1 // SPDX-License-Identifier: GPL-2.0
3 * zs.c: Serial port driver for IOASIC DECstations.
5 * Derived from drivers/sbus/char/sunserial.c by Paul Mackerras.
6 * Derived from drivers/macintosh/macserial.c by Harald Koerfgen.
9 * Copyright (C) 1998-2000 Harald Koerfgen
10 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * For the rest of the code the original Copyright applies:
13 * Copyright (C) 1996 Paul Mackerras (Paul.Mackerras@cs.anu.edu.au)
14 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
17 * Note: for IOASIC systems the wiring is as follows:
20 * DIN-7 MJ-4 signal SCC
25 * DB-25 MMJ-6 signal SCC
32 * 12 DSRS(DCE) -> ~A.CTS (*)
37 * 23 DSRS(DTE) <- ~B.RTS
39 * (*) EIA-232 defines the signal at this pin to be SCD, while DSRS(DCE)
40 * is shared with DSRS(DTE) at pin 23.
42 * As you can immediately notice the wiring of the RTS, DTR and DSR signals
43 * is a bit odd. This makes the handling of port B unnecessarily
44 * complicated and prevents the use of some automatic modes of operation.
47 #include <linux/bug.h>
48 #include <linux/console.h>
49 #include <linux/delay.h>
50 #include <linux/errno.h>
51 #include <linux/init.h>
52 #include <linux/interrupt.h>
54 #include <linux/ioport.h>
55 #include <linux/irqflags.h>
56 #include <linux/kernel.h>
57 #include <linux/module.h>
58 #include <linux/major.h>
59 #include <linux/serial.h>
60 #include <linux/serial_core.h>
61 #include <linux/spinlock.h>
62 #include <linux/sysrq.h>
63 #include <linux/tty.h>
64 #include <linux/tty_flip.h>
65 #include <linux/types.h>
67 #include <linux/atomic.h>
69 #include <asm/dec/interrupts.h>
70 #include <asm/dec/ioasic_addrs.h>
71 #include <asm/dec/system.h>
76 MODULE_AUTHOR("Maciej W. Rozycki <macro@linux-mips.org>");
77 MODULE_DESCRIPTION("DECstation Z85C30 serial driver");
78 MODULE_LICENSE("GPL");
81 static char zs_name[] __initdata = "DECstation Z85C30 serial driver version ";
82 static char zs_version[] __initdata = "0.10";
85 * It would be nice to dynamically allocate everything that
86 * depends on ZS_NUM_SCCS, so we could support any number of
87 * Z85C30s, but for now...
89 #define ZS_NUM_SCCS 2 /* Max # of ZS chips supported. */
90 #define ZS_NUM_CHAN 2 /* 2 channels per chip. */
91 #define ZS_CHAN_A 0 /* Index of the channel A. */
92 #define ZS_CHAN_B 1 /* Index of the channel B. */
93 #define ZS_CHAN_IO_SIZE 8 /* IOMEM space size. */
94 #define ZS_CHAN_IO_STRIDE 4 /* Register alignment. */
95 #define ZS_CHAN_IO_OFFSET 1 /* The SCC resides on the high byte
96 of the 16-bit IOBUS. */
97 #define ZS_CLOCK 7372800 /* Z85C30 PCLK input clock rate. */
99 #define to_zport(uport) container_of(uport, struct zs_port, port)
102 resource_size_t scc[ZS_NUM_SCCS];
103 int irq[ZS_NUM_SCCS];
106 static struct zs_scc zs_sccs[ZS_NUM_SCCS];
108 static u8 zs_init_regs[ZS_NUM_REGS] __initdata = {
110 PAR_SPEC, /* write 1 */
113 X16CLK | SB1, /* write 4 */
115 0, 0, 0, /* write 6, 7, 8 */
116 MIE | DLC | NV, /* write 9 */
118 TCBR | RCBR, /* write 11 */
119 0, 0, /* BRG time constant, write 12 + 13 */
120 BRSRC | BRENABL, /* write 14 */
131 * Reading and writing Z85C30 registers.
