2d66beed3e1fd1985682cb84658d1481c94947d8
[platform/kernel/linux-stable.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
114         .c_iflag = ICRNL | IXON,
115         .c_oflag = OPOST | ONLCR,
116         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118                    ECHOCTL | ECHOKE | IEXTEN,
119         .c_cc = INIT_C_CC,
120         .c_ispeed = 38400,
121         .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129
130 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143                                                         size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149                                 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159 /**
160  *      alloc_tty_struct        -       allocate a tty object
161  *
162  *      Return a new empty tty structure. The data fields have not
163  *      been initialized in any way but has been zeroed
164  *
165  *      Locking: none
166  */
167
168 struct tty_struct *alloc_tty_struct(void)
169 {
170         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 }
172
173 /**
174  *      free_tty_struct         -       free a disused tty
175  *      @tty: tty struct to free
176  *
177  *      Free the write buffers, tty queue and tty memory itself.
178  *
179  *      Locking: none. Must be called after tty is definitely unused
180  */
181
182 void free_tty_struct(struct tty_struct *tty)
183 {
184         if (tty->dev)
185                 put_device(tty->dev);
186         kfree(tty->write_buf);
187         tty_buffer_free_all(tty);
188         kfree(tty);
189 }
190
191 static inline struct tty_struct *file_tty(struct file *file)
192 {
193         return ((struct tty_file_private *)file->private_data)->tty;
194 }
195
196 int tty_alloc_file(struct file *file)
197 {
198         struct tty_file_private *priv;
199
200         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
201         if (!priv)
202                 return -ENOMEM;
203
204         file->private_data = priv;
205
206         return 0;
207 }
208
209 /* Associate a new file with the tty structure */
210 void tty_add_file(struct tty_struct *tty, struct file *file)
211 {
212         struct tty_file_private *priv = file->private_data;
213
214         priv->tty = tty;
215         priv->file = file;
216
217         spin_lock(&tty_files_lock);
218         list_add(&priv->list, &tty->tty_files);
219         spin_unlock(&tty_files_lock);
220 }
221
222 /**
223  * tty_free_file - free file->private_data
224  *
225  * This shall be used only for fail path handling when tty_add_file was not
226  * called yet.
227  */
228 void tty_free_file(struct file *file)
229 {
230         struct tty_file_private *priv = file->private_data;
231
232         file->private_data = NULL;
233         kfree(priv);
234 }
235
236 /* Delete file from its tty */
237 void tty_del_file(struct file *file)
238 {
239         struct tty_file_private *priv = file->private_data;
240
241         spin_lock(&tty_files_lock);
242         list_del(&priv->list);
243         spin_unlock(&tty_files_lock);
244         tty_free_file(file);
245 }
246
247
248 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
249
250 /**
251  *      tty_name        -       return tty naming
252  *      @tty: tty structure
253  *      @buf: buffer for output
254  *
255  *      Convert a tty structure into a name. The name reflects the kernel
256  *      naming policy and if udev is in use may not reflect user space
257  *
258  *      Locking: none
259  */
260
261 char *tty_name(struct tty_struct *tty, char *buf)
262 {
263         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
264                 strcpy(buf, "NULL tty");
265         else
266                 strcpy(buf, tty->name);
267         return buf;
268 }
269
270 EXPORT_SYMBOL(tty_name);
271
272 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
273                               const char *routine)
274 {
275 #ifdef TTY_PARANOIA_CHECK
276         if (!tty) {
277                 printk(KERN_WARNING
278                         "null TTY for (%d:%d) in %s\n",
279                         imajor(inode), iminor(inode), routine);
280                 return 1;
281         }
282         if (tty->magic != TTY_MAGIC) {
283                 printk(KERN_WARNING
284                         "bad magic number for tty struct (%d:%d) in %s\n",
285                         imajor(inode), iminor(inode), routine);
286                 return 1;
287         }
288 #endif
289         return 0;
290 }
291
292 static int check_tty_count(struct tty_struct *tty, const char *routine)
293 {
294 #ifdef CHECK_TTY_COUNT
295         struct list_head *p;
296         int count = 0;
297
298         spin_lock(&tty_files_lock);
299         list_for_each(p, &tty->tty_files) {
300                 count++;
301         }
302         spin_unlock(&tty_files_lock);
303         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
304             tty->driver->subtype == PTY_TYPE_SLAVE &&
305             tty->link && tty->link->count)
306                 count++;
307         if (tty->count != count) {
308                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
309                                     "!= #fd's(%d) in %s\n",
310                        tty->name, tty->count, count, routine);
311                 return count;
312         }
313 #endif
314         return 0;
315 }
316
317 /**
318  *      get_tty_driver          -       find device of a tty
319  *      @dev_t: device identifier
320  *      @index: returns the index of the tty
321  *
322  *      This routine returns a tty driver structure, given a device number
323  *      and also passes back the index number.
324  *
325  *      Locking: caller must hold tty_mutex
326  */
327
328 static struct tty_driver *get_tty_driver(dev_t device, int *index)
329 {
330         struct tty_driver *p;
331
332         list_for_each_entry(p, &tty_drivers, tty_drivers) {
333                 dev_t base = MKDEV(p->major, p->minor_start);
334                 if (device < base || device >= base + p->num)
335                         continue;
336                 *index = device - base;
337                 return tty_driver_kref_get(p);
338         }
339         return NULL;
340 }
341
342 #ifdef CONFIG_CONSOLE_POLL
343
344 /**
345  *      tty_find_polling_driver -       find device of a polled tty
346  *      @name: name string to match
347  *      @line: pointer to resulting tty line nr
348  *
349  *      This routine returns a tty driver structure, given a name
350  *      and the condition that the tty driver is capable of polled
351  *      operation.
352  */
353 struct tty_driver *tty_find_polling_driver(char *name, int *line)
354 {
355         struct tty_driver *p, *res = NULL;
356         int tty_line = 0;
357         int len;
358         char *str, *stp;
359
360         for (str = name; *str; str++)
361                 if ((*str >= '0' && *str <= '9') || *str == ',')
362                         break;
363         if (!*str)
364                 return NULL;
365
366         len = str - name;
367         tty_line = simple_strtoul(str, &str, 10);
368
369         mutex_lock(&tty_mutex);
370         /* Search through the tty devices to look for a match */
371         list_for_each_entry(p, &tty_drivers, tty_drivers) {
372                 if (strncmp(name, p->name, len) != 0)
373                         continue;
374                 stp = str;
375                 if (*stp == ',')
376                         stp++;
377                 if (*stp == '\0')
378                         stp = NULL;
379
380                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
381                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
382                         res = tty_driver_kref_get(p);
383                         *line = tty_line;
384                         break;
385                 }
386         }
387         mutex_unlock(&tty_mutex);
388
389         return res;
390 }
391 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
392 #endif
393
394 /**
395  *      tty_check_change        -       check for POSIX terminal changes
396  *      @tty: tty to check
397  *
398  *      If we try to write to, or set the state of, a terminal and we're
399  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
400  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
401  *
402  *      Locking: ctrl_lock
403  */
404
405 int tty_check_change(struct tty_struct *tty)
406 {
407         unsigned long flags;
408         int ret = 0;
409
410         if (current->signal->tty != tty)
411                 return 0;
412
413         spin_lock_irqsave(&tty->ctrl_lock, flags);
414
415         if (!tty->pgrp) {
416                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
417                 goto out_unlock;
418         }
419         if (task_pgrp(current) == tty->pgrp)
420                 goto out_unlock;
421         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
422         if (is_ignored(SIGTTOU))
423                 goto out;
424         if (is_current_pgrp_orphaned()) {
425                 ret = -EIO;
426                 goto out;
427         }
428         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
429         set_thread_flag(TIF_SIGPENDING);
430         ret = -ERESTARTSYS;
431 out:
432         return ret;
433 out_unlock:
434         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
435         return ret;
436 }
437
438 EXPORT_SYMBOL(tty_check_change);
439
440 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
441                                 size_t count, loff_t *ppos)
442 {
443         return 0;
444 }
445
446 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
447                                  size_t count, loff_t *ppos)
448 {
449         return -EIO;
450 }
451
452 /* No kernel lock held - none needed ;) */
453 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
454 {
455         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
456 }
457
458 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
459                 unsigned long arg)
460 {
461         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
462 }
463
464 static long hung_up_tty_compat_ioctl(struct file *file,
465                                      unsigned int cmd, unsigned long arg)
466 {
467         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
468 }
469
470 static const struct file_operations tty_fops = {
471         .llseek         = no_llseek,
472         .read           = tty_read,
473         .write          = tty_write,
474         .poll           = tty_poll,
475         .unlocked_ioctl = tty_ioctl,
476         .compat_ioctl   = tty_compat_ioctl,
477         .open           = tty_open,
478         .release        = tty_release,
479         .fasync         = tty_fasync,
480 };
481
482 static const struct file_operations console_fops = {
483         .llseek         = no_llseek,
484         .read           = tty_read,
485         .write          = redirected_tty_write,
486         .poll           = tty_poll,
487         .unlocked_ioctl = tty_ioctl,
488         .compat_ioctl   = tty_compat_ioctl,
489         .open           = tty_open,
490         .release        = tty_release,
491         .fasync         = tty_fasync,
492 };
493
494 static const struct file_operations hung_up_tty_fops = {
495         .llseek         = no_llseek,
496         .read           = hung_up_tty_read,
497         .write          = hung_up_tty_write,
498         .poll           = hung_up_tty_poll,
499         .unlocked_ioctl = hung_up_tty_ioctl,
500         .compat_ioctl   = hung_up_tty_compat_ioctl,
501         .release        = tty_release,
502 };
503
504 static DEFINE_SPINLOCK(redirect_lock);
505 static struct file *redirect;
506
507 /**
508  *      tty_wakeup      -       request more data
509  *      @tty: terminal
510  *
511  *      Internal and external helper for wakeups of tty. This function
512  *      informs the line discipline if present that the driver is ready
513  *      to receive more output data.
514  */
515
516 void tty_wakeup(struct tty_struct *tty)
517 {
518         struct tty_ldisc *ld;
519
520         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
521                 ld = tty_ldisc_ref(tty);
522                 if (ld) {
523                         if (ld->ops->write_wakeup)
524                                 ld->ops->write_wakeup(tty);
525                         tty_ldisc_deref(ld);
526                 }
527         }
528         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
529 }
530
531 EXPORT_SYMBOL_GPL(tty_wakeup);
532
533 /**
534  *      __tty_hangup            -       actual handler for hangup events
535  *      @work: tty device
536  *
537  *      This can be called by the "eventd" kernel thread.  That is process
538  *      synchronous but doesn't hold any locks, so we need to make sure we
539  *      have the appropriate locks for what we're doing.
540  *
541  *      The hangup event clears any pending redirections onto the hung up
542  *      device. It ensures future writes will error and it does the needed
543  *      line discipline hangup and signal delivery. The tty object itself
544  *      remains intact.
545  *
546  *      Locking:
547  *              BTM
548  *                redirect lock for undoing redirection
549  *                file list lock for manipulating list of ttys
550  *                tty_ldisc_lock from called functions
551  *                termios_mutex resetting termios data
552  *                tasklist_lock to walk task list for hangup event
553  *                  ->siglock to protect ->signal/->sighand
554  */
555 void __tty_hangup(struct tty_struct *tty)
556 {
557         struct file *cons_filp = NULL;
558         struct file *filp, *f = NULL;
559         struct task_struct *p;
560         struct tty_file_private *priv;
561         int    closecount = 0, n;
562         unsigned long flags;
563         int refs = 0;
564
565         if (!tty)
566                 return;
567
568
569         spin_lock(&redirect_lock);
570         if (redirect && file_tty(redirect) == tty) {
571                 f = redirect;
572                 redirect = NULL;
573         }
574         spin_unlock(&redirect_lock);
575
576         tty_lock();
577
578         /* some functions below drop BTM, so we need this bit */
579         set_bit(TTY_HUPPING, &tty->flags);
580
581         /* inuse_filps is protected by the single tty lock,
582            this really needs to change if we want to flush the
583            workqueue with the lock held */
584         check_tty_count(tty, "tty_hangup");
585
586         spin_lock(&tty_files_lock);
587         /* This breaks for file handles being sent over AF_UNIX sockets ? */
588         list_for_each_entry(priv, &tty->tty_files, list) {
589                 filp = priv->file;
590                 if (filp->f_op->write == redirected_tty_write)
591                         cons_filp = filp;
592                 if (filp->f_op->write != tty_write)
593                         continue;
594                 closecount++;
595                 __tty_fasync(-1, filp, 0);      /* can't block */
596                 filp->f_op = &hung_up_tty_fops;
597         }
598         spin_unlock(&tty_files_lock);
599
600         /*
601          * it drops BTM and thus races with reopen
602          * we protect the race by TTY_HUPPING
603          */
604         tty_ldisc_hangup(tty);
605
606         read_lock(&tasklist_lock);
607         if (tty->session) {
608                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
609                         spin_lock_irq(&p->sighand->siglock);
610                         if (p->signal->tty == tty) {
611                                 p->signal->tty = NULL;
612                                 /* We defer the dereferences outside fo
613                                    the tasklist lock */
614                                 refs++;
615                         }
616                         if (!p->signal->leader) {
617                                 spin_unlock_irq(&p->sighand->siglock);
618                                 continue;
619                         }
620                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
621                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
622                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
623                         spin_lock_irqsave(&tty->ctrl_lock, flags);
624                         if (tty->pgrp)
625                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
626                         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
627                         spin_unlock_irq(&p->sighand->siglock);
628                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
629         }
630         read_unlock(&tasklist_lock);
631
632         spin_lock_irqsave(&tty->ctrl_lock, flags);
633         clear_bit(TTY_THROTTLED, &tty->flags);
634         clear_bit(TTY_PUSH, &tty->flags);
635         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
636         put_pid(tty->session);
637         put_pid(tty->pgrp);
638         tty->session = NULL;
639         tty->pgrp = NULL;
640         tty->ctrl_status = 0;
641         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
642
643         /* Account for the p->signal references we killed */
644         while (refs--)
645                 tty_kref_put(tty);
646
647         /*
648          * If one of the devices matches a console pointer, we
649          * cannot just call hangup() because that will cause
650          * tty->count and state->count to go out of sync.
