  */
230 void tty_free_file(struct file *file)
231 {
232         struct tty_file_private *priv = file->private_data;
233
234         file->private_data = NULL;
235         kfree(priv);
236 }
237
238 /* Delete file from its tty */
239 static void tty_del_file(struct file *file)
240 {
241         struct tty_file_private *priv = file->private_data;
242
243         spin_lock(&tty_files_lock);
244         list_del(&priv->list);
245         spin_unlock(&tty_files_lock);
246         tty_free_file(file);
247 }
248
249
250 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
251
252 /**
253  *      tty_name        -       return tty naming
254  *      @tty: tty structure
255  *      @buf: buffer for output
256  *
257  *      Convert a tty structure into a name. The name reflects the kernel
258  *      naming policy and if udev is in use may not reflect user space
259  *
260  *      Locking: none
261  */
262
263 char *tty_name(struct tty_struct *tty, char *buf)
264 {
265         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
266                 strcpy(buf, "NULL tty");
267         else
268                 strcpy(buf, tty->name);
269         return buf;
270 }
271
272 EXPORT_SYMBOL(tty_name);
273
274 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
275                               const char *routine)
276 {
277 #ifdef TTY_PARANOIA_CHECK
278         if (!tty) {
279                 printk(KERN_WARNING
280                         "null TTY for (%d:%d) in %s\n",
281                         imajor(inode), iminor(inode), routine);
282                 return 1;
283         }
284         if (tty->magic != TTY_MAGIC) {
285                 printk(KERN_WARNING
286                         "bad magic number for tty struct (%d:%d) in %s\n",
287                         imajor(inode), iminor(inode), routine);
288                 return 1;
289         }
290 #endif
291         return 0;
292 }
293
294 static int check_tty_count(struct tty_struct *tty, const char *routine)
295 {
296 #ifdef CHECK_TTY_COUNT
297         struct list_head *p;
298         int count = 0;
299
300         spin_lock(&tty_files_lock);
301         list_for_each(p, &tty->tty_files) {
302                 count++;
303         }
304         spin_unlock(&tty_files_lock);
305         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
306             tty->driver->subtype == PTY_TYPE_SLAVE &&
307             tty->link && tty->link->count)
308                 count++;
309         if (tty->count != count) {
310                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
311                                     "!= #fd's(%d) in %s\n",
312                        tty->name, tty->count, count, routine);
313                 return count;
314         }
315 #endif
316         return 0;
317 }
318
319 /**
320  *      get_tty_driver          -       find device of a tty
321  *      @dev_t: device identifier
322  *      @index: returns the index of the tty
323  *
324  *      This routine returns a tty driver structure, given a device number
325  *      and also passes back the index number.
326  *
327  *      Locking: caller must hold tty_mutex
328  */
329
330 static struct tty_driver *get_tty_driver(dev_t device, int *index)
331 {
332         struct tty_driver *p;
333
334         list_for_each_entry(p, &tty_drivers, tty_drivers) {
335                 dev_t base = MKDEV(p->major, p->minor_start);
336                 if (device < base || device >= base + p->num)
337                         continue;
338                 *index = device - base;
339                 return tty_driver_kref_get(p);
340         }
341         return NULL;
342 }
343
344 #ifdef CONFIG_CONSOLE_POLL
345
346 /**
347  *      tty_find_polling_driver -       find device of a polled tty
348  *      @name: name string to match
349  *      @line: pointer to resulting tty line nr
350  *
351  *      This routine returns a tty driver structure, given a name
352  *      and the condition that the tty driver is capable of polled
353  *      operation.
354  */
355 struct tty_driver *tty_find_polling_driver(char *name, int *line)
356 {
357         struct tty_driver *p, *res = NULL;
358         int tty_line = 0;
359         int len;
360         char *str, *stp;
361
362         for (str = name; *str; str++)
363                 if ((*str >= '0' && *str <= '9') || *str == ',')
364                         break;
365         if (!*str)
366                 return NULL;
367
368         len = str - name;
369         tty_line = simple_strtoul(str, &str, 10);
370
371         mutex_lock(&tty_mutex);
372         /* Search through the tty devices to look for a match */
373         list_for_each_entry(p, &tty_drivers, tty_drivers) {
374                 if (strncmp(name, p->name, len) != 0)
375                         continue;
376                 stp = str;
377                 if (*stp == ',')
378                         stp++;
379                 if (*stp == '\0')
380                         stp = NULL;
381
382                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
383                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
384                         res = tty_driver_kref_get(p);
385                         *line = tty_line;
386                         break;
387                 }
388         }
389         mutex_unlock(&tty_mutex);
390
391         return res;
392 }
393 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
394 #endif
395
396 /**
397  *      tty_check_change        -       check for POSIX terminal changes
398  *      @tty: tty to check
399  *
400  *      If we try to write to, or set the state of, a terminal and we're
401  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
402  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
403  *
404  *      Locking: ctrl_lock
405  */
406
407 int tty_check_change(struct tty_struct *tty)
408 {
409         unsigned long flags;
410         int ret = 0;
411
412         if (current->signal->tty != tty)
413                 return 0;
414
415         spin_lock_irqsave(&tty->ctrl_lock, flags);
416
417         if (!tty->pgrp) {
418                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
419                 goto out_unlock;
420         }
421         if (task_pgrp(current) == tty->pgrp)
422                 goto out_unlock;
423         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
424         if (is_ignored(SIGTTOU))
425                 goto out;
426         if (is_current_pgrp_orphaned()) {
427                 ret = -EIO;
428                 goto out;
429         }
430         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
431         set_thread_flag(TIF_SIGPENDING);
432         ret = -ERESTARTSYS;
433 out:
434         return ret;
435 out_unlock:
436         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
437         return ret;
438 }
439
440 EXPORT_SYMBOL(tty_check_change);
441
442 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
443                                 size_t count, loff_t *ppos)
444 {
445         return 0;
446 }
447
448 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
449                                  size_t count, loff_t *ppos)
450 {
451         return -EIO;
452 }
453
454 /* No kernel lock held - none needed ;) */
455 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
456 {
457         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
458 }
459
460 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
461                 unsigned long arg)
462 {
463         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
464 }
465
466 static long hung_up_tty_compat_ioctl(struct file *file,
467                                      unsigned int cmd, unsigned long arg)
468 {
469         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
470 }
471
472 static const struct file_operations tty_fops = {
473         .llseek         = no_llseek,
474         .read           = tty_read,
475         .write          = tty_write,
476         .poll           = tty_poll,
477         .unlocked_ioctl = tty_ioctl,
478         .compat_ioctl   = tty_compat_ioctl,
479         .open           = tty_open,
480         .release        = tty_release,
481         .fasync         = tty_fasync,
482 };
483
484 static const struct file_operations console_fops = {
485         .llseek         = no_llseek,
486         .read           = tty_read,
487         .write          = redirected_tty_write,
488         .poll           = tty_poll,
489         .unlocked_ioctl = tty_ioctl,
490         .compat_ioctl   = tty_compat_ioctl,
491         .open           = tty_open,
492         .release        = tty_release,
493         .fasync         = tty_fasync,
494 };
495
496 static const struct file_operations hung_up_tty_fops = {
497         .llseek         = no_llseek,
498         .read           = hung_up_tty_read,
499         .write          = hung_up_tty_write,
500         .poll           = hung_up_tty_poll,
501         .unlocked_ioctl = hung_up_tty_ioctl,
502         .compat_ioctl   = hung_up_tty_compat_ioctl,
503         .release        = tty_release,
504 };
505
506 static DEFINE_SPINLOCK(redirect_lock);
507 static struct file *redirect;
508
509 /**
510  *      tty_wakeup      -       request more data
511  *      @tty: terminal
512  *
513  *      Internal and external helper for wakeups of tty. This function
514  *      informs the line discipline if present that the driver is ready
515  *      to receive more output data.
516  */
517
518 void tty_wakeup(struct tty_struct *tty)
519 {
520         struct tty_ldisc *ld;
521
522         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
523                 ld = tty_ldisc_ref(tty);
524                 if (ld) {
525                         if (ld->ops->write_wakeup)
526                                 ld->ops->write_wakeup(tty);
527                         tty_ldisc_deref(ld);
528                 }
529         }
530         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
531 }
532
533 EXPORT_SYMBOL_GPL(tty_wakeup);
534
535 /**
536  *      tty_signal_session_leader       - sends SIGHUP to session leader
537  *      @tty            controlling tty
538  *      @exit_session   if non-zero, signal all foreground group processes
539  *
540  *      Send SIGHUP and SIGCONT to the session leader and its process group.
541  *      Optionally, signal all processes in the foreground process group.
542  *
543  *      Returns the number of processes in the session with this tty
544  *      as their controlling terminal. This value is used to drop
545  *      tty references for those processes.
546  */
547 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
548 {
549         struct task_struct *p;
550         int refs = 0;
551         struct pid *tty_pgrp = NULL;
552
553         read_lock(&tasklist_lock);
554         if (tty->session) {
555                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
556                         spin_lock_irq(&p->sighand->siglock);
557                         if (p->signal->tty == tty) {
558                                 p->signal->tty = NULL;
559                                 /* We defer the dereferences outside fo
560                                    the tasklist lock */
561                                 refs++;
562                         }
563                         if (!p->signal->leader) {
564                                 spin_unlock_irq(&p->sighand->siglock);
565                                 continue;
566                         }
567                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
568                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
569                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
570                         spin_lock(&tty->ctrl_lock);
571                         tty_pgrp = get_pid(tty->pgrp);
572                         if (tty->pgrp)
573                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
574                         spin_unlock(&tty->ctrl_lock);
575                         spin_unlock_irq(&p->sighand->siglock);
576                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
577         }
578         read_unlock(&tasklist_lock);
579
580         if (tty_pgrp) {
581                 if (exit_session)
582                         kill_pgrp(tty_pgrp, SIGHUP, exit_session);
583                 put_pid(tty_pgrp);
584         }
585
586         return refs;
587 }
588
589 /**
590  *      __tty_hangup            -       actual handler for hangup events
591  *      @work: tty device
592  *
593  *      This can be called by a "kworker" kernel thread.  That is process
594  *      synchronous but doesn't hold any locks, so we need to make sure we
595  *      have the appropriate locks for what we're doing.
596  *
597  *      The hangup event clears any pending redirections onto the hung up
598  *      device. It ensures future writes will error and it does the needed
599  *      line discipline hangup and signal delivery. The tty object itself
600  *      remains intact.
601  *
602  *      Locking:
603  *              BTM
604  *                redirect lock for undoing redirection
605  *                file list lock for manipulating list of ttys
606  *                tty_ldisc_lock from called functions
607  *                termios_mutex resetting termios data
608  *                tasklist_lock to walk task list for hangup event
609  *                  ->siglock to protect ->signal/->sighand
610  */
611 static void __tty_hangup(struct tty_struct *tty, int exit_session)
612 {
613         struct file *cons_filp = NULL;
614         struct file *filp, *f = NULL;
615         struct tty_file_private *priv;
616         int    closecount = 0, n;
617         int refs;
618
619         if (!tty)
620                 return;
621
622
623         spin_lock(&redirect_lock);
624         if (redirect && file_tty(redirect) == tty) {
625                 f = redirect;
626                 redirect = NULL;
627         }
628         spin_unlock(&redirect_lock);
629
630         tty_lock(tty);
631
632         /* some functions below drop BTM, so we need this bit */
633         set_bit(TTY_HUPPING, &tty->flags);
634
635         /* inuse_filps is protected by the single tty lock,
636            this really needs to change if we want to flush the
637            workqueue with the lock held */
638         check_tty_count(tty, "tty_hangup");
639
640         spin_lock(&tty_files_lock);
641         /* This breaks for file handles being sent over AF_UNIX sockets ? */
642         list_for_each_entry(priv, &tty->tty_files, list) {
643                 filp = priv->file;
644                 if (filp->f_op->write == redirected_tty_write)
645                         cons_filp = filp;
646                 if (filp->f_op->write != tty_write)
647                         continue;
648                 closecount++;
649                 __tty_fasync(-1, filp, 0);      /* can't block */
650                 filp->f_op = &hung_up_tty_fops;
651         }
652         spin_unlock(&tty_files_lock);
653
654         refs = tty_signal_session_leader(tty, exit_session);
655         /* Account for the p->signal references we killed */
656         while (refs--)
657                 tty_kref_put(tty);
658
659         /*
660          * it drops BTM and thus races with reopen
661          * we protect the race by TTY_HUPPING
662          */
663         tty_ldisc_hangup(tty);
664
665         spin_lock_irq(&tty->ctrl_lock);
666         clear_bit(TTY_THROTTLED, &tty->flags);
667         clear_bit(TTY_PUSH, &tty->flags);
668         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
669         put_pid(tty->session);
670         put_pid(tty->pgrp);
671         tty->session = NULL;
672         tty->pgrp = NULL;
673         tty->ctrl_status = 0;
674         spin_unlock_irq(&tty->ctrl_lock);
675
676         /*
677          * If one of the devices matches a console pointer, we
678          * cannot just call hangup() because that will cause
679          * tty->count and state->count to go out of sync.