133 static void recovery_delay(void)
138 static u8 read_zsreg(struct zs_port *zport, int reg)
140 void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
144 writeb(reg & 0xf, control);
148 retval = readb(control);
153 static void write_zsreg(struct zs_port *zport, int reg, u8 value)
155 void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
158 writeb(reg & 0xf, control);
159 fast_iob(); recovery_delay();
161 writeb(value, control);
167 static u8 read_zsdata(struct zs_port *zport)
169 void __iomem *data = zport->port.membase +
170 ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET;
173 retval = readb(data);
178 static void write_zsdata(struct zs_port *zport, u8 value)
180 void __iomem *data = zport->port.membase +
181 ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET;
192 struct zs_port *zport;
195 for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
196 zport = &zs_sccs[i / ZS_NUM_CHAN].zport[i % ZS_NUM_CHAN];
201 for (j = 0; j < 16; j++)
202 printk("W%-2d = 0x%02x\t", j, zport->regs[j]);
204 for (j = 0; j < 16; j++)
205 printk("R%-2d = 0x%02x\t", j, read_zsreg(zport, j));
212 static void zs_spin_lock_cond_irq(spinlock_t *lock, int irq)
220 static void zs_spin_unlock_cond_irq(spinlock_t *lock, int irq)
223 spin_unlock_irq(lock);
228 static int zs_receive_drain(struct zs_port *zport)
232 while ((read_zsreg(zport, R0) & Rx_CH_AV) && --loops)
237 static int zs_transmit_drain(struct zs_port *zport, int irq)
239 struct zs_scc *scc = zport->scc;
242 while (!(read_zsreg(zport, R0) & Tx_BUF_EMP) && --loops) {
243 zs_spin_unlock_cond_irq(&scc->zlock, irq);
245 zs_spin_lock_cond_irq(&scc->zlock, irq);
250 static int zs_line_drain(struct zs_port *zport, int irq)
252 struct zs_scc *scc = zport->scc;
255 while (!(read_zsreg(zport, R1) & ALL_SNT) && --loops) {
256 zs_spin_unlock_cond_irq(&scc->zlock, irq);
258 zs_spin_lock_cond_irq(&scc->zlock, irq);
264 static void load_zsregs(struct zs_port *zport, u8 *regs, int irq)
266 /* Let the current transmission finish. */
267 zs_line_drain(zport, irq);
269 write_zsreg(zport, R3, regs[3] & ~RxENABLE);
270 write_zsreg(zport, R5, regs[5] & ~TxENAB);
271 write_zsreg(zport, R4, regs[4]);
272 write_zsreg(zport, R9, regs[9]);
273 write_zsreg(zport, R1, regs[1]);
274 write_zsreg(zport, R2, regs[2]);
275 write_zsreg(zport, R10, regs[10]);
276 write_zsreg(zport, R14, regs[14] & ~BRENABL);
277 write_zsreg(zport, R11, regs[11]);
278 write_zsreg(zport, R12, regs[12]);
279 write_zsreg(zport, R13, regs[13]);
280 write_zsreg(zport, R14, regs[14]);
281 write_zsreg(zport, R15, regs[15]);
282 if (regs[3] & RxENABLE)
283 write_zsreg(zport, R3, regs[3]);
284 if (regs[5] & TxENAB)
285 write_zsreg(zport, R5, regs[5]);
291 * Status handling routines.
295 * zs_tx_empty() -- get the transmitter empty status
297 * Purpose: Let user call ioctl() to get info when the UART physically
298 * is emptied. On bus types like RS485, the transmitter must
299 * release the bus after transmitting. This must be done when
300 * the transmit shift register is empty, not be done when the
301 * transmit holding register is empty. This functionality
302 * allows an RS485 driver to be written in user space.
304 static unsigned int zs_tx_empty(struct uart_port *uport)
306 struct zs_port *zport = to_zport(uport);
307 struct zs_scc *scc = zport->scc;
311 spin_lock_irqsave(&scc->zlock, flags);
312 status = read_zsreg(zport, R1);
313 spin_unlock_irqrestore(&scc->zlock, flags);
315 return status & ALL_SNT ? TIOCSER_TEMT : 0;
318 static unsigned int zs_raw_get_ab_mctrl(struct zs_port *zport_a,
319 struct zs_port *zport_b)
321 u8 status_a, status_b;
324 status_a = read_zsreg(zport_a, R0);
325 status_b = read_zsreg(zport_b, R0);
327 mctrl = ((status_b & CTS) ? TIOCM_CTS : 0) |
328 ((status_b & DCD) ? TIOCM_CAR : 0) |
329 ((status_a & DCD) ? TIOCM_RNG : 0) |
330 ((status_a & SYNC_HUNT) ? TIOCM_DSR : 0);
335 static unsigned int zs_raw_get_mctrl(struct zs_port *zport)
337 struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