651          * So we just call close() the right number of times.
652          */
653         if (cons_filp) {
654                 if (tty->ops->close)
655                         for (n = 0; n < closecount; n++)
656                                 tty->ops->close(tty, cons_filp);
657         } else if (tty->ops->hangup)
658                 (tty->ops->hangup)(tty);
659         /*
660          * We don't want to have driver/ldisc interactions beyond
661          * the ones we did here. The driver layer expects no
662          * calls after ->hangup() from the ldisc side. However we
663          * can't yet guarantee all that.
664          */
665         set_bit(TTY_HUPPED, &tty->flags);
666         clear_bit(TTY_HUPPING, &tty->flags);
667         tty_ldisc_enable(tty);
668
669         tty_unlock();
670
671         if (f)
672                 fput(f);
673 }
674
675 static void do_tty_hangup(struct work_struct *work)
676 {
677         struct tty_struct *tty =
678                 container_of(work, struct tty_struct, hangup_work);
679
680         __tty_hangup(tty);
681 }
682
683 /**
684  *      tty_hangup              -       trigger a hangup event
685  *      @tty: tty to hangup
686  *
687  *      A carrier loss (virtual or otherwise) has occurred on this like
688  *      schedule a hangup sequence to run after this event.
689  */
690
691 void tty_hangup(struct tty_struct *tty)
692 {
693 #ifdef TTY_DEBUG_HANGUP
694         char    buf[64];
695         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
696 #endif
697         schedule_work(&tty->hangup_work);
698 }
699
700 EXPORT_SYMBOL(tty_hangup);
701
702 /**
703  *      tty_vhangup             -       process vhangup
704  *      @tty: tty to hangup
705  *
706  *      The user has asked via system call for the terminal to be hung up.
707  *      We do this synchronously so that when the syscall returns the process
708  *      is complete. That guarantee is necessary for security reasons.
709  */
710
711 void tty_vhangup(struct tty_struct *tty)
712 {
713 #ifdef TTY_DEBUG_HANGUP
714         char    buf[64];
715
716         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
717 #endif
718         __tty_hangup(tty);
719 }
720
721 EXPORT_SYMBOL(tty_vhangup);
722
723
724 /**
725  *      tty_vhangup_self        -       process vhangup for own ctty
726  *
727  *      Perform a vhangup on the current controlling tty
728  */
729
730 void tty_vhangup_self(void)
731 {
732         struct tty_struct *tty;
733
734         tty = get_current_tty();
735         if (tty) {
736                 tty_vhangup(tty);
737                 tty_kref_put(tty);
738         }
739 }
740
741 /**
742  *      tty_hung_up_p           -       was tty hung up
743  *      @filp: file pointer of tty
744  *
745  *      Return true if the tty has been subject to a vhangup or a carrier
746  *      loss
747  */
748
749 int tty_hung_up_p(struct file *filp)
750 {
751         return (filp->f_op == &hung_up_tty_fops);
752 }
753
754 EXPORT_SYMBOL(tty_hung_up_p);
755
756 static void session_clear_tty(struct pid *session)
757 {
758         struct task_struct *p;
759         do_each_pid_task(session, PIDTYPE_SID, p) {
760                 proc_clear_tty(p);
761         } while_each_pid_task(session, PIDTYPE_SID, p);
762 }
763
764 /**
765  *      disassociate_ctty       -       disconnect controlling tty
766  *      @on_exit: true if exiting so need to "hang up" the session
767  *
768  *      This function is typically called only by the session leader, when
769  *      it wants to disassociate itself from its controlling tty.
770  *
771  *      It performs the following functions:
772  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
773  *      (2)  Clears the tty from being controlling the session
774  *      (3)  Clears the controlling tty for all processes in the
775  *              session group.
776  *
777  *      The argument on_exit is set to 1 if called when a process is
778  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
779  *
780  *      Locking:
781  *              BTM is taken for hysterical raisins, and held when
782  *                called from no_tty().
783  *                tty_mutex is taken to protect tty
784  *                ->siglock is taken to protect ->signal/->sighand
785  *                tasklist_lock is taken to walk process list for sessions
786  *                  ->siglock is taken to protect ->signal/->sighand
787  */
788
789 void disassociate_ctty(int on_exit)
790 {
791         struct tty_struct *tty;
792
793         if (!current->signal->leader)
794                 return;
795
796         tty = get_current_tty();
797         if (tty) {
798                 struct pid *tty_pgrp = get_pid(tty->pgrp);
799                 if (on_exit) {
800                         if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
801                                 tty_vhangup(tty);
802                 }
803                 tty_kref_put(tty);
804                 if (tty_pgrp) {
805                         kill_pgrp(tty_pgrp, SIGHUP, on_exit);
806                         if (!on_exit)
807                                 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
808                         put_pid(tty_pgrp);
809                 }
810         } else if (on_exit) {
811                 struct pid *old_pgrp;
812                 spin_lock_irq(&current->sighand->siglock);
813                 old_pgrp = current->signal->tty_old_pgrp;
814                 current->signal->tty_old_pgrp = NULL;
815                 spin_unlock_irq(&current->sighand->siglock);
816                 if (old_pgrp) {
817                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
818                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
819                         put_pid(old_pgrp);
820                 }
821                 return;
822         }
823
824         spin_lock_irq(&current->sighand->siglock);
825         put_pid(current->signal->tty_old_pgrp);
826         current->signal->tty_old_pgrp = NULL;
827         spin_unlock_irq(&current->sighand->siglock);
828
829         tty = get_current_tty();
830         if (tty) {
831                 unsigned long flags;
832                 spin_lock_irqsave(&tty->ctrl_lock, flags);
833                 put_pid(tty->session);
834                 put_pid(tty->pgrp);
835                 tty->session = NULL;
836                 tty->pgrp = NULL;
837                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
838                 tty_kref_put(tty);
839         } else {
840 #ifdef TTY_DEBUG_HANGUP
841                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
842                        " = NULL", tty);
843 #endif
844         }
845
846         /* Now clear signal->tty under the lock */
847         read_lock(&tasklist_lock);
848         session_clear_tty(task_session(current));
849         read_unlock(&tasklist_lock);
850 }
851
852 /**
853  *
854  *      no_tty  - Ensure the current process does not have a controlling tty
855  */
856 void no_tty(void)
857 {
858         struct task_struct *tsk = current;
859         tty_lock();
860         disassociate_ctty(0);
861         tty_unlock();
862         proc_clear_tty(tsk);
863 }
864
865
866 /**
867  *      stop_tty        -       propagate flow control
868  *      @tty: tty to stop
869  *
870  *      Perform flow control to the driver. For PTY/TTY pairs we
871  *      must also propagate the TIOCKPKT status. May be called
872  *      on an already stopped device and will not re-call the driver
873  *      method.
874  *
875  *      This functionality is used by both the line disciplines for
876  *      halting incoming flow and by the driver. It may therefore be
877  *      called from any context, may be under the tty atomic_write_lock
878  *      but not always.
879  *
880  *      Locking:
881  *              Uses the tty control lock internally
882  */
883
884 void stop_tty(struct tty_struct *tty)
885 {
886         unsigned long flags;
887         spin_lock_irqsave(&tty->ctrl_lock, flags);
888         if (tty->stopped) {
889                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
890                 return;
891         }
892         tty->stopped = 1;
893         if (tty->link && tty->link->packet) {
894                 tty->ctrl_status &= ~TIOCPKT_START;
895                 tty->ctrl_status |= TIOCPKT_STOP;
896                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
897         }
898         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
899         if (tty->ops->stop)
900                 (tty->ops->stop)(tty);
901 }
902
903 EXPORT_SYMBOL(stop_tty);
904
905 /**
906  *      start_tty       -       propagate flow control
907  *      @tty: tty to start
908  *
909  *      Start a tty that has been stopped if at all possible. Perform
910  *      any necessary wakeups and propagate the TIOCPKT status. If this
911  *      is the tty was previous stopped and is being started then the
912  *      driver start method is invoked and the line discipline woken.
913  *
914  *      Locking:
915  *              ctrl_lock
916  */
917
918 void start_tty(struct tty_struct *tty)
919 {
920         unsigned long flags;
921         spin_lock_irqsave(&tty->ctrl_lock, flags);
922         if (!tty->stopped || tty->flow_stopped) {
923                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
924                 return;
925         }
926         tty->stopped = 0;
927         if (tty->link && tty->link->packet) {
928                 tty->ctrl_status &= ~TIOCPKT_STOP;
929                 tty->ctrl_status |= TIOCPKT_START;
930                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
931         }
932         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
933         if (tty->ops->start)
934                 (tty->ops->start)(tty);
935         /* If we have a running line discipline it may need kicking */
936         tty_wakeup(tty);
937 }
938
939 EXPORT_SYMBOL(start_tty);
940
941 /* We limit tty time update visibility to every 8 seconds or so. */
942 static void tty_update_time(struct timespec *time)
943 {
944         unsigned long sec = get_seconds() & ~7;
945         if ((long)(sec - time->tv_sec) > 0)
946                 time->tv_sec = sec;
947 }
948
949 /**
950  *      tty_read        -       read method for tty device files
951  *      @file: pointer to tty file
952  *      @buf: user buffer
953  *      @count: size of user buffer
954  *      @ppos: unused
955  *
956  *      Perform the read system call function on this terminal device. Checks
957  *      for hung up devices before calling the line discipline method.
958  *
959  *      Locking:
960  *              Locks the line discipline internally while needed. Multiple
961  *      read calls may be outstanding in parallel.
962  */
963
964 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
965                         loff_t *ppos)
966 {
967         int i;
968         struct inode *inode = file->f_path.dentry->d_inode;
969         struct tty_struct *tty = file_tty(file);
970         struct tty_ldisc *ld;
971
972         if (tty_paranoia_check(tty, inode, "tty_read"))
973                 return -EIO;
974         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
975                 return -EIO;
976
977         /* We want to wait for the line discipline to sort out in this
978            situation */
979         ld = tty_ldisc_ref_wait(tty);
980         if (ld->ops->read)
981                 i = (ld->ops->read)(tty, file, buf, count);
982         else
983                 i = -EIO;
984         tty_ldisc_deref(ld);
985
986         if (i > 0)
987                 tty_update_time(&inode->i_atime);
988
989         return i;
990 }
991
992 void tty_write_unlock(struct tty_struct *tty)
993         __releases(&tty->atomic_write_lock)
994 {
995         mutex_unlock(&tty->atomic_write_lock);
996         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
997 }
998
999 int tty_write_lock(struct tty_struct *tty, int ndelay)
1000         __acquires(&tty->atomic_write_lock)
1001 {
1002         if (!mutex_trylock(&tty->atomic_write_lock)) {
1003                 if (ndelay)
1004                         return -EAGAIN;
1005                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1006                         return -ERESTARTSYS;
1007         }
1008         return 0;
1009 }
1010
1011 /*
1012  * Split writes up in sane blocksizes to avoid
1013  * denial-of-service type attacks
1014  */
1015 static inline ssize_t do_tty_write(
1016         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1017         struct tty_struct *tty,
1018         struct file *file,
1019         const char __user *buf,
1020         size_t count)
1021 {
1022         ssize_t ret, written = 0;
1023         unsigned int chunk;
1024
1025         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1026         if (ret < 0)
1027                 return ret;
1028
1029         /*
1030          * We chunk up writes into a temporary buffer. This
1031          * simplifies low-level drivers immensely, since they
1032          * don't have locking issues and user mode accesses.
