d66c1edd98926d5d410895ba8a39b1ed82d10340
[platform/kernel/linux-rpi.git] / drivers / tty / rocket.c
1 /*
2  * RocketPort device driver for Linux
3  *
4  * Written by Theodore Ts'o, 1995, 1996, 1997, 1998, 1999, 2000.
5  * 
6  * Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2003 by Comtrol, Inc.
7  * 
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2 of the
11  * License, or (at your option) any later version.
12  * 
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  * 
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 /*
24  * Kernel Synchronization:
25  *
26  * This driver has 2 kernel control paths - exception handlers (calls into the driver
27  * from user mode) and the timer bottom half (tasklet).  This is a polled driver, interrupts
28  * are not used.
29  *
30  * Critical data: 
31  * -  rp_table[], accessed through passed "info" pointers, is a global (static) array of 
32  *    serial port state information and the xmit_buf circular buffer.  Protected by 
33  *    a per port spinlock.
34  * -  xmit_flags[], an array of ints indexed by line (port) number, indicating that there
35  *    is data to be transmitted.  Protected by atomic bit operations.
36  * -  rp_num_ports, int indicating number of open ports, protected by atomic operations.
37  * 
38  * rp_write() and rp_write_char() functions use a per port semaphore to protect against
39  * simultaneous access to the same port by more than one process.
40  */
41
42 /****** Defines ******/
43 #define ROCKET_PARANOIA_CHECK
44 #define ROCKET_DISABLE_SIMUSAGE
45
46 #undef ROCKET_SOFT_FLOW
47 #undef ROCKET_DEBUG_OPEN
48 #undef ROCKET_DEBUG_INTR
49 #undef ROCKET_DEBUG_WRITE
50 #undef ROCKET_DEBUG_FLOW
51 #undef ROCKET_DEBUG_THROTTLE
52 #undef ROCKET_DEBUG_WAIT_UNTIL_SENT
53 #undef ROCKET_DEBUG_RECEIVE
54 #undef ROCKET_DEBUG_HANGUP
55 #undef REV_PCI_ORDER
56 #undef ROCKET_DEBUG_IO
57
58 #define POLL_PERIOD (HZ/100)    /*  Polling period .01 seconds (10ms) */
59
60 /****** Kernel includes ******/
61
62 #include <linux/module.h>
63 #include <linux/errno.h>
64 #include <linux/major.h>
65 #include <linux/kernel.h>
66 #include <linux/signal.h>
67 #include <linux/slab.h>
68 #include <linux/mm.h>
69 #include <linux/sched.h>
70 #include <linux/timer.h>
71 #include <linux/interrupt.h>
72 #include <linux/tty.h>
73 #include <linux/tty_driver.h>
74 #include <linux/tty_flip.h>
75 #include <linux/serial.h>
76 #include <linux/string.h>
77 #include <linux/fcntl.h>
78 #include <linux/ptrace.h>
79 #include <linux/mutex.h>
80 #include <linux/ioport.h>
81 #include <linux/delay.h>
82 #include <linux/completion.h>
83 #include <linux/wait.h>
84 #include <linux/pci.h>
85 #include <linux/uaccess.h>
86 #include <linux/atomic.h>
87 #include <asm/unaligned.h>
88 #include <linux/bitops.h>
89 #include <linux/spinlock.h>
90 #include <linux/init.h>
91
92 /****** RocketPort includes ******/
93
94 #include "rocket_int.h"
95 #include "rocket.h"
96
97 #define ROCKET_VERSION "2.09"
98 #define ROCKET_DATE "12-June-2003"
99
100 /****** RocketPort Local Variables ******/
101
102 static void rp_do_poll(unsigned long dummy);
103
104 static struct tty_driver *rocket_driver;
105
106 static struct rocket_version driver_version = { 
107         ROCKET_VERSION, ROCKET_DATE
108 };
109
110 static struct r_port *rp_table[MAX_RP_PORTS];          /*  The main repository of serial port state information. */
111 static unsigned int xmit_flags[NUM_BOARDS];            /*  Bit significant, indicates port had data to transmit. */
112                                                        /*  eg.  Bit 0 indicates port 0 has xmit data, ...        */
113 static atomic_t rp_num_ports_open;                     /*  Number of serial ports open                           */
114 static DEFINE_TIMER(rocket_timer, rp_do_poll, 0, 0);
115
116 static unsigned long board1;                           /* ISA addresses, retrieved from rocketport.conf          */
117 static unsigned long board2;
118 static unsigned long board3;
119 static unsigned long board4;
120 static unsigned long controller;
121 static bool support_low_speed;
122 static unsigned long modem1;
123 static unsigned long modem2;
124 static unsigned long modem3;
125 static unsigned long modem4;
126 static unsigned long pc104_1[8];
127 static unsigned long pc104_2[8];
128 static unsigned long pc104_3[8];
129 static unsigned long pc104_4[8];
130 static unsigned long *pc104[4] = { pc104_1, pc104_2, pc104_3, pc104_4 };
131
132 static int rp_baud_base[NUM_BOARDS];                   /*  Board config info (Someday make a per-board structure)  */
133 static unsigned long rcktpt_io_addr[NUM_BOARDS];
134 static int rcktpt_type[NUM_BOARDS];
135 static int is_PCI[NUM_BOARDS];
136 static rocketModel_t rocketModel[NUM_BOARDS];
137 static int max_board;
138 static const struct tty_port_operations rocket_port_ops;
139
140 /*
141  * The following arrays define the interrupt bits corresponding to each AIOP.
