ARM: mali400: r5p2_rel0: fix Makefile & Kconfig
[profile/mobile/platform/kernel/linux-3.10-sc7730.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
114         .c_iflag = ICRNL | IXON,
115         .c_oflag = OPOST | ONLCR,
116         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118                    ECHOCTL | ECHOKE | IEXTEN,
119         .c_cc = INIT_C_CC,
120         .c_ispeed = 38400,
121         .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129
130 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143                                                         size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149                                 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159 /**
160  *      alloc_tty_struct        -       allocate a tty object
161  *
162  *      Return a new empty tty structure. The data fields have not
163  *      been initialized in any way but has been zeroed
164  *
165  *      Locking: none
166  */
167
168 struct tty_struct *alloc_tty_struct(void)
169 {
170         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 }
172
173 /**
174  *      free_tty_struct         -       free a disused tty
175  *      @tty: tty struct to free
176  *
177  *      Free the write buffers, tty queue and tty memory itself.
178  *
179  *      Locking: none. Must be called after tty is definitely unused
180  */
181
182 void free_tty_struct(struct tty_struct *tty)
183 {
184         if (!tty)
185                 return;
186         if (tty->dev)
187                 put_device(tty->dev);
188         kfree(tty->write_buf);
189         tty->magic = 0xDEADDEAD;
190         kfree(tty);
191 }
192
193 static inline struct tty_struct *file_tty(struct file *file)
194 {
195         return ((struct tty_file_private *)file->private_data)->tty;
196 }
197
198 int tty_alloc_file(struct file *file)
199 {
200         struct tty_file_private *priv;
201
202         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
203         if (!priv)
204                 return -ENOMEM;
205
206         file->private_data = priv;
207
208         return 0;
209 }
210
211 /* Associate a new file with the tty structure */
212 void tty_add_file(struct tty_struct *tty, struct file *file)
213 {
214         struct tty_file_private *priv = file->private_data;
215
216         priv->tty = tty;
217         priv->file = file;
218
219         spin_lock(&tty_files_lock);
220         list_add(&priv->list, &tty->tty_files);
221         spin_unlock(&tty_files_lock);
222 }
223
224 /**
225  * tty_free_file - free file->private_data
226  *
227  * This shall be used only for fail path handling when tty_add_file was not
228  * called yet.
229  */
230 void tty_free_file(struct file *file)
231 {
232         struct tty_file_private *priv = file->private_data;
233
234         file->private_data = NULL;
235         kfree(priv);
236 }
237
238 /* Delete file from its tty */
239 static void tty_del_file(struct file *file)
240 {
241         struct tty_file_private *priv = file->private_data;
242
243         spin_lock(&tty_files_lock);
244         list_del(&priv->list);
245         spin_unlock(&tty_files_lock);
246         tty_free_file(file);
247 }
248
249
250 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
251
252 /**
253  *      tty_name        -       return tty naming
254  *      @tty: tty structure
255  *      @buf: buffer for output
256  *
257  *      Convert a tty structure into a name. The name reflects the kernel
258  *      naming policy and if udev is in use may not reflect user space
259  *
260  *      Locking: none
261  */
262
263 char *tty_name(struct tty_struct *tty, char *buf)
264 {
265         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
266                 strcpy(buf, "NULL tty");
267         else
268                 strcpy(buf, tty->name);
269         return buf;
270 }
271
272 EXPORT_SYMBOL(tty_name);
273
274 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
275                               const char *routine)
276 {
277 #ifdef TTY_PARANOIA_CHECK
278         if (!tty) {
279                 printk(KERN_WARNING
280                         "null TTY for (%d:%d) in %s\n",
281                         imajor(inode), iminor(inode), routine);
282                 return 1;
283         }
284         if (tty->magic != TTY_MAGIC) {
285                 printk(KERN_WARNING
286                         "bad magic number for tty struct (%d:%d) in %s\n",
287                         imajor(inode), iminor(inode), routine);
288                 return 1;
289         }
290 #endif
291         return 0;
292 }
293
294 static int check_tty_count(struct tty_struct *tty, const char *routine)
295 {
296 #ifdef CHECK_TTY_COUNT
297         struct list_head *p;
298         int count = 0;
299
300         spin_lock(&tty_files_lock);
301         list_for_each(p, &tty->tty_files) {
302                 count++;
303         }
304         spin_unlock(&tty_files_lock);
305         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
306             tty->driver->subtype == PTY_TYPE_SLAVE &&
307             tty->link && tty->link->count)
308                 count++;
309         if (tty->count != count) {
310                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
311                                     "!= #fd's(%d) in %s\n",
312                        tty->name, tty->count, count, routine);
313                 return count;
314         }
315 #endif
316         return 0;
317 }
318
319 /**
320  *      get_tty_driver          -       find device of a tty
321  *      @dev_t: device identifier
322  *      @index: returns the index of the tty
323  *
324  *      This routine returns a tty driver structure, given a device number
325  *      and also passes back the index number.
326  *
327  *      Locking: caller must hold tty_mutex
328  */
329
330 static struct tty_driver *get_tty_driver(dev_t device, int *index)
331 {
332         struct tty_driver *p;
333
334         list_for_each_entry(p, &tty_drivers, tty_drivers) {
335                 dev_t base = MKDEV(p->major, p->minor_start);
336                 if (device < base || device >= base + p->num)
337                         continue;
338                 *index = device - base;
339                 return tty_driver_kref_get(p);
340         }
341         return NULL;
342 }
343
344 #ifdef CONFIG_CONSOLE_POLL
345
346 /**
347  *      tty_find_polling_driver -       find device of a polled tty
348  *      @name: name string to match
349  *      @line: pointer to resulting tty line nr
350  *
351  *      This routine returns a tty driver structure, given a name
352  *      and the condition that the tty driver is capable of polled
353  *      operation.
354  */
355 struct tty_driver *tty_find_polling_driver(char *name, int *line)
356 {
357         struct tty_driver *p, *res = NULL;
358         int tty_line = 0;
359         int len;
360         char *str, *stp;
361
362         for (str = name; *str; str++)
363                 if ((*str >= '0' && *str <= '9') || *str == ',')
364                         break;
365         if (!*str)
366                 return NULL;
367
368         len = str - name;
369         tty_line = simple_strtoul(str, &str, 10);
370
371         mutex_lock(&tty_mutex);
372         /* Search through the tty devices to look for a match */
373         list_for_each_entry(p, &tty_drivers, tty_drivers) {
374                 if (strncmp(name, p->name, len) != 0)
375                         continue;
376                 stp = str;
377                 if (*stp == ',')
378                         stp++;
379                 if (*stp == '\0')
380                         stp = NULL;
381
382                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
383                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
384                         res = tty_driver_kref_get(p);
385                         *line = tty_line;
386                         break;
387                 }
388         }
389         mutex_unlock(&tty_mutex);
390
391         return res;
392 }
393 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
394 #endif
395
396 /**
397  *      tty_check_change        -       check for POSIX terminal changes
398  *      @tty: tty to check
399  *
400  *      If we try to write to, or set the state of, a terminal and we're
401  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
402  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
403  *
404  *      Locking: ctrl_lock
405  */
406
407 int tty_check_change(struct tty_struct *tty)
408 {
409         unsigned long flags;
410         int ret = 0;
411
412         if (current->signal->tty != tty)
413                 return 0;
414
415         spin_lock_irqsave(&tty->ctrl_lock, flags);
416
417         if (!tty->pgrp) {
418                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
419                 goto out_unlock;
420         }
421         if (task_pgrp(current) == tty->pgrp)
422                 goto out_unlock;
423         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
424         if (is_ignored(SIGTTOU))
425                 goto out;
426         if (is_current_pgrp_orphaned()) {
427                 ret = -EIO;
428                 goto out;
429         }
430         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
431         set_thread_flag(TIF_SIGPENDING);
432         ret = -ERESTARTSYS;
433 out:
434         return ret;
435 out_unlock:
436         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
437         return ret;
438 }
439
440 EXPORT_SYMBOL(tty_check_change);
441
442 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
443                                 size_t count, loff_t *ppos)
444 {
445         return 0;
446 }
447
448 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
449                                  size_t count, loff_t *ppos)
450 {
451         return -EIO;
452 }
453
454 /* No kernel lock held - none needed ;) */
455 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
456 {
457         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
458 }
459
460 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
461                 unsigned long arg)
462 {
463         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
464 }
465
466 static long hung_up_tty_compat_ioctl(struct file *file,
467                                      unsigned int cmd, unsigned long arg)
468 {
469         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
470 }
471
472 static const struct file_operations tty_fops = {
473         .llseek         = no_llseek,
474         .read           = tty_read,
475         .write          = tty_write,
476         .poll           = tty_poll,
477         .unlocked_ioctl = tty_ioctl,
478         .compat_ioctl   = tty_compat_ioctl,
479         .open           = tty_open,
480         .release        = tty_release,
481         .fasync         = tty_fasync,
482 };
483
484 static const struct file_operations console_fops = {
485         .llseek         = no_llseek,
486         .read           = tty_read,
487         .write          = redirected_tty_write,
488         .poll           = tty_poll,
489         .unlocked_ioctl = tty_ioctl,
490         .compat_ioctl   = tty_compat_ioctl,
491         .open           = tty_open,
492         .release        = tty_release,
493         .fasync         = tty_fasync,
494 };
495
496 static const struct file_operations hung_up_tty_fops = {
497         .llseek         = no_llseek,
498         .read           = hung_up_tty_read,
499         .write          = hung_up_tty_write,
500         .poll           = hung_up_tty_poll,
501         .unlocked_ioctl = hung_up_tty_ioctl,
502         .compat_ioctl   = hung_up_tty_compat_ioctl,
503         .release        = tty_release,
504 };
505
506 static DEFINE_SPINLOCK(redirect_lock);
507 static struct file *redirect;
508
509 /**
510  *      tty_wakeup      -       request more data
511  *      @tty: terminal
512  *
513  *      Internal and external helper for wakeups of tty. This function
514  *      informs the line discipline if present that the driver is ready
515  *      to receive more output data.
516  */
517
518 void tty_wakeup(struct tty_struct *tty)
519 {
520         struct tty_ldisc *ld;
521
522         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
523                 ld = tty_ldisc_ref(tty);
524                 if (ld) {
525                         if (ld->ops->write_wakeup)
526                                 ld->ops->write_wakeup(tty);
527                         tty_ldisc_deref(ld);
528                 }
529         }
530         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
531 }
532
533 EXPORT_SYMBOL_GPL(tty_wakeup);
534
535 /**
536  *      tty_signal_session_leader       - sends SIGHUP to session leader
537  *      @tty            controlling tty
538  *      @exit_session   if non-zero, signal all foreground group processes
539  *
540  *      Send SIGHUP and SIGCONT to the session leader and its process group.
541  *      Optionally, signal all processes in the foreground process group.
542  *
543  *      Returns the number of processes in the session with this tty
544  *      as their controlling terminal. This value is used to drop
545  *      tty references for those processes.
546  */
547 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
548 {
549         struct task_struct *p;
550         int refs = 0;
551         struct pid *tty_pgrp = NULL;
552
553         read_lock(&tasklist_lock);
554         if (tty->session) {
555                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
556                         spin_lock_irq(&p->sighand->siglock);
557                         if (p->signal->tty == tty) {
558                                 p->signal->tty = NULL;
559                                 /* We defer the dereferences outside fo
560                                    the tasklist lock */
561                                 refs++;
562                         }
563                         if (!p->signal->leader) {
564                                 spin_unlock_irq(&p->sighand->siglock);
565                                 continue;
566                         }
567                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
568                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
569                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
570                         spin_lock(&tty->ctrl_lock);
571                         tty_pgrp = get_pid(tty->pgrp);
572                         if (tty->pgrp)
573                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
574                         spin_unlock(&tty->ctrl_lock);
575                         spin_unlock_irq(&p->sighand->siglock);
576                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
577         }
578         read_unlock(&tasklist_lock);
579
580         if (tty_pgrp) {
581                 if (exit_session)
582                         kill_pgrp(tty_pgrp, SIGHUP, exit_session);
583                 put_pid(tty_pgrp);
584         }
585
586         return refs;
587 }
588
589 /**
590  *      __tty_hangup            -       actual handler for hangup events
591  *      @work: tty device
592  *
593  *      This can be called by a "kworker" kernel thread.  That is process
594  *      synchronous but doesn't hold any locks, so we need to make sure we
595  *      have the appropriate locks for what we're doing.
596  *
597  *      The hangup event clears any pending redirections onto the hung up
598  *      device. It ensures future writes will error and it does the needed
599  *      line discipline hangup and signal delivery. The tty object itself
600  *      remains intact.