339 return zport != zport_a ? zs_raw_get_ab_mctrl(zport_a, zport) : 0;
342 static unsigned int zs_raw_xor_mctrl(struct zs_port *zport)
344 struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
345 unsigned int mmask, mctrl, delta;
348 if (zport == zport_a)
351 mask_a = zport_a->regs[15];
352 mask_b = zport->regs[15];
354 mmask = ((mask_b & CTSIE) ? TIOCM_CTS : 0) |
355 ((mask_b & DCDIE) ? TIOCM_CAR : 0) |
356 ((mask_a & DCDIE) ? TIOCM_RNG : 0) |
357 ((mask_a & SYNCIE) ? TIOCM_DSR : 0);
359 mctrl = zport->mctrl;
362 mctrl |= zs_raw_get_ab_mctrl(zport_a, zport) & mmask;
365 delta = mctrl ^ zport->mctrl;
367 zport->mctrl = mctrl;
372 static unsigned int zs_get_mctrl(struct uart_port *uport)
374 struct zs_port *zport = to_zport(uport);
375 struct zs_scc *scc = zport->scc;
378 spin_lock(&scc->zlock);
379 mctrl = zs_raw_get_mctrl(zport);
380 spin_unlock(&scc->zlock);
385 static void zs_set_mctrl(struct uart_port *uport, unsigned int mctrl)
387 struct zs_port *zport = to_zport(uport);
388 struct zs_scc *scc = zport->scc;
389 struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
392 spin_lock(&scc->zlock);
393 if (zport != zport_a) {
394 if (mctrl & TIOCM_DTR)
395 zport_a->regs[5] |= DTR;
397 zport_a->regs[5] &= ~DTR;
398 if (mctrl & TIOCM_RTS)
399 zport_a->regs[5] |= RTS;
401 zport_a->regs[5] &= ~RTS;
402 write_zsreg(zport_a, R5, zport_a->regs[5]);
405 /* Rarely modified, so don't poke at hardware unless necessary. */
406 oldloop = zport->regs[14];
408 if (mctrl & TIOCM_LOOP)
412 if (newloop != oldloop) {
413 zport->regs[14] = newloop;
414 write_zsreg(zport, R14, zport->regs[14]);
416 spin_unlock(&scc->zlock);
419 static void zs_raw_stop_tx(struct zs_port *zport)
421 write_zsreg(zport, R0, RES_Tx_P);
422 zport->tx_stopped = 1;
425 static void zs_stop_tx(struct uart_port *uport)
427 struct zs_port *zport = to_zport(uport);
428 struct zs_scc *scc = zport->scc;
430 spin_lock(&scc->zlock);
431 zs_raw_stop_tx(zport);
432 spin_unlock(&scc->zlock);
435 static void zs_raw_transmit_chars(struct zs_port *);
437 static void zs_start_tx(struct uart_port *uport)
439 struct zs_port *zport = to_zport(uport);
440 struct zs_scc *scc = zport->scc;
442 spin_lock(&scc->zlock);
443 if (zport->tx_stopped) {
444 zs_transmit_drain(zport, 0);
445 zport->tx_stopped = 0;
446 zs_raw_transmit_chars(zport);
448 spin_unlock(&scc->zlock);
451 static void zs_stop_rx(struct uart_port *uport)
453 struct zs_port *zport = to_zport(uport);
454 struct zs_scc *scc = zport->scc;
455 struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
457 spin_lock(&scc->zlock);
458 zport->regs[15] &= ~BRKIE;
459 zport->regs[1] &= ~(RxINT_MASK | TxINT_ENAB);
460 zport->regs[1] |= RxINT_DISAB;
462 if (zport != zport_a) {
463 /* A-side DCD tracks RI and SYNC tracks DSR. */
464 zport_a->regs[15] &= ~(DCDIE | SYNCIE);
465 write_zsreg(zport_a, R15, zport_a->regs[15]);
466 if (!(zport_a->regs[15] & BRKIE)) {
467 zport_a->regs[1] &= ~EXT_INT_ENAB;
468 write_zsreg(zport_a, R1, zport_a->regs[1]);
471 /* This-side DCD tracks DCD and CTS tracks CTS. */
472 zport->regs[15] &= ~(DCDIE | CTSIE);
473 zport->regs[1] &= ~EXT_INT_ENAB;
475 /* DCD tracks RI and SYNC tracks DSR for the B side. */
476 if (!(zport->regs[15] & (DCDIE | SYNCIE)))
477 zport->regs[1] &= ~EXT_INT_ENAB;
480 write_zsreg(zport, R15, zport->regs[15]);
481 write_zsreg(zport, R1, zport->regs[1]);
482 spin_unlock(&scc->zlock);
485 static void zs_enable_ms(struct uart_port *uport)
487 struct zs_port *zport = to_zport(uport);
488 struct zs_scc *scc = zport->scc;
489 struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
491 if (zport == zport_a)
494 spin_lock(&scc->zlock);
496 /* Clear Ext interrupts if not being handled already. */
497 if (!(zport_a->regs[1] & EXT_INT_ENAB))
498 write_zsreg(zport_a, R0, RES_EXT_INT);
500 /* A-side DCD tracks RI and SYNC tracks DSR. */
501 zport_a->regs[1] |= EXT_INT_ENAB;
502 zport_a->regs[15] |= DCDIE | SYNCIE;
504 /* This-side DCD tracks DCD and CTS tracks CTS. */
505 zport->regs[15] |= DCDIE | CTSIE;
507 zs_raw_xor_mctrl(zport);