1033          *
1034          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1035          * big chunk-size..
1036          *
1037          * The default chunk-size is 2kB, because the NTTY
1038          * layer has problems with bigger chunks. It will
1039          * claim to be able to handle more characters than
1040          * it actually does.
1041          *
1042          * FIXME: This can probably go away now except that 64K chunks
1043          * are too likely to fail unless switched to vmalloc...
1044          */
1045         chunk = 2048;
1046         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1047                 chunk = 65536;
1048         if (count < chunk)
1049                 chunk = count;
1050
1051         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1052         if (tty->write_cnt < chunk) {
1053                 unsigned char *buf_chunk;
1054
1055                 if (chunk < 1024)
1056                         chunk = 1024;
1057
1058                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1059                 if (!buf_chunk) {
1060                         ret = -ENOMEM;
1061                         goto out;
1062                 }
1063                 kfree(tty->write_buf);
1064                 tty->write_cnt = chunk;
1065                 tty->write_buf = buf_chunk;
1066         }
1067
1068         /* Do the write .. */
1069         for (;;) {
1070                 size_t size = count;
1071                 if (size > chunk)
1072                         size = chunk;
1073                 ret = -EFAULT;
1074                 if (copy_from_user(tty->write_buf, buf, size))
1075                         break;
1076                 ret = write(tty, file, tty->write_buf, size);
1077                 if (ret <= 0)
1078                         break;
1079                 written += ret;
1080                 buf += ret;
1081                 count -= ret;
1082                 if (!count)
1083                         break;
1084                 ret = -ERESTARTSYS;
1085                 if (signal_pending(current))
1086                         break;
1087                 cond_resched();
1088         }
1089         if (written) {
1090                 struct inode *inode = file->f_path.dentry->d_inode;
1091                 tty_update_time(&inode->i_mtime);
1092                 ret = written;
1093         }
1094 out:
1095         tty_write_unlock(tty);
1096         return ret;
1097 }
1098
1099 /**
1100  * tty_write_message - write a message to a certain tty, not just the console.
1101  * @tty: the destination tty_struct
1102  * @msg: the message to write
1103  *
1104  * This is used for messages that need to be redirected to a specific tty.
1105  * We don't put it into the syslog queue right now maybe in the future if
1106  * really needed.
1107  *
1108  * We must still hold the BTM and test the CLOSING flag for the moment.
1109  */
1110
1111 void tty_write_message(struct tty_struct *tty, char *msg)
1112 {
1113         if (tty) {
1114                 mutex_lock(&tty->atomic_write_lock);
1115                 tty_lock();
1116                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1117                         tty_unlock();
1118                         tty->ops->write(tty, msg, strlen(msg));
1119                 } else
1120                         tty_unlock();
1121                 tty_write_unlock(tty);
1122         }
1123         return;
1124 }
1125
1126
1127 /**
1128  *      tty_write               -       write method for tty device file
1129  *      @file: tty file pointer
1130  *      @buf: user data to write
1131  *      @count: bytes to write
1132  *      @ppos: unused
1133  *
1134  *      Write data to a tty device via the line discipline.
1135  *
1136  *      Locking:
1137  *              Locks the line discipline as required
1138  *              Writes to the tty driver are serialized by the atomic_write_lock
1139  *      and are then processed in chunks to the device. The line discipline
1140  *      write method will not be invoked in parallel for each device.
1141  */
1142
1143 static ssize_t tty_write(struct file *file, const char __user *buf,
1144                                                 size_t count, loff_t *ppos)
1145 {
1146         struct inode *inode = file->f_path.dentry->d_inode;
1147         struct tty_struct *tty = file_tty(file);
1148         struct tty_ldisc *ld;
1149         ssize_t ret;
1150
1151         if (tty_paranoia_check(tty, inode, "tty_write"))
1152                 return -EIO;
1153         if (!tty || !tty->ops->write ||
1154                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1155                         return -EIO;
1156         /* Short term debug to catch buggy drivers */
1157         if (tty->ops->write_room == NULL)
1158                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1159                         tty->driver->name);
1160         ld = tty_ldisc_ref_wait(tty);
1161         if (!ld->ops->write)
1162                 ret = -EIO;
1163         else
1164                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1165         tty_ldisc_deref(ld);
1166         return ret;
1167 }
1168
1169 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1170                                                 size_t count, loff_t *ppos)
1171 {
1172         struct file *p = NULL;
1173
1174         spin_lock(&redirect_lock);
1175         if (redirect) {
1176                 get_file(redirect);
1177                 p = redirect;
1178         }
1179         spin_unlock(&redirect_lock);
1180
1181         if (p) {
1182                 ssize_t res;
1183                 res = vfs_write(p, buf, count, &p->f_pos);
1184                 fput(p);
1185                 return res;
1186         }
1187         return tty_write(file, buf, count, ppos);
1188 }
1189
1190 static char ptychar[] = "pqrstuvwxyzabcde";
1191
1192 /**
1193  *      pty_line_name   -       generate name for a pty
1194  *      @driver: the tty driver in use
1195  *      @index: the minor number
1196  *      @p: output buffer of at least 6 bytes
1197  *
1198  *      Generate a name from a driver reference and write it to the output
1199  *      buffer.
1200  *
1201  *      Locking: None
1202  */
1203 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1204 {
1205         int i = index + driver->name_base;
1206         /* ->name is initialized to "ttyp", but "tty" is expected */
1207         sprintf(p, "%s%c%x",
1208                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1209                 ptychar[i >> 4 & 0xf], i & 0xf);
1210 }
1211
1212 /**
1213  *      tty_line_name   -       generate name for a tty
1214  *      @driver: the tty driver in use
1215  *      @index: the minor number
1216  *      @p: output buffer of at least 7 bytes
1217  *
1218  *      Generate a name from a driver reference and write it to the output
1219  *      buffer.
1220  *
1221  *      Locking: None
1222  */
1223 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1224 {
1225         sprintf(p, "%s%d", driver->name, index + driver->name_base);
1226 }
1227
1228 /**
1229  *      tty_driver_lookup_tty() - find an existing tty, if any
1230  *      @driver: the driver for the tty
1231  *      @idx:    the minor number
1232  *
1233  *      Return the tty, if found or ERR_PTR() otherwise.
1234  *
1235  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1236  *      be held until the 'fast-open' is also done. Will change once we
1237  *      have refcounting in the driver and per driver locking
1238  */
1239 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1240                 struct inode *inode, int idx)
1241 {
1242         if (driver->ops->lookup)
1243                 return driver->ops->lookup(driver, inode, idx);
1244
1245         return driver->ttys[idx];
1246 }
1247
1248 /**
1249  *      tty_init_termios        -  helper for termios setup
1250  *      @tty: the tty to set up
1251  *
1252  *      Initialise the termios structures for this tty. Thus runs under
1253  *      the tty_mutex currently so we can be relaxed about ordering.
1254  */
1255
1256 int tty_init_termios(struct tty_struct *tty)
1257 {
1258         struct ktermios *tp;
1259         int idx = tty->index;
1260
1261         tp = tty->driver->termios[idx];
1262         if (tp == NULL) {
1263                 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1264                 if (tp == NULL)
1265                         return -ENOMEM;
1266                 memcpy(tp, &tty->driver->init_termios,
1267                                                 sizeof(struct ktermios));
1268                 tty->driver->termios[idx] = tp;
1269         }
1270         tty->termios = tp;
1271         tty->termios_locked = tp + 1;
1272
1273         /* Compatibility until drivers always set this */
1274         tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1275         tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1276         return 0;
1277 }
1278 EXPORT_SYMBOL_GPL(tty_init_termios);
1279
1280 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1281 {
1282         int ret = tty_init_termios(tty);
1283         if (ret)
1284                 return ret;
1285
1286         tty_driver_kref_get(driver);
1287         tty->count++;
1288         driver->ttys[tty->index] = tty;
1289         return 0;
1290 }
1291 EXPORT_SYMBOL_GPL(tty_standard_install);
1292
1293 /**
1294  *      tty_driver_install_tty() - install a tty entry in the driver
1295  *      @driver: the driver for the tty
1296  *      @tty: the tty
1297  *
1298  *      Install a tty object into the driver tables. The tty->index field
1299  *      will be set by the time this is called. This method is responsible
1300  *      for ensuring any need additional structures are allocated and
1301  *      configured.
1302  *
1303  *      Locking: tty_mutex for now
1304  */
1305 static int tty_driver_install_tty(struct tty_driver *driver,
1306                                                 struct tty_struct *tty)
1307 {
1308         return driver->ops->install ? driver->ops->install(driver, tty) :
1309                 tty_standard_install(driver, tty);
1310 }
1311
1312 /**
1313  *      tty_driver_remove_tty() - remove a tty from the driver tables
1314  *      @driver: the driver for the tty
1315  *      @idx:    the minor number
1316  *
1317  *      Remvoe a tty object from the driver tables. The tty->index field
1318  *      will be set by the time this is called.
1319  *
1320  *      Locking: tty_mutex for now
1321  */
1322 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1323 {
1324         if (driver->ops->remove)
1325                 driver->ops->remove(driver, tty);
1326         else
1327                 driver->ttys[tty->index] = NULL;
1328 }
1329
1330 /*
1331  *      tty_reopen()    - fast re-open of an open tty
1332  *      @tty    - the tty to open
1333  *
1334  *      Return 0 on success, -errno on error.
1335  *
1336  *      Locking: tty_mutex must be held from the time the tty was found
1337  *               till this open completes.
1338  */
1339 static int tty_reopen(struct tty_struct *tty)
1340 {
1341         struct tty_driver *driver = tty->driver;
1342
1343         if (test_bit(TTY_CLOSING, &tty->flags) ||
1344                         test_bit(TTY_HUPPING, &tty->flags) ||
1345                         test_bit(TTY_LDISC_CHANGING, &tty->flags))
1346                 return -EIO;
1347
1348         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1349             driver->subtype == PTY_TYPE_MASTER) {
1350                 /*
1351                  * special case for PTY masters: only one open permitted,
1352                  * and the slave side open count is incremented as well.
1353                  */
1354                 if (tty->count)
1355                         return -EIO;
1356
1357                 tty->link->count++;
1358         }
1359         tty->count++;
1360
1361         mutex_lock(&tty->ldisc_mutex);
1362         WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1363         mutex_unlock(&tty->ldisc_mutex);
1364
1365         return 0;
1366 }
1367
1368 /**
1369  *      tty_init_dev            -       initialise a tty device
1370  *      @driver: tty driver we are opening a device on
1371  *      @idx: device index
1372  *      @ret_tty: returned tty structure
1373  *
1374  *      Prepare a tty device. This may not be a "new" clean device but
1375  *      could also be an active device. The pty drivers require special
1376  *      handling because of this.
1377  *
1378  *      Locking:
1379  *              The function is called under the tty_mutex, which
1380  *      protects us from the tty struct or driver itself going away.
1381  *
1382  *      On exit the tty device has the line discipline attached and
1383  *      a reference count of 1. If a pair was created for pty/tty use
1384  *      and the other was a pty master then it too has a reference count of 1.
1385  *
1386  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1387  * failed open.  The new code protects the open with a mutex, so it's
1388  * really quite straightforward.  The mutex locking can probably be
1389  * relaxed for the (most common) case of reopening a tty.
1390  */
1391
1392 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1393 {
1394         struct tty_struct *tty;
1395         int retval;
1396
1397         /*
1398          * First time open is complex, especially for PTY devices.
1399          * This code guarantees that either everything succeeds and the
1400          * TTY is ready for operation, or else the table slots are vacated
1401          * and the allocated memory released.  (Except that the termios
1402          * and locked termios may be retained.)
1403          */
1404
1405         if (!try_module_get(driver->owner))
1406                 return ERR_PTR(-ENODEV);
1407
1408         tty = alloc_tty_struct();
1409         if (!tty) {
1410                 retval = -ENOMEM;
1411                 goto err_module_put;
1412         }
1413         initialize_tty_struct(tty, driver, idx);
1414
1415         retval = tty_driver_install_tty(driver, tty);
1416         if (retval < 0)
1417                 goto err_deinit_tty;
1418
1419         /*
1420          * Structures all installed ... call the ldisc open routines.