601  *
602  *      Locking:
603  *              BTM
604  *                redirect lock for undoing redirection
605  *                file list lock for manipulating list of ttys
606  *                tty_ldisc_lock from called functions
607  *                termios_mutex resetting termios data
608  *                tasklist_lock to walk task list for hangup event
609  *                  ->siglock to protect ->signal/->sighand
610  */
611 static void __tty_hangup(struct tty_struct *tty, int exit_session)
612 {
613         struct file *cons_filp = NULL;
614         struct file *filp, *f = NULL;
615         struct tty_file_private *priv;
616         int    closecount = 0, n;
617         int refs;
618
619         if (!tty)
620                 return;
621
622
623         spin_lock(&redirect_lock);
624         if (redirect && file_tty(redirect) == tty) {
625                 f = redirect;
626                 redirect = NULL;
627         }
628         spin_unlock(&redirect_lock);
629
630         tty_lock(tty);
631
632         if (test_bit(TTY_HUPPED, &tty->flags)) {
633                 tty_unlock(tty);
634                 return;
635         }
636
637         /* some functions below drop BTM, so we need this bit */
638         set_bit(TTY_HUPPING, &tty->flags);
639
640         /* inuse_filps is protected by the single tty lock,
641            this really needs to change if we want to flush the
642            workqueue with the lock held */
643         check_tty_count(tty, "tty_hangup");
644
645         spin_lock(&tty_files_lock);
646         /* This breaks for file handles being sent over AF_UNIX sockets ? */
647         list_for_each_entry(priv, &tty->tty_files, list) {
648                 filp = priv->file;
649                 if (filp->f_op->write == redirected_tty_write)
650                         cons_filp = filp;
651                 if (filp->f_op->write != tty_write)
652                         continue;
653                 closecount++;
654                 __tty_fasync(-1, filp, 0);      /* can't block */
655                 filp->f_op = &hung_up_tty_fops;
656         }
657         spin_unlock(&tty_files_lock);
658
659         refs = tty_signal_session_leader(tty, exit_session);
660         /* Account for the p->signal references we killed */
661         while (refs--)
662                 tty_kref_put(tty);
663
664         /*
665          * it drops BTM and thus races with reopen
666          * we protect the race by TTY_HUPPING
667          */
668         tty_ldisc_hangup(tty);
669
670         spin_lock_irq(&tty->ctrl_lock);
671         clear_bit(TTY_THROTTLED, &tty->flags);
672         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
673         put_pid(tty->session);
674         put_pid(tty->pgrp);
675         tty->session = NULL;
676         tty->pgrp = NULL;
677         tty->ctrl_status = 0;
678         spin_unlock_irq(&tty->ctrl_lock);
679
680         /*
681          * If one of the devices matches a console pointer, we
682          * cannot just call hangup() because that will cause
683          * tty->count and state->count to go out of sync.
684          * So we just call close() the right number of times.
685          */
686         if (cons_filp) {
687                 if (tty->ops->close)
688                         for (n = 0; n < closecount; n++)
689                                 tty->ops->close(tty, cons_filp);
690         } else if (tty->ops->hangup)
691                 (tty->ops->hangup)(tty);
692         /*
693          * We don't want to have driver/ldisc interactions beyond
694          * the ones we did here. The driver layer expects no
695          * calls after ->hangup() from the ldisc side. However we
696          * can't yet guarantee all that.
697          */
698         set_bit(TTY_HUPPED, &tty->flags);
699         clear_bit(TTY_HUPPING, &tty->flags);
700
701         tty_unlock(tty);
702
703         if (f)
704                 fput(f);
705 }
706
707 static void do_tty_hangup(struct work_struct *work)
708 {
709         struct tty_struct *tty =
710                 container_of(work, struct tty_struct, hangup_work);
711
712         __tty_hangup(tty, 0);
713 }
714
715 /**
716  *      tty_hangup              -       trigger a hangup event
717  *      @tty: tty to hangup
718  *
719  *      A carrier loss (virtual or otherwise) has occurred on this like
720  *      schedule a hangup sequence to run after this event.
721  */
722
723 void tty_hangup(struct tty_struct *tty)
724 {
725 #ifdef TTY_DEBUG_HANGUP
726         char    buf[64];
727         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
728 #endif
729         schedule_work(&tty->hangup_work);
730 }
731
732 EXPORT_SYMBOL(tty_hangup);
733
734 /**
735  *      tty_vhangup             -       process vhangup
736  *      @tty: tty to hangup
737  *
738  *      The user has asked via system call for the terminal to be hung up.
739  *      We do this synchronously so that when the syscall returns the process
740  *      is complete. That guarantee is necessary for security reasons.
741  */
742
743 void tty_vhangup(struct tty_struct *tty)
744 {
745 #ifdef TTY_DEBUG_HANGUP
746         char    buf[64];
747
748         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
749 #endif
750         __tty_hangup(tty, 0);
751 }
752
753 EXPORT_SYMBOL(tty_vhangup);
754
755
756 /**
757  *      tty_vhangup_self        -       process vhangup for own ctty
758  *
759  *      Perform a vhangup on the current controlling tty
760  */
761
762 void tty_vhangup_self(void)
763 {
764         struct tty_struct *tty;
765
766         tty = get_current_tty();
767         if (tty) {
768                 tty_vhangup(tty);
769                 tty_kref_put(tty);
770         }
771 }
772
773 /**
774  *      tty_vhangup_session             -       hangup session leader exit
775  *      @tty: tty to hangup
776  *
777  *      The session leader is exiting and hanging up its controlling terminal.
778  *      Every process in the foreground process group is signalled SIGHUP.
779  *
780  *      We do this synchronously so that when the syscall returns the process
781  *      is complete. That guarantee is necessary for security reasons.
782  */
783
784 static void tty_vhangup_session(struct tty_struct *tty)
785 {
786 #ifdef TTY_DEBUG_HANGUP
787         char    buf[64];
788
789         printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
790 #endif
791         __tty_hangup(tty, 1);
792 }
793
794 /**
795  *      tty_hung_up_p           -       was tty hung up
796  *      @filp: file pointer of tty
797  *
798  *      Return true if the tty has been subject to a vhangup or a carrier
799  *      loss
800  */
801
802 int tty_hung_up_p(struct file *filp)
803 {
804         return (filp->f_op == &hung_up_tty_fops);
805 }
806
807 EXPORT_SYMBOL(tty_hung_up_p);
808
809 static void session_clear_tty(struct pid *session)
810 {
811         struct task_struct *p;
812         do_each_pid_task(session, PIDTYPE_SID, p) {
813                 proc_clear_tty(p);
814         } while_each_pid_task(session, PIDTYPE_SID, p);
815 }
816
817 /**
818  *      disassociate_ctty       -       disconnect controlling tty
819  *      @on_exit: true if exiting so need to "hang up" the session
820  *
821  *      This function is typically called only by the session leader, when
822  *      it wants to disassociate itself from its controlling tty.
823  *
824  *      It performs the following functions:
825  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
826  *      (2)  Clears the tty from being controlling the session
827  *      (3)  Clears the controlling tty for all processes in the
828  *              session group.
829  *
830  *      The argument on_exit is set to 1 if called when a process is
831  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
832  *
833  *      Locking:
834  *              BTM is taken for hysterical raisins, and held when
835  *                called from no_tty().
836  *                tty_mutex is taken to protect tty
837  *                ->siglock is taken to protect ->signal/->sighand
838  *                tasklist_lock is taken to walk process list for sessions
839  *                  ->siglock is taken to protect ->signal/->sighand
840  */
841
842 void disassociate_ctty(int on_exit)
843 {
844         struct tty_struct *tty;
845
846         if (!current->signal->leader)
847                 return;
848
849         tty = get_current_tty();
850         if (tty) {
851                 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
852                         tty_vhangup_session(tty);
853                 } else {
854                         struct pid *tty_pgrp = tty_get_pgrp(tty);
855                         if (tty_pgrp) {
856                                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
857                                 if (!on_exit)
858                                         kill_pgrp(tty_pgrp, SIGCONT, on_exit);
859                                 put_pid(tty_pgrp);
860                         }
861                 }
862                 tty_kref_put(tty);
863
864         } else if (on_exit) {
865                 struct pid *old_pgrp;
866                 spin_lock_irq(&current->sighand->siglock);
867                 old_pgrp = current->signal->tty_old_pgrp;
868                 current->signal->tty_old_pgrp = NULL;
869                 spin_unlock_irq(&current->sighand->siglock);
870                 if (old_pgrp) {
871                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
872                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
873                         put_pid(old_pgrp);
874                 }
875                 return;
876         }
877
878         spin_lock_irq(&current->sighand->siglock);
879         put_pid(current->signal->tty_old_pgrp);
880         current->signal->tty_old_pgrp = NULL;
881         spin_unlock_irq(&current->sighand->siglock);
882
883         tty = get_current_tty();
884         if (tty) {
885                 unsigned long flags;
886                 spin_lock_irqsave(&tty->ctrl_lock, flags);
887                 put_pid(tty->session);
888                 put_pid(tty->pgrp);
889                 tty->session = NULL;
890                 tty->pgrp = NULL;
891                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
892                 tty_kref_put(tty);
893         } else {
894 #ifdef TTY_DEBUG_HANGUP
895                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
896                        " = NULL", tty);
897 #endif
898         }
899
900         /* Now clear signal->tty under the lock */
901         read_lock(&tasklist_lock);
902         session_clear_tty(task_session(current));
903         read_unlock(&tasklist_lock);
904 }
905
906 /**
907  *
908  *      no_tty  - Ensure the current process does not have a controlling tty
909  */
910 void no_tty(void)
911 {
912         /* FIXME: Review locking here. The tty_lock never covered any race
913            between a new association and proc_clear_tty but possible we need
914            to protect against this anyway */
915         struct task_struct *tsk = current;
916         disassociate_ctty(0);
917         proc_clear_tty(tsk);
918 }
919
920
921 /**
922  *      stop_tty        -       propagate flow control
923  *      @tty: tty to stop
924  *
925  *      Perform flow control to the driver. For PTY/TTY pairs we
926  *      must also propagate the TIOCKPKT status. May be called
927  *      on an already stopped device and will not re-call the driver
928  *      method.
929  *
930  *      This functionality is used by both the line disciplines for
931  *      halting incoming flow and by the driver. It may therefore be
932  *      called from any context, may be under the tty atomic_write_lock
933  *      but not always.
934  *
935  *      Locking:
936  *              Uses the tty control lock internally
937  */
938
939 void stop_tty(struct tty_struct *tty)
940 {
941         unsigned long flags;
942         spin_lock_irqsave(&tty->ctrl_lock, flags);
943         if (tty->stopped) {
944                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
945                 return;
946         }
947         tty->stopped = 1;
948         if (tty->link && tty->link->packet) {
949                 tty->ctrl_status &= ~TIOCPKT_START;
950                 tty->ctrl_status |= TIOCPKT_STOP;
951                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
952         }
953         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
954         if (tty->ops->stop)
955                 (tty->ops->stop)(tty);
956 }
957
958 EXPORT_SYMBOL(stop_tty);
959
960 /**
961  *      start_tty       -       propagate flow control
962  *      @tty: tty to start
963  *
964  *      Start a tty that has been stopped if at all possible. Perform
965  *      any necessary wakeups and propagate the TIOCPKT status. If this
966  *      is the tty was previous stopped and is being started then the
967  *      driver start method is invoked and the line discipline woken.
968  *
969  *      Locking:
970  *              ctrl_lock
971  */
972
973 void start_tty(struct tty_struct *tty)
974 {
975         unsigned long flags;
976         spin_lock_irqsave(&tty->ctrl_lock, flags);
977         if (!tty->stopped || tty->flow_stopped) {
978                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
979                 return;
980         }
981         tty->stopped = 0;
982         if (tty->link && tty->link->packet) {
983                 tty->ctrl_status &= ~TIOCPKT_STOP;
984                 tty->ctrl_status |= TIOCPKT_START;
985                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
986         }
987         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
988         if (tty->ops->start)
989                 (tty->ops->start)(tty);
990         /* If we have a running line discipline it may need kicking */
991         tty_wakeup(tty);
992 }
993
994 EXPORT_SYMBOL(start_tty);
995
996 /* We limit tty time update visibility to every 8 seconds or so. */
997 static void tty_update_time(struct timespec *time)
998 {
999         unsigned long sec = get_seconds() & ~7;
1000         if ((long)(sec - time->tv_sec) > 0)
1001                 time->tv_sec = sec;
1002 }
1003
1004 /**
1005  *      tty_read        -       read method for tty device files
1006  *      @file: pointer to tty file
1007  *      @buf: user buffer
1008  *      @count: size of user buffer
1009  *      @ppos: unused
1010  *
1011  *      Perform the read system call function on this terminal device. Checks
1012  *      for hung up devices before calling the line discipline method.
1013  *
1014  *      Locking:
1015  *              Locks the line discipline internally while needed. Multiple
1016  *      read calls may be outstanding in parallel.
1017  */
1018
1019 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1020                         loff_t *ppos)
1021 {
1022         int i;
1023         struct inode *inode = file_inode(file);
1024         struct tty_struct *tty = file_tty(file);
1025         struct tty_ldisc *ld;
1026
1027         if (tty_paranoia_check(tty, inode, "tty_read"))
1028                 return -EIO;
1029         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1030                 return -EIO;
1031
1032         /* We want to wait for the line discipline to sort out in this
1033            situation */
1034         ld = tty_ldisc_ref_wait(tty);
1035         if (ld->ops->read)
1036                 i = (ld->ops->read)(tty, file, buf, count);
1037         else
1038                 i = -EIO;
1039         tty_ldisc_deref(ld);
1040
1041         if (i > 0)
1042                 tty_update_time(&inode->i_atime);
1043
1044         return i;
1045 }
1046
1047 void tty_write_unlock(struct tty_struct *tty)
1048         __releases(&tty->atomic_write_lock)
1049 {
1050         mutex_unlock(&tty->atomic_write_lock);
1051         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1052 }
1053
1054 int tty_write_lock(struct tty_struct *tty, int ndelay)
1055         __acquires(&tty->atomic_write_lock)
1056 {
1057         if (!mutex_trylock(&tty->atomic_write_lock)) {
1058                 if (ndelay)
1059                         return -EAGAIN;
1060                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1061                         return -ERESTARTSYS;
1062         }
1063         return 0;
1064 }
1065
1066 /*
1067  * Split writes up in sane blocksizes to avoid
1068  * denial-of-service type attacks
1069  */
1070 static inline ssize_t do_tty_write(
1071         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1072         struct tty_struct *tty,
1073         struct file *file,
1074         const char __user *buf,
1075         size_t count)
1076 {
1077         ssize_t ret, written = 0;
1078         unsigned int chunk;
1079
1080         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1081         if (ret < 0)
1082                 return ret;
1083
1084         /*
1085          * We chunk up writes into a temporary buffer. This
1086          * simplifies low-level drivers immensely, since they
1087          * don't have locking issues and user mode accesses.