509 write_zsreg(zport_a, R1, zport_a->regs[1]);
510 write_zsreg(zport_a, R15, zport_a->regs[15]);
511 write_zsreg(zport, R15, zport->regs[15]);
512 spin_unlock(&scc->zlock);
515 static void zs_break_ctl(struct uart_port *uport, int break_state)
517 struct zs_port *zport = to_zport(uport);
518 struct zs_scc *scc = zport->scc;
521 spin_lock_irqsave(&scc->zlock, flags);
522 if (break_state == -1)
523 zport->regs[5] |= SND_BRK;
525 zport->regs[5] &= ~SND_BRK;
526 write_zsreg(zport, R5, zport->regs[5]);
527 spin_unlock_irqrestore(&scc->zlock, flags);
532 * Interrupt handling routines.
534 #define Rx_BRK 0x0100 /* BREAK event software flag. */
535 #define Rx_SYS 0x0200 /* SysRq event software flag. */
537 static void zs_receive_chars(struct zs_port *zport)
539 struct uart_port *uport = &zport->port;
540 struct zs_scc *scc = zport->scc;
541 struct uart_icount *icount;
542 unsigned int avail, status, ch, flag;
545 for (count = 16; count; count--) {
546 spin_lock(&scc->zlock);
547 avail = read_zsreg(zport, R0) & Rx_CH_AV;
548 spin_unlock(&scc->zlock);
552 spin_lock(&scc->zlock);
553 status = read_zsreg(zport, R1) & (Rx_OVR | FRM_ERR | PAR_ERR);
554 ch = read_zsdata(zport);
555 spin_unlock(&scc->zlock);
559 icount = &uport->icount;
562 /* Handle the null char got when BREAK is removed. */
564 status |= zport->tty_break;
565 if (unlikely(status &
566 (Rx_OVR | FRM_ERR | PAR_ERR | Rx_SYS | Rx_BRK))) {
567 zport->tty_break = 0;
569 /* Reset the error indication. */
570 if (status & (Rx_OVR | FRM_ERR | PAR_ERR)) {
571 spin_lock(&scc->zlock);
572 write_zsreg(zport, R0, ERR_RES);
573 spin_unlock(&scc->zlock);
576 if (status & (Rx_SYS | Rx_BRK)) {
578 /* SysRq discards the null char. */
581 } else if (status & FRM_ERR)
583 else if (status & PAR_ERR)
588 status &= uport->read_status_mask;
591 else if (status & FRM_ERR)
593 else if (status & PAR_ERR)
597 if (uart_handle_sysrq_char(uport, ch))
600 uart_insert_char(uport, status, Rx_OVR, ch, flag);
603 tty_flip_buffer_push(&uport->state->port);
606 static void zs_raw_transmit_chars(struct zs_port *zport)
608 struct circ_buf *xmit = &zport->port.state->xmit;
610 /* XON/XOFF chars. */
611 if (zport->port.x_char) {
612 write_zsdata(zport, zport->port.x_char);
613 zport->port.icount.tx++;
614 zport->port.x_char = 0;
618 /* If nothing to do or stopped or hardware stopped. */
619 if (uart_circ_empty(xmit) || uart_tx_stopped(&zport->port)) {
620 zs_raw_stop_tx(zport);
625 write_zsdata(zport, xmit->buf[xmit->tail]);
626 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
627 zport->port.icount.tx++;
629 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
630 uart_write_wakeup(&zport->port);
632 /* Are we are done? */
633 if (uart_circ_empty(xmit))
634 zs_raw_stop_tx(zport);
637 static void zs_transmit_chars(struct zs_port *zport)
639 struct zs_scc *scc = zport->scc;
641 spin_lock(&scc->zlock);
642 zs_raw_transmit_chars(zport);
643 spin_unlock(&scc->zlock);
646 static void zs_status_handle(struct zs_port *zport, struct zs_port *zport_a)
648 struct uart_port *uport = &zport->port;
649 struct zs_scc *scc = zport->scc;
653 spin_lock(&scc->zlock);
655 /* Get status from Read Register 0. */
656 status = read_zsreg(zport, R0);
658 if (zport->regs[15] & BRKIE) {
659 brk = status & BRK_ABRT;
660 if (brk && !zport->brk) {
661 spin_unlock(&scc->zlock);
662 if (uart_handle_break(uport))
663 zport->tty_break = Rx_SYS;
665 zport->tty_break = Rx_BRK;
666 spin_lock(&scc->zlock);
671 if (zport != zport_a) {
672 delta = zs_raw_xor_mctrl(zport);
673 spin_unlock(&scc->zlock);
675 if (delta & TIOCM_CTS)
676 uart_handle_cts_change(uport,
677 zport->mctrl & TIOCM_CTS);
678 if (delta & TIOCM_CAR)
679 uart_handle_dcd_change(uport,
680 zport->mctrl & TIOCM_CAR);
681 if (delta & TIOCM_RNG)
683 if (delta & TIOCM_DSR)
687 wake_up_interruptible(&uport->state->port.delta_msr_wait);
689 spin_lock(&scc->zlock);
692 /* Clear the status condition... */
693 write_zsreg(zport, R0, RES_EXT_INT);
695 spin_unlock(&scc->zlock);
699 * This is the Z85C30 driver's generic interrupt routine.