680          * So we just call close() the right number of times.
681          */
682         if (cons_filp) {
683                 if (tty->ops->close)
684                         for (n = 0; n < closecount; n++)
685                                 tty->ops->close(tty, cons_filp);
686         } else if (tty->ops->hangup)
687                 (tty->ops->hangup)(tty);
688         /*
689          * We don't want to have driver/ldisc interactions beyond
690          * the ones we did here. The driver layer expects no
691          * calls after ->hangup() from the ldisc side. However we
692          * can't yet guarantee all that.
693          */
694         set_bit(TTY_HUPPED, &tty->flags);
695         clear_bit(TTY_HUPPING, &tty->flags);
696
697         tty_unlock(tty);
698
699         if (f)
700                 fput(f);
701 }
702
703 static void do_tty_hangup(struct work_struct *work)
704 {
705         struct tty_struct *tty =
706                 container_of(work, struct tty_struct, hangup_work);
707
708         __tty_hangup(tty, 0);
709 }
710
711 /**
712  *      tty_hangup              -       trigger a hangup event
713  *      @tty: tty to hangup
714  *
715  *      A carrier loss (virtual or otherwise) has occurred on this like
716  *      schedule a hangup sequence to run after this event.
717  */
718
719 void tty_hangup(struct tty_struct *tty)
720 {
721 #ifdef TTY_DEBUG_HANGUP
722         char    buf[64];
723         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
724 #endif
725         schedule_work(&tty->hangup_work);
726 }
727
728 EXPORT_SYMBOL(tty_hangup);
729
730 /**
731  *      tty_vhangup             -       process vhangup
732  *      @tty: tty to hangup
733  *
734  *      The user has asked via system call for the terminal to be hung up.
735  *      We do this synchronously so that when the syscall returns the process
736  *      is complete. That guarantee is necessary for security reasons.
737  */
738
739 void tty_vhangup(struct tty_struct *tty)
740 {
741 #ifdef TTY_DEBUG_HANGUP
742         char    buf[64];
743
744         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
745 #endif
746         __tty_hangup(tty, 0);
747 }
748
749 EXPORT_SYMBOL(tty_vhangup);
750
751
752 /**
753  *      tty_vhangup_self        -       process vhangup for own ctty
754  *
755  *      Perform a vhangup on the current controlling tty
756  */
757
758 void tty_vhangup_self(void)
759 {
760         struct tty_struct *tty;
761
762         tty = get_current_tty();
763         if (tty) {
764                 tty_vhangup(tty);
765                 tty_kref_put(tty);
766         }
767 }
768
769 /**
770  *      tty_vhangup_session             -       hangup session leader exit
771  *      @tty: tty to hangup
772  *
773  *      The session leader is exiting and hanging up its controlling terminal.
774  *      Every process in the foreground process group is signalled SIGHUP.
775  *
776  *      We do this synchronously so that when the syscall returns the process
777  *      is complete. That guarantee is necessary for security reasons.
778  */
779
780 static void tty_vhangup_session(struct tty_struct *tty)
781 {
782 #ifdef TTY_DEBUG_HANGUP
783         char    buf[64];
784
785         printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
786 #endif
787         __tty_hangup(tty, 1);
788 }
789
790 /**
791  *      tty_hung_up_p           -       was tty hung up
792  *      @filp: file pointer of tty
793  *
794  *      Return true if the tty has been subject to a vhangup or a carrier
795  *      loss
796  */
797
798 int tty_hung_up_p(struct file *filp)
799 {
800         return (filp->f_op == &hung_up_tty_fops);
801 }
802
803 EXPORT_SYMBOL(tty_hung_up_p);
804
805 static void session_clear_tty(struct pid *session)
806 {
807         struct task_struct *p;
808         do_each_pid_task(session, PIDTYPE_SID, p) {
809                 proc_clear_tty(p);
810         } while_each_pid_task(session, PIDTYPE_SID, p);
811 }
812
813 /**
814  *      disassociate_ctty       -       disconnect controlling tty
815  *      @on_exit: true if exiting so need to "hang up" the session
816  *
817  *      This function is typically called only by the session leader, when
818  *      it wants to disassociate itself from its controlling tty.
819  *
820  *      It performs the following functions:
821  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
822  *      (2)  Clears the tty from being controlling the session
823  *      (3)  Clears the controlling tty for all processes in the
824  *              session group.
825  *
826  *      The argument on_exit is set to 1 if called when a process is
827  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
828  *
829  *      Locking:
830  *              BTM is taken for hysterical raisins, and held when
831  *                called from no_tty().
832  *                tty_mutex is taken to protect tty
833  *                ->siglock is taken to protect ->signal/->sighand
834  *                tasklist_lock is taken to walk process list for sessions
835  *                  ->siglock is taken to protect ->signal/->sighand
836  */
837
838 void disassociate_ctty(int on_exit)
839 {
840         struct tty_struct *tty;
841
842         if (!current->signal->leader)
843                 return;
844
845         tty = get_current_tty();
846         if (tty) {
847                 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
848                         tty_vhangup_session(tty);
849                 } else {
850                         struct pid *tty_pgrp = tty_get_pgrp(tty);
851                         if (tty_pgrp) {
852                                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
853                                 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
854                                 put_pid(tty_pgrp);
855                         }
856                 }
857                 tty_kref_put(tty);
858
859         } else if (on_exit) {
860                 struct pid *old_pgrp;
861                 spin_lock_irq(&current->sighand->siglock);
862                 old_pgrp = current->signal->tty_old_pgrp;
863                 current->signal->tty_old_pgrp = NULL;
864                 spin_unlock_irq(&current->sighand->siglock);
865                 if (old_pgrp) {
866                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
867                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
868                         put_pid(old_pgrp);
869                 }
870                 return;
871         }
872
873         spin_lock_irq(&current->sighand->siglock);
874         put_pid(current->signal->tty_old_pgrp);
875         current->signal->tty_old_pgrp = NULL;
876         spin_unlock_irq(&current->sighand->siglock);
877
878         tty = get_current_tty();
879         if (tty) {
880                 unsigned long flags;
881                 spin_lock_irqsave(&tty->ctrl_lock, flags);
882                 put_pid(tty->session);
883                 put_pid(tty->pgrp);
884                 tty->session = NULL;
885                 tty->pgrp = NULL;
886                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
887                 tty_kref_put(tty);
888         } else {
889 #ifdef TTY_DEBUG_HANGUP
890                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
891                        " = NULL", tty);
892 #endif
893         }
894
895         /* Now clear signal->tty under the lock */
896         read_lock(&tasklist_lock);
897         session_clear_tty(task_session(current));
898         read_unlock(&tasklist_lock);
899 }
900
901 /**
902  *
903  *      no_tty  - Ensure the current process does not have a controlling tty
904  */
905 void no_tty(void)
906 {
907         /* FIXME: Review locking here. The tty_lock never covered any race
908            between a new association and proc_clear_tty but possible we need
909            to protect against this anyway */
910         struct task_struct *tsk = current;
911         disassociate_ctty(0);
912         proc_clear_tty(tsk);
913 }
914
915
916 /**
917  *      stop_tty        -       propagate flow control
918  *      @tty: tty to stop
919  *
920  *      Perform flow control to the driver. For PTY/TTY pairs we
921  *      must also propagate the TIOCKPKT status. May be called
922  *      on an already stopped device and will not re-call the driver
923  *      method.
924  *
925  *      This functionality is used by both the line disciplines for
926  *      halting incoming flow and by the driver. It may therefore be
927  *      called from any context, may be under the tty atomic_write_lock
928  *      but not always.
929  *
930  *      Locking:
931  *              Uses the tty control lock internally
932  */
933
934 void stop_tty(struct tty_struct *tty)
935 {
936         unsigned long flags;
937         spin_lock_irqsave(&tty->ctrl_lock, flags);
938         if (tty->stopped) {
939                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
940                 return;
941         }
942         tty->stopped = 1;
943         if (tty->link && tty->link->packet) {
944                 tty->ctrl_status &= ~TIOCPKT_START;
945                 tty->ctrl_status |= TIOCPKT_STOP;
946                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
947         }
948         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
949         if (tty->ops->stop)
950                 (tty->ops->stop)(tty);
951 }
952
953 EXPORT_SYMBOL(stop_tty);
954
955 /**
956  *      start_tty       -       propagate flow control
957  *      @tty: tty to start
958  *
959  *      Start a tty that has been stopped if at all possible. Perform
960  *      any necessary wakeups and propagate the TIOCPKT status. If this
961  *      is the tty was previous stopped and is being started then the
962  *      driver start method is invoked and the line discipline woken.
963  *
964  *      Locking:
965  *              ctrl_lock
966  */
967
968 void start_tty(struct tty_struct *tty)
969 {
970         unsigned long flags;
971         spin_lock_irqsave(&tty->ctrl_lock, flags);
972         if (!tty->stopped || tty->flow_stopped) {
973                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
974                 return;
975         }
976         tty->stopped = 0;
977         if (tty->link && tty->link->packet) {
978                 tty->ctrl_status &= ~TIOCPKT_STOP;
979                 tty->ctrl_status |= TIOCPKT_START;
980                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
981         }
982         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
983         if (tty->ops->start)
984                 (tty->ops->start)(tty);
985         /* If we have a running line discipline it may need kicking */
986         tty_wakeup(tty);
987 }
988
989 EXPORT_SYMBOL(start_tty);
990
991 /**
992  *      tty_read        -       read method for tty device files
993  *      @file: pointer to tty file
994  *      @buf: user buffer
995  *      @count: size of user buffer
996  *      @ppos: unused
997  *
998  *      Perform the read system call function on this terminal device. Checks
999  *      for hung up devices before calling the line discipline method.
1000  *
1001  *      Locking:
1002  *              Locks the line discipline internally while needed. Multiple
1003  *      read calls may be outstanding in parallel.
1004  */
1005
1006 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1007                         loff_t *ppos)
1008 {
1009         int i;
1010         struct tty_struct *tty = file_tty(file);
1011         struct tty_ldisc *ld;
1012
1013         if (tty_paranoia_check(tty, file_inode(file), "tty_read"))
1014                 return -EIO;
1015         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1016                 return -EIO;
1017
1018         /* We want to wait for the line discipline to sort out in this
1019            situation */
1020         ld = tty_ldisc_ref_wait(tty);
1021         if (ld->ops->read)
1022                 i = (ld->ops->read)(tty, file, buf, count);
1023         else
1024                 i = -EIO;
1025         tty_ldisc_deref(ld);
1026
1027         return i;
1028 }
1029
1030 void tty_write_unlock(struct tty_struct *tty)
1031         __releases(&tty->atomic_write_lock)
1032 {
1033         mutex_unlock(&tty->atomic_write_lock);
1034         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1035 }
1036
1037 int tty_write_lock(struct tty_struct *tty, int ndelay)
1038         __acquires(&tty->atomic_write_lock)
1039 {
1040         if (!mutex_trylock(&tty->atomic_write_lock)) {
1041                 if (ndelay)
1042                         return -EAGAIN;
1043                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1044                         return -ERESTARTSYS;
1045         }
1046         return 0;
1047 }
1048
1049 /*
1050  * Split writes up in sane blocksizes to avoid
1051  * denial-of-service type attacks
1052  */
1053 static inline ssize_t do_tty_write(
1054         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1055         struct tty_struct *tty,
1056         struct file *file,
1057         const char __user *buf,
1058         size_t count)
1059 {
1060         ssize_t ret, written = 0;
1061         unsigned int chunk;
1062
1063         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1064         if (ret < 0)
1065                 return ret;
1066
1067         /*
1068          * We chunk up writes into a temporary buffer. This
1069          * simplifies low-level drivers immensely, since they
1070          * don't have locking issues and user mode accesses.
1071          *
1072          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1073          * big chunk-size..
1074          *
1075          * The default chunk-size is 2kB, because the NTTY
1076          * layer has problems with bigger chunks. It will
1077          * claim to be able to handle more characters than
1078          * it actually does.
1079          *
1080          * FIXME: This can probably go away now except that 64K chunks
1081          * are too likely to fail unless switched to vmalloc...