1421          * If we fail here just call release_tty to clean up.  No need
1422          * to decrement the use counts, as release_tty doesn't care.
1423          */
1424         retval = tty_ldisc_setup(tty, tty->link);
1425         if (retval)
1426                 goto err_release_tty;
1427         return tty;
1428
1429 err_deinit_tty:
1430         deinitialize_tty_struct(tty);
1431         free_tty_struct(tty);
1432 err_module_put:
1433         module_put(driver->owner);
1434         return ERR_PTR(retval);
1435
1436         /* call the tty release_tty routine to clean out this slot */
1437 err_release_tty:
1438         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1439                                  "clearing slot %d\n", idx);
1440         release_tty(tty, idx);
1441         return ERR_PTR(retval);
1442 }
1443
1444 void tty_free_termios(struct tty_struct *tty)
1445 {
1446         struct ktermios *tp;
1447         int idx = tty->index;
1448         /* Kill this flag and push into drivers for locking etc */
1449         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1450                 /* FIXME: Locking on ->termios array */
1451                 tp = tty->termios;
1452                 tty->driver->termios[idx] = NULL;
1453                 kfree(tp);
1454         }
1455 }
1456 EXPORT_SYMBOL(tty_free_termios);
1457
1458 void tty_shutdown(struct tty_struct *tty)
1459 {
1460         tty_driver_remove_tty(tty->driver, tty);
1461         tty_free_termios(tty);
1462 }
1463 EXPORT_SYMBOL(tty_shutdown);
1464
1465 /**
1466  *      release_one_tty         -       release tty structure memory
1467  *      @kref: kref of tty we are obliterating
1468  *
1469  *      Releases memory associated with a tty structure, and clears out the
1470  *      driver table slots. This function is called when a device is no longer
1471  *      in use. It also gets called when setup of a device fails.
1472  *
1473  *      Locking:
1474  *              tty_mutex - sometimes only
1475  *              takes the file list lock internally when working on the list
1476  *      of ttys that the driver keeps.
1477  *
1478  *      This method gets called from a work queue so that the driver private
1479  *      cleanup ops can sleep (needed for USB at least)
1480  */
1481 static void release_one_tty(struct work_struct *work)
1482 {
1483         struct tty_struct *tty =
1484                 container_of(work, struct tty_struct, hangup_work);
1485         struct tty_driver *driver = tty->driver;
1486
1487         if (tty->ops->cleanup)
1488                 tty->ops->cleanup(tty);
1489
1490         tty->magic = 0;
1491         tty_driver_kref_put(driver);
1492         module_put(driver->owner);
1493
1494         spin_lock(&tty_files_lock);
1495         list_del_init(&tty->tty_files);
1496         spin_unlock(&tty_files_lock);
1497
1498         put_pid(tty->pgrp);
1499         put_pid(tty->session);
1500         free_tty_struct(tty);
1501 }
1502
1503 static void queue_release_one_tty(struct kref *kref)
1504 {
1505         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1506
1507         if (tty->ops->shutdown)
1508                 tty->ops->shutdown(tty);
1509         else
1510                 tty_shutdown(tty);
1511
1512         /* The hangup queue is now free so we can reuse it rather than
1513            waste a chunk of memory for each port */
1514         INIT_WORK(&tty->hangup_work, release_one_tty);
1515         schedule_work(&tty->hangup_work);
1516 }
1517
1518 /**
1519  *      tty_kref_put            -       release a tty kref
1520  *      @tty: tty device
1521  *
1522  *      Release a reference to a tty device and if need be let the kref
1523  *      layer destruct the object for us
1524  */
1525
1526 void tty_kref_put(struct tty_struct *tty)
1527 {
1528         if (tty)
1529                 kref_put(&tty->kref, queue_release_one_tty);
1530 }
1531 EXPORT_SYMBOL(tty_kref_put);
1532
1533 /**
1534  *      release_tty             -       release tty structure memory
1535  *
1536  *      Release both @tty and a possible linked partner (think pty pair),
1537  *      and decrement the refcount of the backing module.
1538  *
1539  *      Locking:
1540  *              tty_mutex - sometimes only
1541  *              takes the file list lock internally when working on the list
1542  *      of ttys that the driver keeps.
1543  *              FIXME: should we require tty_mutex is held here ??
1544  *
1545  */
1546 static void release_tty(struct tty_struct *tty, int idx)
1547 {
1548         /* This should always be true but check for the moment */
1549         WARN_ON(tty->index != idx);
1550
1551         if (tty->link)
1552                 tty_kref_put(tty->link);
1553         tty_kref_put(tty);
1554 }
1555
1556 /**
1557  *      tty_release_checks - check a tty before real release
1558  *      @tty: tty to check
1559  *      @o_tty: link of @tty (if any)
1560  *      @idx: index of the tty
1561  *
1562  *      Performs some paranoid checking before true release of the @tty.
1563  *      This is a no-op unless TTY_PARANOIA_CHECK is defined.
1564  */
1565 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1566                 int idx)
1567 {
1568 #ifdef TTY_PARANOIA_CHECK
1569         if (idx < 0 || idx >= tty->driver->num) {
1570                 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1571                                 __func__, tty->name);
1572                 return -1;
1573         }
1574
1575         /* not much to check for devpts */
1576         if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1577                 return 0;
1578
1579         if (tty != tty->driver->ttys[idx]) {
1580                 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1581                                 __func__, idx, tty->name);
1582                 return -1;
1583         }
1584         if (tty->termios != tty->driver->termios[idx]) {
1585                 printk(KERN_DEBUG "%s: driver.termios[%d] not termios for (%s)\n",
1586                                 __func__, idx, tty->name);
1587                 return -1;
1588         }
1589         if (tty->driver->other) {
1590                 if (o_tty != tty->driver->other->ttys[idx]) {
1591                         printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1592                                         __func__, idx, tty->name);
1593                         return -1;
1594                 }
1595                 if (o_tty->termios != tty->driver->other->termios[idx]) {
1596                         printk(KERN_DEBUG "%s: other->termios[%d] not o_termios for (%s)\n",
1597                                         __func__, idx, tty->name);
1598                         return -1;
1599                 }
1600                 if (o_tty->link != tty) {
1601                         printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1602                         return -1;
1603                 }
1604         }
1605 #endif
1606         return 0;
1607 }
1608
1609 /**
1610  *      tty_release             -       vfs callback for close
1611  *      @inode: inode of tty
1612  *      @filp: file pointer for handle to tty
1613  *
1614  *      Called the last time each file handle is closed that references
1615  *      this tty. There may however be several such references.
1616  *
1617  *      Locking:
1618  *              Takes bkl. See tty_release_dev
1619  *
1620  * Even releasing the tty structures is a tricky business.. We have
1621  * to be very careful that the structures are all released at the
1622  * same time, as interrupts might otherwise get the wrong pointers.
1623  *
1624  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1625  * lead to double frees or releasing memory still in use.
1626  */
1627
1628 int tty_release(struct inode *inode, struct file *filp)
1629 {
1630         struct tty_struct *tty = file_tty(filp);
1631         struct tty_struct *o_tty;
1632         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1633         int     devpts;
1634         int     idx;
1635         char    buf[64];
1636         long    timeout = 0;
1637
1638         if (tty_paranoia_check(tty, inode, __func__))
1639                 return 0;
1640
1641         tty_lock();
1642         check_tty_count(tty, __func__);
1643
1644         __tty_fasync(-1, filp, 0);
1645
1646         idx = tty->index;
1647         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1648                       tty->driver->subtype == PTY_TYPE_MASTER);
1649         devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1650         o_tty = tty->link;
1651
1652         if (tty_release_checks(tty, o_tty, idx)) {
1653                 tty_unlock();
1654                 return 0;
1655         }
1656
1657 #ifdef TTY_DEBUG_HANGUP
1658         printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1659                         tty_name(tty, buf), tty->count);
1660 #endif
1661
1662         if (tty->ops->close)
1663                 tty->ops->close(tty, filp);
1664
1665         tty_unlock();
1666         /*
1667          * Sanity check: if tty->count is going to zero, there shouldn't be
1668          * any waiters on tty->read_wait or tty->write_wait.  We test the
1669          * wait queues and kick everyone out _before_ actually starting to
1670          * close.  This ensures that we won't block while releasing the tty
1671          * structure.
1672          *
1673          * The test for the o_tty closing is necessary, since the master and
1674          * slave sides may close in any order.  If the slave side closes out
1675          * first, its count will be one, since the master side holds an open.
1676          * Thus this test wouldn't be triggered at the time the slave closes,
1677          * so we do it now.
1678          *
1679          * Note that it's possible for the tty to be opened again while we're
1680          * flushing out waiters.  By recalculating the closing flags before
1681          * each iteration we avoid any problems.
1682          */
1683         while (1) {
1684                 /* Guard against races with tty->count changes elsewhere and
1685                    opens on /dev/tty */
1686
1687                 mutex_lock(&tty_mutex);
1688                 tty_lock();
1689                 tty_closing = tty->count <= 1;
1690                 o_tty_closing = o_tty &&
1691                         (o_tty->count <= (pty_master ? 1 : 0));
1692                 do_sleep = 0;
1693
1694                 if (tty_closing) {
1695                         if (waitqueue_active(&tty->read_wait)) {
1696                                 wake_up_poll(&tty->read_wait, POLLIN);
1697                                 do_sleep++;
1698                         }
1699                         if (waitqueue_active(&tty->write_wait)) {
1700                                 wake_up_poll(&tty->write_wait, POLLOUT);
1701                                 do_sleep++;
1702                         }
1703                 }
1704                 if (o_tty_closing) {
1705                         if (waitqueue_active(&o_tty->read_wait)) {
1706                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1707                                 do_sleep++;
1708                         }
1709                         if (waitqueue_active(&o_tty->write_wait)) {
1710                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1711                                 do_sleep++;
1712                         }
1713                 }
1714                 if (!do_sleep)
1715                         break;
1716
1717                 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1718                                 __func__, tty_name(tty, buf));
1719                 tty_unlock();
1720                 mutex_unlock(&tty_mutex);
1721                 schedule_timeout_killable(timeout);
1722                 if (timeout < 120 * HZ)
1723                         timeout = 2 * timeout + 1;
1724                 else
1725                         timeout = MAX_SCHEDULE_TIMEOUT;
1726         }
1727
1728         /*
1729          * The closing flags are now consistent with the open counts on
1730          * both sides, and we've completed the last operation that could
1731          * block, so it's safe to proceed with closing.
1732          */
1733         if (pty_master) {
1734                 if (--o_tty->count < 0) {
1735                         printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1736                                 __func__, o_tty->count, tty_name(o_tty, buf));
1737                         o_tty->count = 0;
1738                 }
1739         }
1740         if (--tty->count < 0) {
1741                 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1742                                 __func__, tty->count, tty_name(tty, buf));
1743                 tty->count = 0;
1744         }
1745
1746         /*
1747          * We've decremented tty->count, so we need to remove this file
1748          * descriptor off the tty->tty_files list; this serves two
1749          * purposes:
1750          *  - check_tty_count sees the correct number of file descriptors
1751          *    associated with this tty.
1752          *  - do_tty_hangup no longer sees this file descriptor as
1753          *    something that needs to be handled for hangups.
1754          */
1755         tty_del_file(filp);
1756
1757         /*
1758          * Perform some housekeeping before deciding whether to return.
1759          *
1760          * Set the TTY_CLOSING flag if this was the last open.  In the
1761          * case of a pty we may have to wait around for the other side
1762          * to close, and TTY_CLOSING makes sure we can't be reopened.
1763          */
1764         if (tty_closing)
1765                 set_bit(TTY_CLOSING, &tty->flags);
1766         if (o_tty_closing)
1767                 set_bit(TTY_CLOSING, &o_tty->flags);
1768
1769         /*
1770          * If _either_ side is closing, make sure there aren't any
1771          * processes that still think tty or o_tty is their controlling
1772          * tty.
1773          */
1774         if (tty_closing || o_tty_closing) {
1775                 read_lock(&tasklist_lock);
1776                 session_clear_tty(tty->session);
1777                 if (o_tty)
1778                         session_clear_tty(o_tty->session);
1779                 read_unlock(&tasklist_lock);
1780         }
1781
1782         mutex_unlock(&tty_mutex);
1783
1784         /* check whether both sides are closing ... */
1785         if (!tty_closing || (o_tty && !o_tty_closing)) {
1786                 tty_unlock();
1787                 return 0;
1788         }
1789
1790 #ifdef TTY_DEBUG_HANGUP
1791         printk(KERN_DEBUG "%s: freeing tty structure...\n", __func__);
1792 #endif
1793         /*
1794          * Ask the line discipline code to release its structures
1795          */
1796         tty_ldisc_release(tty, o_tty);
1797         /*
1798          * The release_tty function takes care of the details of clearing
1799          * the slots and preserving the termios structure.