701 static irqreturn_t zs_interrupt(int irq, void *dev_id)
703 struct zs_scc *scc = dev_id;
704 struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
705 struct zs_port *zport_b = &scc->zport[ZS_CHAN_B];
706 irqreturn_t status = IRQ_NONE;
711 * NOTE: The read register 3, which holds the irq status,
712 * does so for both channels on each chip. Although
713 * the status value itself must be read from the A
714 * channel and is only valid when read from channel A.
715 * Yes... broken hardware...
717 for (count = 16; count; count--) {
718 spin_lock(&scc->zlock);
719 zs_intreg = read_zsreg(zport_a, R3);
720 spin_unlock(&scc->zlock);
725 * We do not like losing characters, so we prioritise
726 * interrupt sources a little bit differently than
727 * the SCC would, was it allowed to.
729 if (zs_intreg & CHBRxIP)
730 zs_receive_chars(zport_b);
731 if (zs_intreg & CHARxIP)
732 zs_receive_chars(zport_a);
733 if (zs_intreg & CHBEXT)
734 zs_status_handle(zport_b, zport_a);
735 if (zs_intreg & CHAEXT)
736 zs_status_handle(zport_a, zport_a);
737 if (zs_intreg & CHBTxIP)
738 zs_transmit_chars(zport_b);
739 if (zs_intreg & CHATxIP)
740 zs_transmit_chars(zport_a);
742 status = IRQ_HANDLED;
750 * Finally, routines used to initialize the serial port.
752 static int zs_startup(struct uart_port *uport)
754 struct zs_port *zport = to_zport(uport);
755 struct zs_scc *scc = zport->scc;
760 irq_guard = atomic_add_return(1, &scc->irq_guard);
761 if (irq_guard == 1) {
762 ret = request_irq(zport->port.irq, zs_interrupt,
763 IRQF_SHARED, "scc", scc);
765 atomic_add(-1, &scc->irq_guard);
766 printk(KERN_ERR "zs: can't get irq %d\n",
772 spin_lock_irqsave(&scc->zlock, flags);
774 /* Clear the receive FIFO. */
775 zs_receive_drain(zport);
777 /* Clear the interrupt registers. */
778 write_zsreg(zport, R0, ERR_RES);
779 write_zsreg(zport, R0, RES_Tx_P);
780 /* But Ext only if not being handled already. */
781 if (!(zport->regs[1] & EXT_INT_ENAB))
782 write_zsreg(zport, R0, RES_EXT_INT);
784 /* Finally, enable sequencing and interrupts. */
785 zport->regs[1] &= ~RxINT_MASK;
786 zport->regs[1] |= RxINT_ALL | TxINT_ENAB | EXT_INT_ENAB;
787 zport->regs[3] |= RxENABLE;
788 zport->regs[15] |= BRKIE;
789 write_zsreg(zport, R1, zport->regs[1]);
790 write_zsreg(zport, R3, zport->regs[3]);
791 write_zsreg(zport, R5, zport->regs[5]);
792 write_zsreg(zport, R15, zport->regs[15]);
794 /* Record the current state of RR0. */
795 zport->mctrl = zs_raw_get_mctrl(zport);
796 zport->brk = read_zsreg(zport, R0) & BRK_ABRT;
798 zport->tx_stopped = 1;
800 spin_unlock_irqrestore(&scc->zlock, flags);
805 static void zs_shutdown(struct uart_port *uport)
807 struct zs_port *zport = to_zport(uport);
808 struct zs_scc *scc = zport->scc;
812 spin_lock_irqsave(&scc->zlock, flags);
814 zport->regs[3] &= ~RxENABLE;
815 write_zsreg(zport, R5, zport->regs[5]);
816 write_zsreg(zport, R3, zport->regs[3]);
818 spin_unlock_irqrestore(&scc->zlock, flags);
820 irq_guard = atomic_add_return(-1, &scc->irq_guard);
822 free_irq(zport->port.irq, scc);
826 static void zs_reset(struct zs_port *zport)