142  * These bits are different between the ISA and regular PCI boards and the
143  * Universal PCI boards.
144  */
145
146 static Word_t aiop_intr_bits[AIOP_CTL_SIZE] = {
147         AIOP_INTR_BIT_0,
148         AIOP_INTR_BIT_1,
149         AIOP_INTR_BIT_2,
150         AIOP_INTR_BIT_3
151 };
152
153 #ifdef CONFIG_PCI
154 static Word_t upci_aiop_intr_bits[AIOP_CTL_SIZE] = {
155         UPCI_AIOP_INTR_BIT_0,
156         UPCI_AIOP_INTR_BIT_1,
157         UPCI_AIOP_INTR_BIT_2,
158         UPCI_AIOP_INTR_BIT_3
159 };
160 #endif
161
162 static Byte_t RData[RDATASIZE] = {
163         0x00, 0x09, 0xf6, 0x82,
164         0x02, 0x09, 0x86, 0xfb,
165         0x04, 0x09, 0x00, 0x0a,
166         0x06, 0x09, 0x01, 0x0a,
167         0x08, 0x09, 0x8a, 0x13,
168         0x0a, 0x09, 0xc5, 0x11,
169         0x0c, 0x09, 0x86, 0x85,
170         0x0e, 0x09, 0x20, 0x0a,
171         0x10, 0x09, 0x21, 0x0a,
172         0x12, 0x09, 0x41, 0xff,
173         0x14, 0x09, 0x82, 0x00,
174         0x16, 0x09, 0x82, 0x7b,
175         0x18, 0x09, 0x8a, 0x7d,
176         0x1a, 0x09, 0x88, 0x81,
177         0x1c, 0x09, 0x86, 0x7a,
178         0x1e, 0x09, 0x84, 0x81,
179         0x20, 0x09, 0x82, 0x7c,
180         0x22, 0x09, 0x0a, 0x0a
181 };
182
183 static Byte_t RRegData[RREGDATASIZE] = {
184         0x00, 0x09, 0xf6, 0x82, /* 00: Stop Rx processor */
185         0x08, 0x09, 0x8a, 0x13, /* 04: Tx software flow control */
186         0x0a, 0x09, 0xc5, 0x11, /* 08: XON char */
187         0x0c, 0x09, 0x86, 0x85, /* 0c: XANY */
188         0x12, 0x09, 0x41, 0xff, /* 10: Rx mask char */
189         0x14, 0x09, 0x82, 0x00, /* 14: Compare/Ignore #0 */
190         0x16, 0x09, 0x82, 0x7b, /* 18: Compare #1 */
191         0x18, 0x09, 0x8a, 0x7d, /* 1c: Compare #2 */
192         0x1a, 0x09, 0x88, 0x81, /* 20: Interrupt #1 */
193         0x1c, 0x09, 0x86, 0x7a, /* 24: Ignore/Replace #1 */
194         0x1e, 0x09, 0x84, 0x81, /* 28: Interrupt #2 */
195         0x20, 0x09, 0x82, 0x7c, /* 2c: Ignore/Replace #2 */
196         0x22, 0x09, 0x0a, 0x0a  /* 30: Rx FIFO Enable */
197 };
198
199 static CONTROLLER_T sController[CTL_SIZE] = {
200         {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
201          {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
202         {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
203          {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
204         {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
205          {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
206         {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
207          {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}
208 };
209
210 static Byte_t sBitMapClrTbl[8] = {
211         0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f
212 };
213
214 static Byte_t sBitMapSetTbl[8] = {
215         0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80
216 };
217
218 static int sClockPrescale = 0x14;
219
220 /*
221  *  Line number is the ttySIx number (x), the Minor number.  We 
222  *  assign them sequentially, starting at zero.  The following 
223  *  array keeps track of the line number assigned to a given board/aiop/channel.