1800          */
1801         release_tty(tty, idx);
1802
1803         /* Make this pty number available for reallocation */
1804         if (devpts)
1805                 devpts_kill_index(inode, idx);
1806         tty_unlock();
1807         return 0;
1808 }
1809
1810 /**
1811  *      tty_open_current_tty - get tty of current task for open
1812  *      @device: device number
1813  *      @filp: file pointer to tty
1814  *      @return: tty of the current task iff @device is /dev/tty
1815  *
1816  *      We cannot return driver and index like for the other nodes because
1817  *      devpts will not work then. It expects inodes to be from devpts FS.
1818  */
1819 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1820 {
1821         struct tty_struct *tty;
1822
1823         if (device != MKDEV(TTYAUX_MAJOR, 0))
1824                 return NULL;
1825
1826         tty = get_current_tty();
1827         if (!tty)
1828                 return ERR_PTR(-ENXIO);
1829
1830         filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1831         /* noctty = 1; */
1832         tty_kref_put(tty);
1833         /* FIXME: we put a reference and return a TTY! */
1834         return tty;
1835 }
1836
1837 /**
1838  *      tty_lookup_driver - lookup a tty driver for a given device file
1839  *      @device: device number
1840  *      @filp: file pointer to tty
1841  *      @noctty: set if the device should not become a controlling tty
1842  *      @index: index for the device in the @return driver
1843  *      @return: driver for this inode (with increased refcount)
1844  *
1845  *      If @return is not erroneous, the caller is responsible to decrement the
1846  *      refcount by tty_driver_kref_put.
1847  *
1848  *      Locking: tty_mutex protects get_tty_driver
1849  */
1850 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1851                 int *noctty, int *index)
1852 {
1853         struct tty_driver *driver;
1854
1855         switch (device) {
1856 #ifdef CONFIG_VT
1857         case MKDEV(TTY_MAJOR, 0): {
1858                 extern struct tty_driver *console_driver;
1859                 driver = tty_driver_kref_get(console_driver);
1860                 *index = fg_console;
1861                 *noctty = 1;
1862                 break;
1863         }
1864 #endif
1865         case MKDEV(TTYAUX_MAJOR, 1): {
1866                 struct tty_driver *console_driver = console_device(index);
1867                 if (console_driver) {
1868                         driver = tty_driver_kref_get(console_driver);
1869                         if (driver) {
1870                                 /* Don't let /dev/console block */
1871                                 filp->f_flags |= O_NONBLOCK;
1872                                 *noctty = 1;
1873                                 break;
1874                         }
1875                 }
1876                 return ERR_PTR(-ENODEV);
1877         }
1878         default:
1879                 driver = get_tty_driver(device, index);
1880                 if (!driver)
1881                         return ERR_PTR(-ENODEV);
1882                 break;
1883         }
1884         return driver;
1885 }
1886
1887 /**
1888  *      tty_open                -       open a tty device
1889  *      @inode: inode of device file
1890  *      @filp: file pointer to tty
1891  *
1892  *      tty_open and tty_release keep up the tty count that contains the
1893  *      number of opens done on a tty. We cannot use the inode-count, as
1894  *      different inodes might point to the same tty.
1895  *
1896  *      Open-counting is needed for pty masters, as well as for keeping
1897  *      track of serial lines: DTR is dropped when the last close happens.
1898  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1899  *
1900  *      The termios state of a pty is reset on first open so that
1901  *      settings don't persist across reuse.
1902  *
1903  *      Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1904  *               tty->count should protect the rest.
1905  *               ->siglock protects ->signal/->sighand
1906  */
1907
1908 static int tty_open(struct inode *inode, struct file *filp)
1909 {
1910         struct tty_struct *tty;
1911         int noctty, retval;
1912         struct tty_driver *driver = NULL;
1913         int index;
1914         dev_t device = inode->i_rdev;
1915         unsigned saved_flags = filp->f_flags;
1916
1917         nonseekable_open(inode, filp);
1918
1919 retry_open:
1920         retval = tty_alloc_file(filp);
1921         if (retval)
1922                 return -ENOMEM;
1923
1924         noctty = filp->f_flags & O_NOCTTY;
1925         index  = -1;
1926         retval = 0;
1927
1928         mutex_lock(&tty_mutex);
1929         tty_lock();
1930
1931         tty = tty_open_current_tty(device, filp);
1932         if (IS_ERR(tty)) {
1933                 retval = PTR_ERR(tty);
1934                 goto err_unlock;
1935         } else if (!tty) {
1936                 driver = tty_lookup_driver(device, filp, &noctty, &index);
1937                 if (IS_ERR(driver)) {
1938                         retval = PTR_ERR(driver);
1939                         goto err_unlock;
1940                 }
1941
1942                 /* check whether we're reopening an existing tty */
1943                 tty = tty_driver_lookup_tty(driver, inode, index);
1944                 if (IS_ERR(tty)) {
1945                         retval = PTR_ERR(tty);
1946                         goto err_unlock;
1947                 }
1948         }
1949
1950         if (tty) {
1951                 retval = tty_reopen(tty);
1952                 if (retval)
1953                         tty = ERR_PTR(retval);
1954         } else
1955                 tty = tty_init_dev(driver, index);
1956
1957         mutex_unlock(&tty_mutex);
1958         if (driver)
1959                 tty_driver_kref_put(driver);
1960         if (IS_ERR(tty)) {
1961                 tty_unlock();
1962                 retval = PTR_ERR(tty);
1963                 goto err_file;
1964         }
1965
1966         tty_add_file(tty, filp);
1967
1968         check_tty_count(tty, __func__);
1969         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1970             tty->driver->subtype == PTY_TYPE_MASTER)
1971                 noctty = 1;
1972 #ifdef TTY_DEBUG_HANGUP
1973         printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
1974 #endif
1975         if (tty->ops->open)
1976                 retval = tty->ops->open(tty, filp);
1977         else
1978                 retval = -ENODEV;
1979         filp->f_flags = saved_flags;
1980
1981         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1982                                                 !capable(CAP_SYS_ADMIN))
1983                 retval = -EBUSY;
1984
1985         if (retval) {
1986 #ifdef TTY_DEBUG_HANGUP
1987                 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
1988                                 retval, tty->name);
1989 #endif
1990                 tty_unlock(); /* need to call tty_release without BTM */
1991                 tty_release(inode, filp);
1992                 if (retval != -ERESTARTSYS)
1993                         return retval;
1994
1995                 if (signal_pending(current))
1996                         return retval;
1997
1998                 schedule();
1999                 /*
2000                  * Need to reset f_op in case a hangup happened.
2001                  */
2002                 tty_lock();
2003                 if (filp->f_op == &hung_up_tty_fops)
2004                         filp->f_op = &tty_fops;
2005                 tty_unlock();
2006                 goto retry_open;
2007         }
2008         tty_unlock();
2009
2010
2011         mutex_lock(&tty_mutex);
2012         tty_lock();
2013         spin_lock_irq(&current->sighand->siglock);
2014         if (!noctty &&
2015             current->signal->leader &&
2016             !current->signal->tty &&
2017             tty->session == NULL)
2018                 __proc_set_tty(current, tty);
2019         spin_unlock_irq(&current->sighand->siglock);
2020         tty_unlock();
2021         mutex_unlock(&tty_mutex);
2022         return 0;
2023 err_unlock:
2024         tty_unlock();
2025         mutex_unlock(&tty_mutex);
2026         /* after locks to avoid deadlock */
2027         if (!IS_ERR_OR_NULL(driver))
2028                 tty_driver_kref_put(driver);
2029 err_file:
2030         tty_free_file(filp);
2031         return retval;
2032 }
2033
2034
2035
2036 /**
2037  *      tty_poll        -       check tty status
2038  *      @filp: file being polled
2039  *      @wait: poll wait structures to update
2040  *
2041  *      Call the line discipline polling method to obtain the poll
2042  *      status of the device.
2043  *
2044  *      Locking: locks called line discipline but ldisc poll method
2045  *      may be re-entered freely by other callers.
2046  */
2047
2048 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2049 {
2050         struct tty_struct *tty = file_tty(filp);
2051         struct tty_ldisc *ld;
2052         int ret = 0;
2053
2054         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2055                 return 0;
2056
2057         ld = tty_ldisc_ref_wait(tty);
2058         if (ld->ops->poll)
2059                 ret = (ld->ops->poll)(tty, filp, wait);
2060         tty_ldisc_deref(ld);
2061         return ret;
2062 }
2063
2064 static int __tty_fasync(int fd, struct file *filp, int on)
2065 {
2066         struct tty_struct *tty = file_tty(filp);
2067         unsigned long flags;
2068         int retval = 0;
2069
2070         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2071                 goto out;
2072
2073         retval = fasync_helper(fd, filp, on, &tty->fasync);
2074         if (retval <= 0)
2075                 goto out;
2076
2077         if (on) {
2078                 enum pid_type type;
2079                 struct pid *pid;
2080                 if (!waitqueue_active(&tty->read_wait))
2081                         tty->minimum_to_wake = 1;
2082                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2083                 if (tty->pgrp) {
2084                         pid = tty->pgrp;
2085                         type = PIDTYPE_PGID;
2086                 } else {
2087                         pid = task_pid(current);
2088                         type = PIDTYPE_PID;
2089                 }
2090                 get_pid(pid);
2091                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2092                 retval = __f_setown(filp, pid, type, 0);
2093                 put_pid(pid);
2094                 if (retval)
2095                         goto out;
2096         } else {
2097                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2098                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
2099         }
2100         retval = 0;
2101 out:
2102         return retval;
2103 }
2104
2105 static int tty_fasync(int fd, struct file *filp, int on)
2106 {
2107         int retval;
2108         tty_lock();
2109         retval = __tty_fasync(fd, filp, on);
2110         tty_unlock();
2111         return retval;
2112 }
2113
2114 /**
2115  *      tiocsti                 -       fake input character
2116  *      @tty: tty to fake input into
2117  *      @p: pointer to character
2118  *
2119  *      Fake input to a tty device. Does the necessary locking and
2120  *      input management.
2121  *
2122  *      FIXME: does not honour flow control ??
2123  *
2124  *      Locking:
2125  *              Called functions take tty_ldisc_lock
2126  *              current->signal->tty check is safe without locks
2127  *
2128  *      FIXME: may race normal receive processing
2129  */
2130
2131 static int tiocsti(struct tty_struct *tty, char __user *p)
2132 {
2133         char ch, mbz = 0;
2134         struct tty_ldisc *ld;
2135
2136         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2137                 return -EPERM;
2138         if (get_user(ch, p))
2139                 return -EFAULT;
2140         tty_audit_tiocsti(tty, ch);
2141         ld = tty_ldisc_ref_wait(tty);
2142         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2143         tty_ldisc_deref(ld);
2144         return 0;
2145 }
2146
2147 /**
2148  *      tiocgwinsz              -       implement window query ioctl
2149  *      @tty; tty
2150  *      @arg: user buffer for result
2151  *
2152  *      Copies the kernel idea of the window size into the user buffer.
2153  *
2154  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2155  *              is consistent.
2156  */
2157
2158 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2159 {
2160         int err;
2161
2162         mutex_lock(&tty->termios_mutex);
2163         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2164         mutex_unlock(&tty->termios_mutex);
2165
2166         return err ? -EFAULT: 0;
2167 }
2168
2169 /**
2170  *      tty_do_resize           -       resize event
2171  *      @tty: tty being resized
2172  *      @rows: rows (character)
2173  *      @cols: cols (character)
2174  *
2175  *      Update the termios variables and send the necessary signals to
2176  *      peform a terminal resize correctly
2177  */
2178
2179 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2180 {
2181         struct pid *pgrp;
2182         unsigned long flags;
2183
2184         /* Lock the tty */
2185         mutex_lock(&tty->termios_mutex);
2186         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2187                 goto done;
2188         /* Get the PID values and reference them so we can
2189            avoid holding the tty ctrl lock while sending signals */
2190         spin_lock_irqsave(&tty->ctrl_lock, flags);
2191         pgrp = get_pid(tty->pgrp);
2192         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2193
2194         if (pgrp)
2195                 kill_pgrp(pgrp, SIGWINCH, 1);
2196         put_pid(pgrp);
2197
2198         tty->winsize = *ws;
2199 done:
2200         mutex_unlock(&tty->termios_mutex);
2201         return 0;
2202 }
2203
2204 /**
2205  *      tiocswinsz              -       implement window size set ioctl
2206  *      @tty; tty side of tty
2207  *      @arg: user buffer for result
2208  *
2209  *      Copies the user idea of the window size to the kernel. Traditionally
2210  *      this is just advisory information but for the Linux console it
2211  *      actually has driver level meaning and triggers a VC resize.