828 struct zs_scc *scc = zport->scc;
832 spin_lock_irqsave(&scc->zlock, flags);
833 irq = !irqs_disabled_flags(flags);
834 if (!scc->initialised) {
835 /* Reset the pointer first, just in case... */
836 read_zsreg(zport, R0);
837 /* And let the current transmission finish. */
838 zs_line_drain(zport, irq);
839 write_zsreg(zport, R9, FHWRES);
841 write_zsreg(zport, R9, 0);
842 scc->initialised = 1;
844 load_zsregs(zport, zport->regs, irq);
845 spin_unlock_irqrestore(&scc->zlock, flags);
848 static void zs_set_termios(struct uart_port *uport, struct ktermios *termios,
849 const struct ktermios *old_termios)
851 struct zs_port *zport = to_zport(uport);
852 struct zs_scc *scc = zport->scc;
853 struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
855 unsigned int baud, brg;
858 spin_lock_irqsave(&scc->zlock, flags);
859 irq = !irqs_disabled_flags(flags);
862 zport->regs[3] &= ~RxNBITS_MASK;
863 zport->regs[5] &= ~TxNBITS_MASK;
864 switch (termios->c_cflag & CSIZE) {
866 zport->regs[3] |= Rx5;
867 zport->regs[5] |= Tx5;
870 zport->regs[3] |= Rx6;
871 zport->regs[5] |= Tx6;
874 zport->regs[3] |= Rx7;
875 zport->regs[5] |= Tx7;
879 zport->regs[3] |= Rx8;
880 zport->regs[5] |= Tx8;
884 /* Parity and stop bits. */
885 zport->regs[4] &= ~(XCLK_MASK | SB_MASK | PAR_ENA | PAR_EVEN);
886 if (termios->c_cflag & CSTOPB)
887 zport->regs[4] |= SB2;
889 zport->regs[4] |= SB1;
890 if (termios->c_cflag & PARENB)
891 zport->regs[4] |= PAR_ENA;
892 if (!(termios->c_cflag & PARODD))
893 zport->regs[4] |= PAR_EVEN;
894 switch (zport->clk_mode) {
896 zport->regs[4] |= X64CLK;
899 zport->regs[4] |= X32CLK;
902 zport->regs[4] |= X16CLK;
905 zport->regs[4] |= X1CLK;
911 baud = uart_get_baud_rate(uport, termios, old_termios, 0,
912 uport->uartclk / zport->clk_mode / 4);
914 brg = ZS_BPS_TO_BRG(baud, uport->uartclk / zport->clk_mode);
915 zport->regs[12] = brg & 0xff;
916 zport->regs[13] = (brg >> 8) & 0xff;
918 uart_update_timeout(uport, termios->c_cflag, baud);
920 uport->read_status_mask = Rx_OVR;
921 if (termios->c_iflag & INPCK)
922 uport->read_status_mask |= FRM_ERR | PAR_ERR;
923 if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
924 uport->read_status_mask |= Rx_BRK;
926 uport->ignore_status_mask = 0;
927 if (termios->c_iflag & IGNPAR)
928 uport->ignore_status_mask |= FRM_ERR | PAR_ERR;
929 if (termios->c_iflag & IGNBRK) {
930 uport->ignore_status_mask |= Rx_BRK;
931 if (termios->c_iflag & IGNPAR)
932 uport->ignore_status_mask |= Rx_OVR;
935 if (termios->c_cflag & CREAD)
936 zport->regs[3] |= RxENABLE;
938 zport->regs[3] &= ~RxENABLE;
940 if (zport != zport_a) {
941 if (!(termios->c_cflag & CLOCAL)) {
942 zport->regs[15] |= DCDIE;
944 zport->regs[15] &= ~DCDIE;
945 if (termios->c_cflag & CRTSCTS) {
946 zport->regs[15] |= CTSIE;
948 zport->regs[15] &= ~CTSIE;
949 zs_raw_xor_mctrl(zport);
952 /* Load up the new values. */
953 load_zsregs(zport, zport->regs, irq);
955 spin_unlock_irqrestore(&scc->zlock, flags);
960 * Required solely so that the initial PROM-based console
961 * works undisturbed in parallel with this one.