1082          */
1083         chunk = 2048;
1084         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1085                 chunk = 65536;
1086         if (count < chunk)
1087                 chunk = count;
1088
1089         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1090         if (tty->write_cnt < chunk) {
1091                 unsigned char *buf_chunk;
1092
1093                 if (chunk < 1024)
1094                         chunk = 1024;
1095
1096                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1097                 if (!buf_chunk) {
1098                         ret = -ENOMEM;
1099                         goto out;
1100                 }
1101                 kfree(tty->write_buf);
1102                 tty->write_cnt = chunk;
1103                 tty->write_buf = buf_chunk;
1104         }
1105
1106         /* Do the write .. */
1107         for (;;) {
1108                 size_t size = count;
1109                 if (size > chunk)
1110                         size = chunk;
1111                 ret = -EFAULT;
1112                 if (copy_from_user(tty->write_buf, buf, size))
1113                         break;
1114                 ret = write(tty, file, tty->write_buf, size);
1115                 if (ret <= 0)
1116                         break;
1117                 written += ret;
1118                 buf += ret;
1119                 count -= ret;
1120                 if (!count)
1121                         break;
1122                 ret = -ERESTARTSYS;
1123                 if (signal_pending(current))
1124                         break;
1125                 cond_resched();
1126         }
1127         if (written)
1128                 ret = written;
1129 out:
1130         tty_write_unlock(tty);
1131         return ret;
1132 }
1133
1134 /**
1135  * tty_write_message - write a message to a certain tty, not just the console.
1136  * @tty: the destination tty_struct
1137  * @msg: the message to write
1138  *
1139  * This is used for messages that need to be redirected to a specific tty.
1140  * We don't put it into the syslog queue right now maybe in the future if
1141  * really needed.
1142  *
1143  * We must still hold the BTM and test the CLOSING flag for the moment.
1144  */
1145
1146 void tty_write_message(struct tty_struct *tty, char *msg)
1147 {
1148         if (tty) {
1149                 mutex_lock(&tty->atomic_write_lock);
1150                 tty_lock(tty);
1151                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1152                         tty_unlock(tty);
1153                         tty->ops->write(tty, msg, strlen(msg));
1154                 } else
1155                         tty_unlock(tty);
1156                 tty_write_unlock(tty);
1157         }
1158         return;
1159 }
1160
1161
1162 /**
1163  *      tty_write               -       write method for tty device file
1164  *      @file: tty file pointer
1165  *      @buf: user data to write
1166  *      @count: bytes to write
1167  *      @ppos: unused
1168  *
1169  *      Write data to a tty device via the line discipline.
1170  *
1171  *      Locking:
1172  *              Locks the line discipline as required
1173  *              Writes to the tty driver are serialized by the atomic_write_lock
1174  *      and are then processed in chunks to the device. The line discipline
1175  *      write method will not be invoked in parallel for each device.
1176  */
1177
1178 static ssize_t tty_write(struct file *file, const char __user *buf,
1179                                                 size_t count, loff_t *ppos)
1180 {
1181         struct tty_struct *tty = file_tty(file);
1182         struct tty_ldisc *ld;
1183         ssize_t ret;
1184
1185         if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1186                 return -EIO;
1187         if (!tty || !tty->ops->write ||
1188                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1189                         return -EIO;
1190         /* Short term debug to catch buggy drivers */
1191         if (tty->ops->write_room == NULL)
1192                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1193                         tty->driver->name);
1194         ld = tty_ldisc_ref_wait(tty);
1195         if (!ld->ops->write)
1196                 ret = -EIO;
1197         else
1198                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1199         tty_ldisc_deref(ld);
1200         return ret;
1201 }
1202
1203 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1204                                                 size_t count, loff_t *ppos)
1205 {
1206         struct file *p = NULL;
1207
1208         spin_lock(&redirect_lock);
1209         if (redirect)
1210                 p = get_file(redirect);
1211         spin_unlock(&redirect_lock);
1212
1213         if (p) {
1214                 ssize_t res;
1215                 res = vfs_write(p, buf, count, &p->f_pos);
1216                 fput(p);
1217                 return res;
1218         }
1219         return tty_write(file, buf, count, ppos);
1220 }
1221
1222 static char ptychar[] = "pqrstuvwxyzabcde";
1223
1224 /**
1225  *      pty_line_name   -       generate name for a pty
1226  *      @driver: the tty driver in use
1227  *      @index: the minor number
1228  *      @p: output buffer of at least 6 bytes
1229  *
1230  *      Generate a name from a driver reference and write it to the output
1231  *      buffer.
1232  *
1233  *      Locking: None
1234  */
1235 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1236 {
1237         int i = index + driver->name_base;
1238         /* ->name is initialized to "ttyp", but "tty" is expected */
1239         sprintf(p, "%s%c%x",
1240                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1241                 ptychar[i >> 4 & 0xf], i & 0xf);
1242 }
1243
1244 /**
1245  *      tty_line_name   -       generate name for a tty
1246  *      @driver: the tty driver in use
1247  *      @index: the minor number
1248  *      @p: output buffer of at least 7 bytes
1249  *
1250  *      Generate a name from a driver reference and write it to the output
1251  *      buffer.
1252  *
1253  *      Locking: None
1254  */
1255 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1256 {
1257         if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1258                 strcpy(p, driver->name);
1259         else
1260                 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1261 }
1262
1263 /**
1264  *      tty_driver_lookup_tty() - find an existing tty, if any
1265  *      @driver: the driver for the tty
1266  *      @idx:    the minor number
1267  *
1268  *      Return the tty, if found or ERR_PTR() otherwise.
1269  *
1270  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1271  *      be held until the 'fast-open' is also done. Will change once we
1272  *      have refcounting in the driver and per driver locking
1273  */
1274 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1275                 struct inode *inode, int idx)
1276 {
1277         if (driver->ops->lookup)
1278                 return driver->ops->lookup(driver, inode, idx);
1279
1280         return driver->ttys[idx];
1281 }
1282
1283 /**
1284  *      tty_init_termios        -  helper for termios setup
1285  *      @tty: the tty to set up
1286  *
1287  *      Initialise the termios structures for this tty. Thus runs under
1288  *      the tty_mutex currently so we can be relaxed about ordering.
1289  */
1290
1291 int tty_init_termios(struct tty_struct *tty)
1292 {
1293         struct ktermios *tp;
1294         int idx = tty->index;
1295
1296         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1297                 tty->termios = tty->driver->init_termios;
1298         else {
1299                 /* Check for lazy saved data */
1300                 tp = tty->driver->termios[idx];
1301                 if (tp != NULL)
1302                         tty->termios = *tp;
1303                 else
1304                         tty->termios = tty->driver->init_termios;
1305         }
1306         /* Compatibility until drivers always set this */
1307         tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1308         tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1309         return 0;
1310 }
1311 EXPORT_SYMBOL_GPL(tty_init_termios);
1312
1313 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1314 {
1315         int ret = tty_init_termios(tty);
1316         if (ret)
1317                 return ret;
1318
1319         tty_driver_kref_get(driver);
1320         tty->count++;
1321         driver->ttys[tty->index] = tty;
1322         return 0;
1323 }
1324 EXPORT_SYMBOL_GPL(tty_standard_install);
1325
1326 /**
1327  *      tty_driver_install_tty() - install a tty entry in the driver
1328  *      @driver: the driver for the tty
1329  *      @tty: the tty
1330  *
1331  *      Install a tty object into the driver tables. The tty->index field
1332  *      will be set by the time this is called. This method is responsible
1333  *      for ensuring any need additional structures are allocated and
1334  *      configured.
1335  *
1336  *      Locking: tty_mutex for now
1337  */
1338 static int tty_driver_install_tty(struct tty_driver *driver,
1339                                                 struct tty_struct *tty)
1340 {
1341         return driver->ops->install ? driver->ops->install(driver, tty) :
1342                 tty_standard_install(driver, tty);
1343 }
1344
1345 /**
1346  *      tty_driver_remove_tty() - remove a tty from the driver tables
1347  *      @driver: the driver for the tty
1348  *      @idx:    the minor number
1349  *
1350  *      Remvoe a tty object from the driver tables. The tty->index field
1351  *      will be set by the time this is called.
1352  *
1353  *      Locking: tty_mutex for now
1354  */
1355 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1356 {
1357         if (driver->ops->remove)
1358                 driver->ops->remove(driver, tty);
1359         else
1360                 driver->ttys[tty->index] = NULL;
1361 }
1362
1363 /*
1364  *      tty_reopen()    - fast re-open of an open tty
1365  *      @tty    - the tty to open
1366  *
1367  *      Return 0 on success, -errno on error.
1368  *
1369  *      Locking: tty_mutex must be held from the time the tty was found
1370  *               till this open completes.
1371  */
1372 static int tty_reopen(struct tty_struct *tty)
1373 {
1374         struct tty_driver *driver = tty->driver;
1375
1376         if (test_bit(TTY_CLOSING, &tty->flags) ||
1377                         test_bit(TTY_HUPPING, &tty->flags) ||
1378                         test_bit(TTY_LDISC_CHANGING, &tty->flags))
1379                 return -EIO;
1380
1381         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1382             driver->subtype == PTY_TYPE_MASTER) {
1383                 /*
1384                  * special case for PTY masters: only one open permitted,
1385                  * and the slave side open count is incremented as well.
1386                  */
1387                 if (tty->count)
1388                         return -EIO;
1389
1390                 tty->link->count++;
1391         }
1392         tty->count++;
1393
1394         WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1395
1396         return 0;
1397 }
1398
1399 /**
1400  *      tty_init_dev            -       initialise a tty device
1401  *      @driver: tty driver we are opening a device on
1402  *      @idx: device index
1403  *      @ret_tty: returned tty structure
1404  *
1405  *      Prepare a tty device. This may not be a "new" clean device but
1406  *      could also be an active device. The pty drivers require special
1407  *      handling because of this.
1408  *
1409  *      Locking:
1410  *              The function is called under the tty_mutex, which
1411  *      protects us from the tty struct or driver itself going away.
1412  *
1413  *      On exit the tty device has the line discipline attached and
1414  *      a reference count of 1. If a pair was created for pty/tty use
1415  *      and the other was a pty master then it too has a reference count of 1.
1416  *
1417  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1418  * failed open.  The new code protects the open with a mutex, so it's
1419  * really quite straightforward.  The mutex locking can probably be
1420  * relaxed for the (most common) case of reopening a tty.
1421  */
1422
1423 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1424 {
1425         struct tty_struct *tty;
1426         int retval;
1427
1428         /*
1429          * First time open is complex, especially for PTY devices.
1430          * This code guarantees that either everything succeeds and the
1431          * TTY is ready for operation, or else the table slots are vacated
1432          * and the allocated memory released.  (Except that the termios
1433          * and locked termios may be retained.)
1434          */
1435
1436         if (!try_module_get(driver->owner))
1437                 return ERR_PTR(-ENODEV);
1438
1439         tty = alloc_tty_struct();
1440         if (!tty) {
1441                 retval = -ENOMEM;
1442                 goto err_module_put;
1443         }
1444         initialize_tty_struct(tty, driver, idx);
1445
1446         tty_lock(tty);
1447         retval = tty_driver_install_tty(driver, tty);
1448         if (retval < 0)
1449                 goto err_deinit_tty;
1450
1451         if (!tty->port)
1452                 tty->port = driver->ports[idx];
1453
1454         WARN_RATELIMIT(!tty->port,
1455                         "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1456                         __func__, tty->driver->name);
1457
1458         tty->port->itty = tty;
1459
1460         /*
1461          * Structures all installed ... call the ldisc open routines.
1462          * If we fail here just call release_tty to clean up.  No need
1463          * to decrement the use counts, as release_tty doesn't care.
1464          */
1465         retval = tty_ldisc_setup(tty, tty->link);
1466         if (retval)
1467                 goto err_release_tty;
1468         /* Return the tty locked so that it cannot vanish under the caller */
1469         return tty;
1470
1471 err_deinit_tty:
1472         tty_unlock(tty);
1473         deinitialize_tty_struct(tty);
1474         free_tty_struct(tty);
1475 err_module_put:
1476         module_put(driver->owner);
1477         return ERR_PTR(retval);
1478
1479         /* call the tty release_tty routine to clean out this slot */
1480 err_release_tty:
1481         tty_unlock(tty);
1482         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1483                                  "clearing slot %d\n", idx);
1484         release_tty(tty, idx);
1485         return ERR_PTR(retval);
1486 }
1487
1488 void tty_free_termios(struct tty_struct *tty)
1489 {
1490         struct ktermios *tp;
1491         int idx = tty->index;
1492
1493         /* If the port is going to reset then it has no termios to save */
1494         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1495                 return;
1496
1497         /* Stash the termios data */
1498         tp = tty->driver->termios[idx];
1499         if (tp == NULL) {
1500                 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1501                 if (tp == NULL) {
1502                         pr_warn("tty: no memory to save termios state.\n");
1503                         return;
1504                 }
1505                 tty->driver->termios[idx] = tp;
1506         }
1507         *tp = tty->termios;
1508 }
1509 EXPORT_SYMBOL(tty_free_termios);
1510
1511 /**
1512  *      tty_flush_works         -       flush all works of a tty
1513  *      @tty: tty device to flush works for
1514  *
1515  *      Sync flush all works belonging to @tty.
1516  */
1517 static void tty_flush_works(struct tty_struct *tty)
1518 {
1519         flush_work(&tty->SAK_work);
1520         flush_work(&tty->hangup_work);
1521 }
1522
1523 /**
1524  *      release_one_tty         -       release tty structure memory
1525  *      @kref: kref of tty we are obliterating
1526  *
1527  *      Releases memory associated with a tty structure, and clears out the
1528  *      driver table slots. This function is called when a device is no longer
1529  *      in use. It also gets called when setup of a device fails.