1088          *
1089          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1090          * big chunk-size..
1091          *
1092          * The default chunk-size is 2kB, because the NTTY
1093          * layer has problems with bigger chunks. It will
1094          * claim to be able to handle more characters than
1095          * it actually does.
1096          *
1097          * FIXME: This can probably go away now except that 64K chunks
1098          * are too likely to fail unless switched to vmalloc...
1099          */
1100         chunk = 2048;
1101         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1102                 chunk = 65536;
1103         if (count < chunk)
1104                 chunk = count;
1105
1106         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1107         if (tty->write_cnt < chunk) {
1108                 unsigned char *buf_chunk;
1109
1110                 if (chunk < 1024)
1111                         chunk = 1024;
1112
1113                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1114                 if (!buf_chunk) {
1115                         ret = -ENOMEM;
1116                         goto out;
1117                 }
1118                 kfree(tty->write_buf);
1119                 tty->write_cnt = chunk;
1120                 tty->write_buf = buf_chunk;
1121         }
1122
1123         /* Do the write .. */
1124         for (;;) {
1125                 size_t size = count;
1126                 if (size > chunk)
1127                         size = chunk;
1128                 ret = -EFAULT;
1129                 if (copy_from_user(tty->write_buf, buf, size))
1130                         break;
1131                 ret = write(tty, file, tty->write_buf, size);
1132                 if (ret <= 0)
1133                         break;
1134                 written += ret;
1135                 buf += ret;
1136                 count -= ret;
1137                 if (!count)
1138                         break;
1139                 ret = -ERESTARTSYS;
1140                 if (signal_pending(current))
1141                         break;
1142                 cond_resched();
1143         }
1144         if (written) {
1145                 tty_update_time(&file_inode(file)->i_mtime);
1146                 ret = written;
1147         }
1148 out:
1149         tty_write_unlock(tty);
1150         return ret;
1151 }
1152
1153 /**
1154  * tty_write_message - write a message to a certain tty, not just the console.
1155  * @tty: the destination tty_struct
1156  * @msg: the message to write
1157  *
1158  * This is used for messages that need to be redirected to a specific tty.
1159  * We don't put it into the syslog queue right now maybe in the future if
1160  * really needed.
1161  *
1162  * We must still hold the BTM and test the CLOSING flag for the moment.
1163  */
1164
1165 void tty_write_message(struct tty_struct *tty, char *msg)
1166 {
1167         if (tty) {
1168                 mutex_lock(&tty->atomic_write_lock);
1169                 tty_lock(tty);
1170                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1171                         tty_unlock(tty);
1172                         tty->ops->write(tty, msg, strlen(msg));
1173                 } else
1174                         tty_unlock(tty);
1175                 tty_write_unlock(tty);
1176         }
1177         return;
1178 }
1179
1180
1181 /**
1182  *      tty_write               -       write method for tty device file
1183  *      @file: tty file pointer
1184  *      @buf: user data to write
1185  *      @count: bytes to write
1186  *      @ppos: unused
1187  *
1188  *      Write data to a tty device via the line discipline.
1189  *
1190  *      Locking:
1191  *              Locks the line discipline as required
1192  *              Writes to the tty driver are serialized by the atomic_write_lock
1193  *      and are then processed in chunks to the device. The line discipline
1194  *      write method will not be invoked in parallel for each device.
1195  */
1196
1197 static ssize_t tty_write(struct file *file, const char __user *buf,
1198                                                 size_t count, loff_t *ppos)
1199 {
1200         struct tty_struct *tty = file_tty(file);
1201         struct tty_ldisc *ld;
1202         ssize_t ret;
1203
1204         if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1205                 return -EIO;
1206         if (!tty || !tty->ops->write ||
1207                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1208                         return -EIO;
1209         /* Short term debug to catch buggy drivers */
1210         if (tty->ops->write_room == NULL)
1211                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1212                         tty->driver->name);
1213         ld = tty_ldisc_ref_wait(tty);
1214         if (!ld->ops->write)
1215                 ret = -EIO;
1216         else
1217                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1218         tty_ldisc_deref(ld);
1219         return ret;
1220 }
1221
1222 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1223                                                 size_t count, loff_t *ppos)
1224 {
1225         struct file *p = NULL;
1226
1227         spin_lock(&redirect_lock);
1228         if (redirect)
1229                 p = get_file(redirect);
1230         spin_unlock(&redirect_lock);
1231
1232         if (p) {
1233                 ssize_t res;
1234                 res = vfs_write(p, buf, count, &p->f_pos);
1235                 fput(p);
1236                 return res;
1237         }
1238         return tty_write(file, buf, count, ppos);
1239 }
1240
1241 static char ptychar[] = "pqrstuvwxyzabcde";
1242
1243 /**
1244  *      pty_line_name   -       generate name for a pty
1245  *      @driver: the tty driver in use
1246  *      @index: the minor number
1247  *      @p: output buffer of at least 6 bytes
1248  *
1249  *      Generate a name from a driver reference and write it to the output
1250  *      buffer.
1251  *
1252  *      Locking: None
1253  */
1254 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1255 {
1256         int i = index + driver->name_base;
1257         /* ->name is initialized to "ttyp", but "tty" is expected */
1258         sprintf(p, "%s%c%x",
1259                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1260                 ptychar[i >> 4 & 0xf], i & 0xf);
1261 }
1262
1263 /**
1264  *      tty_line_name   -       generate name for a tty
1265  *      @driver: the tty driver in use
1266  *      @index: the minor number
1267  *      @p: output buffer of at least 7 bytes
1268  *
1269  *      Generate a name from a driver reference and write it to the output
1270  *      buffer.
1271  *
1272  *      Locking: None
1273  */
1274 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1275 {
1276         if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1277                 return sprintf(p, "%s", driver->name);
1278         else
1279                 return sprintf(p, "%s%d", driver->name,
1280                                index + driver->name_base);
1281 }
1282
1283 /**
1284  *      tty_driver_lookup_tty() - find an existing tty, if any
1285  *      @driver: the driver for the tty
1286  *      @idx:    the minor number
1287  *
1288  *      Return the tty, if found or ERR_PTR() otherwise.
1289  *
1290  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1291  *      be held until the 'fast-open' is also done. Will change once we
1292  *      have refcounting in the driver and per driver locking
1293  */
1294 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1295                 struct inode *inode, int idx)
1296 {
1297         if (driver->ops->lookup)
1298                 return driver->ops->lookup(driver, inode, idx);
1299
1300         return driver->ttys[idx];
1301 }
1302
1303 /**
1304  *      tty_init_termios        -  helper for termios setup
1305  *      @tty: the tty to set up
1306  *
1307  *      Initialise the termios structures for this tty. Thus runs under
1308  *      the tty_mutex currently so we can be relaxed about ordering.
1309  */
1310
1311 int tty_init_termios(struct tty_struct *tty)
1312 {
1313         struct ktermios *tp;
1314         int idx = tty->index;
1315
1316         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1317                 tty->termios = tty->driver->init_termios;
1318         else {
1319                 /* Check for lazy saved data */
1320                 tp = tty->driver->termios[idx];
1321                 if (tp != NULL)
1322                         tty->termios = *tp;
1323                 else
1324                         tty->termios = tty->driver->init_termios;
1325         }
1326         /* Compatibility until drivers always set this */
1327         tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1328         tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1329         return 0;
1330 }
1331 EXPORT_SYMBOL_GPL(tty_init_termios);
1332
1333 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1334 {
1335         int ret = tty_init_termios(tty);
1336         if (ret)
1337                 return ret;
1338
1339         tty_driver_kref_get(driver);
1340         tty->count++;
1341         driver->ttys[tty->index] = tty;
1342         return 0;
1343 }
1344 EXPORT_SYMBOL_GPL(tty_standard_install);
1345
1346 /**
1347  *      tty_driver_install_tty() - install a tty entry in the driver
1348  *      @driver: the driver for the tty
1349  *      @tty: the tty
1350  *
1351  *      Install a tty object into the driver tables. The tty->index field
1352  *      will be set by the time this is called. This method is responsible
1353  *      for ensuring any need additional structures are allocated and
1354  *      configured.
1355  *
1356  *      Locking: tty_mutex for now
1357  */
1358 static int tty_driver_install_tty(struct tty_driver *driver,
1359                                                 struct tty_struct *tty)
1360 {
1361         return driver->ops->install ? driver->ops->install(driver, tty) :
1362                 tty_standard_install(driver, tty);
1363 }
1364
1365 /**
1366  *      tty_driver_remove_tty() - remove a tty from the driver tables
1367  *      @driver: the driver for the tty
1368  *      @idx:    the minor number
1369  *
1370  *      Remvoe a tty object from the driver tables. The tty->index field
1371  *      will be set by the time this is called.
1372  *
1373  *      Locking: tty_mutex for now
1374  */
1375 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1376 {
1377         if (driver->ops->remove)
1378                 driver->ops->remove(driver, tty);
1379         else
1380                 driver->ttys[tty->index] = NULL;
1381 }
1382
1383 /*
1384  *      tty_reopen()    - fast re-open of an open tty
1385  *      @tty    - the tty to open
1386  *
1387  *      Return 0 on success, -errno on error.
1388  *
1389  *      Locking: tty_mutex must be held from the time the tty was found
1390  *               till this open completes.
1391  */
1392 static int tty_reopen(struct tty_struct *tty)
1393 {
1394         struct tty_driver *driver = tty->driver;
1395
1396         if (test_bit(TTY_CLOSING, &tty->flags) ||
1397                         test_bit(TTY_HUPPING, &tty->flags))
1398                 return -EIO;
1399
1400         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1401             driver->subtype == PTY_TYPE_MASTER) {
1402                 /*
1403                  * special case for PTY masters: only one open permitted,
1404                  * and the slave side open count is incremented as well.
1405                  */
1406                 if (tty->count)
1407                         return -EIO;
1408
1409                 tty->link->count++;
1410         }
1411         tty->count++;
1412
1413         WARN_ON(!tty->ldisc);
1414
1415         return 0;
1416 }
1417
1418 /**
1419  *      tty_init_dev            -       initialise a tty device
1420  *      @driver: tty driver we are opening a device on
1421  *      @idx: device index
1422  *      @ret_tty: returned tty structure
1423  *
1424  *      Prepare a tty device. This may not be a "new" clean device but
1425  *      could also be an active device. The pty drivers require special
1426  *      handling because of this.
1427  *
1428  *      Locking:
1429  *              The function is called under the tty_mutex, which
1430  *      protects us from the tty struct or driver itself going away.
1431  *
1432  *      On exit the tty device has the line discipline attached and
1433  *      a reference count of 1. If a pair was created for pty/tty use
1434  *      and the other was a pty master then it too has a reference count of 1.
1435  *
1436  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1437  * failed open.  The new code protects the open with a mutex, so it's
1438  * really quite straightforward.  The mutex locking can probably be
1439  * relaxed for the (most common) case of reopening a tty.
1440  */
1441
1442 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1443 {
1444         struct tty_struct *tty;
1445         int retval;
1446
1447         /*
1448          * First time open is complex, especially for PTY devices.
1449          * This code guarantees that either everything succeeds and the
1450          * TTY is ready for operation, or else the table slots are vacated
1451          * and the allocated memory released.  (Except that the termios
1452          * and locked termios may be retained.)
1453          */
1454
1455         if (!try_module_get(driver->owner))
1456                 return ERR_PTR(-ENODEV);
1457
1458         tty = alloc_tty_struct();
1459         if (!tty) {
1460                 retval = -ENOMEM;
1461                 goto err_module_put;
1462         }
1463         initialize_tty_struct(tty, driver, idx);
1464
1465         tty_lock(tty);
1466         retval = tty_driver_install_tty(driver, tty);
1467         if (retval < 0)
1468                 goto err_deinit_tty;
1469
1470         if (!tty->port)
1471                 tty->port = driver->ports[idx];
1472
1473         WARN_RATELIMIT(!tty->port,
1474                         "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1475                         __func__, tty->driver->name);
1476
1477         tty->port->itty = tty;
1478
1479         /*
1480          * Structures all installed ... call the ldisc open routines.
1481          * If we fail here just call release_tty to clean up.  No need
1482          * to decrement the use counts, as release_tty doesn't care.