963 static void zs_pm(struct uart_port *uport, unsigned int state,
964 unsigned int oldstate)
966 struct zs_port *zport = to_zport(uport);
969 zport->regs[5] |= TxENAB;
971 zport->regs[5] &= ~TxENAB;
972 write_zsreg(zport, R5, zport->regs[5]);
976 static const char *zs_type(struct uart_port *uport)
981 static void zs_release_port(struct uart_port *uport)
983 iounmap(uport->membase);
984 uport->membase = NULL;
985 release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE);
988 static int zs_map_port(struct uart_port *uport)
991 uport->membase = ioremap(uport->mapbase,
993 if (!uport->membase) {
994 printk(KERN_ERR "zs: Cannot map MMIO\n");
1000 static int zs_request_port(struct uart_port *uport)
1004 if (!request_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE, "scc")) {
1005 printk(KERN_ERR "zs: Unable to reserve MMIO resource\n");
1008 ret = zs_map_port(uport);
1010 release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE);
1016 static void zs_config_port(struct uart_port *uport, int flags)
1018 struct zs_port *zport = to_zport(uport);
1020 if (flags & UART_CONFIG_TYPE) {
1021 if (zs_request_port(uport))
1024 uport->type = PORT_ZS;
1030 static int zs_verify_port(struct uart_port *uport, struct serial_struct *ser)
1032 struct zs_port *zport = to_zport(uport);
1035 if (ser->type != PORT_UNKNOWN && ser->type != PORT_ZS)
1037 if (ser->irq != uport->irq)
1039 if (ser->baud_base != uport->uartclk / zport->clk_mode / 4)
1045 static const struct uart_ops zs_ops = {
1046 .tx_empty = zs_tx_empty,
1047 .set_mctrl = zs_set_mctrl,
1048 .get_mctrl = zs_get_mctrl,
1049 .stop_tx = zs_stop_tx,
1050 .start_tx = zs_start_tx,
1051 .stop_rx = zs_stop_rx,
1052 .enable_ms = zs_enable_ms,
1053 .break_ctl = zs_break_ctl,
1054 .startup = zs_startup,
1055 .shutdown = zs_shutdown,
1056 .set_termios = zs_set_termios,
1059 .release_port = zs_release_port,
1060 .request_port = zs_request_port,
1061 .config_port = zs_config_port,
1062 .verify_port = zs_verify_port,
1066 * Initialize Z85C30 port structures.
1068 static int __init zs_probe_sccs(void)
1071 struct zs_parms zs_parms;
1072 int chip, side, irq;
1079 irq = dec_interrupt[DEC_IRQ_SCC0];
1081 zs_parms.scc[n_chips] = IOASIC_SCC0;
1082 zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC0];
1085 irq = dec_interrupt[DEC_IRQ_SCC1];
1087 zs_parms.scc[n_chips] = IOASIC_SCC1;
1088 zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC1];
1096 for (chip = 0; chip < n_chips; chip++) {
1097 spin_lock_init(&zs_sccs[chip].zlock);
1098 for (side = 0; side < ZS_NUM_CHAN; side++) {
1099 struct zs_port *zport = &zs_sccs[chip].zport[side];
1100 struct uart_port *uport = &zport->port;
1102 zport->scc = &zs_sccs[chip];
1103 zport->clk_mode = 16;
1105 uport->has_sysrq = IS_ENABLED(CONFIG_SERIAL_ZS_CONSOLE);
1106 uport->irq = zs_parms.irq[chip];
1107 uport->uartclk = ZS_CLOCK;
1108 uport->fifosize = 1;
1109 uport->iotype = UPIO_MEM;
1110 uport->flags = UPF_BOOT_AUTOCONF;
1111 uport->ops = &zs_ops;
1112 uport->line = chip * ZS_NUM_CHAN + side;
1113 uport->mapbase = dec_kn_slot_base +
1114 zs_parms.scc[chip] +
1115 (side ^ ZS_CHAN_B) * ZS_CHAN_IO_SIZE;
1117 for (i = 0; i < ZS_NUM_REGS; i++)
1118 zport->regs[i] = zs_init_regs[i];
1126 #ifdef CONFIG_SERIAL_ZS_CONSOLE
1127 static void zs_console_putchar(struct uart_port *uport, unsigned char ch)
1129 struct zs_port *zport = to_zport(uport);
1130 struct zs_scc *scc = zport->scc;
1132 unsigned long flags;
1134 spin_lock_irqsave(&scc->zlock, flags);
1135 irq = !irqs_disabled_flags(flags);
1136 if (zs_transmit_drain(zport, irq))
1137 write_zsdata(zport, ch);
1138 spin_unlock_irqrestore(&scc->zlock, flags);
1142 * Print a string to the serial port trying not to disturb
1143 * any possible real use of the port...