1530  *
1531  *      Locking:
1532  *              takes the file list lock internally when working on the list
1533  *      of ttys that the driver keeps.
1534  *
1535  *      This method gets called from a work queue so that the driver private
1536  *      cleanup ops can sleep (needed for USB at least)
1537  */
1538 static void release_one_tty(struct work_struct *work)
1539 {
1540         struct tty_struct *tty =
1541                 container_of(work, struct tty_struct, hangup_work);
1542         struct tty_driver *driver = tty->driver;
1543
1544         if (tty->ops->cleanup)
1545                 tty->ops->cleanup(tty);
1546
1547         tty->magic = 0;
1548         tty_driver_kref_put(driver);
1549         module_put(driver->owner);
1550
1551         spin_lock(&tty_files_lock);
1552         list_del_init(&tty->tty_files);
1553         spin_unlock(&tty_files_lock);
1554
1555         put_pid(tty->pgrp);
1556         put_pid(tty->session);
1557         free_tty_struct(tty);
1558 }
1559
1560 static void queue_release_one_tty(struct kref *kref)
1561 {
1562         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1563
1564         /* The hangup queue is now free so we can reuse it rather than
1565            waste a chunk of memory for each port */
1566         INIT_WORK(&tty->hangup_work, release_one_tty);
1567         schedule_work(&tty->hangup_work);
1568 }
1569
1570 /**
1571  *      tty_kref_put            -       release a tty kref
1572  *      @tty: tty device
1573  *
1574  *      Release a reference to a tty device and if need be let the kref
1575  *      layer destruct the object for us
1576  */
1577
1578 void tty_kref_put(struct tty_struct *tty)
1579 {
1580         if (tty)
1581                 kref_put(&tty->kref, queue_release_one_tty);
1582 }
1583 EXPORT_SYMBOL(tty_kref_put);
1584
1585 /**
1586  *      release_tty             -       release tty structure memory
1587  *
1588  *      Release both @tty and a possible linked partner (think pty pair),
1589  *      and decrement the refcount of the backing module.
1590  *
1591  *      Locking:
1592  *              tty_mutex
1593  *              takes the file list lock internally when working on the list
1594  *      of ttys that the driver keeps.
1595  *
1596  */
1597 static void release_tty(struct tty_struct *tty, int idx)
1598 {
1599         /* This should always be true but check for the moment */
1600         WARN_ON(tty->index != idx);
1601         WARN_ON(!mutex_is_locked(&tty_mutex));
1602         if (tty->ops->shutdown)
1603                 tty->ops->shutdown(tty);
1604         tty_free_termios(tty);
1605         tty_driver_remove_tty(tty->driver, tty);
1606         tty->port->itty = NULL;
1607         cancel_work_sync(&tty->port->buf.work);
1608
1609         if (tty->link)
1610                 tty_kref_put(tty->link);
1611         tty_kref_put(tty);
1612 }
1613
1614 /**
1615  *      tty_release_checks - check a tty before real release
1616  *      @tty: tty to check
1617  *      @o_tty: link of @tty (if any)
1618  *      @idx: index of the tty
1619  *
1620  *      Performs some paranoid checking before true release of the @tty.
1621  *      This is a no-op unless TTY_PARANOIA_CHECK is defined.
1622  */
1623 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1624                 int idx)
1625 {
1626 #ifdef TTY_PARANOIA_CHECK
1627         if (idx < 0 || idx >= tty->driver->num) {
1628                 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1629                                 __func__, tty->name);
1630                 return -1;
1631         }
1632
1633         /* not much to check for devpts */
1634         if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1635                 return 0;
1636
1637         if (tty != tty->driver->ttys[idx]) {
1638                 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1639                                 __func__, idx, tty->name);
1640                 return -1;
1641         }
1642         if (tty->driver->other) {
1643                 if (o_tty != tty->driver->other->ttys[idx]) {
1644                         printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1645                                         __func__, idx, tty->name);
1646                         return -1;
1647                 }
1648                 if (o_tty->link != tty) {
1649                         printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1650                         return -1;
1651                 }
1652         }
1653 #endif
1654         return 0;
1655 }
1656
1657 /**
1658  *      tty_release             -       vfs callback for close
1659  *      @inode: inode of tty
1660  *      @filp: file pointer for handle to tty
1661  *
1662  *      Called the last time each file handle is closed that references
1663  *      this tty. There may however be several such references.
1664  *
1665  *      Locking:
1666  *              Takes bkl. See tty_release_dev
1667  *
1668  * Even releasing the tty structures is a tricky business.. We have
1669  * to be very careful that the structures are all released at the
1670  * same time, as interrupts might otherwise get the wrong pointers.
1671  *
1672  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1673  * lead to double frees or releasing memory still in use.
1674  */
1675
1676 int tty_release(struct inode *inode, struct file *filp)
1677 {
1678         struct tty_struct *tty = file_tty(filp);
1679         struct tty_struct *o_tty;
1680         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1681         int     idx;
1682         char    buf[64];
1683
1684         if (tty_paranoia_check(tty, inode, __func__))
1685                 return 0;
1686
1687         tty_lock(tty);
1688         check_tty_count(tty, __func__);
1689
1690         __tty_fasync(-1, filp, 0);
1691
1692         idx = tty->index;
1693         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1694                       tty->driver->subtype == PTY_TYPE_MASTER);
1695         /* Review: parallel close */
1696         o_tty = tty->link;
1697
1698         if (tty_release_checks(tty, o_tty, idx)) {
1699                 tty_unlock(tty);
1700                 return 0;
1701         }
1702
1703 #ifdef TTY_DEBUG_HANGUP
1704         printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1705                         tty_name(tty, buf), tty->count);
1706 #endif
1707
1708         if (tty->ops->close)
1709                 tty->ops->close(tty, filp);
1710
1711         tty_unlock(tty);
1712         /*
1713          * Sanity check: if tty->count is going to zero, there shouldn't be
1714          * any waiters on tty->read_wait or tty->write_wait.  We test the
1715          * wait queues and kick everyone out _before_ actually starting to
1716          * close.  This ensures that we won't block while releasing the tty
1717          * structure.
1718          *
1719          * The test for the o_tty closing is necessary, since the master and
1720          * slave sides may close in any order.  If the slave side closes out
1721          * first, its count will be one, since the master side holds an open.
1722          * Thus this test wouldn't be triggered at the time the slave closes,
1723          * so we do it now.
1724          *
1725          * Note that it's possible for the tty to be opened again while we're
1726          * flushing out waiters.  By recalculating the closing flags before
1727          * each iteration we avoid any problems.
1728          */
1729         while (1) {
1730                 /* Guard against races with tty->count changes elsewhere and
1731                    opens on /dev/tty */
1732
1733                 mutex_lock(&tty_mutex);
1734                 tty_lock_pair(tty, o_tty);
1735                 tty_closing = tty->count <= 1;
1736                 o_tty_closing = o_tty &&
1737                         (o_tty->count <= (pty_master ? 1 : 0));
1738                 do_sleep = 0;
1739
1740                 if (tty_closing) {
1741                         if (waitqueue_active(&tty->read_wait)) {
1742                                 wake_up_poll(&tty->read_wait, POLLIN);
1743                                 do_sleep++;
1744                         }
1745                         if (waitqueue_active(&tty->write_wait)) {
1746                                 wake_up_poll(&tty->write_wait, POLLOUT);
1747                                 do_sleep++;
1748                         }
1749                 }
1750                 if (o_tty_closing) {
1751                         if (waitqueue_active(&o_tty->read_wait)) {
1752                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1753                                 do_sleep++;
1754                         }
1755                         if (waitqueue_active(&o_tty->write_wait)) {
1756                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1757                                 do_sleep++;
1758                         }
1759                 }
1760                 if (!do_sleep)
1761                         break;
1762
1763                 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1764                                 __func__, tty_name(tty, buf));
1765                 tty_unlock_pair(tty, o_tty);
1766                 mutex_unlock(&tty_mutex);
1767                 schedule();
1768         }
1769
1770         /*
1771          * The closing flags are now consistent with the open counts on
1772          * both sides, and we've completed the last operation that could
1773          * block, so it's safe to proceed with closing.
1774          *
1775          * We must *not* drop the tty_mutex until we ensure that a further
1776          * entry into tty_open can not pick up this tty.
1777          */
1778         if (pty_master) {
1779                 if (--o_tty->count < 0) {
1780                         printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1781                                 __func__, o_tty->count, tty_name(o_tty, buf));
1782                         o_tty->count = 0;
1783                 }
1784         }
1785         if (--tty->count < 0) {
1786                 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1787                                 __func__, tty->count, tty_name(tty, buf));
1788                 tty->count = 0;
1789         }
1790
1791         /*
1792          * We've decremented tty->count, so we need to remove this file
1793          * descriptor off the tty->tty_files list; this serves two
1794          * purposes:
1795          *  - check_tty_count sees the correct number of file descriptors
1796          *    associated with this tty.
1797          *  - do_tty_hangup no longer sees this file descriptor as
1798          *    something that needs to be handled for hangups.
1799          */
1800         tty_del_file(filp);
1801
1802         /*
1803          * Perform some housekeeping before deciding whether to return.
1804          *
1805          * Set the TTY_CLOSING flag if this was the last open.  In the
1806          * case of a pty we may have to wait around for the other side
1807          * to close, and TTY_CLOSING makes sure we can't be reopened.
1808          */
1809         if (tty_closing)
1810                 set_bit(TTY_CLOSING, &tty->flags);
1811         if (o_tty_closing)
1812                 set_bit(TTY_CLOSING, &o_tty->flags);
1813
1814         /*
1815          * If _either_ side is closing, make sure there aren't any
1816          * processes that still think tty or o_tty is their controlling
1817          * tty.
1818          */
1819         if (tty_closing || o_tty_closing) {
1820                 read_lock(&tasklist_lock);
1821                 session_clear_tty(tty->session);
1822                 if (o_tty)
1823                         session_clear_tty(o_tty->session);
1824                 read_unlock(&tasklist_lock);
1825         }
1826
1827         mutex_unlock(&tty_mutex);
1828         tty_unlock_pair(tty, o_tty);
1829         /* At this point the TTY_CLOSING flag should ensure a dead tty
1830            cannot be re-opened by a racing opener */
1831
1832         /* check whether both sides are closing ... */
1833         if (!tty_closing || (o_tty && !o_tty_closing))
1834                 return 0;
1835
1836 #ifdef TTY_DEBUG_HANGUP
1837         printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1838 #endif
1839         /*
1840          * Ask the line discipline code to release its structures
1841          */
1842         tty_ldisc_release(tty, o_tty);
1843
1844         /* Wait for pending work before tty destruction commmences */
1845         tty_flush_works(tty);
1846         if (o_tty)
1847                 tty_flush_works(o_tty);
1848
1849 #ifdef TTY_DEBUG_HANGUP
1850         printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1851 #endif
1852         /*
1853          * The release_tty function takes care of the details of clearing
1854          * the slots and preserving the termios structure. The tty_unlock_pair
1855          * should be safe as we keep a kref while the tty is locked (so the
1856          * unlock never unlocks a freed tty).
1857          */
1858         mutex_lock(&tty_mutex);
1859         release_tty(tty, idx);
1860         mutex_unlock(&tty_mutex);
1861
1862         return 0;
1863 }
1864
1865 /**
1866  *      tty_open_current_tty - get tty of current task for open
1867  *      @device: device number
1868  *      @filp: file pointer to tty
1869  *      @return: tty of the current task iff @device is /dev/tty
1870  *
1871  *      We cannot return driver and index like for the other nodes because
1872  *      devpts will not work then. It expects inodes to be from devpts FS.
1873  *
1874  *      We need to move to returning a refcounted object from all the lookup
1875  *      paths including this one.
1876  */
1877 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1878 {
1879         struct tty_struct *tty;
1880
1881         if (device != MKDEV(TTYAUX_MAJOR, 0))
1882                 return NULL;
1883
1884         tty = get_current_tty();
1885         if (!tty)
1886                 return ERR_PTR(-ENXIO);
1887
1888         filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1889         /* noctty = 1; */
1890         tty_kref_put(tty);
1891         /* FIXME: we put a reference and return a TTY! */
1892         /* This is only safe because the caller holds tty_mutex */
1893         return tty;
1894 }
1895
1896 /**
1897  *      tty_lookup_driver - lookup a tty driver for a given device file
1898  *      @device: device number
1899  *      @filp: file pointer to tty
1900  *      @noctty: set if the device should not become a controlling tty
1901  *      @index: index for the device in the @return driver
1902  *      @return: driver for this inode (with increased refcount)
1903  *
1904  *      If @return is not erroneous, the caller is responsible to decrement the
1905  *      refcount by tty_driver_kref_put.