1483          */
1484         retval = tty_ldisc_setup(tty, tty->link);
1485         if (retval)
1486                 goto err_release_tty;
1487         /* Return the tty locked so that it cannot vanish under the caller */
1488         return tty;
1489
1490 err_deinit_tty:
1491         tty_unlock(tty);
1492         deinitialize_tty_struct(tty);
1493         free_tty_struct(tty);
1494 err_module_put:
1495         module_put(driver->owner);
1496         return ERR_PTR(retval);
1497
1498         /* call the tty release_tty routine to clean out this slot */
1499 err_release_tty:
1500         tty_unlock(tty);
1501         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1502                                  "clearing slot %d\n", idx);
1503         release_tty(tty, idx);
1504         return ERR_PTR(retval);
1505 }
1506
1507 void tty_free_termios(struct tty_struct *tty)
1508 {
1509         struct ktermios *tp;
1510         int idx = tty->index;
1511
1512         /* If the port is going to reset then it has no termios to save */
1513         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1514                 return;
1515
1516         /* Stash the termios data */
1517         tp = tty->driver->termios[idx];
1518         if (tp == NULL) {
1519                 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1520                 if (tp == NULL) {
1521                         pr_warn("tty: no memory to save termios state.\n");
1522                         return;
1523                 }
1524                 tty->driver->termios[idx] = tp;
1525         }
1526         *tp = tty->termios;
1527 }
1528 EXPORT_SYMBOL(tty_free_termios);
1529
1530 /**
1531  *      tty_flush_works         -       flush all works of a tty
1532  *      @tty: tty device to flush works for
1533  *
1534  *      Sync flush all works belonging to @tty.
1535  */
1536 static void tty_flush_works(struct tty_struct *tty)
1537 {
1538         flush_work(&tty->SAK_work);
1539         flush_work(&tty->hangup_work);
1540 }
1541
1542 /**
1543  *      release_one_tty         -       release tty structure memory
1544  *      @kref: kref of tty we are obliterating
1545  *
1546  *      Releases memory associated with a tty structure, and clears out the
1547  *      driver table slots. This function is called when a device is no longer
1548  *      in use. It also gets called when setup of a device fails.
1549  *
1550  *      Locking:
1551  *              takes the file list lock internally when working on the list
1552  *      of ttys that the driver keeps.
1553  *
1554  *      This method gets called from a work queue so that the driver private
1555  *      cleanup ops can sleep (needed for USB at least)
1556  */
1557 static void release_one_tty(struct work_struct *work)
1558 {
1559         struct tty_struct *tty =
1560                 container_of(work, struct tty_struct, hangup_work);
1561         struct tty_driver *driver = tty->driver;
1562
1563         if (tty->ops->cleanup)
1564                 tty->ops->cleanup(tty);
1565
1566         tty->magic = 0;
1567         tty_driver_kref_put(driver);
1568         module_put(driver->owner);
1569
1570         spin_lock(&tty_files_lock);
1571         list_del_init(&tty->tty_files);
1572         spin_unlock(&tty_files_lock);
1573
1574         put_pid(tty->pgrp);
1575         put_pid(tty->session);
1576         free_tty_struct(tty);
1577 }
1578
1579 static void queue_release_one_tty(struct kref *kref)
1580 {
1581         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1582
1583         /* The hangup queue is now free so we can reuse it rather than
1584            waste a chunk of memory for each port */
1585         INIT_WORK(&tty->hangup_work, release_one_tty);
1586         schedule_work(&tty->hangup_work);
1587 }
1588
1589 /**
1590  *      tty_kref_put            -       release a tty kref
1591  *      @tty: tty device
1592  *
1593  *      Release a reference to a tty device and if need be let the kref
1594  *      layer destruct the object for us
1595  */
1596
1597 void tty_kref_put(struct tty_struct *tty)
1598 {
1599         if (tty)
1600                 kref_put(&tty->kref, queue_release_one_tty);
1601 }
1602 EXPORT_SYMBOL(tty_kref_put);
1603
1604 /**
1605  *      release_tty             -       release tty structure memory
1606  *
1607  *      Release both @tty and a possible linked partner (think pty pair),
1608  *      and decrement the refcount of the backing module.
1609  *
1610  *      Locking:
1611  *              tty_mutex
1612  *              takes the file list lock internally when working on the list
1613  *      of ttys that the driver keeps.
1614  *
1615  */
1616 static void release_tty(struct tty_struct *tty, int idx)
1617 {
1618         /* This should always be true but check for the moment */
1619         WARN_ON(tty->index != idx);
1620         WARN_ON(!mutex_is_locked(&tty_mutex));
1621         if (tty->ops->shutdown)
1622                 tty->ops->shutdown(tty);
1623         tty_free_termios(tty);
1624         tty_driver_remove_tty(tty->driver, tty);
1625         tty->port->itty = NULL;
1626         if (tty->link)
1627                 tty->link->port->itty = NULL;
1628         cancel_work_sync(&tty->port->buf.work);
1629
1630         if (tty->link)
1631                 tty_kref_put(tty->link);
1632         tty_kref_put(tty);
1633 }
1634
1635 /**
1636  *      tty_release_checks - check a tty before real release
1637  *      @tty: tty to check
1638  *      @o_tty: link of @tty (if any)
1639  *      @idx: index of the tty
1640  *
1641  *      Performs some paranoid checking before true release of the @tty.
1642  *      This is a no-op unless TTY_PARANOIA_CHECK is defined.
1643  */
1644 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1645                 int idx)
1646 {
1647 #ifdef TTY_PARANOIA_CHECK
1648         if (idx < 0 || idx >= tty->driver->num) {
1649                 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1650                                 __func__, tty->name);
1651                 return -1;
1652         }
1653
1654         /* not much to check for devpts */
1655         if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1656                 return 0;
1657
1658         if (tty != tty->driver->ttys[idx]) {
1659                 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1660                                 __func__, idx, tty->name);
1661                 return -1;
1662         }
1663         if (tty->driver->other) {
1664                 if (o_tty != tty->driver->other->ttys[idx]) {
1665                         printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1666                                         __func__, idx, tty->name);
1667                         return -1;
1668                 }
1669                 if (o_tty->link != tty) {
1670                         printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1671                         return -1;
1672                 }
1673         }
1674 #endif
1675         return 0;
1676 }
1677
1678 /**
1679  *      tty_release             -       vfs callback for close
1680  *      @inode: inode of tty
1681  *      @filp: file pointer for handle to tty
1682  *
1683  *      Called the last time each file handle is closed that references
1684  *      this tty. There may however be several such references.
1685  *
1686  *      Locking:
1687  *              Takes bkl. See tty_release_dev
1688  *
1689  * Even releasing the tty structures is a tricky business.. We have
1690  * to be very careful that the structures are all released at the
1691  * same time, as interrupts might otherwise get the wrong pointers.
1692  *
1693  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1694  * lead to double frees or releasing memory still in use.
1695  */
1696
1697 int tty_release(struct inode *inode, struct file *filp)
1698 {
1699         struct tty_struct *tty = file_tty(filp);
1700         struct tty_struct *o_tty;
1701         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1702         int     idx;
1703         char    buf[64];
1704         long    timeout = 0;
1705
1706         if (tty_paranoia_check(tty, inode, __func__))
1707                 return 0;
1708
1709         tty_lock(tty);
1710         check_tty_count(tty, __func__);
1711
1712         __tty_fasync(-1, filp, 0);
1713
1714         idx = tty->index;
1715         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1716                       tty->driver->subtype == PTY_TYPE_MASTER);
1717         /* Review: parallel close */
1718         o_tty = tty->link;
1719
1720         if (tty_release_checks(tty, o_tty, idx)) {
1721                 tty_unlock(tty);
1722                 return 0;
1723         }
1724
1725 #ifdef TTY_DEBUG_HANGUP
1726         printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1727                         tty_name(tty, buf), tty->count);
1728 #endif
1729
1730         if (tty->ops->close)
1731                 tty->ops->close(tty, filp);
1732
1733         tty_unlock(tty);
1734         /*
1735          * Sanity check: if tty->count is going to zero, there shouldn't be
1736          * any waiters on tty->read_wait or tty->write_wait.  We test the
1737          * wait queues and kick everyone out _before_ actually starting to
1738          * close.  This ensures that we won't block while releasing the tty
1739          * structure.
1740          *
1741          * The test for the o_tty closing is necessary, since the master and
1742          * slave sides may close in any order.  If the slave side closes out
1743          * first, its count will be one, since the master side holds an open.
1744          * Thus this test wouldn't be triggered at the time the slave closes,
1745          * so we do it now.
1746          *
1747          * Note that it's possible for the tty to be opened again while we're
1748          * flushing out waiters.  By recalculating the closing flags before
1749          * each iteration we avoid any problems.
1750          */
1751         while (1) {
1752                 /* Guard against races with tty->count changes elsewhere and
1753                    opens on /dev/tty */
1754
1755                 mutex_lock(&tty_mutex);
1756                 tty_lock_pair(tty, o_tty);
1757                 tty_closing = tty->count <= 1;
1758                 o_tty_closing = o_tty &&
1759                         (o_tty->count <= (pty_master ? 1 : 0));
1760                 do_sleep = 0;
1761
1762                 if (tty_closing) {
1763                         if (waitqueue_active(&tty->read_wait)) {
1764                                 wake_up_poll(&tty->read_wait, POLLIN);
1765                                 do_sleep++;
1766                         }
1767                         if (waitqueue_active(&tty->write_wait)) {
1768                                 wake_up_poll(&tty->write_wait, POLLOUT);
1769                                 do_sleep++;
1770                         }
1771                 }
1772                 if (o_tty_closing) {
1773                         if (waitqueue_active(&o_tty->read_wait)) {
1774                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1775                                 do_sleep++;
1776                         }
1777                         if (waitqueue_active(&o_tty->write_wait)) {
1778                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1779                                 do_sleep++;
1780                         }
1781                 }
1782                 if (!do_sleep)
1783                         break;
1784
1785                 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1786                                 __func__, tty_name(tty, buf));
1787                 tty_unlock_pair(tty, o_tty);
1788                 mutex_unlock(&tty_mutex);
1789                 schedule_timeout_killable(timeout);
1790                 if (timeout < 120 * HZ)
1791                         timeout = 2 * timeout + 1;
1792                 else
1793                         timeout = MAX_SCHEDULE_TIMEOUT;
1794         }
1795
1796         /*
1797          * The closing flags are now consistent with the open counts on
1798          * both sides, and we've completed the last operation that could
1799          * block, so it's safe to proceed with closing.
1800          *
1801          * We must *not* drop the tty_mutex until we ensure that a further
1802          * entry into tty_open can not pick up this tty.
1803          */
1804         if (pty_master) {
1805                 if (--o_tty->count < 0) {
1806                         printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1807                                 __func__, o_tty->count, tty_name(o_tty, buf));
1808                         o_tty->count = 0;
1809                 }
1810         }
1811         if (--tty->count < 0) {
1812                 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1813                                 __func__, tty->count, tty_name(tty, buf));
1814                 tty->count = 0;
1815         }
1816
1817         /*
1818          * We've decremented tty->count, so we need to remove this file
1819          * descriptor off the tty->tty_files list; this serves two
1820          * purposes:
1821          *  - check_tty_count sees the correct number of file descriptors
1822          *    associated with this tty.
1823          *  - do_tty_hangup no longer sees this file descriptor as
1824          *    something that needs to be handled for hangups.
1825          */
1826         tty_del_file(filp);
1827
1828         /*
1829          * Perform some housekeeping before deciding whether to return.
1830          *
1831          * Set the TTY_CLOSING flag if this was the last open.  In the
1832          * case of a pty we may have to wait around for the other side
1833          * to close, and TTY_CLOSING makes sure we can't be reopened.
1834          */
1835         if (tty_closing)
1836                 set_bit(TTY_CLOSING, &tty->flags);
1837         if (o_tty_closing)
1838                 set_bit(TTY_CLOSING, &o_tty->flags);
1839
1840         /*
1841          * If _either_ side is closing, make sure there aren't any
1842          * processes that still think tty or o_tty is their controlling
1843          * tty.
1844          */
1845         if (tty_closing || o_tty_closing) {
1846                 read_lock(&tasklist_lock);
1847                 session_clear_tty(tty->session);
1848                 if (o_tty)
1849                         session_clear_tty(o_tty->session);
1850                 read_unlock(&tasklist_lock);
1851         }
1852
1853         mutex_unlock(&tty_mutex);
1854         tty_unlock_pair(tty, o_tty);
1855         /* At this point the TTY_CLOSING flag should ensure a dead tty
1856            cannot be re-opened by a racing opener */
1857
1858         /* check whether both sides are closing ... */
1859         if (!tty_closing || (o_tty && !o_tty_closing))
1860                 return 0;
1861
1862 #ifdef TTY_DEBUG_HANGUP
1863         printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1864 #endif
1865         /*
1866          * Ask the line discipline code to release its structures
1867          */
1868         tty_ldisc_release(tty, o_tty);
1869
1870         /* Wait for pending work before tty destruction commmences */
1871         tty_flush_works(tty);
1872         if (o_tty)
1873                 tty_flush_works(o_tty);
1874
1875 #ifdef TTY_DEBUG_HANGUP
1876         printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1877 #endif
1878         /*
1879          * The release_tty function takes care of the details of clearing
1880          * the slots and preserving the termios structure. The tty_unlock_pair
1881          * should be safe as we keep a kref while the tty is locked (so the
1882          * unlock never unlocks a freed tty).