1145 static void zs_console_write(struct console *co, const char *s,
1148 int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
1149 struct zs_port *zport = &zs_sccs[chip].zport[side];
1150 struct zs_scc *scc = zport->scc;
1151 unsigned long flags;
1155 /* Disable transmit interrupts and enable the transmitter. */
1156 spin_lock_irqsave(&scc->zlock, flags);
1157 txint = zport->regs[1];
1158 txenb = zport->regs[5];
1159 if (txint & TxINT_ENAB) {
1160 zport->regs[1] = txint & ~TxINT_ENAB;
1161 write_zsreg(zport, R1, zport->regs[1]);
1163 if (!(txenb & TxENAB)) {
1164 zport->regs[5] = txenb | TxENAB;
1165 write_zsreg(zport, R5, zport->regs[5]);
1167 spin_unlock_irqrestore(&scc->zlock, flags);
1169 uart_console_write(&zport->port, s, count, zs_console_putchar);
1171 /* Restore transmit interrupts and the transmitter enable. */
1172 spin_lock_irqsave(&scc->zlock, flags);
1173 irq = !irqs_disabled_flags(flags);
1174 zs_line_drain(zport, irq);
1175 if (!(txenb & TxENAB)) {
1176 zport->regs[5] &= ~TxENAB;
1177 write_zsreg(zport, R5, zport->regs[5]);
1179 if (txint & TxINT_ENAB) {
1180 zport->regs[1] |= TxINT_ENAB;
1181 write_zsreg(zport, R1, zport->regs[1]);
1183 /* Resume any transmission as the TxIP bit won't be set. */
1184 if (!zport->tx_stopped)
1185 zs_raw_transmit_chars(zport);
1187 spin_unlock_irqrestore(&scc->zlock, flags);
1191 * Setup serial console baud/bits/parity. We do two things here:
1192 * - construct a cflag setting for the first uart_open()
1193 * - initialise the serial port
1194 * Return non-zero if we didn't find a serial port.
1196 static int __init zs_console_setup(struct console *co, char *options)
1198 int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
1199 struct zs_port *zport = &zs_sccs[chip].zport[side];
1200 struct uart_port *uport = &zport->port;
1207 ret = zs_map_port(uport);
1212 zs_pm(uport, 0, -1);
1215 uart_parse_options(options, &baud, &parity, &bits, &flow);
1216 return uart_set_options(uport, co, baud, parity, bits, flow);
1219 static struct uart_driver zs_reg;
1220 static struct console zs_console = {
1222 .write = zs_console_write,
1223 .device = uart_console_device,
1224 .setup = zs_console_setup,
1225 .flags = CON_PRINTBUFFER,
1233 static int __init zs_serial_console_init(void)
1237 ret = zs_probe_sccs();
1240 register_console(&zs_console);
1245 console_initcall(zs_serial_console_init);
1247 #define SERIAL_ZS_CONSOLE &zs_console
1249 #define SERIAL_ZS_CONSOLE NULL
1250 #endif /* CONFIG_SERIAL_ZS_CONSOLE */
1252 static struct uart_driver zs_reg = {
1253 .owner = THIS_MODULE,
1254 .driver_name = "serial",
1258 .nr = ZS_NUM_SCCS * ZS_NUM_CHAN,
1259 .cons = SERIAL_ZS_CONSOLE,
1262 /* zs_init inits the driver. */
1263 static int __init zs_init(void)
1267 pr_info("%s%s\n", zs_name, zs_version);
1269 /* Find out how many Z85C30 SCCs we have. */
1270 ret = zs_probe_sccs();
1274 ret = uart_register_driver(&zs_reg);
1278 for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
1279 struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
1280 struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
1281 struct uart_port *uport = &zport->port;
1284 uart_add_one_port(&zs_reg, uport);
1290 static void __exit zs_exit(void)
1294 for (i = ZS_NUM_SCCS * ZS_NUM_CHAN - 1; i >= 0; i--) {
1295 struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
1296 struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
1297 struct uart_port *uport = &zport->port;
1300 uart_remove_one_port(&zs_reg, uport);
1303 uart_unregister_driver(&zs_reg);
1306 module_init(zs_init);
1307 module_exit(zs_exit);