224  */
225 static unsigned char lineNumbers[MAX_RP_PORTS];
226 static unsigned long nextLineNumber;
227
228 /*****  RocketPort Static Prototypes   *********/
229 static int __init init_ISA(int i);
230 static void rp_wait_until_sent(struct tty_struct *tty, int timeout);
231 static void rp_flush_buffer(struct tty_struct *tty);
232 static unsigned char GetLineNumber(int ctrl, int aiop, int ch);
233 static unsigned char SetLineNumber(int ctrl, int aiop, int ch);
234 static void rp_start(struct tty_struct *tty);
235 static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
236                      int ChanNum);
237 static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode);
238 static void sFlushRxFIFO(CHANNEL_T * ChP);
239 static void sFlushTxFIFO(CHANNEL_T * ChP);
240 static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags);
241 static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags);
242 static void sModemReset(CONTROLLER_T * CtlP, int chan, int on);
243 static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on);
244 static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data);
245 static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
246                            ByteIO_t * AiopIOList, int AiopIOListSize,
247                            int IRQNum, Byte_t Frequency, int PeriodicOnly);
248 static int sReadAiopID(ByteIO_t io);
249 static int sReadAiopNumChan(WordIO_t io);
250
251 MODULE_AUTHOR("Theodore Ts'o");
252 MODULE_DESCRIPTION("Comtrol RocketPort driver");
253 module_param(board1, ulong, 0);
254 MODULE_PARM_DESC(board1, "I/O port for (ISA) board #1");
255 module_param(board2, ulong, 0);
256 MODULE_PARM_DESC(board2, "I/O port for (ISA) board #2");
257 module_param(board3, ulong, 0);
258 MODULE_PARM_DESC(board3, "I/O port for (ISA) board #3");
259 module_param(board4, ulong, 0);
260 MODULE_PARM_DESC(board4, "I/O port for (ISA) board #4");
261 module_param(controller, ulong, 0);
262 MODULE_PARM_DESC(controller, "I/O port for (ISA) rocketport controller");
263 module_param(support_low_speed, bool, 0);
264 MODULE_PARM_DESC(support_low_speed, "1 means support 50 baud, 0 means support 460400 baud");
265 module_param(modem1, ulong, 0);
266 MODULE_PARM_DESC(modem1, "1 means (ISA) board #1 is a RocketModem");
267 module_param(modem2, ulong, 0);
268 MODULE_PARM_DESC(modem2, "1 means (ISA) board #2 is a RocketModem");
269 module_param(modem3, ulong, 0);
270 MODULE_PARM_DESC(modem3, "1 means (ISA) board #3 is a RocketModem");
271 module_param(modem4, ulong, 0);
272 MODULE_PARM_DESC(modem4, "1 means (ISA) board #4 is a RocketModem");
273 module_param_array(pc104_1, ulong, NULL, 0);
274 MODULE_PARM_DESC(pc104_1, "set interface types for ISA(PC104) board #1 (e.g. pc104_1=232,232,485,485,...");
275 module_param_array(pc104_2, ulong, NULL, 0);
276 MODULE_PARM_DESC(pc104_2, "set interface types for ISA(PC104) board #2 (e.g. pc104_2=232,232,485,485,...");
277 module_param_array(pc104_3, ulong, NULL, 0);
278 MODULE_PARM_DESC(pc104_3, "set interface types for ISA(PC104) board #3 (e.g. pc104_3=232,232,485,485,...");
279 module_param_array(pc104_4, ulong, NULL, 0);
280 MODULE_PARM_DESC(pc104_4, "set interface types for ISA(PC104) board #4 (e.g. pc104_4=232,232,485,485,...");
281
282 static int rp_init(void);
283 static void rp_cleanup_module(void);
284
285 module_init(rp_init);
286 module_exit(rp_cleanup_module);
287
288
289 MODULE_LICENSE("Dual BSD/GPL");
290
291 /*************************************************************************/
292 /*                     Module code starts here                           */
293
294 static inline int rocket_paranoia_check(struct r_port *info,
295                                         const char *routine)
296 {
297 #ifdef ROCKET_PARANOIA_CHECK
298         if (!info)
299                 return 1;
300         if (info->magic != RPORT_MAGIC) {
301                 printk(KERN_WARNING "Warning: bad magic number for rocketport "
302                                 "struct in %s\n", routine);
303                 return 1;
304         }
305 #endif
306         return 0;
307 }
308
309
310 /*  Serial port receive data function.  Called (from timer poll) when an AIOPIC signals 
311  *  that receive data is present on a serial port.  Pulls data from FIFO, moves it into the 
312  *  tty layer.  