1883          */
1884         mutex_lock(&tty_mutex);
1885         release_tty(tty, idx);
1886         mutex_unlock(&tty_mutex);
1887
1888         return 0;
1889 }
1890
1891 /**
1892  *      tty_open_current_tty - get tty of current task for open
1893  *      @device: device number
1894  *      @filp: file pointer to tty
1895  *      @return: tty of the current task iff @device is /dev/tty
1896  *
1897  *      We cannot return driver and index like for the other nodes because
1898  *      devpts will not work then. It expects inodes to be from devpts FS.
1899  *
1900  *      We need to move to returning a refcounted object from all the lookup
1901  *      paths including this one.
1902  */
1903 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1904 {
1905         struct tty_struct *tty;
1906
1907         if (device != MKDEV(TTYAUX_MAJOR, 0))
1908                 return NULL;
1909
1910         tty = get_current_tty();
1911         if (!tty)
1912                 return ERR_PTR(-ENXIO);
1913
1914         filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1915         /* noctty = 1; */
1916         tty_kref_put(tty);
1917         /* FIXME: we put a reference and return a TTY! */
1918         /* This is only safe because the caller holds tty_mutex */
1919         return tty;
1920 }
1921
1922 /**
1923  *      tty_lookup_driver - lookup a tty driver for a given device file
1924  *      @device: device number
1925  *      @filp: file pointer to tty
1926  *      @noctty: set if the device should not become a controlling tty
1927  *      @index: index for the device in the @return driver
1928  *      @return: driver for this inode (with increased refcount)
1929  *
1930  *      If @return is not erroneous, the caller is responsible to decrement the
1931  *      refcount by tty_driver_kref_put.
1932  *
1933  *      Locking: tty_mutex protects get_tty_driver
1934  */
1935 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1936                 int *noctty, int *index)
1937 {
1938         struct tty_driver *driver;
1939
1940         switch (device) {
1941 #ifdef CONFIG_VT
1942         case MKDEV(TTY_MAJOR, 0): {
1943                 extern struct tty_driver *console_driver;
1944                 driver = tty_driver_kref_get(console_driver);
1945                 *index = fg_console;
1946                 *noctty = 1;
1947                 break;
1948         }
1949 #endif
1950         case MKDEV(TTYAUX_MAJOR, 1): {
1951                 struct tty_driver *console_driver = console_device(index);
1952                 if (console_driver) {
1953                         driver = tty_driver_kref_get(console_driver);
1954                         if (driver) {
1955                                 /* Don't let /dev/console block */
1956                                 filp->f_flags |= O_NONBLOCK;
1957                                 *noctty = 1;
1958                                 break;
1959                         }
1960                 }
1961                 return ERR_PTR(-ENODEV);
1962         }
1963         default:
1964                 driver = get_tty_driver(device, index);
1965                 if (!driver)
1966                         return ERR_PTR(-ENODEV);
1967                 break;
1968         }
1969         return driver;
1970 }
1971
1972 /**
1973  *      tty_open                -       open a tty device
1974  *      @inode: inode of device file
1975  *      @filp: file pointer to tty
1976  *
1977  *      tty_open and tty_release keep up the tty count that contains the
1978  *      number of opens done on a tty. We cannot use the inode-count, as
1979  *      different inodes might point to the same tty.
1980  *
1981  *      Open-counting is needed for pty masters, as well as for keeping
1982  *      track of serial lines: DTR is dropped when the last close happens.
1983  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1984  *
1985  *      The termios state of a pty is reset on first open so that
1986  *      settings don't persist across reuse.
1987  *
1988  *      Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1989  *               tty->count should protect the rest.
1990  *               ->siglock protects ->signal/->sighand
1991  *
1992  *      Note: the tty_unlock/lock cases without a ref are only safe due to
1993  *      tty_mutex
1994  */
1995
1996 static int tty_open(struct inode *inode, struct file *filp)
1997 {
1998         struct tty_struct *tty;
1999         int noctty, retval;
2000         struct tty_driver *driver = NULL;
2001         int index;
2002         dev_t device = inode->i_rdev;
2003         unsigned saved_flags = filp->f_flags;
2004
2005         nonseekable_open(inode, filp);
2006
2007 retry_open:
2008         retval = tty_alloc_file(filp);
2009         if (retval)
2010                 return -ENOMEM;
2011
2012         noctty = filp->f_flags & O_NOCTTY;
2013         index  = -1;
2014         retval = 0;
2015
2016         mutex_lock(&tty_mutex);
2017         /* This is protected by the tty_mutex */
2018         tty = tty_open_current_tty(device, filp);
2019         if (IS_ERR(tty)) {
2020                 retval = PTR_ERR(tty);
2021                 goto err_unlock;
2022         } else if (!tty) {
2023                 driver = tty_lookup_driver(device, filp, &noctty, &index);
2024                 if (IS_ERR(driver)) {
2025                         retval = PTR_ERR(driver);
2026                         goto err_unlock;
2027                 }
2028
2029                 /* check whether we're reopening an existing tty */
2030                 tty = tty_driver_lookup_tty(driver, inode, index);
2031                 if (IS_ERR(tty)) {
2032                         retval = PTR_ERR(tty);
2033                         goto err_unlock;
2034                 }
2035         }
2036
2037         if (tty) {
2038                 tty_lock(tty);
2039                 retval = tty_reopen(tty);
2040                 if (retval < 0) {
2041                         tty_unlock(tty);
2042                         tty = ERR_PTR(retval);
2043                 }
2044         } else  /* Returns with the tty_lock held for now */
2045                 tty = tty_init_dev(driver, index);
2046
2047         mutex_unlock(&tty_mutex);
2048         if (driver)
2049                 tty_driver_kref_put(driver);
2050         if (IS_ERR(tty)) {
2051                 retval = PTR_ERR(tty);
2052                 goto err_file;
2053         }
2054
2055         tty_add_file(tty, filp);
2056
2057         check_tty_count(tty, __func__);
2058         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2059             tty->driver->subtype == PTY_TYPE_MASTER)
2060                 noctty = 1;
2061 #ifdef TTY_DEBUG_HANGUP
2062         printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2063 #endif
2064         if (tty->ops->open)
2065                 retval = tty->ops->open(tty, filp);
2066         else
2067                 retval = -ENODEV;
2068         filp->f_flags = saved_flags;
2069
2070         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2071                                                 !capable(CAP_SYS_ADMIN))
2072                 retval = -EBUSY;
2073
2074         if (retval) {
2075 #ifdef TTY_DEBUG_HANGUP
2076                 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2077                                 retval, tty->name);
2078 #endif
2079                 tty_unlock(tty); /* need to call tty_release without BTM */
2080                 tty_release(inode, filp);
2081                 if (retval != -ERESTARTSYS)
2082                         return retval;
2083
2084                 if (signal_pending(current))
2085                         return retval;
2086
2087                 schedule();
2088                 /*
2089                  * Need to reset f_op in case a hangup happened.
2090                  */
2091                 if (filp->f_op == &hung_up_tty_fops)
2092                         filp->f_op = &tty_fops;
2093                 goto retry_open;
2094         }
2095         clear_bit(TTY_HUPPED, &tty->flags);
2096         tty_unlock(tty);
2097
2098
2099         mutex_lock(&tty_mutex);
2100         tty_lock(tty);
2101         spin_lock_irq(&current->sighand->siglock);
2102         if (!noctty &&
2103             current->signal->leader &&
2104             !current->signal->tty &&
2105             tty->session == NULL)
2106                 __proc_set_tty(current, tty);
2107         spin_unlock_irq(&current->sighand->siglock);
2108         tty_unlock(tty);
2109         mutex_unlock(&tty_mutex);
2110         return 0;
2111 err_unlock:
2112         mutex_unlock(&tty_mutex);
2113         /* after locks to avoid deadlock */
2114         if (!IS_ERR_OR_NULL(driver))
2115                 tty_driver_kref_put(driver);
2116 err_file:
2117         tty_free_file(filp);
2118         return retval;
2119 }
2120
2121
2122
2123 /**
2124  *      tty_poll        -       check tty status
2125  *      @filp: file being polled
2126  *      @wait: poll wait structures to update
2127  *
2128  *      Call the line discipline polling method to obtain the poll
2129  *      status of the device.
2130  *
2131  *      Locking: locks called line discipline but ldisc poll method
2132  *      may be re-entered freely by other callers.
2133  */
2134
2135 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2136 {
2137         struct tty_struct *tty = file_tty(filp);
2138         struct tty_ldisc *ld;
2139         int ret = 0;
2140
2141         if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2142                 return 0;
2143
2144         pr_debug("[TTY_DEBUG tty_poll]pid %d\n",current->pid);
2145
2146         ld = tty_ldisc_ref_wait(tty);
2147         if (ld->ops->poll)
2148                 ret = (ld->ops->poll)(tty, filp, wait);
2149         tty_ldisc_deref(ld);
2150         return ret;
2151 }
2152
2153 static int __tty_fasync(int fd, struct file *filp, int on)
2154 {
2155         struct tty_struct *tty = file_tty(filp);
2156         struct tty_ldisc *ldisc;
2157         unsigned long flags;
2158         int retval = 0;
2159
2160         if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2161                 goto out;
2162
2163         retval = fasync_helper(fd, filp, on, &tty->fasync);
2164         if (retval <= 0)
2165                 goto out;
2166
2167         ldisc = tty_ldisc_ref(tty);
2168         if (ldisc) {
2169                 if (ldisc->ops->fasync)
2170                         ldisc->ops->fasync(tty, on);
2171                 tty_ldisc_deref(ldisc);
2172         }
2173
2174         if (on) {
2175                 enum pid_type type;
2176                 struct pid *pid;
2177
2178                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2179                 if (tty->pgrp) {
2180                         pid = tty->pgrp;
2181                         type = PIDTYPE_PGID;
2182                 } else {
2183                         pid = task_pid(current);
2184                         type = PIDTYPE_PID;
2185                 }
2186                 get_pid(pid);
2187                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2188                 retval = __f_setown(filp, pid, type, 0);
2189                 put_pid(pid);
2190         }
2191 out:
2192         return retval;
2193 }
2194
2195 static int tty_fasync(int fd, struct file *filp, int on)
2196 {
2197         struct tty_struct *tty = file_tty(filp);
2198         int retval;
2199
2200         tty_lock(tty);
2201         retval = __tty_fasync(fd, filp, on);
2202         tty_unlock(tty);
2203
2204         return retval;
2205 }
2206
2207 /**
2208  *      tiocsti                 -       fake input character
2209  *      @tty: tty to fake input into
2210  *      @p: pointer to character
2211  *
2212  *      Fake input to a tty device. Does the necessary locking and
2213  *      input management.
2214  *
2215  *      FIXME: does not honour flow control ??
2216  *
2217  *      Locking:
2218  *              Called functions take tty_ldisc_lock
2219  *              current->signal->tty check is safe without locks
2220  *
2221  *      FIXME: may race normal receive processing
2222  */
2223
2224 static int tiocsti(struct tty_struct *tty, char __user *p)
2225 {
2226         char ch, mbz = 0;
2227         struct tty_ldisc *ld;
2228
2229         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2230                 return -EPERM;
2231         if (get_user(ch, p))
2232                 return -EFAULT;
2233         tty_audit_tiocsti(tty, ch);
2234         ld = tty_ldisc_ref_wait(tty);
2235         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2236         tty_ldisc_deref(ld);
2237         return 0;
2238 }
2239
2240 /**
2241  *      tiocgwinsz              -       implement window query ioctl
2242  *      @tty; tty
2243  *      @arg: user buffer for result
2244  *
2245  *      Copies the kernel idea of the window size into the user buffer.
2246  *
2247  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2248  *              is consistent.
2249  */
2250
2251 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2252 {
2253         int err;
2254
2255         mutex_lock(&tty->winsize_mutex);
2256         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2257         mutex_unlock(&tty->winsize_mutex);
2258
2259         return err ? -EFAULT: 0;
2260 }
2261
2262 /**
2263  *      tty_do_resize           -       resize event
2264  *      @tty: tty being resized
2265  *      @rows: rows (character)
2266  *      @cols: cols (character)
2267  *
2268  *      Update the termios variables and send the necessary signals to
2269  *      peform a terminal resize correctly
2270  */
2271
2272 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2273 {
2274         struct pid *pgrp;
2275         unsigned long flags;
2276
2277         /* Lock the tty */
2278         mutex_lock(&tty->winsize_mutex);
2279         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2280                 goto done;
2281         /* Get the PID values and reference them so we can
2282            avoid holding the tty ctrl lock while sending signals */
2283         spin_lock_irqsave(&tty->ctrl_lock, flags);
2284         pgrp = get_pid(tty->pgrp);
2285         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2286
2287         if (pgrp)
2288                 kill_pgrp(pgrp, SIGWINCH, 1);
2289         put_pid(pgrp);
2290
2291         tty->winsize = *ws;
2292 done:
2293         mutex_unlock(&tty->winsize_mutex);
2294         return 0;
2295 }
2296 EXPORT_SYMBOL(tty_do_resize);
2297
2298 /**
2299  *      tiocswinsz              -       implement window size set ioctl
2300  *      @tty; tty side of tty
2301  *      @arg: user buffer for result
2302  *
2303  *      Copies the user idea of the window size to the kernel. Traditionally
2304  *      this is just advisory information but for the Linux console it
2305  *      actually has driver level meaning and triggers a VC resize.
2306  *
2307  *      Locking:
2308  *              Driver dependent. The default do_resize method takes the
2309  *      tty termios mutex and ctrl_lock. The console takes its own lock
2310  *      then calls into the default method.