1906  *
1907  *      Locking: tty_mutex protects get_tty_driver
1908  */
1909 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1910                 int *noctty, int *index)
1911 {
1912         struct tty_driver *driver;
1913
1914         switch (device) {
1915 #ifdef CONFIG_VT
1916         case MKDEV(TTY_MAJOR, 0): {
1917                 extern struct tty_driver *console_driver;
1918                 driver = tty_driver_kref_get(console_driver);
1919                 *index = fg_console;
1920                 *noctty = 1;
1921                 break;
1922         }
1923 #endif
1924         case MKDEV(TTYAUX_MAJOR, 1): {
1925                 struct tty_driver *console_driver = console_device(index);
1926                 if (console_driver) {
1927                         driver = tty_driver_kref_get(console_driver);
1928                         if (driver) {
1929                                 /* Don't let /dev/console block */
1930                                 filp->f_flags |= O_NONBLOCK;
1931                                 *noctty = 1;
1932                                 break;
1933                         }
1934                 }
1935                 return ERR_PTR(-ENODEV);
1936         }
1937         default:
1938                 driver = get_tty_driver(device, index);
1939                 if (!driver)
1940                         return ERR_PTR(-ENODEV);
1941                 break;
1942         }
1943         return driver;
1944 }
1945
1946 /**
1947  *      tty_open                -       open a tty device
1948  *      @inode: inode of device file
1949  *      @filp: file pointer to tty
1950  *
1951  *      tty_open and tty_release keep up the tty count that contains the
1952  *      number of opens done on a tty. We cannot use the inode-count, as
1953  *      different inodes might point to the same tty.
1954  *
1955  *      Open-counting is needed for pty masters, as well as for keeping
1956  *      track of serial lines: DTR is dropped when the last close happens.
1957  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1958  *
1959  *      The termios state of a pty is reset on first open so that
1960  *      settings don't persist across reuse.
1961  *
1962  *      Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1963  *               tty->count should protect the rest.
1964  *               ->siglock protects ->signal/->sighand
1965  *
1966  *      Note: the tty_unlock/lock cases without a ref are only safe due to
1967  *      tty_mutex
1968  */
1969
1970 static int tty_open(struct inode *inode, struct file *filp)
1971 {
1972         struct tty_struct *tty;
1973         int noctty, retval;
1974         struct tty_driver *driver = NULL;
1975         int index;
1976         dev_t device = inode->i_rdev;
1977         unsigned saved_flags = filp->f_flags;
1978
1979         nonseekable_open(inode, filp);
1980
1981 retry_open:
1982         retval = tty_alloc_file(filp);
1983         if (retval)
1984                 return -ENOMEM;
1985
1986         noctty = filp->f_flags & O_NOCTTY;
1987         index  = -1;
1988         retval = 0;
1989
1990         mutex_lock(&tty_mutex);
1991         /* This is protected by the tty_mutex */
1992         tty = tty_open_current_tty(device, filp);
1993         if (IS_ERR(tty)) {
1994                 retval = PTR_ERR(tty);
1995                 goto err_unlock;
1996         } else if (!tty) {
1997                 driver = tty_lookup_driver(device, filp, &noctty, &index);
1998                 if (IS_ERR(driver)) {
1999                         retval = PTR_ERR(driver);
2000                         goto err_unlock;
2001                 }
2002
2003                 /* check whether we're reopening an existing tty */
2004                 tty = tty_driver_lookup_tty(driver, inode, index);
2005                 if (IS_ERR(tty)) {
2006                         retval = PTR_ERR(tty);
2007                         goto err_unlock;
2008                 }
2009         }
2010
2011         if (tty) {
2012                 tty_lock(tty);
2013                 retval = tty_reopen(tty);
2014                 if (retval < 0) {
2015                         tty_unlock(tty);
2016                         tty = ERR_PTR(retval);
2017                 }
2018         } else  /* Returns with the tty_lock held for now */
2019                 tty = tty_init_dev(driver, index);
2020
2021         mutex_unlock(&tty_mutex);
2022         if (driver)
2023                 tty_driver_kref_put(driver);
2024         if (IS_ERR(tty)) {
2025                 retval = PTR_ERR(tty);
2026                 goto err_file;
2027         }
2028
2029         tty_add_file(tty, filp);
2030
2031         check_tty_count(tty, __func__);
2032         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2033             tty->driver->subtype == PTY_TYPE_MASTER)
2034                 noctty = 1;
2035 #ifdef TTY_DEBUG_HANGUP
2036         printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2037 #endif
2038         if (tty->ops->open)
2039                 retval = tty->ops->open(tty, filp);
2040         else
2041                 retval = -ENODEV;
2042         filp->f_flags = saved_flags;
2043
2044         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2045                                                 !capable(CAP_SYS_ADMIN))
2046                 retval = -EBUSY;
2047
2048         if (retval) {
2049 #ifdef TTY_DEBUG_HANGUP
2050                 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2051                                 retval, tty->name);
2052 #endif
2053                 tty_unlock(tty); /* need to call tty_release without BTM */
2054                 tty_release(inode, filp);
2055                 if (retval != -ERESTARTSYS)
2056                         return retval;
2057
2058                 if (signal_pending(current))
2059                         return retval;
2060
2061                 schedule();
2062                 /*
2063                  * Need to reset f_op in case a hangup happened.
2064                  */
2065                 if (filp->f_op == &hung_up_tty_fops)
2066                         filp->f_op = &tty_fops;
2067                 goto retry_open;
2068         }
2069         tty_unlock(tty);
2070
2071
2072         mutex_lock(&tty_mutex);
2073         tty_lock(tty);
2074         spin_lock_irq(&current->sighand->siglock);
2075         if (!noctty &&
2076             current->signal->leader &&
2077             !current->signal->tty &&
2078             tty->session == NULL)
2079                 __proc_set_tty(current, tty);
2080         spin_unlock_irq(&current->sighand->siglock);
2081         tty_unlock(tty);
2082         mutex_unlock(&tty_mutex);
2083         return 0;
2084 err_unlock:
2085         mutex_unlock(&tty_mutex);
2086         /* after locks to avoid deadlock */
2087         if (!IS_ERR_OR_NULL(driver))
2088                 tty_driver_kref_put(driver);
2089 err_file:
2090         tty_free_file(filp);
2091         return retval;
2092 }
2093
2094
2095
2096 /**
2097  *      tty_poll        -       check tty status
2098  *      @filp: file being polled
2099  *      @wait: poll wait structures to update
2100  *
2101  *      Call the line discipline polling method to obtain the poll
2102  *      status of the device.
2103  *
2104  *      Locking: locks called line discipline but ldisc poll method
2105  *      may be re-entered freely by other callers.
2106  */
2107
2108 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2109 {
2110         struct tty_struct *tty = file_tty(filp);
2111         struct tty_ldisc *ld;
2112         int ret = 0;
2113
2114         if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2115                 return 0;
2116
2117         ld = tty_ldisc_ref_wait(tty);
2118         if (ld->ops->poll)
2119                 ret = (ld->ops->poll)(tty, filp, wait);
2120         tty_ldisc_deref(ld);
2121         return ret;
2122 }
2123
2124 static int __tty_fasync(int fd, struct file *filp, int on)
2125 {
2126         struct tty_struct *tty = file_tty(filp);
2127         unsigned long flags;
2128         int retval = 0;
2129
2130         if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2131                 goto out;
2132
2133         retval = fasync_helper(fd, filp, on, &tty->fasync);
2134         if (retval <= 0)
2135                 goto out;
2136
2137         if (on) {
2138                 enum pid_type type;
2139                 struct pid *pid;
2140                 if (!waitqueue_active(&tty->read_wait))
2141                         tty->minimum_to_wake = 1;
2142                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2143                 if (tty->pgrp) {
2144                         pid = tty->pgrp;
2145                         type = PIDTYPE_PGID;
2146                 } else {
2147                         pid = task_pid(current);
2148                         type = PIDTYPE_PID;
2149                 }
2150                 get_pid(pid);
2151                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2152                 retval = __f_setown(filp, pid, type, 0);
2153                 put_pid(pid);
2154                 if (retval)
2155                         goto out;
2156         } else {
2157                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2158                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
2159         }
2160         retval = 0;
2161 out:
2162         return retval;
2163 }
2164
2165 static int tty_fasync(int fd, struct file *filp, int on)
2166 {
2167         struct tty_struct *tty = file_tty(filp);
2168         int retval;
2169
2170         tty_lock(tty);
2171         retval = __tty_fasync(fd, filp, on);
2172         tty_unlock(tty);
2173
2174         return retval;
2175 }
2176
2177 /**
2178  *      tiocsti                 -       fake input character
2179  *      @tty: tty to fake input into
2180  *      @p: pointer to character
2181  *
2182  *      Fake input to a tty device. Does the necessary locking and
2183  *      input management.
2184  *
2185  *      FIXME: does not honour flow control ??
2186  *
2187  *      Locking:
2188  *              Called functions take tty_ldisc_lock
2189  *              current->signal->tty check is safe without locks
2190  *
2191  *      FIXME: may race normal receive processing
2192  */
2193
2194 static int tiocsti(struct tty_struct *tty, char __user *p)
2195 {
2196         char ch, mbz = 0;
2197         struct tty_ldisc *ld;
2198
2199         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2200                 return -EPERM;
2201         if (get_user(ch, p))
2202                 return -EFAULT;
2203         tty_audit_tiocsti(tty, ch);
2204         ld = tty_ldisc_ref_wait(tty);
2205         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2206         tty_ldisc_deref(ld);
2207         return 0;
2208 }
2209
2210 /**
2211  *      tiocgwinsz              -       implement window query ioctl
2212  *      @tty; tty
2213  *      @arg: user buffer for result
2214  *
2215  *      Copies the kernel idea of the window size into the user buffer.
2216  *
2217  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2218  *              is consistent.
2219  */
2220
2221 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2222 {
2223         int err;
2224
2225         mutex_lock(&tty->termios_mutex);
2226         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2227         mutex_unlock(&tty->termios_mutex);
2228
2229         return err ? -EFAULT: 0;
2230 }
2231
2232 /**
2233  *      tty_do_resize           -       resize event
2234  *      @tty: tty being resized
2235  *      @rows: rows (character)
2236  *      @cols: cols (character)
2237  *
2238  *      Update the termios variables and send the necessary signals to
2239  *      peform a terminal resize correctly
2240  */
2241
2242 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2243 {
2244         struct pid *pgrp;
2245         unsigned long flags;
2246
2247         /* Lock the tty */
2248         mutex_lock(&tty->termios_mutex);
2249         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2250                 goto done;
2251         /* Get the PID values and reference them so we can
2252            avoid holding the tty ctrl lock while sending signals */
2253         spin_lock_irqsave(&tty->ctrl_lock, flags);
2254         pgrp = get_pid(tty->pgrp);
2255         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2256
2257         if (pgrp)
2258                 kill_pgrp(pgrp, SIGWINCH, 1);
2259         put_pid(pgrp);
2260
2261         tty->winsize = *ws;
2262 done:
2263         mutex_unlock(&tty->termios_mutex);
2264         return 0;
2265 }
2266 EXPORT_SYMBOL(tty_do_resize);
2267
2268 /**
2269  *      tiocswinsz              -       implement window size set ioctl
2270  *      @tty; tty side of tty
2271  *      @arg: user buffer for result
2272  *
2273  *      Copies the user idea of the window size to the kernel. Traditionally
2274  *      this is just advisory information but for the Linux console it
2275  *      actually has driver level meaning and triggers a VC resize.
2276  *
2277  *      Locking:
2278  *              Driver dependent. The default do_resize method takes the
2279  *      tty termios mutex and ctrl_lock. The console takes its own lock
2280  *      then calls into the default method.
2281  */
2282
2283 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2284 {
2285         struct winsize tmp_ws;
2286         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2287                 return -EFAULT;
2288
2289         if (tty->ops->resize)
2290                 return tty->ops->resize(tty, &tmp_ws);
2291         else
2292                 return tty_do_resize(tty, &tmp_ws);
2293 }
2294
2295 /**
2296  *      tioccons        -       allow admin to move logical console
2297  *      @file: the file to become console
2298  *
2299  *      Allow the administrator to move the redirected console device
2300  *
2301  *      Locking: uses redirect_lock to guard the redirect information
2302  */
2303
2304 static int tioccons(struct file *file)
2305 {
2306         if (!capable(CAP_SYS_ADMIN))
2307                 return -EPERM;
2308         if (file->f_op->write == redirected_tty_write) {
2309                 struct file *f;
2310                 spin_lock(&redirect_lock);
2311                 f = redirect;
2312                 redirect = NULL;
2313                 spin_unlock(&redirect_lock);
2314                 if (f)
2315                         fput(f);
2316                 return 0;
2317         }
2318         spin_lock(&redirect_lock);
2319         if (redirect) {
2320                 spin_unlock(&redirect_lock);
2321                 return -EBUSY;
2322         }
2323         redirect = get_file(file);
2324         spin_unlock(&redirect_lock);
2325         return 0;
2326 }
2327
2328 /**
2329  *      fionbio         -       non blocking ioctl
2330  *      @file: file to set blocking value
2331  *      @p: user parameter
2332  *
2333  *      Historical tty interfaces had a blocking control ioctl before
2334  *      the generic functionality existed. This piece of history is preserved
2335  *      in the expected tty API of posix OS's.