313  */
314 static void rp_do_receive(struct r_port *info, CHANNEL_t *cp,
315                 unsigned int ChanStatus)
316 {
317         unsigned int CharNStat;
318         int ToRecv, wRecv, space;
319         unsigned char *cbuf;
320
321         ToRecv = sGetRxCnt(cp);
322 #ifdef ROCKET_DEBUG_INTR
323         printk(KERN_INFO "rp_do_receive(%d)...\n", ToRecv);
324 #endif
325         if (ToRecv == 0)
326                 return;
327
328         /*
329          * if status indicates there are errored characters in the
330          * FIFO, then enter status mode (a word in FIFO holds
331          * character and status).
332          */
333         if (ChanStatus & (RXFOVERFL | RXBREAK | RXFRAME | RXPARITY)) {
334                 if (!(ChanStatus & STATMODE)) {
335 #ifdef ROCKET_DEBUG_RECEIVE
336                         printk(KERN_INFO "Entering STATMODE...\n");
337 #endif
338                         ChanStatus |= STATMODE;
339                         sEnRxStatusMode(cp);
340                 }
341         }
342
343         /* 
344          * if we previously entered status mode, then read down the
345          * FIFO one word at a time, pulling apart the character and
346          * the status.  Update error counters depending on status
347          */
348         if (ChanStatus & STATMODE) {
349 #ifdef ROCKET_DEBUG_RECEIVE
350                 printk(KERN_INFO "Ignore %x, read %x...\n",
351                         info->ignore_status_mask, info->read_status_mask);
352 #endif
353                 while (ToRecv) {
354                         char flag;
355
356                         CharNStat = sInW(sGetTxRxDataIO(cp));
357 #ifdef ROCKET_DEBUG_RECEIVE
358                         printk(KERN_INFO "%x...\n", CharNStat);
359 #endif
360                         if (CharNStat & STMBREAKH)
361                                 CharNStat &= ~(STMFRAMEH | STMPARITYH);
362                         if (CharNStat & info->ignore_status_mask) {
363                                 ToRecv--;
364                                 continue;
365                         }
366                         CharNStat &= info->read_status_mask;
367                         if (CharNStat & STMBREAKH)
368                                 flag = TTY_BREAK;
369                         else if (CharNStat & STMPARITYH)
370                                 flag = TTY_PARITY;
371                         else if (CharNStat & STMFRAMEH)
372                                 flag = TTY_FRAME;
373                         else if (CharNStat & STMRCVROVRH)
374                                 flag = TTY_OVERRUN;
375                         else
376                                 flag = TTY_NORMAL;
377                         tty_insert_flip_char(&info->port, CharNStat & 0xff,
378                                         flag);
379                         ToRecv--;
380                 }
381
382                 /*
383                  * after we've emptied the FIFO in status mode, turn
384                  * status mode back off
385                  */
386                 if (sGetRxCnt(cp) == 0) {
387 #ifdef ROCKET_DEBUG_RECEIVE
388                         printk(KERN_INFO "Status mode off.\n");
389 #endif
390                         sDisRxStatusMode(cp);
391                 }
392         } else {
393                 /*
394                  * we aren't in status mode, so read down the FIFO two
395                  * characters at time by doing repeated word IO
396                  * transfer.
397                  */
398                 space = tty_prepare_flip_string(&info->port, &cbuf, ToRecv);
399                 if (space < ToRecv) {
400 #ifdef ROCKET_DEBUG_RECEIVE
401                         printk(KERN_INFO "rp_do_receive:insufficient space ToRecv=%d space=%d\n", ToRecv, space);
402 #endif
403                         if (space <= 0)
404                                 return;
405                         ToRecv = space;
406                 }
407                 wRecv = ToRecv >> 1;
408                 if (wRecv)
409                         sInStrW(sGetTxRxDataIO(cp), (unsigned short *) cbuf, wRecv);
410                 if (ToRecv & 1)
411                         cbuf[ToRecv - 1] = sInB(sGetTxRxDataIO(cp));
412         }
413         /*  Push the data up to the tty layer */
414         tty_flip_buffer_push(&info->port);
415 }
416
417 /*
418  *  Serial port transmit data function.  Called from the timer polling loop as a 
419  *  result of a bit set in xmit_flags[], indicating data (from the tty layer) is ready
420  *  to be sent out the serial port.  Data is buffered in rp_table[line].xmit_buf, it is 
421  *  moved to the port's xmit FIFO.  *info is critical data, protected by spinlocks.