2311  */
2312
2313 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2314 {
2315         struct winsize tmp_ws;
2316         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2317                 return -EFAULT;
2318
2319         if (tty->ops->resize)
2320                 return tty->ops->resize(tty, &tmp_ws);
2321         else
2322                 return tty_do_resize(tty, &tmp_ws);
2323 }
2324
2325 /**
2326  *      tioccons        -       allow admin to move logical console
2327  *      @file: the file to become console
2328  *
2329  *      Allow the administrator to move the redirected console device
2330  *
2331  *      Locking: uses redirect_lock to guard the redirect information
2332  */
2333
2334 static int tioccons(struct file *file)
2335 {
2336         if (!capable(CAP_SYS_ADMIN))
2337                 return -EPERM;
2338         if (file->f_op->write == redirected_tty_write) {
2339                 struct file *f;
2340                 spin_lock(&redirect_lock);
2341                 f = redirect;
2342                 redirect = NULL;
2343                 spin_unlock(&redirect_lock);
2344                 if (f)
2345                         fput(f);
2346                 return 0;
2347         }
2348         spin_lock(&redirect_lock);
2349         if (redirect) {
2350                 spin_unlock(&redirect_lock);
2351                 return -EBUSY;
2352         }
2353         redirect = get_file(file);
2354         spin_unlock(&redirect_lock);
2355         return 0;
2356 }
2357
2358 /**
2359  *      fionbio         -       non blocking ioctl
2360  *      @file: file to set blocking value
2361  *      @p: user parameter
2362  *
2363  *      Historical tty interfaces had a blocking control ioctl before
2364  *      the generic functionality existed. This piece of history is preserved
2365  *      in the expected tty API of posix OS's.
2366  *
2367  *      Locking: none, the open file handle ensures it won't go away.
2368  */
2369
2370 static int fionbio(struct file *file, int __user *p)
2371 {
2372         int nonblock;
2373
2374         if (get_user(nonblock, p))
2375                 return -EFAULT;
2376
2377         spin_lock(&file->f_lock);
2378         if (nonblock)
2379                 file->f_flags |= O_NONBLOCK;
2380         else
2381                 file->f_flags &= ~O_NONBLOCK;
2382         spin_unlock(&file->f_lock);
2383         return 0;
2384 }
2385
2386 /**
2387  *      tiocsctty       -       set controlling tty
2388  *      @tty: tty structure
2389  *      @arg: user argument
2390  *
2391  *      This ioctl is used to manage job control. It permits a session
2392  *      leader to set this tty as the controlling tty for the session.
2393  *
2394  *      Locking:
2395  *              Takes tty_mutex() to protect tty instance
2396  *              Takes tasklist_lock internally to walk sessions
2397  *              Takes ->siglock() when updating signal->tty
2398  */
2399
2400 static int tiocsctty(struct tty_struct *tty, int arg)
2401 {
2402         int ret = 0;
2403         if (current->signal->leader && (task_session(current) == tty->session))
2404                 return ret;
2405
2406         mutex_lock(&tty_mutex);
2407         /*
2408          * The process must be a session leader and
2409          * not have a controlling tty already.
2410          */
2411         if (!current->signal->leader || current->signal->tty) {
2412                 ret = -EPERM;
2413                 goto unlock;
2414         }
2415
2416         if (tty->session) {
2417                 /*
2418                  * This tty is already the controlling
2419                  * tty for another session group!
2420                  */
2421                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2422                         /*
2423                          * Steal it away
2424                          */
2425                         read_lock(&tasklist_lock);
2426                         session_clear_tty(tty->session);
2427                         read_unlock(&tasklist_lock);
2428                 } else {
2429                         ret = -EPERM;
2430                         goto unlock;
2431                 }
2432         }
2433         proc_set_tty(current, tty);
2434 unlock:
2435         mutex_unlock(&tty_mutex);
2436         return ret;
2437 }
2438
2439 /**
2440  *      tty_get_pgrp    -       return a ref counted pgrp pid
2441  *      @tty: tty to read
2442  *
2443  *      Returns a refcounted instance of the pid struct for the process
2444  *      group controlling the tty.
2445  */
2446
2447 struct pid *tty_get_pgrp(struct tty_struct *tty)
2448 {
2449         unsigned long flags;
2450         struct pid *pgrp;
2451
2452         spin_lock_irqsave(&tty->ctrl_lock, flags);
2453         pgrp = get_pid(tty->pgrp);
2454         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2455
2456         return pgrp;
2457 }
2458 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2459
2460 /**
2461  *      tiocgpgrp               -       get process group
2462  *      @tty: tty passed by user
2463  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2464  *      @p: returned pid
2465  *
2466  *      Obtain the process group of the tty. If there is no process group
2467  *      return an error.
2468  *
2469  *      Locking: none. Reference to current->signal->tty is safe.
2470  */
2471
2472 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2473 {
2474         struct pid *pid;
2475         int ret;
2476         /*
2477          * (tty == real_tty) is a cheap way of
2478          * testing if the tty is NOT a master pty.
2479          */
2480         if (tty == real_tty && current->signal->tty != real_tty)
2481                 return -ENOTTY;
2482         pid = tty_get_pgrp(real_tty);
2483         ret =  put_user(pid_vnr(pid), p);
2484         put_pid(pid);
2485         return ret;
2486 }
2487
2488 /**
2489  *      tiocspgrp               -       attempt to set process group
2490  *      @tty: tty passed by user
2491  *      @real_tty: tty side device matching tty passed by user
2492  *      @p: pid pointer
2493  *
2494  *      Set the process group of the tty to the session passed. Only
2495  *      permitted where the tty session is our session.
2496  *
2497  *      Locking: RCU, ctrl lock
2498  */
2499
2500 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2501 {
2502         struct pid *pgrp;
2503         pid_t pgrp_nr;
2504         int retval = tty_check_change(real_tty);
2505         unsigned long flags;
2506
2507         if (retval == -EIO)
2508                 return -ENOTTY;
2509         if (retval)
2510                 return retval;
2511         if (!current->signal->tty ||
2512             (current->signal->tty != real_tty) ||
2513             (real_tty->session != task_session(current)))
2514                 return -ENOTTY;
2515         if (get_user(pgrp_nr, p))
2516                 return -EFAULT;
2517         if (pgrp_nr < 0)
2518                 return -EINVAL;
2519         rcu_read_lock();
2520         pgrp = find_vpid(pgrp_nr);
2521         retval = -ESRCH;
2522         if (!pgrp)
2523                 goto out_unlock;
2524         retval = -EPERM;
2525         if (session_of_pgrp(pgrp) != task_session(current))
2526                 goto out_unlock;
2527         retval = 0;
2528         spin_lock_irqsave(&tty->ctrl_lock, flags);
2529         put_pid(real_tty->pgrp);
2530         real_tty->pgrp = get_pid(pgrp);
2531         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2532 out_unlock:
2533         rcu_read_unlock();
2534         return retval;
2535 }
2536
2537 /**
2538  *      tiocgsid                -       get session id
2539  *      @tty: tty passed by user
2540  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2541  *      @p: pointer to returned session id
2542  *
2543  *      Obtain the session id of the tty. If there is no session
2544  *      return an error.
2545  *
2546  *      Locking: none. Reference to current->signal->tty is safe.
2547  */
2548
2549 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2550 {
2551         /*
2552          * (tty == real_tty) is a cheap way of
2553          * testing if the tty is NOT a master pty.
2554         */
2555         if (tty == real_tty && current->signal->tty != real_tty)
2556                 return -ENOTTY;
2557         if (!real_tty->session)
2558                 return -ENOTTY;
2559         return put_user(pid_vnr(real_tty->session), p);
2560 }
2561
2562 /**
2563  *      tiocsetd        -       set line discipline
2564  *      @tty: tty device
2565  *      @p: pointer to user data
2566  *
2567  *      Set the line discipline according to user request.
2568  *
2569  *      Locking: see tty_set_ldisc, this function is just a helper
2570  */
2571
2572 static int tiocsetd(struct tty_struct *tty, int __user *p)
2573 {
2574         int ldisc;
2575         int ret;
2576
2577         if (get_user(ldisc, p))
2578                 return -EFAULT;
2579
2580         ret = tty_set_ldisc(tty, ldisc);
2581
2582         return ret;
2583 }
2584
2585 /**
2586  *      send_break      -       performed time break
2587  *      @tty: device to break on
2588  *      @duration: timeout in mS
2589  *
2590  *      Perform a timed break on hardware that lacks its own driver level
2591  *      timed break functionality.
2592  *
2593  *      Locking:
2594  *              atomic_write_lock serializes
2595  *
2596  */
2597
2598 static int send_break(struct tty_struct *tty, unsigned int duration)
2599 {
2600         int retval;
2601
2602         if (tty->ops->break_ctl == NULL)
2603                 return 0;
2604
2605         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2606                 retval = tty->ops->break_ctl(tty, duration);
2607         else {
2608                 /* Do the work ourselves */
2609                 if (tty_write_lock(tty, 0) < 0)
2610                         return -EINTR;
2611                 retval = tty->ops->break_ctl(tty, -1);
2612                 if (retval)
2613                         goto out;
2614                 if (!signal_pending(current))
2615                         msleep_interruptible(duration);
2616                 retval = tty->ops->break_ctl(tty, 0);
2617 out:
2618                 tty_write_unlock(tty);
2619                 if (signal_pending(current))
2620                         retval = -EINTR;
2621         }
2622         return retval;
2623 }
2624
2625 /**
2626  *      tty_tiocmget            -       get modem status
2627  *      @tty: tty device
2628  *      @file: user file pointer
2629  *      @p: pointer to result
2630  *
2631  *      Obtain the modem status bits from the tty driver if the feature
2632  *      is supported. Return -EINVAL if it is not available.
2633  *
2634  *      Locking: none (up to the driver)
2635  */
2636
2637 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2638 {
2639         int retval = -EINVAL;
2640
2641         if (tty->ops->tiocmget) {
2642                 retval = tty->ops->tiocmget(tty);
2643
2644                 if (retval >= 0)
2645                         retval = put_user(retval, p);
2646         }
2647         return retval;
2648 }
2649
2650 /**
2651  *      tty_tiocmset            -       set modem status
2652  *      @tty: tty device
2653  *      @cmd: command - clear bits, set bits or set all
2654  *      @p: pointer to desired bits
2655  *
2656  *      Set the modem status bits from the tty driver if the feature
2657  *      is supported. Return -EINVAL if it is not available.
2658  *
2659  *      Locking: none (up to the driver)
2660  */
2661
2662 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2663              unsigned __user *p)
2664 {
2665         int retval;
2666         unsigned int set, clear, val;
2667
2668         if (tty->ops->tiocmset == NULL)
2669                 return -EINVAL;
2670
2671         retval = get_user(val, p);
2672         if (retval)
2673                 return retval;
2674         set = clear = 0;
2675         switch (cmd) {
2676         case TIOCMBIS:
2677                 set = val;
2678                 break;
2679         case TIOCMBIC:
2680                 clear = val;
2681                 break;
2682         case TIOCMSET:
2683                 set = val;
2684                 clear = ~val;
2685                 break;
2686         }
2687         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2688         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2689         return tty->ops->tiocmset(tty, set, clear);
2690 }
2691
2692 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2693 {
2694         int retval = -EINVAL;
2695         struct serial_icounter_struct icount;
2696         memset(&icount, 0, sizeof(icount));
2697         if (tty->ops->get_icount)
2698                 retval = tty->ops->get_icount(tty, &icount);
2699         if (retval != 0)
2700                 return retval;
2701         if (copy_to_user(arg, &icount, sizeof(icount)))
2702                 return -EFAULT;
2703         return 0;
2704 }
2705
2706 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2707 {
2708         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2709             tty->driver->subtype == PTY_TYPE_MASTER)
2710                 tty = tty->link;
2711         return tty;
2712 }
2713 EXPORT_SYMBOL(tty_pair_get_tty);
2714
2715 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2716 {
2717         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2718             tty->driver->subtype == PTY_TYPE_MASTER)
2719             return tty;
2720         return tty->link;
2721 }
2722 EXPORT_SYMBOL(tty_pair_get_pty);
2723
2724 /*
2725  * Split this up, as gcc can choke on it otherwise..
2726  */
2727 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2728 {
2729         struct tty_struct *tty = file_tty(file);
2730         struct tty_struct *real_tty;
2731         void __user *p = (void __user *)arg;
2732         int retval;
2733         struct tty_ldisc *ld;
2734
2735         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2736                 return -EINVAL;
2737
2738         real_tty = tty_pair_get_tty(tty);
2739
2740         /*
2741          * Factor out some common prep work
2742          */
2743         switch (cmd) {
2744         case TIOCSETD:
2745         case TIOCSBRK:
2746         case TIOCCBRK:
2747         case TCSBRK:
2748         case TCSBRKP:
2749                 retval = tty_check_change(tty);
2750                 if (retval)
2751                         return retval;
2752                 if (cmd != TIOCCBRK) {
2753                         tty_wait_until_sent(tty, 0);
2754                         if (signal_pending(current))
2755                                 return -EINTR;
2756                 }
2757                 break;
2758         }
2759
2760         /*
2761          *      Now do the stuff.