2336  *
2337  *      Locking: none, the open file handle ensures it won't go away.
2338  */
2339
2340 static int fionbio(struct file *file, int __user *p)
2341 {
2342         int nonblock;
2343
2344         if (get_user(nonblock, p))
2345                 return -EFAULT;
2346
2347         spin_lock(&file->f_lock);
2348         if (nonblock)
2349                 file->f_flags |= O_NONBLOCK;
2350         else
2351                 file->f_flags &= ~O_NONBLOCK;
2352         spin_unlock(&file->f_lock);
2353         return 0;
2354 }
2355
2356 /**
2357  *      tiocsctty       -       set controlling tty
2358  *      @tty: tty structure
2359  *      @arg: user argument
2360  *
2361  *      This ioctl is used to manage job control. It permits a session
2362  *      leader to set this tty as the controlling tty for the session.
2363  *
2364  *      Locking:
2365  *              Takes tty_mutex() to protect tty instance
2366  *              Takes tasklist_lock internally to walk sessions
2367  *              Takes ->siglock() when updating signal->tty
2368  */
2369
2370 static int tiocsctty(struct tty_struct *tty, int arg)
2371 {
2372         int ret = 0;
2373         if (current->signal->leader && (task_session(current) == tty->session))
2374                 return ret;
2375
2376         mutex_lock(&tty_mutex);
2377         /*
2378          * The process must be a session leader and
2379          * not have a controlling tty already.
2380          */
2381         if (!current->signal->leader || current->signal->tty) {
2382                 ret = -EPERM;
2383                 goto unlock;
2384         }
2385
2386         if (tty->session) {
2387                 /*
2388                  * This tty is already the controlling
2389                  * tty for another session group!
2390                  */
2391                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2392                         /*
2393                          * Steal it away
2394                          */
2395                         read_lock(&tasklist_lock);
2396                         session_clear_tty(tty->session);
2397                         read_unlock(&tasklist_lock);
2398                 } else {
2399                         ret = -EPERM;
2400                         goto unlock;
2401                 }
2402         }
2403         proc_set_tty(current, tty);
2404 unlock:
2405         mutex_unlock(&tty_mutex);
2406         return ret;
2407 }
2408
2409 /**
2410  *      tty_get_pgrp    -       return a ref counted pgrp pid
2411  *      @tty: tty to read
2412  *
2413  *      Returns a refcounted instance of the pid struct for the process
2414  *      group controlling the tty.
2415  */
2416
2417 struct pid *tty_get_pgrp(struct tty_struct *tty)
2418 {
2419         unsigned long flags;
2420         struct pid *pgrp;
2421
2422         spin_lock_irqsave(&tty->ctrl_lock, flags);
2423         pgrp = get_pid(tty->pgrp);
2424         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2425
2426         return pgrp;
2427 }
2428 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2429
2430 /**
2431  *      tiocgpgrp               -       get process group
2432  *      @tty: tty passed by user
2433  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2434  *      @p: returned pid
2435  *
2436  *      Obtain the process group of the tty. If there is no process group
2437  *      return an error.
2438  *
2439  *      Locking: none. Reference to current->signal->tty is safe.
2440  */
2441
2442 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2443 {
2444         struct pid *pid;
2445         int ret;
2446         /*
2447          * (tty == real_tty) is a cheap way of
2448          * testing if the tty is NOT a master pty.
2449          */
2450         if (tty == real_tty && current->signal->tty != real_tty)
2451                 return -ENOTTY;
2452         pid = tty_get_pgrp(real_tty);
2453         ret =  put_user(pid_vnr(pid), p);
2454         put_pid(pid);
2455         return ret;
2456 }
2457
2458 /**
2459  *      tiocspgrp               -       attempt to set process group
2460  *      @tty: tty passed by user
2461  *      @real_tty: tty side device matching tty passed by user
2462  *      @p: pid pointer
2463  *
2464  *      Set the process group of the tty to the session passed. Only
2465  *      permitted where the tty session is our session.
2466  *
2467  *      Locking: RCU, ctrl lock
2468  */
2469
2470 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2471 {
2472         struct pid *pgrp;
2473         pid_t pgrp_nr;
2474         int retval = tty_check_change(real_tty);
2475         unsigned long flags;
2476
2477         if (retval == -EIO)
2478                 return -ENOTTY;
2479         if (retval)
2480                 return retval;
2481         if (!current->signal->tty ||
2482             (current->signal->tty != real_tty) ||
2483             (real_tty->session != task_session(current)))
2484                 return -ENOTTY;
2485         if (get_user(pgrp_nr, p))
2486                 return -EFAULT;
2487         if (pgrp_nr < 0)
2488                 return -EINVAL;
2489         rcu_read_lock();
2490         pgrp = find_vpid(pgrp_nr);
2491         retval = -ESRCH;
2492         if (!pgrp)
2493                 goto out_unlock;
2494         retval = -EPERM;
2495         if (session_of_pgrp(pgrp) != task_session(current))
2496                 goto out_unlock;
2497         retval = 0;
2498         spin_lock_irqsave(&tty->ctrl_lock, flags);
2499         put_pid(real_tty->pgrp);
2500         real_tty->pgrp = get_pid(pgrp);
2501         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2502 out_unlock:
2503         rcu_read_unlock();
2504         return retval;
2505 }
2506
2507 /**
2508  *      tiocgsid                -       get session id
2509  *      @tty: tty passed by user
2510  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2511  *      @p: pointer to returned session id
2512  *
2513  *      Obtain the session id of the tty. If there is no session
2514  *      return an error.
2515  *
2516  *      Locking: none. Reference to current->signal->tty is safe.
2517  */
2518
2519 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2520 {
2521         /*
2522          * (tty == real_tty) is a cheap way of
2523          * testing if the tty is NOT a master pty.
2524         */
2525         if (tty == real_tty && current->signal->tty != real_tty)
2526                 return -ENOTTY;
2527         if (!real_tty->session)
2528                 return -ENOTTY;
2529         return put_user(pid_vnr(real_tty->session), p);
2530 }
2531
2532 /**
2533  *      tiocsetd        -       set line discipline
2534  *      @tty: tty device
2535  *      @p: pointer to user data
2536  *
2537  *      Set the line discipline according to user request.
2538  *
2539  *      Locking: see tty_set_ldisc, this function is just a helper
2540  */
2541
2542 static int tiocsetd(struct tty_struct *tty, int __user *p)
2543 {
2544         int ldisc;
2545         int ret;
2546
2547         if (get_user(ldisc, p))
2548                 return -EFAULT;
2549
2550         ret = tty_set_ldisc(tty, ldisc);
2551
2552         return ret;
2553 }
2554
2555 /**
2556  *      send_break      -       performed time break
2557  *      @tty: device to break on
2558  *      @duration: timeout in mS
2559  *
2560  *      Perform a timed break on hardware that lacks its own driver level
2561  *      timed break functionality.
2562  *
2563  *      Locking:
2564  *              atomic_write_lock serializes
2565  *
2566  */
2567
2568 static int send_break(struct tty_struct *tty, unsigned int duration)
2569 {
2570         int retval;
2571
2572         if (tty->ops->break_ctl == NULL)
2573                 return 0;
2574
2575         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2576                 retval = tty->ops->break_ctl(tty, duration);
2577         else {
2578                 /* Do the work ourselves */
2579                 if (tty_write_lock(tty, 0) < 0)
2580                         return -EINTR;
2581                 retval = tty->ops->break_ctl(tty, -1);
2582                 if (retval)
2583                         goto out;
2584                 if (!signal_pending(current))
2585                         msleep_interruptible(duration);
2586                 retval = tty->ops->break_ctl(tty, 0);
2587 out:
2588                 tty_write_unlock(tty);
2589                 if (signal_pending(current))
2590                         retval = -EINTR;
2591         }
2592         return retval;
2593 }
2594
2595 /**
2596  *      tty_tiocmget            -       get modem status
2597  *      @tty: tty device
2598  *      @file: user file pointer
2599  *      @p: pointer to result
2600  *
2601  *      Obtain the modem status bits from the tty driver if the feature
2602  *      is supported. Return -EINVAL if it is not available.
2603  *
2604  *      Locking: none (up to the driver)
2605  */
2606
2607 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2608 {
2609         int retval = -EINVAL;
2610
2611         if (tty->ops->tiocmget) {
2612                 retval = tty->ops->tiocmget(tty);
2613
2614                 if (retval >= 0)
2615                         retval = put_user(retval, p);
2616         }
2617         return retval;
2618 }
2619
2620 /**
2621  *      tty_tiocmset            -       set modem status
2622  *      @tty: tty device
2623  *      @cmd: command - clear bits, set bits or set all
2624  *      @p: pointer to desired bits
2625  *
2626  *      Set the modem status bits from the tty driver if the feature
2627  *      is supported. Return -EINVAL if it is not available.
2628  *
2629  *      Locking: none (up to the driver)
2630  */
2631
2632 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2633              unsigned __user *p)
2634 {
2635         int retval;
2636         unsigned int set, clear, val;
2637
2638         if (tty->ops->tiocmset == NULL)
2639                 return -EINVAL;
2640
2641         retval = get_user(val, p);
2642         if (retval)
2643                 return retval;
2644         set = clear = 0;
2645         switch (cmd) {
2646         case TIOCMBIS:
2647                 set = val;
2648                 break;
2649         case TIOCMBIC:
2650                 clear = val;
2651                 break;
2652         case TIOCMSET:
2653                 set = val;
2654                 clear = ~val;
2655                 break;
2656         }
2657         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2658         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2659         return tty->ops->tiocmset(tty, set, clear);
2660 }
2661
2662 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2663 {
2664         int retval = -EINVAL;
2665         struct serial_icounter_struct icount;
2666         memset(&icount, 0, sizeof(icount));
2667         if (tty->ops->get_icount)
2668                 retval = tty->ops->get_icount(tty, &icount);
2669         if (retval != 0)
2670                 return retval;
2671         if (copy_to_user(arg, &icount, sizeof(icount)))
2672                 return -EFAULT;
2673         return 0;
2674 }
2675
2676 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2677 {
2678         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2679             tty->driver->subtype == PTY_TYPE_MASTER)
2680                 tty = tty->link;
2681         return tty;
2682 }
2683 EXPORT_SYMBOL(tty_pair_get_tty);
2684
2685 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2686 {
2687         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2688             tty->driver->subtype == PTY_TYPE_MASTER)
2689             return tty;
2690         return tty->link;
2691 }
2692 EXPORT_SYMBOL(tty_pair_get_pty);
2693
2694 /*
2695  * Split this up, as gcc can choke on it otherwise..
2696  */
2697 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2698 {
2699         struct tty_struct *tty = file_tty(file);
2700         struct tty_struct *real_tty;
2701         void __user *p = (void __user *)arg;
2702         int retval;
2703         struct tty_ldisc *ld;
2704
2705         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2706                 return -EINVAL;
2707
2708         real_tty = tty_pair_get_tty(tty);
2709
2710         /*
2711          * Factor out some common prep work
2712          */
2713         switch (cmd) {
2714         case TIOCSETD:
2715         case TIOCSBRK:
2716         case TIOCCBRK:
2717         case TCSBRK:
2718         case TCSBRKP:
2719                 retval = tty_check_change(tty);
2720                 if (retval)
2721                         return retval;
2722                 if (cmd != TIOCCBRK) {
2723                         tty_wait_until_sent(tty, 0);
2724                         if (signal_pending(current))
2725                                 return -EINTR;
2726                 }
2727                 break;
2728         }
2729
2730         /*
2731          *      Now do the stuff.