422  */
423 static void rp_do_transmit(struct r_port *info)
424 {
425         int c;
426         CHANNEL_t *cp = &info->channel;
427         struct tty_struct *tty;
428         unsigned long flags;
429
430 #ifdef ROCKET_DEBUG_INTR
431         printk(KERN_DEBUG "%s\n", __func__);
432 #endif
433         if (!info)
434                 return;
435         tty = tty_port_tty_get(&info->port);
436
437         if (tty == NULL) {
438                 printk(KERN_WARNING "rp: WARNING %s called with tty==NULL\n", __func__);
439                 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
440                 return;
441         }
442
443         spin_lock_irqsave(&info->slock, flags);
444         info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
445
446         /*  Loop sending data to FIFO until done or FIFO full */
447         while (1) {
448                 if (tty->stopped)
449                         break;
450                 c = min(info->xmit_fifo_room, info->xmit_cnt);
451                 c = min(c, XMIT_BUF_SIZE - info->xmit_tail);
452                 if (c <= 0 || info->xmit_fifo_room <= 0)
453                         break;
454                 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) (info->xmit_buf + info->xmit_tail), c / 2);
455                 if (c & 1)
456                         sOutB(sGetTxRxDataIO(cp), info->xmit_buf[info->xmit_tail + c - 1]);
457                 info->xmit_tail += c;
458                 info->xmit_tail &= XMIT_BUF_SIZE - 1;
459                 info->xmit_cnt -= c;
460                 info->xmit_fifo_room -= c;
461 #ifdef ROCKET_DEBUG_INTR
462                 printk(KERN_INFO "tx %d chars...\n", c);
463 #endif
464         }
465
466         if (info->xmit_cnt == 0)
467                 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
468
469         if (info->xmit_cnt < WAKEUP_CHARS) {
470                 tty_wakeup(tty);
471 #ifdef ROCKETPORT_HAVE_POLL_WAIT
472                 wake_up_interruptible(&tty->poll_wait);
473 #endif
474         }
475
476         spin_unlock_irqrestore(&info->slock, flags);
477         tty_kref_put(tty);
478
479 #ifdef ROCKET_DEBUG_INTR
480         printk(KERN_DEBUG "(%d,%d,%d,%d)...\n", info->xmit_cnt, info->xmit_head,
481                info->xmit_tail, info->xmit_fifo_room);
482 #endif
483 }
484
485 /*
486  *  Called when a serial port signals it has read data in it's RX FIFO.
487  *  It checks what interrupts are pending and services them, including
488  *  receiving serial data.  
489  */
490 static void rp_handle_port(struct r_port *info)
491 {
492         CHANNEL_t *cp;
493         unsigned int IntMask, ChanStatus;
494
495         if (!info)
496                 return;
497
498         if (!tty_port_initialized(&info->port)) {
499                 printk(KERN_WARNING "rp: WARNING: rp_handle_port called with "
500                                 "info->flags & NOT_INIT\n");
501                 return;
502         }
503
504         cp = &info->channel;
505
506         IntMask = sGetChanIntID(cp) & info->intmask;
507 #ifdef ROCKET_DEBUG_INTR
508         printk(KERN_INFO "rp_interrupt %02x...\n", IntMask);
509 #endif
510         ChanStatus = sGetChanStatus(cp);
511         if (IntMask & RXF_TRIG) {       /* Rx FIFO trigger level */
512                 rp_do_receive(info, cp, ChanStatus);
513         }
514         if (IntMask & DELTA_CD) {       /* CD change  */
515 #if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_INTR) || defined(ROCKET_DEBUG_HANGUP))
516                 printk(KERN_INFO "ttyR%d CD now %s...\n", info->line,
517                        (ChanStatus & CD_ACT) ? "on" : "off");
518 #endif
519                 if (!(ChanStatus & CD_ACT) && info->cd_status) {
520 #ifdef ROCKET_DEBUG_HANGUP
521                         printk(KERN_INFO "CD drop, calling hangup.\n");
522 #endif
523                         tty_port_tty_hangup(&info->port, false);
524                 }
525                 info->cd_status = (ChanStatus & CD_ACT) ? 1 : 0;
526                 wake_up_interruptible(&info->port.open_wait);
527         }
528 #ifdef ROCKET_DEBUG_INTR
529         if (IntMask & DELTA_CTS) {      /* CTS change */
530                 printk(KERN_INFO "CTS change...\n");
531         }
532         if (IntMask & DELTA_DSR) {      /* DSR change */
533                 printk(KERN_INFO "DSR change...\n");
534         }
535 #endif
536 }
537
538 /*
539  *  The top level polling routine.  Repeats every 1/100 HZ (10ms).