2212  *
2213  *      Locking:
2214  *              Driver dependent. The default do_resize method takes the
2215  *      tty termios mutex and ctrl_lock. The console takes its own lock
2216  *      then calls into the default method.
2217  */
2218
2219 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2220 {
2221         struct winsize tmp_ws;
2222         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2223                 return -EFAULT;
2224
2225         if (tty->ops->resize)
2226                 return tty->ops->resize(tty, &tmp_ws);
2227         else
2228                 return tty_do_resize(tty, &tmp_ws);
2229 }
2230
2231 /**
2232  *      tioccons        -       allow admin to move logical console
2233  *      @file: the file to become console
2234  *
2235  *      Allow the administrator to move the redirected console device
2236  *
2237  *      Locking: uses redirect_lock to guard the redirect information
2238  */
2239
2240 static int tioccons(struct file *file)
2241 {
2242         if (!capable(CAP_SYS_ADMIN))
2243                 return -EPERM;
2244         if (file->f_op->write == redirected_tty_write) {
2245                 struct file *f;
2246                 spin_lock(&redirect_lock);
2247                 f = redirect;
2248                 redirect = NULL;
2249                 spin_unlock(&redirect_lock);
2250                 if (f)
2251                         fput(f);
2252                 return 0;
2253         }
2254         spin_lock(&redirect_lock);
2255         if (redirect) {
2256                 spin_unlock(&redirect_lock);
2257                 return -EBUSY;
2258         }
2259         get_file(file);
2260         redirect = file;
2261         spin_unlock(&redirect_lock);
2262         return 0;
2263 }
2264
2265 /**
2266  *      fionbio         -       non blocking ioctl
2267  *      @file: file to set blocking value
2268  *      @p: user parameter
2269  *
2270  *      Historical tty interfaces had a blocking control ioctl before
2271  *      the generic functionality existed. This piece of history is preserved
2272  *      in the expected tty API of posix OS's.
2273  *
2274  *      Locking: none, the open file handle ensures it won't go away.
2275  */
2276
2277 static int fionbio(struct file *file, int __user *p)
2278 {
2279         int nonblock;
2280
2281         if (get_user(nonblock, p))
2282                 return -EFAULT;
2283
2284         spin_lock(&file->f_lock);
2285         if (nonblock)
2286                 file->f_flags |= O_NONBLOCK;
2287         else
2288                 file->f_flags &= ~O_NONBLOCK;
2289         spin_unlock(&file->f_lock);
2290         return 0;
2291 }
2292
2293 /**
2294  *      tiocsctty       -       set controlling tty
2295  *      @tty: tty structure
2296  *      @arg: user argument
2297  *
2298  *      This ioctl is used to manage job control. It permits a session
2299  *      leader to set this tty as the controlling tty for the session.
2300  *
2301  *      Locking:
2302  *              Takes tty_mutex() to protect tty instance
2303  *              Takes tasklist_lock internally to walk sessions
2304  *              Takes ->siglock() when updating signal->tty
2305  */
2306
2307 static int tiocsctty(struct tty_struct *tty, int arg)
2308 {
2309         int ret = 0;
2310         if (current->signal->leader && (task_session(current) == tty->session))
2311                 return ret;
2312
2313         mutex_lock(&tty_mutex);
2314         /*
2315          * The process must be a session leader and
2316          * not have a controlling tty already.
2317          */
2318         if (!current->signal->leader || current->signal->tty) {
2319                 ret = -EPERM;
2320                 goto unlock;
2321         }
2322
2323         if (tty->session) {
2324                 /*
2325                  * This tty is already the controlling
2326                  * tty for another session group!
2327                  */
2328                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2329                         /*
2330                          * Steal it away
2331                          */
2332                         read_lock(&tasklist_lock);
2333                         session_clear_tty(tty->session);
2334                         read_unlock(&tasklist_lock);
2335                 } else {
2336                         ret = -EPERM;
2337                         goto unlock;
2338                 }
2339         }
2340         proc_set_tty(current, tty);
2341 unlock:
2342         mutex_unlock(&tty_mutex);
2343         return ret;
2344 }
2345
2346 /**
2347  *      tty_get_pgrp    -       return a ref counted pgrp pid
2348  *      @tty: tty to read
2349  *
2350  *      Returns a refcounted instance of the pid struct for the process
2351  *      group controlling the tty.
2352  */
2353
2354 struct pid *tty_get_pgrp(struct tty_struct *tty)
2355 {
2356         unsigned long flags;
2357         struct pid *pgrp;
2358
2359         spin_lock_irqsave(&tty->ctrl_lock, flags);
2360         pgrp = get_pid(tty->pgrp);
2361         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2362
2363         return pgrp;
2364 }
2365 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2366
2367 /**
2368  *      tiocgpgrp               -       get process group
2369  *      @tty: tty passed by user
2370  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2371  *      @p: returned pid
2372  *
2373  *      Obtain the process group of the tty. If there is no process group
2374  *      return an error.
2375  *
2376  *      Locking: none. Reference to current->signal->tty is safe.
2377  */
2378
2379 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2380 {
2381         struct pid *pid;
2382         int ret;
2383         /*
2384          * (tty == real_tty) is a cheap way of
2385          * testing if the tty is NOT a master pty.
2386          */
2387         if (tty == real_tty && current->signal->tty != real_tty)
2388                 return -ENOTTY;
2389         pid = tty_get_pgrp(real_tty);
2390         ret =  put_user(pid_vnr(pid), p);
2391         put_pid(pid);
2392         return ret;
2393 }
2394
2395 /**
2396  *      tiocspgrp               -       attempt to set process group
2397  *      @tty: tty passed by user
2398  *      @real_tty: tty side device matching tty passed by user
2399  *      @p: pid pointer
2400  *
2401  *      Set the process group of the tty to the session passed. Only
2402  *      permitted where the tty session is our session.
2403  *
2404  *      Locking: RCU, ctrl lock
2405  */
2406
2407 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2408 {
2409         struct pid *pgrp;
2410         pid_t pgrp_nr;
2411         int retval = tty_check_change(real_tty);
2412         unsigned long flags;
2413
2414         if (retval == -EIO)
2415                 return -ENOTTY;
2416         if (retval)
2417                 return retval;
2418         if (!current->signal->tty ||
2419             (current->signal->tty != real_tty) ||
2420             (real_tty->session != task_session(current)))
2421                 return -ENOTTY;
2422         if (get_user(pgrp_nr, p))
2423                 return -EFAULT;
2424         if (pgrp_nr < 0)
2425                 return -EINVAL;
2426         rcu_read_lock();
2427         pgrp = find_vpid(pgrp_nr);
2428         retval = -ESRCH;
2429         if (!pgrp)
2430                 goto out_unlock;
2431         retval = -EPERM;
2432         if (session_of_pgrp(pgrp) != task_session(current))
2433                 goto out_unlock;
2434         retval = 0;
2435         spin_lock_irqsave(&tty->ctrl_lock, flags);
2436         put_pid(real_tty->pgrp);
2437         real_tty->pgrp = get_pid(pgrp);
2438         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2439 out_unlock:
2440         rcu_read_unlock();
2441         return retval;
2442 }
2443
2444 /**
2445  *      tiocgsid                -       get session id
2446  *      @tty: tty passed by user
2447  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2448  *      @p: pointer to returned session id
2449  *
2450  *      Obtain the session id of the tty. If there is no session
2451  *      return an error.
2452  *
2453  *      Locking: none. Reference to current->signal->tty is safe.
2454  */
2455
2456 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2457 {
2458         /*
2459          * (tty == real_tty) is a cheap way of
2460          * testing if the tty is NOT a master pty.
2461         */
2462         if (tty == real_tty && current->signal->tty != real_tty)
2463                 return -ENOTTY;
2464         if (!real_tty->session)
2465                 return -ENOTTY;
2466         return put_user(pid_vnr(real_tty->session), p);
2467 }
2468
2469 /**
2470  *      tiocsetd        -       set line discipline
2471  *      @tty: tty device
2472  *      @p: pointer to user data
2473  *
2474  *      Set the line discipline according to user request.
2475  *
2476  *      Locking: see tty_set_ldisc, this function is just a helper
2477  */
2478
2479 static int tiocsetd(struct tty_struct *tty, int __user *p)
2480 {
2481         int ldisc;
2482         int ret;
2483
2484         if (get_user(ldisc, p))
2485                 return -EFAULT;
2486
2487         ret = tty_set_ldisc(tty, ldisc);
2488
2489         return ret;
2490 }
2491
2492 /**
2493  *      send_break      -       performed time break
2494  *      @tty: device to break on
2495  *      @duration: timeout in mS
2496  *
2497  *      Perform a timed break on hardware that lacks its own driver level
2498  *      timed break functionality.
2499  *
2500  *      Locking:
2501  *              atomic_write_lock serializes
2502  *
2503  */
2504
2505 static int send_break(struct tty_struct *tty, unsigned int duration)
2506 {
2507         int retval;
2508
2509         if (tty->ops->break_ctl == NULL)
2510                 return 0;
2511
2512         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2513                 retval = tty->ops->break_ctl(tty, duration);
2514         else {
2515                 /* Do the work ourselves */
2516                 if (tty_write_lock(tty, 0) < 0)
2517                         return -EINTR;
2518                 retval = tty->ops->break_ctl(tty, -1);
2519                 if (retval)
2520                         goto out;
2521                 if (!signal_pending(current))
2522                         msleep_interruptible(duration);
2523                 retval = tty->ops->break_ctl(tty, 0);
2524 out:
2525                 tty_write_unlock(tty);
2526                 if (signal_pending(current))
2527                         retval = -EINTR;
2528         }
2529         return retval;
2530 }
2531
2532 /**
2533  *      tty_tiocmget            -       get modem status
2534  *      @tty: tty device
2535  *      @file: user file pointer
2536  *      @p: pointer to result
2537  *
2538  *      Obtain the modem status bits from the tty driver if the feature
2539  *      is supported. Return -EINVAL if it is not available.
2540  *
2541  *      Locking: none (up to the driver)
2542  */
2543
2544 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2545 {
2546         int retval = -EINVAL;
2547
2548         if (tty->ops->tiocmget) {
2549                 retval = tty->ops->tiocmget(tty);
2550
2551                 if (retval >= 0)
2552                         retval = put_user(retval, p);
2553         }
2554         return retval;
2555 }
2556
2557 /**
2558  *      tty_tiocmset            -       set modem status
2559  *      @tty: tty device
2560  *      @cmd: command - clear bits, set bits or set all
2561  *      @p: pointer to desired bits
2562  *
2563  *      Set the modem status bits from the tty driver if the feature
2564  *      is supported. Return -EINVAL if it is not available.
2565  *
2566  *      Locking: none (up to the driver)
2567  */
2568
2569 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2570              unsigned __user *p)
2571 {
2572         int retval;
2573         unsigned int set, clear, val;
2574
2575         if (tty->ops->tiocmset == NULL)
2576                 return -EINVAL;
2577
2578         retval = get_user(val, p);
2579         if (retval)
2580                 return retval;
2581         set = clear = 0;
2582         switch (cmd) {
2583         case TIOCMBIS:
2584                 set = val;
2585                 break;
2586         case TIOCMBIC:
2587                 clear = val;
2588                 break;
2589         case TIOCMSET:
2590                 set = val;
2591                 clear = ~val;
2592                 break;
2593         }
2594         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2595         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2596         return tty->ops->tiocmset(tty, set, clear);
2597 }
2598
2599 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2600 {
2601         int retval = -EINVAL;
2602         struct serial_icounter_struct icount;
2603         memset(&icount, 0, sizeof(icount));
2604         if (tty->ops->get_icount)
2605                 retval = tty->ops->get_icount(tty, &icount);
2606         if (retval != 0)
2607                 return retval;
2608         if (copy_to_user(arg, &icount, sizeof(icount)))
2609                 return -EFAULT;
2610         return 0;
2611 }
2612
2613 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2614 {
2615         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2616             tty->driver->subtype == PTY_TYPE_MASTER)
2617                 tty = tty->link;
2618         return tty;
2619 }
2620 EXPORT_SYMBOL(tty_pair_get_tty);
2621
2622 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2623 {
2624         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2625             tty->driver->subtype == PTY_TYPE_MASTER)
2626             return tty;
2627         return tty->link;
2628 }
2629 EXPORT_SYMBOL(tty_pair_get_pty);
2630
2631 /*
2632  * Split this up, as gcc can choke on it otherwise..