2732          */
2733         switch (cmd) {
2734         case TIOCSTI:
2735                 return tiocsti(tty, p);
2736         case TIOCGWINSZ:
2737                 return tiocgwinsz(real_tty, p);
2738         case TIOCSWINSZ:
2739                 return tiocswinsz(real_tty, p);
2740         case TIOCCONS:
2741                 return real_tty != tty ? -EINVAL : tioccons(file);
2742         case FIONBIO:
2743                 return fionbio(file, p);
2744         case TIOCEXCL:
2745                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2746                 return 0;
2747         case TIOCNXCL:
2748                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2749                 return 0;
2750         case TIOCGEXCL:
2751         {
2752                 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2753                 return put_user(excl, (int __user *)p);
2754         }
2755         case TIOCNOTTY:
2756                 if (current->signal->tty != tty)
2757                         return -ENOTTY;
2758                 no_tty();
2759                 return 0;
2760         case TIOCSCTTY:
2761                 return tiocsctty(tty, arg);
2762         case TIOCGPGRP:
2763                 return tiocgpgrp(tty, real_tty, p);
2764         case TIOCSPGRP:
2765                 return tiocspgrp(tty, real_tty, p);
2766         case TIOCGSID:
2767                 return tiocgsid(tty, real_tty, p);
2768         case TIOCGETD:
2769                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2770         case TIOCSETD:
2771                 return tiocsetd(tty, p);
2772         case TIOCVHANGUP:
2773                 if (!capable(CAP_SYS_ADMIN))
2774                         return -EPERM;
2775                 tty_vhangup(tty);
2776                 return 0;
2777         case TIOCGDEV:
2778         {
2779                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2780                 return put_user(ret, (unsigned int __user *)p);
2781         }
2782         /*
2783          * Break handling
2784          */
2785         case TIOCSBRK:  /* Turn break on, unconditionally */
2786                 if (tty->ops->break_ctl)
2787                         return tty->ops->break_ctl(tty, -1);
2788                 return 0;
2789         case TIOCCBRK:  /* Turn break off, unconditionally */
2790                 if (tty->ops->break_ctl)
2791                         return tty->ops->break_ctl(tty, 0);
2792                 return 0;
2793         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2794                 /* non-zero arg means wait for all output data
2795                  * to be sent (performed above) but don't send break.
2796                  * This is used by the tcdrain() termios function.
2797                  */
2798                 if (!arg)
2799                         return send_break(tty, 250);
2800                 return 0;
2801         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2802                 return send_break(tty, arg ? arg*100 : 250);
2803
2804         case TIOCMGET:
2805                 return tty_tiocmget(tty, p);
2806         case TIOCMSET:
2807         case TIOCMBIC:
2808         case TIOCMBIS:
2809                 return tty_tiocmset(tty, cmd, p);
2810         case TIOCGICOUNT:
2811                 retval = tty_tiocgicount(tty, p);
2812                 /* For the moment allow fall through to the old method */
2813                 if (retval != -EINVAL)
2814                         return retval;
2815                 break;
2816         case TCFLSH:
2817                 switch (arg) {
2818                 case TCIFLUSH:
2819                 case TCIOFLUSH:
2820                 /* flush tty buffer and allow ldisc to process ioctl */
2821                         tty_buffer_flush(tty);
2822                         break;
2823                 }
2824                 break;
2825         }
2826         if (tty->ops->ioctl) {
2827                 retval = (tty->ops->ioctl)(tty, cmd, arg);
2828                 if (retval != -ENOIOCTLCMD)
2829                         return retval;
2830         }
2831         ld = tty_ldisc_ref_wait(tty);
2832         retval = -EINVAL;
2833         if (ld->ops->ioctl) {
2834                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2835                 if (retval == -ENOIOCTLCMD)
2836                         retval = -ENOTTY;
2837         }
2838         tty_ldisc_deref(ld);
2839         return retval;
2840 }
2841
2842 #ifdef CONFIG_COMPAT
2843 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2844                                 unsigned long arg)
2845 {
2846         struct tty_struct *tty = file_tty(file);
2847         struct tty_ldisc *ld;
2848         int retval = -ENOIOCTLCMD;
2849
2850         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2851                 return -EINVAL;
2852
2853         if (tty->ops->compat_ioctl) {
2854                 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2855                 if (retval != -ENOIOCTLCMD)
2856                         return retval;
2857         }
2858
2859         ld = tty_ldisc_ref_wait(tty);
2860         if (ld->ops->compat_ioctl)
2861                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2862         else
2863                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2864         tty_ldisc_deref(ld);
2865
2866         return retval;
2867 }
2868 #endif
2869
2870 static int this_tty(const void *t, struct file *file, unsigned fd)
2871 {
2872         if (likely(file->f_op->read != tty_read))
2873                 return 0;
2874         return file_tty(file) != t ? 0 : fd + 1;
2875 }
2876         
2877 /*
2878  * This implements the "Secure Attention Key" ---  the idea is to
2879  * prevent trojan horses by killing all processes associated with this
2880  * tty when the user hits the "Secure Attention Key".  Required for
2881  * super-paranoid applications --- see the Orange Book for more details.
2882  *
2883  * This code could be nicer; ideally it should send a HUP, wait a few
2884  * seconds, then send a INT, and then a KILL signal.  But you then
2885  * have to coordinate with the init process, since all processes associated
2886  * with the current tty must be dead before the new getty is allowed
2887  * to spawn.
2888  *
2889  * Now, if it would be correct ;-/ The current code has a nasty hole -
2890  * it doesn't catch files in flight. We may send the descriptor to ourselves
2891  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2892  *
2893  * Nasty bug: do_SAK is being called in interrupt context.  This can
2894  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2895  */
2896 void __do_SAK(struct tty_struct *tty)
2897 {
2898 #ifdef TTY_SOFT_SAK
2899         tty_hangup(tty);
2900 #else
2901         struct task_struct *g, *p;
2902         struct pid *session;
2903         int             i;
2904
2905         if (!tty)
2906                 return;
2907         session = tty->session;
2908
2909         tty_ldisc_flush(tty);
2910
2911         tty_driver_flush_buffer(tty);
2912
2913         read_lock(&tasklist_lock);
2914         /* Kill the entire session */
2915         do_each_pid_task(session, PIDTYPE_SID, p) {
2916                 printk(KERN_NOTICE "SAK: killed process %d"
2917                         " (%s): task_session(p)==tty->session\n",
2918                         task_pid_nr(p), p->comm);
2919                 send_sig(SIGKILL, p, 1);
2920         } while_each_pid_task(session, PIDTYPE_SID, p);
2921         /* Now kill any processes that happen to have the
2922          * tty open.
2923          */
2924         do_each_thread(g, p) {
2925                 if (p->signal->tty == tty) {
2926                         printk(KERN_NOTICE "SAK: killed process %d"
2927                             " (%s): task_session(p)==tty->session\n",
2928                             task_pid_nr(p), p->comm);
2929                         send_sig(SIGKILL, p, 1);
2930                         continue;
2931                 }
2932                 task_lock(p);
2933                 i = iterate_fd(p->files, 0, this_tty, tty);
2934                 if (i != 0) {
2935                         printk(KERN_NOTICE "SAK: killed process %d"
2936                             " (%s): fd#%d opened to the tty\n",
2937                                     task_pid_nr(p), p->comm, i - 1);
2938                         force_sig(SIGKILL, p);
2939                 }
2940                 task_unlock(p);
2941         } while_each_thread(g, p);
2942         read_unlock(&tasklist_lock);
2943 #endif
2944 }
2945
2946 static void do_SAK_work(struct work_struct *work)
2947 {
2948         struct tty_struct *tty =
2949                 container_of(work, struct tty_struct, SAK_work);
2950         __do_SAK(tty);
2951 }
2952
2953 /*
2954  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2955  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2956  * the values which we write to it will be identical to the values which it
2957  * already has. --akpm
2958  */
2959 void do_SAK(struct tty_struct *tty)
2960 {
2961         if (!tty)
2962                 return;
2963         schedule_work(&tty->SAK_work);
2964 }
2965
2966 EXPORT_SYMBOL(do_SAK);
2967
2968 static int dev_match_devt(struct device *dev, const void *data)
2969 {
2970         const dev_t *devt = data;
2971         return dev->devt == *devt;
2972 }
2973
2974 /* Must put_device() after it's unused! */
2975 static struct device *tty_get_device(struct tty_struct *tty)
2976 {
2977         dev_t devt = tty_devnum(tty);
2978         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2979 }
2980
2981
2982 /**
2983  *      initialize_tty_struct
2984  *      @tty: tty to initialize
2985  *
2986  *      This subroutine initializes a tty structure that has been newly
2987  *      allocated.
2988  *
2989  *      Locking: none - tty in question must not be exposed at this point
2990  */
2991
2992 void initialize_tty_struct(struct tty_struct *tty,
2993                 struct tty_driver *driver, int idx)
2994 {
2995         memset(tty, 0, sizeof(struct tty_struct));
2996         kref_init(&tty->kref);
2997         tty->magic = TTY_MAGIC;
2998         tty_ldisc_init(tty);
2999         tty->session = NULL;
3000         tty->pgrp = NULL;
3001         mutex_init(&tty->legacy_mutex);
3002         mutex_init(&tty->termios_mutex);
3003         mutex_init(&tty->ldisc_mutex);
3004         init_waitqueue_head(&tty->write_wait);
3005         init_waitqueue_head(&tty->read_wait);
3006         INIT_WORK(&tty->hangup_work, do_tty_hangup);
3007         mutex_init(&tty->atomic_write_lock);
3008         spin_lock_init(&tty->ctrl_lock);
3009         INIT_LIST_HEAD(&tty->tty_files);
3010         INIT_WORK(&tty->SAK_work, do_SAK_work);
3011
3012         tty->driver = driver;
3013         tty->ops = driver->ops;
3014         tty->index = idx;
3015         tty_line_name(driver, idx, tty->name);
3016         tty->dev = tty_get_device(tty);
3017 }
3018
3019 /**
3020  *      deinitialize_tty_struct
3021  *      @tty: tty to deinitialize
3022  *
3023  *      This subroutine deinitializes a tty structure that has been newly
3024  *      allocated but tty_release cannot be called on that yet.
3025  *
3026  *      Locking: none - tty in question must not be exposed at this point
3027  */
3028 void deinitialize_tty_struct(struct tty_struct *tty)
3029 {
3030         tty_ldisc_deinit(tty);
3031 }
3032
3033 /**
3034  *      tty_put_char    -       write one character to a tty
3035  *      @tty: tty
3036  *      @ch: character
3037  *
3038  *      Write one byte to the tty using the provided put_char method
3039  *      if present. Returns the number of characters successfully output.
3040  *
3041  *      Note: the specific put_char operation in the driver layer may go
3042  *      away soon. Don't call it directly, use this method
3043  */
3044
3045 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3046 {
3047         if (tty->ops->put_char)
3048                 return tty->ops->put_char(tty, ch);
3049         return tty->ops->write(tty, &ch, 1);
3050 }
3051 EXPORT_SYMBOL_GPL(tty_put_char);
3052
3053 struct class *tty_class;
3054
3055 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3056                 unsigned int index, unsigned int count)
3057 {
3058         /* init here, since reused cdevs cause crashes */
3059         cdev_init(&driver->cdevs[index], &tty_fops);
3060         driver->cdevs[index].owner = driver->owner;
3061         return cdev_add(&driver->cdevs[index], dev, count);
3062 }
3063
3064 /**
3065  *      tty_register_device - register a tty device
3066  *      @driver: the tty driver that describes the tty device
3067  *      @index: the index in the tty driver for this tty device
3068  *      @device: a struct device that is associated with this tty device.
3069  *              This field is optional, if there is no known struct device
3070  *              for this tty device it can be set to NULL safely.
3071  *
3072  *      Returns a pointer to the struct device for this tty device
3073  *      (or ERR_PTR(-EFOO) on error).
3074  *
3075  *      This call is required to be made to register an individual tty device
3076  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3077  *      that bit is not set, this function should not be called by a tty
3078  *      driver.
3079  *
3080  *      Locking: ??
3081  */
3082
3083 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3084                                    struct device *device)
3085 {
3086         return tty_register_device_attr(driver, index, device, NULL, NULL);
3087 }
3088 EXPORT_SYMBOL(tty_register_device);
3089
3090 static void tty_device_create_release(struct device *dev)
3091 {
3092         pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3093         kfree(dev);
3094 }
3095
3096 /**
3097  *      tty_register_device_attr - register a tty device
3098  *      @driver: the tty driver that describes the tty device
3099  *      @index: the index in the tty driver for this tty device
3100  *      @device: a struct device that is associated with this tty device.
3101  *              This field is optional, if there is no known struct device
3102  *              for this tty device it can be set to NULL safely.
3103  *      @drvdata: Driver data to be set to device.
3104  *      @attr_grp: Attribute group to be set on device.
3105  *
3106  *      Returns a pointer to the struct device for this tty device
3107  *      (or ERR_PTR(-EFOO) on error).
3108  *
3109  *      This call is required to be made to register an individual tty device
3110  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3111  *      that bit is not set, this function should not be called by a tty
3112  *      driver.
3113  *
3114  *      Locking: ??