540  */
541 static void rp_do_poll(unsigned long dummy)
542 {
543         CONTROLLER_t *ctlp;
544         int ctrl, aiop, ch, line;
545         unsigned int xmitmask, i;
546         unsigned int CtlMask;
547         unsigned char AiopMask;
548         Word_t bit;
549
550         /*  Walk through all the boards (ctrl's) */
551         for (ctrl = 0; ctrl < max_board; ctrl++) {
552                 if (rcktpt_io_addr[ctrl] <= 0)
553                         continue;
554
555                 /*  Get a ptr to the board's control struct */
556                 ctlp = sCtlNumToCtlPtr(ctrl);
557
558                 /*  Get the interrupt status from the board */
559 #ifdef CONFIG_PCI
560                 if (ctlp->BusType == isPCI)
561                         CtlMask = sPCIGetControllerIntStatus(ctlp);
562                 else
563 #endif
564                         CtlMask = sGetControllerIntStatus(ctlp);
565
566                 /*  Check if any AIOP read bits are set */
567                 for (aiop = 0; CtlMask; aiop++) {
568                         bit = ctlp->AiopIntrBits[aiop];
569                         if (CtlMask & bit) {
570                                 CtlMask &= ~bit;
571                                 AiopMask = sGetAiopIntStatus(ctlp, aiop);
572
573                                 /*  Check if any port read bits are set */
574                                 for (ch = 0; AiopMask;  AiopMask >>= 1, ch++) {
575                                         if (AiopMask & 1) {
576
577                                                 /*  Get the line number (/dev/ttyRx number). */
578                                                 /*  Read the data from the port. */
579                                                 line = GetLineNumber(ctrl, aiop, ch);
580                                                 rp_handle_port(rp_table[line]);
581                                         }
582                                 }
583                         }
584                 }
585
586                 xmitmask = xmit_flags[ctrl];
587
588                 /*
589                  *  xmit_flags contains bit-significant flags, indicating there is data
590                  *  to xmit on the port. Bit 0 is port 0 on this board, bit 1 is port 
591                  *  1, ... (32 total possible).  The variable i has the aiop and ch 
592                  *  numbers encoded in it (port 0-7 are aiop0, 8-15 are aiop1, etc).
593                  */
594                 if (xmitmask) {
595                         for (i = 0; i < rocketModel[ctrl].numPorts; i++) {
596                                 if (xmitmask & (1 << i)) {
597                                         aiop = (i & 0x18) >> 3;
598                                         ch = i & 0x07;
599                                         line = GetLineNumber(ctrl, aiop, ch);
600                                         rp_do_transmit(rp_table[line]);
601                                 }
602                         }
603                 }
604         }
605
606         /*
607          * Reset the timer so we get called at the next clock tick (10ms).
608          */
609         if (atomic_read(&rp_num_ports_open))
610                 mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
611 }
612
613 /*
614  *  Initializes the r_port structure for a port, as well as enabling the port on 
615  *  the board.  