2762          */
2763         switch (cmd) {
2764         case TIOCSTI:
2765                 return tiocsti(tty, p);
2766         case TIOCGWINSZ:
2767                 return tiocgwinsz(real_tty, p);
2768         case TIOCSWINSZ:
2769                 return tiocswinsz(real_tty, p);
2770         case TIOCCONS:
2771                 return real_tty != tty ? -EINVAL : tioccons(file);
2772         case FIONBIO:
2773                 return fionbio(file, p);
2774         case TIOCEXCL:
2775                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2776                 return 0;
2777         case TIOCNXCL:
2778                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2779                 return 0;
2780         case TIOCGEXCL:
2781         {
2782                 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2783                 return put_user(excl, (int __user *)p);
2784         }
2785         case TIOCNOTTY:
2786                 if (current->signal->tty != tty)
2787                         return -ENOTTY;
2788                 no_tty();
2789                 return 0;
2790         case TIOCSCTTY:
2791                 return tiocsctty(tty, arg);
2792         case TIOCGPGRP:
2793                 return tiocgpgrp(tty, real_tty, p);
2794         case TIOCSPGRP:
2795                 return tiocspgrp(tty, real_tty, p);
2796         case TIOCGSID:
2797                 return tiocgsid(tty, real_tty, p);
2798         case TIOCGETD:
2799                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2800         case TIOCSETD:
2801                 return tiocsetd(tty, p);
2802         case TIOCVHANGUP:
2803                 if (!capable(CAP_SYS_ADMIN))
2804                         return -EPERM;
2805                 tty_vhangup(tty);
2806                 return 0;
2807         case TIOCGDEV:
2808         {
2809                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2810                 return put_user(ret, (unsigned int __user *)p);
2811         }
2812         /*
2813          * Break handling
2814          */
2815         case TIOCSBRK:  /* Turn break on, unconditionally */
2816                 if (tty->ops->break_ctl)
2817                         return tty->ops->break_ctl(tty, -1);
2818                 return 0;
2819         case TIOCCBRK:  /* Turn break off, unconditionally */
2820                 if (tty->ops->break_ctl)
2821                         return tty->ops->break_ctl(tty, 0);
2822                 return 0;
2823         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2824                 /* non-zero arg means wait for all output data
2825                  * to be sent (performed above) but don't send break.
2826                  * This is used by the tcdrain() termios function.
2827                  */
2828                 if (!arg)
2829                         return send_break(tty, 250);
2830                 return 0;
2831         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2832                 return send_break(tty, arg ? arg*100 : 250);
2833
2834         case TIOCMGET:
2835                 return tty_tiocmget(tty, p);
2836         case TIOCMSET:
2837         case TIOCMBIC:
2838         case TIOCMBIS:
2839                 return tty_tiocmset(tty, cmd, p);
2840         case TIOCGICOUNT:
2841                 retval = tty_tiocgicount(tty, p);
2842                 /* For the moment allow fall through to the old method */
2843                 if (retval != -EINVAL)
2844                         return retval;
2845                 break;
2846         case TCFLSH:
2847                 switch (arg) {
2848                 case TCIFLUSH:
2849                 case TCIOFLUSH:
2850                 /* flush tty buffer and allow ldisc to process ioctl */
2851                         tty_buffer_flush(tty);
2852                         break;
2853                 }
2854                 break;
2855         }
2856         if (tty->ops->ioctl) {
2857                 retval = (tty->ops->ioctl)(tty, cmd, arg);
2858                 if (retval != -ENOIOCTLCMD)
2859                         return retval;
2860         }
2861         ld = tty_ldisc_ref_wait(tty);
2862         retval = -EINVAL;
2863         if (ld->ops->ioctl) {
2864                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2865                 if (retval == -ENOIOCTLCMD)
2866                         retval = -ENOTTY;
2867         }
2868         tty_ldisc_deref(ld);
2869         return retval;
2870 }
2871
2872 #ifdef CONFIG_COMPAT
2873 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2874                                 unsigned long arg)
2875 {
2876         struct tty_struct *tty = file_tty(file);
2877         struct tty_ldisc *ld;
2878         int retval = -ENOIOCTLCMD;
2879
2880         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2881                 return -EINVAL;
2882
2883         if (tty->ops->compat_ioctl) {
2884                 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2885                 if (retval != -ENOIOCTLCMD)
2886                         return retval;
2887         }
2888
2889         ld = tty_ldisc_ref_wait(tty);
2890         if (ld->ops->compat_ioctl)
2891                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2892         else
2893                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2894         tty_ldisc_deref(ld);
2895
2896         return retval;
2897 }
2898 #endif
2899
2900 static int this_tty(const void *t, struct file *file, unsigned fd)
2901 {
2902         if (likely(file->f_op->read != tty_read))
2903                 return 0;
2904         return file_tty(file) != t ? 0 : fd + 1;
2905 }
2906         
2907 /*
2908  * This implements the "Secure Attention Key" ---  the idea is to
2909  * prevent trojan horses by killing all processes associated with this
2910  * tty when the user hits the "Secure Attention Key".  Required for
2911  * super-paranoid applications --- see the Orange Book for more details.
2912  *
2913  * This code could be nicer; ideally it should send a HUP, wait a few
2914  * seconds, then send a INT, and then a KILL signal.  But you then
2915  * have to coordinate with the init process, since all processes associated
2916  * with the current tty must be dead before the new getty is allowed
2917  * to spawn.
2918  *
2919  * Now, if it would be correct ;-/ The current code has a nasty hole -
2920  * it doesn't catch files in flight. We may send the descriptor to ourselves
2921  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2922  *
2923  * Nasty bug: do_SAK is being called in interrupt context.  This can
2924  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2925  */
2926 void __do_SAK(struct tty_struct *tty)
2927 {
2928 #ifdef TTY_SOFT_SAK
2929         tty_hangup(tty);
2930 #else
2931         struct task_struct *g, *p;
2932         struct pid *session;
2933         int             i;
2934
2935         if (!tty)
2936                 return;
2937         session = tty->session;
2938
2939         tty_ldisc_flush(tty);
2940
2941         tty_driver_flush_buffer(tty);
2942
2943         read_lock(&tasklist_lock);
2944         /* Kill the entire session */
2945         do_each_pid_task(session, PIDTYPE_SID, p) {
2946                 printk(KERN_NOTICE "SAK: killed process %d"
2947                         " (%s): task_session(p)==tty->session\n",
2948                         task_pid_nr(p), p->comm);
2949                 send_sig(SIGKILL, p, 1);
2950         } while_each_pid_task(session, PIDTYPE_SID, p);
2951         /* Now kill any processes that happen to have the
2952          * tty open.
2953          */
2954         do_each_thread(g, p) {
2955                 if (p->signal->tty == tty) {
2956                         printk(KERN_NOTICE "SAK: killed process %d"
2957                             " (%s): task_session(p)==tty->session\n",
2958                             task_pid_nr(p), p->comm);
2959                         send_sig(SIGKILL, p, 1);
2960                         continue;
2961                 }
2962                 task_lock(p);
2963                 i = iterate_fd(p->files, 0, this_tty, tty);
2964                 if (i != 0) {
2965                         printk(KERN_NOTICE "SAK: killed process %d"
2966                             " (%s): fd#%d opened to the tty\n",
2967                                     task_pid_nr(p), p->comm, i - 1);
2968                         force_sig(SIGKILL, p);
2969                 }
2970                 task_unlock(p);
2971         } while_each_thread(g, p);
2972         read_unlock(&tasklist_lock);
2973 #endif
2974 }
2975
2976 static void do_SAK_work(struct work_struct *work)
2977 {
2978         struct tty_struct *tty =
2979                 container_of(work, struct tty_struct, SAK_work);
2980         __do_SAK(tty);
2981 }
2982
2983 /*
2984  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2985  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2986  * the values which we write to it will be identical to the values which it
2987  * already has. --akpm
2988  */
2989 void do_SAK(struct tty_struct *tty)
2990 {
2991         if (!tty)
2992                 return;
2993         schedule_work(&tty->SAK_work);
2994 }
2995
2996 EXPORT_SYMBOL(do_SAK);
2997
2998 static int dev_match_devt(struct device *dev, const void *data)
2999 {
3000         const dev_t *devt = data;
3001         return dev->devt == *devt;
3002 }
3003
3004 /* Must put_device() after it's unused! */
3005 static struct device *tty_get_device(struct tty_struct *tty)
3006 {
3007         dev_t devt = tty_devnum(tty);
3008         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3009 }
3010
3011
3012 /**
3013  *      initialize_tty_struct
3014  *      @tty: tty to initialize
3015  *
3016  *      This subroutine initializes a tty structure that has been newly
3017  *      allocated.
3018  *
3019  *      Locking: none - tty in question must not be exposed at this point
3020  */
3021
3022 void initialize_tty_struct(struct tty_struct *tty,
3023                 struct tty_driver *driver, int idx)
3024 {
3025         memset(tty, 0, sizeof(struct tty_struct));
3026         kref_init(&tty->kref);
3027         tty->magic = TTY_MAGIC;
3028         tty_ldisc_init(tty);
3029         tty->session = NULL;
3030         tty->pgrp = NULL;
3031         mutex_init(&tty->legacy_mutex);
3032         mutex_init(&tty->throttle_mutex);
3033         init_rwsem(&tty->termios_rwsem);
3034         mutex_init(&tty->winsize_mutex);
3035         init_ldsem(&tty->ldisc_sem);
3036         init_waitqueue_head(&tty->write_wait);
3037         init_waitqueue_head(&tty->read_wait);
3038         INIT_WORK(&tty->hangup_work, do_tty_hangup);
3039         mutex_init(&tty->atomic_write_lock);
3040         spin_lock_init(&tty->ctrl_lock);
3041         INIT_LIST_HEAD(&tty->tty_files);
3042         INIT_WORK(&tty->SAK_work, do_SAK_work);
3043
3044         tty->driver = driver;
3045         tty->ops = driver->ops;
3046         tty->index = idx;
3047         tty_line_name(driver, idx, tty->name);
3048         tty->dev = tty_get_device(tty);
3049 }
3050
3051 /**
3052  *      deinitialize_tty_struct
3053  *      @tty: tty to deinitialize
3054  *
3055  *      This subroutine deinitializes a tty structure that has been newly
3056  *      allocated but tty_release cannot be called on that yet.
3057  *
3058  *      Locking: none - tty in question must not be exposed at this point
3059  */
3060 void deinitialize_tty_struct(struct tty_struct *tty)
3061 {
3062         tty_ldisc_deinit(tty);
3063 }
3064
3065 /**
3066  *      tty_put_char    -       write one character to a tty
3067  *      @tty: tty
3068  *      @ch: character
3069  *
3070  *      Write one byte to the tty using the provided put_char method
3071  *      if present. Returns the number of characters successfully output.
3072  *
3073  *      Note: the specific put_char operation in the driver layer may go
3074  *      away soon. Don't call it directly, use this method
3075  */
3076
3077 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3078 {
3079         if (tty->ops->put_char)
3080                 return tty->ops->put_char(tty, ch);
3081         return tty->ops->write(tty, &ch, 1);
3082 }
3083 EXPORT_SYMBOL_GPL(tty_put_char);
3084
3085 struct class *tty_class;
3086
3087 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3088                 unsigned int index, unsigned int count)
3089 {
3090         /* init here, since reused cdevs cause crashes */
3091         cdev_init(&driver->cdevs[index], &tty_fops);
3092         driver->cdevs[index].owner = driver->owner;
3093         return cdev_add(&driver->cdevs[index], dev, count);
3094 }
3095
3096 /**
3097  *      tty_register_device - register a tty device
3098  *      @driver: the tty driver that describes the tty device
3099  *      @index: the index in the tty driver for this tty device
3100  *      @device: a struct device that is associated with this tty device.
3101  *              This field is optional, if there is no known struct device
3102  *              for this tty device it can be set to NULL safely.
3103  *
3104  *      Returns a pointer to the struct device for this tty device
3105  *      (or ERR_PTR(-EFOO) on error).
3106  *
3107  *      This call is required to be made to register an individual tty device
3108  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3109  *      that bit is not set, this function should not be called by a tty
3110  *      driver.
3111  *
3112  *      Locking: ??
3113  */
3114
3115 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3116                                    struct device *device)
3117 {
3118         return tty_register_device_attr(driver, index, device, NULL, NULL);
3119 }
3120 EXPORT_SYMBOL(tty_register_device);
3121
3122 static void tty_device_create_release(struct device *dev)
3123 {
3124         pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3125         kfree(dev);
3126 }
3127
3128 /**
3129  *      tty_register_device_attr - register a tty device
3130  *      @driver: the tty driver that describes the tty device
3131  *      @index: the index in the tty driver for this tty device
3132  *      @device: a struct device that is associated with this tty device.
3133  *              This field is optional, if there is no known struct device
3134  *              for this tty device it can be set to NULL safely.
3135  *      @drvdata: Driver data to be set to device.
3136  *      @attr_grp: Attribute group to be set on device.
3137  *
3138  *      Returns a pointer to the struct device for this tty device
3139  *      (or ERR_PTR(-EFOO) on error).
3140  *
3141  *      This call is required to be made to register an individual tty device
3142  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3143  *      that bit is not set, this function should not be called by a tty
3144  *      driver.
3145  *
3146  *      Locking: ??