2633  */
2634 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2635 {
2636         struct tty_struct *tty = file_tty(file);
2637         struct tty_struct *real_tty;
2638         void __user *p = (void __user *)arg;
2639         int retval;
2640         struct tty_ldisc *ld;
2641         struct inode *inode = file->f_dentry->d_inode;
2642
2643         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2644                 return -EINVAL;
2645
2646         real_tty = tty_pair_get_tty(tty);
2647
2648         /*
2649          * Factor out some common prep work
2650          */
2651         switch (cmd) {
2652         case TIOCSETD:
2653         case TIOCSBRK:
2654         case TIOCCBRK:
2655         case TCSBRK:
2656         case TCSBRKP:
2657                 retval = tty_check_change(tty);
2658                 if (retval)
2659                         return retval;
2660                 if (cmd != TIOCCBRK) {
2661                         tty_wait_until_sent(tty, 0);
2662                         if (signal_pending(current))
2663                                 return -EINTR;
2664                 }
2665                 break;
2666         }
2667
2668         /*
2669          *      Now do the stuff.
2670          */
2671         switch (cmd) {
2672         case TIOCSTI:
2673                 return tiocsti(tty, p);
2674         case TIOCGWINSZ:
2675                 return tiocgwinsz(real_tty, p);
2676         case TIOCSWINSZ:
2677                 return tiocswinsz(real_tty, p);
2678         case TIOCCONS:
2679                 return real_tty != tty ? -EINVAL : tioccons(file);
2680         case FIONBIO:
2681                 return fionbio(file, p);
2682         case TIOCEXCL:
2683                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2684                 return 0;
2685         case TIOCNXCL:
2686                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2687                 return 0;
2688         case TIOCNOTTY:
2689                 if (current->signal->tty != tty)
2690                         return -ENOTTY;
2691                 no_tty();
2692                 return 0;
2693         case TIOCSCTTY:
2694                 return tiocsctty(tty, arg);
2695         case TIOCGPGRP:
2696                 return tiocgpgrp(tty, real_tty, p);
2697         case TIOCSPGRP:
2698                 return tiocspgrp(tty, real_tty, p);
2699         case TIOCGSID:
2700                 return tiocgsid(tty, real_tty, p);
2701         case TIOCGETD:
2702                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2703         case TIOCSETD:
2704                 return tiocsetd(tty, p);
2705         case TIOCVHANGUP:
2706                 if (!capable(CAP_SYS_ADMIN))
2707                         return -EPERM;
2708                 tty_vhangup(tty);
2709                 return 0;
2710         case TIOCGDEV:
2711         {
2712                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2713                 return put_user(ret, (unsigned int __user *)p);
2714         }
2715         /*
2716          * Break handling
2717          */
2718         case TIOCSBRK:  /* Turn break on, unconditionally */
2719                 if (tty->ops->break_ctl)
2720                         return tty->ops->break_ctl(tty, -1);
2721                 return 0;
2722         case TIOCCBRK:  /* Turn break off, unconditionally */
2723                 if (tty->ops->break_ctl)
2724                         return tty->ops->break_ctl(tty, 0);
2725                 return 0;
2726         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2727                 /* non-zero arg means wait for all output data
2728                  * to be sent (performed above) but don't send break.
2729                  * This is used by the tcdrain() termios function.
2730                  */
2731                 if (!arg)
2732                         return send_break(tty, 250);
2733                 return 0;
2734         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2735                 return send_break(tty, arg ? arg*100 : 250);
2736
2737         case TIOCMGET:
2738                 return tty_tiocmget(tty, p);
2739         case TIOCMSET:
2740         case TIOCMBIC:
2741         case TIOCMBIS:
2742                 return tty_tiocmset(tty, cmd, p);
2743         case TIOCGICOUNT:
2744                 retval = tty_tiocgicount(tty, p);
2745                 /* For the moment allow fall through to the old method */
2746                 if (retval != -EINVAL)
2747                         return retval;
2748                 break;
2749         case TCFLSH:
2750                 switch (arg) {
2751                 case TCIFLUSH:
2752                 case TCIOFLUSH:
2753                 /* flush tty buffer and allow ldisc to process ioctl */
2754                         tty_buffer_flush(tty);
2755                         break;
2756                 }
2757                 break;
2758         }
2759         if (tty->ops->ioctl) {
2760                 retval = (tty->ops->ioctl)(tty, cmd, arg);
2761                 if (retval != -ENOIOCTLCMD)
2762                         return retval;
2763         }
2764         ld = tty_ldisc_ref_wait(tty);
2765         retval = -EINVAL;
2766         if (ld->ops->ioctl) {
2767                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2768                 if (retval == -ENOIOCTLCMD)
2769                         retval = -EINVAL;
2770         }
2771         tty_ldisc_deref(ld);
2772         return retval;
2773 }
2774
2775 #ifdef CONFIG_COMPAT
2776 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2777                                 unsigned long arg)
2778 {
2779         struct inode *inode = file->f_dentry->d_inode;
2780         struct tty_struct *tty = file_tty(file);
2781         struct tty_ldisc *ld;
2782         int retval = -ENOIOCTLCMD;
2783
2784         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2785                 return -EINVAL;
2786
2787         if (tty->ops->compat_ioctl) {
2788                 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2789                 if (retval != -ENOIOCTLCMD)
2790                         return retval;
2791         }
2792
2793         ld = tty_ldisc_ref_wait(tty);
2794         if (ld->ops->compat_ioctl)
2795                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2796         else
2797                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2798         tty_ldisc_deref(ld);
2799
2800         return retval;
2801 }
2802 #endif
2803
2804 /*
2805  * This implements the "Secure Attention Key" ---  the idea is to
2806  * prevent trojan horses by killing all processes associated with this
2807  * tty when the user hits the "Secure Attention Key".  Required for
2808  * super-paranoid applications --- see the Orange Book for more details.
2809  *
2810  * This code could be nicer; ideally it should send a HUP, wait a few
2811  * seconds, then send a INT, and then a KILL signal.  But you then
2812  * have to coordinate with the init process, since all processes associated
2813  * with the current tty must be dead before the new getty is allowed
2814  * to spawn.
2815  *
2816  * Now, if it would be correct ;-/ The current code has a nasty hole -
2817  * it doesn't catch files in flight. We may send the descriptor to ourselves
2818  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2819  *
2820  * Nasty bug: do_SAK is being called in interrupt context.  This can
2821  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2822  */
2823 void __do_SAK(struct tty_struct *tty)
2824 {
2825 #ifdef TTY_SOFT_SAK
2826         tty_hangup(tty);
2827 #else
2828         struct task_struct *g, *p;
2829         struct pid *session;
2830         int             i;
2831         struct file     *filp;
2832         struct fdtable *fdt;
2833
2834         if (!tty)
2835                 return;
2836         session = tty->session;
2837
2838         tty_ldisc_flush(tty);
2839
2840         tty_driver_flush_buffer(tty);
2841
2842         read_lock(&tasklist_lock);
2843         /* Kill the entire session */
2844         do_each_pid_task(session, PIDTYPE_SID, p) {
2845                 printk(KERN_NOTICE "SAK: killed process %d"
2846                         " (%s): task_session(p)==tty->session\n",
2847                         task_pid_nr(p), p->comm);
2848                 send_sig(SIGKILL, p, 1);
2849         } while_each_pid_task(session, PIDTYPE_SID, p);
2850         /* Now kill any processes that happen to have the
2851          * tty open.
2852          */
2853         do_each_thread(g, p) {
2854                 if (p->signal->tty == tty) {
2855                         printk(KERN_NOTICE "SAK: killed process %d"
2856                             " (%s): task_session(p)==tty->session\n",
2857                             task_pid_nr(p), p->comm);
2858                         send_sig(SIGKILL, p, 1);
2859                         continue;
2860                 }
2861                 task_lock(p);
2862                 if (p->files) {
2863                         /*
2864                          * We don't take a ref to the file, so we must
2865                          * hold ->file_lock instead.
2866                          */
2867                         spin_lock(&p->files->file_lock);
2868                         fdt = files_fdtable(p->files);
2869                         for (i = 0; i < fdt->max_fds; i++) {
2870                                 filp = fcheck_files(p->files, i);
2871                                 if (!filp)
2872                                         continue;
2873                                 if (filp->f_op->read == tty_read &&
2874                                     file_tty(filp) == tty) {
2875                                         printk(KERN_NOTICE "SAK: killed process %d"
2876                                             " (%s): fd#%d opened to the tty\n",
2877                                             task_pid_nr(p), p->comm, i);
2878                                         force_sig(SIGKILL, p);
2879                                         break;
2880                                 }
2881                         }
2882                         spin_unlock(&p->files->file_lock);
2883                 }
2884                 task_unlock(p);
2885         } while_each_thread(g, p);
2886         read_unlock(&tasklist_lock);
2887 #endif
2888 }
2889
2890 static void do_SAK_work(struct work_struct *work)
2891 {
2892         struct tty_struct *tty =
2893                 container_of(work, struct tty_struct, SAK_work);
2894         __do_SAK(tty);
2895 }
2896
2897 /*
2898  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2899  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2900  * the values which we write to it will be identical to the values which it
2901  * already has. --akpm
2902  */
2903 void do_SAK(struct tty_struct *tty)
2904 {
2905         if (!tty)
2906                 return;
2907         schedule_work(&tty->SAK_work);
2908 }
2909
2910 EXPORT_SYMBOL(do_SAK);
2911
2912 static int dev_match_devt(struct device *dev, void *data)
2913 {
2914         dev_t *devt = data;
2915         return dev->devt == *devt;
2916 }
2917
2918 /* Must put_device() after it's unused! */
2919 static struct device *tty_get_device(struct tty_struct *tty)
2920 {
2921         dev_t devt = tty_devnum(tty);
2922         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2923 }
2924
2925
2926 /**
2927  *      initialize_tty_struct
2928  *      @tty: tty to initialize
2929  *
2930  *      This subroutine initializes a tty structure that has been newly
2931  *      allocated.
2932  *
2933  *      Locking: none - tty in question must not be exposed at this point
2934  */
2935
2936 void initialize_tty_struct(struct tty_struct *tty,
2937                 struct tty_driver *driver, int idx)
2938 {
2939         memset(tty, 0, sizeof(struct tty_struct));
2940         kref_init(&tty->kref);
2941         tty->magic = TTY_MAGIC;
2942         tty_ldisc_init(tty);
2943         tty->session = NULL;
2944         tty->pgrp = NULL;
2945         tty->overrun_time = jiffies;
2946         tty_buffer_init(tty);
2947         mutex_init(&tty->termios_mutex);
2948         mutex_init(&tty->ldisc_mutex);
2949         init_waitqueue_head(&tty->write_wait);
2950         init_waitqueue_head(&tty->read_wait);
2951         INIT_WORK(&tty->hangup_work, do_tty_hangup);
2952         mutex_init(&tty->atomic_read_lock);
2953         mutex_init(&tty->atomic_write_lock);
2954         mutex_init(&tty->output_lock);
2955         mutex_init(&tty->echo_lock);
2956         spin_lock_init(&tty->read_lock);
2957         spin_lock_init(&tty->ctrl_lock);
2958         INIT_LIST_HEAD(&tty->tty_files);
2959         INIT_WORK(&tty->SAK_work, do_SAK_work);
2960
2961         tty->driver = driver;
2962         tty->ops = driver->ops;
2963         tty->index = idx;
2964         tty_line_name(driver, idx, tty->name);
2965         tty->dev = tty_get_device(tty);
2966 }
2967
2968 /**
2969  *      deinitialize_tty_struct
2970  *      @tty: tty to deinitialize
2971  *
2972  *      This subroutine deinitializes a tty structure that has been newly
2973  *      allocated but tty_release cannot be called on that yet.
2974  *
2975  *      Locking: none - tty in question must not be exposed at this point
2976  */
2977 void deinitialize_tty_struct(struct tty_struct *tty)
2978 {
2979         tty_ldisc_deinit(tty);
2980 }
2981
2982 /**
2983  *      tty_put_char    -       write one character to a tty
2984  *      @tty: tty
2985  *      @ch: character
2986  *
2987  *      Write one byte to the tty using the provided put_char method
2988  *      if present. Returns the number of characters successfully output.
2989  *
2990  *      Note: the specific put_char operation in the driver layer may go
2991  *      away soon. Don't call it directly, use this method
2992  */
2993
2994 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2995 {
2996         if (tty->ops->put_char)
2997                 return tty->ops->put_char(tty, ch);
2998         return tty->ops->write(tty, &ch, 1);
2999 }
3000 EXPORT_SYMBOL_GPL(tty_put_char);
3001
3002 struct class *tty_class;
3003
3004 /**
3005  *      tty_register_device - register a tty device
3006  *      @driver: the tty driver that describes the tty device
3007  *      @index: the index in the tty driver for this tty device
3008  *      @device: a struct device that is associated with this tty device.