616  *  Inputs:  board, aiop, chan numbers
617  */
618 static void __init
619 init_r_port(int board, int aiop, int chan, struct pci_dev *pci_dev)
620 {
621         unsigned rocketMode;
622         struct r_port *info;
623         int line;
624         CONTROLLER_T *ctlp;
625
626         /*  Get the next available line number */
627         line = SetLineNumber(board, aiop, chan);
628
629         ctlp = sCtlNumToCtlPtr(board);
630
631         /*  Get a r_port struct for the port, fill it in and save it globally, indexed by line number */
632         info = kzalloc(sizeof (struct r_port), GFP_KERNEL);
633         if (!info) {
634                 printk(KERN_ERR "Couldn't allocate info struct for line #%d\n",
635                                 line);
636                 return;
637         }
638
639         info->magic = RPORT_MAGIC;
640         info->line = line;
641         info->ctlp = ctlp;
642         info->board = board;
643         info->aiop = aiop;
644         info->chan = chan;
645         tty_port_init(&info->port);
646         info->port.ops = &rocket_port_ops;
647         info->flags &= ~ROCKET_MODE_MASK;
648         switch (pc104[board][line]) {
649         case 422:
650                 info->flags |= ROCKET_MODE_RS422;
651                 break;
652         case 485:
653                 info->flags |= ROCKET_MODE_RS485;
654                 break;
655         case 232:
656         default:
657                 info->flags |= ROCKET_MODE_RS232;
658                 break;
659         }
660
661         info->intmask = RXF_TRIG | TXFIFO_MT | SRC_INT | DELTA_CD | DELTA_CTS | DELTA_DSR;
662         if (sInitChan(ctlp, &info->channel, aiop, chan) == 0) {
663                 printk(KERN_ERR "RocketPort sInitChan(%d, %d, %d) failed!\n",
664                                 board, aiop, chan);
665                 tty_port_destroy(&info->port);
666                 kfree(info);
667                 return;
668         }
669
670         rocketMode = info->flags & ROCKET_MODE_MASK;
671
672         if ((info->flags & ROCKET_RTS_TOGGLE) || (rocketMode == ROCKET_MODE_RS485))
673                 sEnRTSToggle(&info->channel);
674         else
675                 sDisRTSToggle(&info->channel);
676
677         if (ctlp->boardType == ROCKET_TYPE_PC104) {
678                 switch (rocketMode) {
679                 case ROCKET_MODE_RS485:
680                         sSetInterfaceMode(&info->channel, InterfaceModeRS485);
681                         break;
682                 case ROCKET_MODE_RS422:
683                         sSetInterfaceMode(&info->channel, InterfaceModeRS422);
684                         break;
685                 case ROCKET_MODE_RS232:
686                 default:
687                         if (info->flags & ROCKET_RTS_TOGGLE)
688                                 sSetInterfaceMode(&info->channel, InterfaceModeRS232T);
689                         else
690                                 sSetInterfaceMode(&info->channel, InterfaceModeRS232);
691                         break;
692                 }
693         }
694         spin_lock_init(&info->slock);
695         mutex_init(&info->write_mtx);
696         rp_table[line] = info;
697         tty_port_register_device(&info->port, rocket_driver, line,
698                         pci_dev ? &pci_dev->dev : NULL);
699 }
700
701 /*
702  *  Configures a rocketport port according to its termio settings.  Called from 
703  *  user mode into the driver (exception handler).  *info CD manipulation is spinlock protected.
704  */
705 static void configure_r_port(struct tty_struct *tty, struct r_port *info,
706                              struct ktermios *old_termios)
707 {
708         unsigned cflag;
709         unsigned long flags;
710         unsigned rocketMode;
711         int bits, baud, divisor;
712         CHANNEL_t *cp;
713         struct ktermios *t = &tty->termios;
714
715         cp = &info->channel;
716         cflag = t->c_cflag;
717
718         /* Byte size and parity */
719         if ((cflag & CSIZE) == CS8) {
720                 sSetData8(cp);
721                 bits = 10;
722         } else {
723                 sSetData7(cp);
724                 bits = 9;
725         }
726         if (cflag & CSTOPB) {
727                 sSetStop2(cp);
728                 bits++;
729         } else {
730                 sSetStop1(cp);
731         }
732
733         if (cflag & PARENB) {
734                 sEnParity(cp);
735                 bits++;
736                 if (cflag & PARODD) {
737                         sSetOddParity(cp);
738                 } else {
739                         sSetEvenParity(cp);
740                 }
741         } else {
742                 sDisParity(cp);
743         }
744
745         /* baud rate */
746         baud = tty_get_baud_rate(tty);
747         if (!baud)
748                 baud = 9600;
749         divisor = ((rp_baud_base[info->board] + (baud >> 1)) / baud) - 1;
750         if ((divisor >= 8192 || divisor < 0) && old_termios) {
751                 baud = tty_termios_baud_rate(old_termios);
752                 if (!baud)
753                         baud = 9600;