3115  */
3116 struct device *tty_register_device_attr(struct tty_driver *driver,
3117                                    unsigned index, struct device *device,
3118                                    void *drvdata,
3119                                    const struct attribute_group **attr_grp)
3120 {
3121         char name[64];
3122         dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3123         struct device *dev = NULL;
3124         int retval = -ENODEV;
3125         bool cdev = false;
3126
3127         if (index >= driver->num) {
3128                 printk(KERN_ERR "Attempt to register invalid tty line number "
3129                        " (%d).\n", index);
3130                 return ERR_PTR(-EINVAL);
3131         }
3132
3133         if (driver->type == TTY_DRIVER_TYPE_PTY)
3134                 pty_line_name(driver, index, name);
3135         else
3136                 tty_line_name(driver, index, name);
3137
3138         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3139                 retval = tty_cdev_add(driver, devt, index, 1);
3140                 if (retval)
3141                         goto error;
3142                 cdev = true;
3143         }
3144
3145         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3146         if (!dev) {
3147                 retval = -ENOMEM;
3148                 goto error;
3149         }
3150
3151         dev->devt = devt;
3152         dev->class = tty_class;
3153         dev->parent = device;
3154         dev->release = tty_device_create_release;
3155         dev_set_name(dev, "%s", name);
3156         dev->groups = attr_grp;
3157         dev_set_drvdata(dev, drvdata);
3158
3159         retval = device_register(dev);
3160         if (retval)
3161                 goto error;
3162
3163         return dev;
3164
3165 error:
3166         put_device(dev);
3167         if (cdev)
3168                 cdev_del(&driver->cdevs[index]);
3169         return ERR_PTR(retval);
3170 }
3171 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3172
3173 /**
3174  *      tty_unregister_device - unregister a tty device
3175  *      @driver: the tty driver that describes the tty device
3176  *      @index: the index in the tty driver for this tty device
3177  *
3178  *      If a tty device is registered with a call to tty_register_device() then
3179  *      this function must be called when the tty device is gone.
3180  *
3181  *      Locking: ??
3182  */
3183
3184 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3185 {
3186         device_destroy(tty_class,
3187                 MKDEV(driver->major, driver->minor_start) + index);
3188         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3189                 cdev_del(&driver->cdevs[index]);
3190 }
3191 EXPORT_SYMBOL(tty_unregister_device);
3192
3193 /**
3194  * __tty_alloc_driver -- allocate tty driver
3195  * @lines: count of lines this driver can handle at most
3196  * @owner: module which is repsonsible for this driver
3197  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3198  *
3199  * This should not be called directly, some of the provided macros should be
3200  * used instead. Use IS_ERR and friends on @retval.
3201  */
3202 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3203                 unsigned long flags)
3204 {
3205         struct tty_driver *driver;
3206         unsigned int cdevs = 1;
3207         int err;
3208
3209         if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3210                 return ERR_PTR(-EINVAL);
3211
3212         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3213         if (!driver)
3214                 return ERR_PTR(-ENOMEM);
3215
3216         kref_init(&driver->kref);
3217         driver->magic = TTY_DRIVER_MAGIC;
3218         driver->num = lines;
3219         driver->owner = owner;
3220         driver->flags = flags;
3221
3222         if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3223                 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3224                                 GFP_KERNEL);
3225                 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3226                                 GFP_KERNEL);
3227                 if (!driver->ttys || !driver->termios) {
3228                         err = -ENOMEM;
3229                         goto err_free_all;
3230                 }
3231         }
3232
3233         if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3234                 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3235                                 GFP_KERNEL);
3236                 if (!driver->ports) {
3237                         err = -ENOMEM;
3238                         goto err_free_all;
3239                 }
3240                 cdevs = lines;
3241         }
3242
3243         driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3244         if (!driver->cdevs) {
3245                 err = -ENOMEM;
3246                 goto err_free_all;
3247         }
3248
3249         return driver;
3250 err_free_all:
3251         kfree(driver->ports);
3252         kfree(driver->ttys);
3253         kfree(driver->termios);
3254         kfree(driver);
3255         return ERR_PTR(err);
3256 }
3257 EXPORT_SYMBOL(__tty_alloc_driver);
3258
3259 static void destruct_tty_driver(struct kref *kref)
3260 {
3261         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3262         int i;
3263         struct ktermios *tp;
3264
3265         if (driver->flags & TTY_DRIVER_INSTALLED) {
3266                 /*
3267                  * Free the termios and termios_locked structures because
3268                  * we don't want to get memory leaks when modular tty
3269                  * drivers are removed from the kernel.
3270                  */
3271                 for (i = 0; i < driver->num; i++) {
3272                         tp = driver->termios[i];
3273                         if (tp) {
3274                                 driver->termios[i] = NULL;
3275                                 kfree(tp);
3276                         }
3277                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3278                                 tty_unregister_device(driver, i);
3279                 }
3280                 proc_tty_unregister_driver(driver);
3281                 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3282                         cdev_del(&driver->cdevs[0]);
3283         }
3284         kfree(driver->cdevs);
3285         kfree(driver->ports);
3286         kfree(driver->termios);
3287         kfree(driver->ttys);
3288         kfree(driver);
3289 }
3290
3291 void tty_driver_kref_put(struct tty_driver *driver)
3292 {
3293         kref_put(&driver->kref, destruct_tty_driver);
3294 }
3295 EXPORT_SYMBOL(tty_driver_kref_put);
3296
3297 void tty_set_operations(struct tty_driver *driver,
3298                         const struct tty_operations *op)
3299 {
3300         driver->ops = op;
3301 };
3302 EXPORT_SYMBOL(tty_set_operations);
3303
3304 void put_tty_driver(struct tty_driver *d)
3305 {
3306         tty_driver_kref_put(d);
3307 }
3308 EXPORT_SYMBOL(put_tty_driver);
3309
3310 /*
3311  * Called by a tty driver to register itself.
3312  */
3313 int tty_register_driver(struct tty_driver *driver)
3314 {
3315         int error;
3316         int i;
3317         dev_t dev;
3318         struct device *d;
3319
3320         if (!driver->major) {
3321                 error = alloc_chrdev_region(&dev, driver->minor_start,
3322                                                 driver->num, driver->name);
3323                 if (!error) {
3324                         driver->major = MAJOR(dev);
3325                         driver->minor_start = MINOR(dev);
3326                 }
3327         } else {
3328                 dev = MKDEV(driver->major, driver->minor_start);
3329                 error = register_chrdev_region(dev, driver->num, driver->name);
3330         }
3331         if (error < 0)
3332                 goto err;
3333
3334         if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3335                 error = tty_cdev_add(driver, dev, 0, driver->num);
3336                 if (error)
3337                         goto err_unreg_char;
3338         }
3339
3340         mutex_lock(&tty_mutex);
3341         list_add(&driver->tty_drivers, &tty_drivers);
3342         mutex_unlock(&tty_mutex);
3343
3344         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3345                 for (i = 0; i < driver->num; i++) {
3346                         d = tty_register_device(driver, i, NULL);
3347                         if (IS_ERR(d)) {
3348                                 error = PTR_ERR(d);
3349                                 goto err_unreg_devs;
3350                         }
3351                 }
3352         }
3353         proc_tty_register_driver(driver);
3354         driver->flags |= TTY_DRIVER_INSTALLED;
3355         return 0;
3356
3357 err_unreg_devs:
3358         for (i--; i >= 0; i--)
3359                 tty_unregister_device(driver, i);
3360
3361         mutex_lock(&tty_mutex);
3362         list_del(&driver->tty_drivers);
3363         mutex_unlock(&tty_mutex);
3364
3365 err_unreg_char:
3366         unregister_chrdev_region(dev, driver->num);
3367 err:
3368         return error;
3369 }
3370 EXPORT_SYMBOL(tty_register_driver);
3371
3372 /*
3373  * Called by a tty driver to unregister itself.
3374  */
3375 int tty_unregister_driver(struct tty_driver *driver)
3376 {
3377 #if 0
3378         /* FIXME */
3379         if (driver->refcount)
3380                 return -EBUSY;
3381 #endif
3382         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3383                                 driver->num);
3384         mutex_lock(&tty_mutex);
3385         list_del(&driver->tty_drivers);
3386         mutex_unlock(&tty_mutex);
3387         return 0;
3388 }
3389
3390 EXPORT_SYMBOL(tty_unregister_driver);
3391
3392 dev_t tty_devnum(struct tty_struct *tty)
3393 {
3394         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3395 }
3396 EXPORT_SYMBOL(tty_devnum);
3397
3398 void proc_clear_tty(struct task_struct *p)
3399 {
3400         unsigned long flags;
3401         struct tty_struct *tty;
3402         spin_lock_irqsave(&p->sighand->siglock, flags);
3403         tty = p->signal->tty;
3404         p->signal->tty = NULL;
3405         spin_unlock_irqrestore(&p->sighand->siglock, flags);
3406         tty_kref_put(tty);
3407 }
3408
3409 /* Called under the sighand lock */
3410
3411 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3412 {
3413         if (tty) {
3414                 unsigned long flags;
3415                 /* We should not have a session or pgrp to put here but.... */
3416                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3417                 put_pid(tty->session);
3418                 put_pid(tty->pgrp);
3419                 tty->pgrp = get_pid(task_pgrp(tsk));
3420                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3421                 tty->session = get_pid(task_session(tsk));
3422                 if (tsk->signal->tty) {
3423                         printk(KERN_DEBUG "tty not NULL!!\n");
3424                         tty_kref_put(tsk->signal->tty);
3425                 }
3426         }
3427         put_pid(tsk->signal->tty_old_pgrp);
3428         tsk->signal->tty = tty_kref_get(tty);
3429         tsk->signal->tty_old_pgrp = NULL;
3430 }
3431
3432 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3433 {
3434         spin_lock_irq(&tsk->sighand->siglock);
3435         __proc_set_tty(tsk, tty);
3436         spin_unlock_irq(&tsk->sighand->siglock);
3437 }
3438
3439 struct tty_struct *get_current_tty(void)
3440 {
3441         struct tty_struct *tty;
3442         unsigned long flags;
3443
3444         spin_lock_irqsave(&current->sighand->siglock, flags);
3445         tty = tty_kref_get(current->signal->tty);
3446         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3447         return tty;
3448 }
3449 EXPORT_SYMBOL_GPL(get_current_tty);
3450
3451 void tty_default_fops(struct file_operations *fops)
3452 {
3453         *fops = tty_fops;
3454 }
3455
3456 /*
3457  * Initialize the console device. This is called *early*, so
3458  * we can't necessarily depend on lots of kernel help here.
3459  * Just do some early initializations, and do the complex setup
3460  * later.
3461  */
3462 void __init console_init(void)
3463 {
3464         initcall_t *call;
3465
3466         /* Setup the default TTY line discipline. */
3467         tty_ldisc_begin();
3468
3469         /*
3470          * set up the console device so that later boot sequences can
3471          * inform about problems etc..
3472          */
3473         call = __con_initcall_start;
3474         while (call < __con_initcall_end) {
3475                 (*call)();
3476                 call++;
3477         }
3478 }
3479
3480 static char *tty_devnode(struct device *dev, umode_t *mode)
3481 {
3482         if (!mode)
3483                 return NULL;
3484         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3485             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3486                 *mode = 0666;
3487         return NULL;
3488 }
3489
3490 static int __init tty_class_init(void)
3491 {
3492         tty_class = class_create(THIS_MODULE, "tty");
3493         if (IS_ERR(tty_class))
3494                 return PTR_ERR(tty_class);
3495         tty_class->devnode = tty_devnode;
3496         return 0;
3497 }
3498
3499 postcore_initcall(tty_class_init);
3500
3501 /* 3/2004 jmc: why do these devices exist? */
3502 static struct cdev tty_cdev, console_cdev;
3503
3504 static ssize_t show_cons_active(struct device *dev,
3505                                 struct device_attribute *attr, char *buf)
3506 {
3507         struct console *cs[16];
3508         int i = 0;
3509         struct console *c;
3510         ssize_t count = 0;
3511
3512         console_lock();
3513         for_each_console(c) {
3514                 if (!c->device)
3515                         continue;
3516                 if (!c->write)
3517                         continue;
3518                 if ((c->flags & CON_ENABLED) == 0)
3519                         continue;
3520                 cs[i++] = c;
3521                 if (i >= ARRAY_SIZE(cs))
3522                         break;
3523         }
3524         while (i--)
3525                 count += sprintf(buf + count, "%s%d%c",
3526                                  cs[i]->name, cs[i]->index, i ? ' ':'\n');
3527         console_unlock();
3528
3529         return count;
3530 }
3531 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3532
3533 static struct device *consdev;
3534
3535 void console_sysfs_notify(void)
3536 {
3537         if (consdev)
3538                 sysfs_notify(&consdev->kobj, NULL, "active");
3539 }
3540
3541 /*
3542  * Ok, now we can initialize the rest of the tty devices and can count
3543  * on memory allocations, interrupts etc..
3544  */
3545 int __init tty_init(void)
3546 {
3547         cdev_init(&tty_cdev, &tty_fops);
3548         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3549             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3550                 panic("Couldn't register /dev/tty driver\n");
3551         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3552
3553         cdev_init(&console_cdev, &console_fops);
3554         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3555             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3556                 panic("Couldn't register /dev/console driver\n");
3557         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3558                               "console");
3559         if (IS_ERR(consdev))
3560                 consdev = NULL;
3561         else
3562                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3563
3564 #ifdef CONFIG_VT
3565         vty_init(&console_fops);
3566 #endif
3567         return 0;
3568 }
3569