3009  *              This field is optional, if there is no known struct device
3010  *              for this tty device it can be set to NULL safely.
3011  *
3012  *      Returns a pointer to the struct device for this tty device
3013  *      (or ERR_PTR(-EFOO) on error).
3014  *
3015  *      This call is required to be made to register an individual tty device
3016  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3017  *      that bit is not set, this function should not be called by a tty
3018  *      driver.
3019  *
3020  *      Locking: ??
3021  */
3022
3023 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3024                                    struct device *device)
3025 {
3026         char name[64];
3027         dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3028
3029         if (index >= driver->num) {
3030                 printk(KERN_ERR "Attempt to register invalid tty line number "
3031                        " (%d).\n", index);
3032                 return ERR_PTR(-EINVAL);
3033         }
3034
3035         if (driver->type == TTY_DRIVER_TYPE_PTY)
3036                 pty_line_name(driver, index, name);
3037         else
3038                 tty_line_name(driver, index, name);
3039
3040         return device_create(tty_class, device, dev, NULL, name);
3041 }
3042 EXPORT_SYMBOL(tty_register_device);
3043
3044 /**
3045  *      tty_unregister_device - unregister a tty device
3046  *      @driver: the tty driver that describes the tty device
3047  *      @index: the index in the tty driver for this tty device
3048  *
3049  *      If a tty device is registered with a call to tty_register_device() then
3050  *      this function must be called when the tty device is gone.
3051  *
3052  *      Locking: ??
3053  */
3054
3055 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3056 {
3057         device_destroy(tty_class,
3058                 MKDEV(driver->major, driver->minor_start) + index);
3059 }
3060 EXPORT_SYMBOL(tty_unregister_device);
3061
3062 struct tty_driver *__alloc_tty_driver(int lines, struct module *owner)
3063 {
3064         struct tty_driver *driver;
3065
3066         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3067         if (driver) {
3068                 kref_init(&driver->kref);
3069                 driver->magic = TTY_DRIVER_MAGIC;
3070                 driver->num = lines;
3071                 driver->owner = owner;
3072                 /* later we'll move allocation of tables here */
3073         }
3074         return driver;
3075 }
3076 EXPORT_SYMBOL(__alloc_tty_driver);
3077
3078 static void destruct_tty_driver(struct kref *kref)
3079 {
3080         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3081         int i;
3082         struct ktermios *tp;
3083         void *p;
3084
3085         if (driver->flags & TTY_DRIVER_INSTALLED) {
3086                 /*
3087                  * Free the termios and termios_locked structures because
3088                  * we don't want to get memory leaks when modular tty
3089                  * drivers are removed from the kernel.
3090                  */
3091                 for (i = 0; i < driver->num; i++) {
3092                         tp = driver->termios[i];
3093                         if (tp) {
3094                                 driver->termios[i] = NULL;
3095                                 kfree(tp);
3096                         }
3097                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3098                                 tty_unregister_device(driver, i);
3099                 }
3100                 p = driver->ttys;
3101                 proc_tty_unregister_driver(driver);
3102                 driver->ttys = NULL;
3103                 driver->termios = NULL;
3104                 kfree(p);
3105                 cdev_del(&driver->cdev);
3106         }
3107         kfree(driver);
3108 }
3109
3110 void tty_driver_kref_put(struct tty_driver *driver)
3111 {
3112         kref_put(&driver->kref, destruct_tty_driver);
3113 }
3114 EXPORT_SYMBOL(tty_driver_kref_put);
3115
3116 void tty_set_operations(struct tty_driver *driver,
3117                         const struct tty_operations *op)
3118 {
3119         driver->ops = op;
3120 };
3121 EXPORT_SYMBOL(tty_set_operations);
3122
3123 void put_tty_driver(struct tty_driver *d)
3124 {
3125         tty_driver_kref_put(d);
3126 }
3127 EXPORT_SYMBOL(put_tty_driver);
3128
3129 /*
3130  * Called by a tty driver to register itself.
3131  */
3132 int tty_register_driver(struct tty_driver *driver)
3133 {
3134         int error;
3135         int i;
3136         dev_t dev;
3137         void **p = NULL;
3138         struct device *d;
3139
3140         if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3141                 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3142                 if (!p)
3143                         return -ENOMEM;
3144         }
3145
3146         if (!driver->major) {
3147                 error = alloc_chrdev_region(&dev, driver->minor_start,
3148                                                 driver->num, driver->name);
3149                 if (!error) {
3150                         driver->major = MAJOR(dev);
3151                         driver->minor_start = MINOR(dev);
3152                 }
3153         } else {
3154                 dev = MKDEV(driver->major, driver->minor_start);
3155                 error = register_chrdev_region(dev, driver->num, driver->name);
3156         }
3157         if (error < 0) {
3158                 kfree(p);
3159                 return error;
3160         }
3161
3162         if (p) {
3163                 driver->ttys = (struct tty_struct **)p;
3164                 driver->termios = (struct ktermios **)(p + driver->num);
3165         } else {
3166                 driver->ttys = NULL;
3167                 driver->termios = NULL;
3168         }
3169
3170         cdev_init(&driver->cdev, &tty_fops);
3171         driver->cdev.owner = driver->owner;
3172         error = cdev_add(&driver->cdev, dev, driver->num);
3173         if (error) {
3174                 unregister_chrdev_region(dev, driver->num);
3175                 driver->ttys = NULL;
3176                 driver->termios = NULL;
3177                 kfree(p);
3178                 return error;
3179         }
3180
3181         mutex_lock(&tty_mutex);
3182         list_add(&driver->tty_drivers, &tty_drivers);
3183         mutex_unlock(&tty_mutex);
3184
3185         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3186                 for (i = 0; i < driver->num; i++) {
3187                         d = tty_register_device(driver, i, NULL);
3188                         if (IS_ERR(d)) {
3189                                 error = PTR_ERR(d);
3190                                 goto err;
3191                         }
3192                 }
3193         }
3194         proc_tty_register_driver(driver);
3195         driver->flags |= TTY_DRIVER_INSTALLED;
3196         return 0;
3197
3198 err:
3199         for (i--; i >= 0; i--)
3200                 tty_unregister_device(driver, i);
3201
3202         mutex_lock(&tty_mutex);
3203         list_del(&driver->tty_drivers);
3204         mutex_unlock(&tty_mutex);
3205
3206         unregister_chrdev_region(dev, driver->num);
3207         driver->ttys = NULL;
3208         driver->termios = NULL;
3209         kfree(p);
3210         return error;
3211 }
3212
3213 EXPORT_SYMBOL(tty_register_driver);
3214
3215 /*
3216  * Called by a tty driver to unregister itself.
3217  */
3218 int tty_unregister_driver(struct tty_driver *driver)
3219 {
3220 #if 0
3221         /* FIXME */
3222         if (driver->refcount)
3223                 return -EBUSY;
3224 #endif
3225         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3226                                 driver->num);
3227         mutex_lock(&tty_mutex);
3228         list_del(&driver->tty_drivers);
3229         mutex_unlock(&tty_mutex);
3230         return 0;
3231 }
3232
3233 EXPORT_SYMBOL(tty_unregister_driver);
3234
3235 dev_t tty_devnum(struct tty_struct *tty)
3236 {
3237         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3238 }
3239 EXPORT_SYMBOL(tty_devnum);
3240
3241 void proc_clear_tty(struct task_struct *p)
3242 {
3243         unsigned long flags;
3244         struct tty_struct *tty;
3245         spin_lock_irqsave(&p->sighand->siglock, flags);
3246         tty = p->signal->tty;
3247         p->signal->tty = NULL;
3248         spin_unlock_irqrestore(&p->sighand->siglock, flags);
3249         tty_kref_put(tty);
3250 }
3251
3252 /* Called under the sighand lock */
3253
3254 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3255 {
3256         if (tty) {
3257                 unsigned long flags;
3258                 /* We should not have a session or pgrp to put here but.... */
3259                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3260                 put_pid(tty->session);
3261                 put_pid(tty->pgrp);
3262                 tty->pgrp = get_pid(task_pgrp(tsk));
3263                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3264                 tty->session = get_pid(task_session(tsk));
3265                 if (tsk->signal->tty) {
3266                         printk(KERN_DEBUG "tty not NULL!!\n");
3267                         tty_kref_put(tsk->signal->tty);
3268                 }
3269         }
3270         put_pid(tsk->signal->tty_old_pgrp);
3271         tsk->signal->tty = tty_kref_get(tty);
3272         tsk->signal->tty_old_pgrp = NULL;
3273 }
3274
3275 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3276 {
3277         spin_lock_irq(&tsk->sighand->siglock);
3278         __proc_set_tty(tsk, tty);
3279         spin_unlock_irq(&tsk->sighand->siglock);
3280 }
3281
3282 struct tty_struct *get_current_tty(void)
3283 {
3284         struct tty_struct *tty;
3285         unsigned long flags;
3286
3287         spin_lock_irqsave(&current->sighand->siglock, flags);
3288         tty = tty_kref_get(current->signal->tty);
3289         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3290         return tty;
3291 }
3292 EXPORT_SYMBOL_GPL(get_current_tty);
3293
3294 void tty_default_fops(struct file_operations *fops)
3295 {
3296         *fops = tty_fops;
3297 }
3298
3299 /*
3300  * Initialize the console device. This is called *early*, so
3301  * we can't necessarily depend on lots of kernel help here.
3302  * Just do some early initializations, and do the complex setup
3303  * later.
3304  */
3305 void __init console_init(void)
3306 {
3307         initcall_t *call;
3308
3309         /* Setup the default TTY line discipline. */
3310         tty_ldisc_begin();
3311
3312         /*
3313          * set up the console device so that later boot sequences can
3314          * inform about problems etc..
3315          */
3316         call = __con_initcall_start;
3317         while (call < __con_initcall_end) {
3318                 (*call)();
3319                 call++;
3320         }
3321 }
3322
3323 static char *tty_devnode(struct device *dev, umode_t *mode)
3324 {
3325         if (!mode)
3326                 return NULL;
3327         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3328             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3329                 *mode = 0666;
3330         return NULL;
3331 }
3332
3333 static int __init tty_class_init(void)
3334 {
3335         tty_class = class_create(THIS_MODULE, "tty");
3336         if (IS_ERR(tty_class))
3337                 return PTR_ERR(tty_class);
3338         tty_class->devnode = tty_devnode;
3339         return 0;
3340 }
3341
3342 postcore_initcall(tty_class_init);
3343
3344 /* 3/2004 jmc: why do these devices exist? */
3345 static struct cdev tty_cdev, console_cdev;
3346
3347 static ssize_t show_cons_active(struct device *dev,
3348                                 struct device_attribute *attr, char *buf)
3349 {
3350         struct console *cs[16];
3351         int i = 0;
3352         struct console *c;
3353         ssize_t count = 0;
3354
3355         console_lock();
3356         for_each_console(c) {
3357                 if (!c->device)
3358                         continue;
3359                 if (!c->write)
3360                         continue;
3361                 if ((c->flags & CON_ENABLED) == 0)
3362                         continue;
3363                 cs[i++] = c;
3364                 if (i >= ARRAY_SIZE(cs))
3365                         break;
3366         }
3367         while (i--)
3368                 count += sprintf(buf + count, "%s%d%c",
3369                                  cs[i]->name, cs[i]->index, i ? ' ':'\n');
3370         console_unlock();
3371
3372         return count;
3373 }
3374 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3375
3376 static struct device *consdev;
3377
3378 void console_sysfs_notify(void)
3379 {
3380         if (consdev)
3381                 sysfs_notify(&consdev->kobj, NULL, "active");
3382 }
3383
3384 /*
3385  * Ok, now we can initialize the rest of the tty devices and can count
3386  * on memory allocations, interrupts etc..
3387  */
3388 int __init tty_init(void)
3389 {
3390         cdev_init(&tty_cdev, &tty_fops);
3391         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3392             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3393                 panic("Couldn't register /dev/tty driver\n");
3394         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3395
3396         cdev_init(&console_cdev, &console_fops);
3397         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3398             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3399                 panic("Couldn't register /dev/console driver\n");
3400         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3401                               "console");
3402         if (IS_ERR(consdev))
3403                 consdev = NULL;
3404         else
3405                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3406
3407 #ifdef CONFIG_VT
3408         vty_init(&console_fops);
3409 #endif
3410         return 0;
3411 }
3412