3147  */
3148 struct device *tty_register_device_attr(struct tty_driver *driver,
3149                                    unsigned index, struct device *device,
3150                                    void *drvdata,
3151                                    const struct attribute_group **attr_grp)
3152 {
3153         char name[64];
3154         dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3155         struct device *dev = NULL;
3156         int retval = -ENODEV;
3157         bool cdev = false;
3158
3159         if (index >= driver->num) {
3160                 printk(KERN_ERR "Attempt to register invalid tty line number "
3161                        " (%d).\n", index);
3162                 return ERR_PTR(-EINVAL);
3163         }
3164
3165         if (driver->type == TTY_DRIVER_TYPE_PTY)
3166                 pty_line_name(driver, index, name);
3167         else
3168                 tty_line_name(driver, index, name);
3169
3170         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3171                 retval = tty_cdev_add(driver, devt, index, 1);
3172                 if (retval)
3173                         goto error;
3174                 cdev = true;
3175         }
3176
3177         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3178         if (!dev) {
3179                 retval = -ENOMEM;
3180                 goto error;
3181         }
3182
3183         dev->devt = devt;
3184         dev->class = tty_class;
3185         dev->parent = device;
3186         dev->release = tty_device_create_release;
3187         dev_set_name(dev, "%s", name);
3188         dev->groups = attr_grp;
3189         dev_set_drvdata(dev, drvdata);
3190
3191         retval = device_register(dev);
3192         if (retval)
3193                 goto error;
3194
3195         return dev;
3196
3197 error:
3198         put_device(dev);
3199         if (cdev)
3200                 cdev_del(&driver->cdevs[index]);
3201         return ERR_PTR(retval);
3202 }
3203 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3204
3205 /**
3206  *      tty_unregister_device - unregister a tty device
3207  *      @driver: the tty driver that describes the tty device
3208  *      @index: the index in the tty driver for this tty device
3209  *
3210  *      If a tty device is registered with a call to tty_register_device() then
3211  *      this function must be called when the tty device is gone.
3212  *
3213  *      Locking: ??
3214  */
3215
3216 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3217 {
3218         device_destroy(tty_class,
3219                 MKDEV(driver->major, driver->minor_start) + index);
3220         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3221                 cdev_del(&driver->cdevs[index]);
3222 }
3223 EXPORT_SYMBOL(tty_unregister_device);
3224
3225 /**
3226  * __tty_alloc_driver -- allocate tty driver
3227  * @lines: count of lines this driver can handle at most
3228  * @owner: module which is repsonsible for this driver
3229  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3230  *
3231  * This should not be called directly, some of the provided macros should be
3232  * used instead. Use IS_ERR and friends on @retval.
3233  */
3234 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3235                 unsigned long flags)
3236 {
3237         struct tty_driver *driver;
3238         unsigned int cdevs = 1;
3239         int err;
3240
3241         if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3242                 return ERR_PTR(-EINVAL);
3243
3244         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3245         if (!driver)
3246                 return ERR_PTR(-ENOMEM);
3247
3248         kref_init(&driver->kref);
3249         driver->magic = TTY_DRIVER_MAGIC;
3250         driver->num = lines;
3251         driver->owner = owner;
3252         driver->flags = flags;
3253
3254         if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3255                 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3256                                 GFP_KERNEL);
3257                 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3258                                 GFP_KERNEL);
3259                 if (!driver->ttys || !driver->termios) {
3260                         err = -ENOMEM;
3261                         goto err_free_all;
3262                 }
3263         }
3264
3265         if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3266                 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3267                                 GFP_KERNEL);
3268                 if (!driver->ports) {
3269                         err = -ENOMEM;
3270                         goto err_free_all;
3271                 }
3272                 cdevs = lines;
3273         }
3274
3275         driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3276         if (!driver->cdevs) {
3277                 err = -ENOMEM;
3278                 goto err_free_all;
3279         }
3280
3281         return driver;
3282 err_free_all:
3283         kfree(driver->ports);
3284         kfree(driver->ttys);
3285         kfree(driver->termios);
3286         kfree(driver);
3287         return ERR_PTR(err);
3288 }
3289 EXPORT_SYMBOL(__tty_alloc_driver);
3290
3291 static void destruct_tty_driver(struct kref *kref)
3292 {
3293         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3294         int i;
3295         struct ktermios *tp;
3296
3297         if (driver->flags & TTY_DRIVER_INSTALLED) {
3298                 /*
3299                  * Free the termios and termios_locked structures because
3300                  * we don't want to get memory leaks when modular tty
3301                  * drivers are removed from the kernel.
3302                  */
3303                 for (i = 0; i < driver->num; i++) {
3304                         tp = driver->termios[i];
3305                         if (tp) {
3306                                 driver->termios[i] = NULL;
3307                                 kfree(tp);
3308                         }
3309                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3310                                 tty_unregister_device(driver, i);
3311                 }
3312                 proc_tty_unregister_driver(driver);
3313                 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3314                         cdev_del(&driver->cdevs[0]);
3315         }
3316         kfree(driver->cdevs);
3317         kfree(driver->ports);
3318         kfree(driver->termios);
3319         kfree(driver->ttys);
3320         kfree(driver);
3321 }
3322
3323 void tty_driver_kref_put(struct tty_driver *driver)
3324 {
3325         kref_put(&driver->kref, destruct_tty_driver);
3326 }
3327 EXPORT_SYMBOL(tty_driver_kref_put);
3328
3329 void tty_set_operations(struct tty_driver *driver,
3330                         const struct tty_operations *op)
3331 {
3332         driver->ops = op;
3333 };
3334 EXPORT_SYMBOL(tty_set_operations);
3335
3336 void put_tty_driver(struct tty_driver *d)
3337 {
3338         tty_driver_kref_put(d);
3339 }
3340 EXPORT_SYMBOL(put_tty_driver);
3341
3342 /*
3343  * Called by a tty driver to register itself.
3344  */
3345 int tty_register_driver(struct tty_driver *driver)
3346 {
3347         int error;
3348         int i;
3349         dev_t dev;
3350         struct device *d;
3351
3352         if (!driver->major) {
3353                 error = alloc_chrdev_region(&dev, driver->minor_start,
3354                                                 driver->num, driver->name);
3355                 if (!error) {
3356                         driver->major = MAJOR(dev);
3357                         driver->minor_start = MINOR(dev);
3358                 }
3359         } else {
3360                 dev = MKDEV(driver->major, driver->minor_start);
3361                 error = register_chrdev_region(dev, driver->num, driver->name);
3362         }
3363         if (error < 0)
3364                 goto err;
3365
3366         if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3367                 error = tty_cdev_add(driver, dev, 0, driver->num);
3368                 if (error)
3369                         goto err_unreg_char;
3370         }
3371
3372         mutex_lock(&tty_mutex);
3373         list_add(&driver->tty_drivers, &tty_drivers);
3374         mutex_unlock(&tty_mutex);
3375
3376         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3377                 for (i = 0; i < driver->num; i++) {
3378                         d = tty_register_device(driver, i, NULL);
3379                         if (IS_ERR(d)) {
3380                                 error = PTR_ERR(d);
3381                                 goto err_unreg_devs;
3382                         }
3383                 }
3384         }
3385         proc_tty_register_driver(driver);
3386         driver->flags |= TTY_DRIVER_INSTALLED;
3387         return 0;
3388
3389 err_unreg_devs:
3390         for (i--; i >= 0; i--)
3391                 tty_unregister_device(driver, i);
3392
3393         mutex_lock(&tty_mutex);
3394         list_del(&driver->tty_drivers);
3395         mutex_unlock(&tty_mutex);
3396
3397 err_unreg_char:
3398         unregister_chrdev_region(dev, driver->num);
3399 err:
3400         return error;
3401 }
3402 EXPORT_SYMBOL(tty_register_driver);
3403
3404 /*
3405  * Called by a tty driver to unregister itself.
3406  */
3407 int tty_unregister_driver(struct tty_driver *driver)
3408 {
3409 #if 0
3410         /* FIXME */
3411         if (driver->refcount)
3412                 return -EBUSY;
3413 #endif
3414         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3415                                 driver->num);
3416         mutex_lock(&tty_mutex);
3417         list_del(&driver->tty_drivers);
3418         mutex_unlock(&tty_mutex);
3419         return 0;
3420 }
3421
3422 EXPORT_SYMBOL(tty_unregister_driver);
3423
3424 dev_t tty_devnum(struct tty_struct *tty)
3425 {
3426         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3427 }
3428 EXPORT_SYMBOL(tty_devnum);
3429
3430 void proc_clear_tty(struct task_struct *p)
3431 {
3432         unsigned long flags;
3433         struct tty_struct *tty;
3434         spin_lock_irqsave(&p->sighand->siglock, flags);
3435         tty = p->signal->tty;
3436         p->signal->tty = NULL;
3437         spin_unlock_irqrestore(&p->sighand->siglock, flags);
3438         tty_kref_put(tty);
3439 }
3440
3441 /* Called under the sighand lock */
3442
3443 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3444 {
3445         if (tty) {
3446                 unsigned long flags;
3447                 /* We should not have a session or pgrp to put here but.... */
3448                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3449                 put_pid(tty->session);
3450                 put_pid(tty->pgrp);
3451                 tty->pgrp = get_pid(task_pgrp(tsk));
3452                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3453                 tty->session = get_pid(task_session(tsk));
3454                 if (tsk->signal->tty) {
3455                         printk(KERN_DEBUG "tty not NULL!!\n");
3456                         tty_kref_put(tsk->signal->tty);
3457                 }
3458         }
3459         put_pid(tsk->signal->tty_old_pgrp);
3460         tsk->signal->tty = tty_kref_get(tty);
3461         tsk->signal->tty_old_pgrp = NULL;
3462 }
3463
3464 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3465 {
3466         spin_lock_irq(&tsk->sighand->siglock);
3467         __proc_set_tty(tsk, tty);
3468         spin_unlock_irq(&tsk->sighand->siglock);
3469 }
3470
3471 struct tty_struct *get_current_tty(void)
3472 {
3473         struct tty_struct *tty;
3474         unsigned long flags;
3475
3476         spin_lock_irqsave(&current->sighand->siglock, flags);
3477         tty = tty_kref_get(current->signal->tty);
3478         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3479         return tty;
3480 }
3481 EXPORT_SYMBOL_GPL(get_current_tty);
3482
3483 void tty_default_fops(struct file_operations *fops)
3484 {
3485         *fops = tty_fops;
3486 }
3487
3488 /*
3489  * Initialize the console device. This is called *early*, so
3490  * we can't necessarily depend on lots of kernel help here.
3491  * Just do some early initializations, and do the complex setup
3492  * later.
3493  */
3494 void __init console_init(void)
3495 {
3496         initcall_t *call;
3497
3498         /* Setup the default TTY line discipline. */
3499         tty_ldisc_begin();
3500
3501         /*
3502          * set up the console device so that later boot sequences can
3503          * inform about problems etc..
3504          */
3505         call = __con_initcall_start;
3506         while (call < __con_initcall_end) {
3507                 (*call)();
3508                 call++;
3509         }
3510 }
3511
3512 static char *tty_devnode(struct device *dev, umode_t *mode)
3513 {
3514         if (!mode)
3515                 return NULL;
3516         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3517             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3518                 *mode = 0666;
3519         return NULL;
3520 }
3521
3522 static int __init tty_class_init(void)
3523 {
3524         tty_class = class_create(THIS_MODULE, "tty");
3525         if (IS_ERR(tty_class))
3526                 return PTR_ERR(tty_class);
3527         tty_class->devnode = tty_devnode;
3528         return 0;
3529 }
3530
3531 postcore_initcall(tty_class_init);
3532
3533 /* 3/2004 jmc: why do these devices exist? */
3534 static struct cdev tty_cdev, console_cdev;
3535
3536 static ssize_t show_cons_active(struct device *dev,
3537                                 struct device_attribute *attr, char *buf)
3538 {
3539         struct console *cs[16];
3540         int i = 0;
3541         struct console *c;
3542         ssize_t count = 0;
3543
3544         console_lock();
3545         for_each_console(c) {
3546                 if (!c->device)
3547                         continue;
3548                 if (!c->write)
3549                         continue;
3550                 if ((c->flags & CON_ENABLED) == 0)
3551                         continue;
3552                 cs[i++] = c;
3553                 if (i >= ARRAY_SIZE(cs))
3554                         break;
3555         }
3556         while (i--) {
3557                 int index = cs[i]->index;
3558                 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3559
3560                 /* don't resolve tty0 as some programs depend on it */
3561                 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3562                         count += tty_line_name(drv, index, buf + count);
3563                 else
3564                         count += sprintf(buf + count, "%s%d",
3565                                          cs[i]->name, cs[i]->index);
3566
3567                 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3568         }
3569         console_unlock();
3570
3571         return count;
3572 }
3573 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3574
3575 static struct device *consdev;
3576
3577 void console_sysfs_notify(void)
3578 {
3579         if (consdev)
3580                 sysfs_notify(&consdev->kobj, NULL, "active");
3581 }
3582
3583 /*
3584  * Ok, now we can initialize the rest of the tty devices and can count
3585  * on memory allocations, interrupts etc..
3586  */
3587 int __init tty_init(void)
3588 {
3589         cdev_init(&tty_cdev, &tty_fops);
3590         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3591             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3592                 panic("Couldn't register /dev/tty driver\n");
3593         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3594
3595         cdev_init(&console_cdev, &console_fops);
3596         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3597             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3598                 panic("Couldn't register /dev/console driver\n");
3599         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3600                               "console");
3601         if (IS_ERR(consdev))
3602                 consdev = NULL;
3603         else
3604                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3605
3606 #ifdef CONFIG_VT
3607         vty_init(&console_fops);
3608 #endif
3609         return 0;
3610 }
3611