754                 divisor = (rp_baud_base[info->board] / baud) - 1;
755         }
756         if (divisor >= 8192 || divisor < 0) {
757                 baud = 9600;
758                 divisor = (rp_baud_base[info->board] / baud) - 1;
759         }
760         info->cps = baud / bits;
761         sSetBaud(cp, divisor);
762
763         /* FIXME: Should really back compute a baud rate from the divisor */
764         tty_encode_baud_rate(tty, baud, baud);
765
766         if (cflag & CRTSCTS) {
767                 info->intmask |= DELTA_CTS;
768                 sEnCTSFlowCtl(cp);
769         } else {
770                 info->intmask &= ~DELTA_CTS;
771                 sDisCTSFlowCtl(cp);
772         }
773         if (cflag & CLOCAL) {
774                 info->intmask &= ~DELTA_CD;
775         } else {
776                 spin_lock_irqsave(&info->slock, flags);
777                 if (sGetChanStatus(cp) & CD_ACT)
778                         info->cd_status = 1;
779                 else
780                         info->cd_status = 0;
781                 info->intmask |= DELTA_CD;
782                 spin_unlock_irqrestore(&info->slock, flags);
783         }
784
785         /*
786          * Handle software flow control in the board
787          */
788 #ifdef ROCKET_SOFT_FLOW
789         if (I_IXON(tty)) {
790                 sEnTxSoftFlowCtl(cp);
791                 if (I_IXANY(tty)) {
792                         sEnIXANY(cp);
793                 } else {
794                         sDisIXANY(cp);
795                 }
796                 sSetTxXONChar(cp, START_CHAR(tty));
797                 sSetTxXOFFChar(cp, STOP_CHAR(tty));
798         } else {
799                 sDisTxSoftFlowCtl(cp);
800                 sDisIXANY(cp);
801                 sClrTxXOFF(cp);
802         }
803 #endif
804
805         /*
806          * Set up ignore/read mask words
807          */
808         info->read_status_mask = STMRCVROVRH | 0xFF;
809         if (I_INPCK(tty))
810                 info->read_status_mask |= STMFRAMEH | STMPARITYH;
811         if (I_BRKINT(tty) || I_PARMRK(tty))
812                 info->read_status_mask |= STMBREAKH;
813
814         /*
815          * Characters to ignore
816          */
817         info->ignore_status_mask = 0;
818         if (I_IGNPAR(tty))
819                 info->ignore_status_mask |= STMFRAMEH | STMPARITYH;
820         if (I_IGNBRK(tty)) {
821                 info->ignore_status_mask |= STMBREAKH;
822                 /*
823                  * If we're ignoring parity and break indicators,
824                  * ignore overruns too.  (For real raw support).
825                  */
826                 if (I_IGNPAR(tty))
827                         info->ignore_status_mask |= STMRCVROVRH;
828         }
829
830         rocketMode = info->flags & ROCKET_MODE_MASK;
831
832         if ((info->flags & ROCKET_RTS_TOGGLE)
833             || (rocketMode == ROCKET_MODE_RS485))
834                 sEnRTSToggle(cp);
835         else
836                 sDisRTSToggle(cp);
837
838         sSetRTS(&info->channel);
839
840         if (cp->CtlP->boardType == ROCKET_TYPE_PC104) {
841                 switch (rocketMode) {
842                 case ROCKET_MODE_RS485:
843                         sSetInterfaceMode(cp, InterfaceModeRS485);
844                         break;
845                 case ROCKET_MODE_RS422:
846                         sSetInterfaceMode(cp, InterfaceModeRS422);
847                         break;
848                 case ROCKET_MODE_RS232:
849                 default:
850                         if (info->flags & ROCKET_RTS_TOGGLE)
851                                 sSetInterfaceMode(cp, InterfaceModeRS232T);
852                         else
853                                 sSetInterfaceMode(cp, InterfaceModeRS232);
854                         break;
855                 }
856         }
857 }
858
859 static int carrier_raised(struct tty_port *port)
860 {
861         struct r_port *info = container_of(port, struct r_port, port);
862         return (sGetChanStatusLo(&info->channel) & CD_ACT) ? 1 : 0;
863 }
864
865 static void dtr_rts(struct tty_port *port, int on)
866 {
867         struct r_port *info = container_of(port, struct r_port, port);
868         if (on) {
869                 sSetDTR(&info->channel);
870                 sSetRTS(&info->channel);
871         } else {
872                 sClrDTR(&info->channel);
873                 sClrRTS(&info->channel);
874         }
875 }
876
877 /*
878  *  Exception handler that opens a serial port.  Creates xmit_buf storage, fills in 
879  *  port's r_port struct.  Initializes the port hardware.  
880  */
881 static int rp_open(struct tty_struct *tty, struct file *filp)
882 {
883         struct r_port *info;
884         struct tty_port *port;
885         int retval;
886         CHANNEL_t *cp;
887         unsigned long page;
888
889         info = rp_table[tty->index];
890         if (info == NULL)
891                 return -ENXIO;
892         port = &info->port;
893         
894         page = __get_free_page(GFP_KERNEL);
895         if (!page)
896                 return -ENOMEM;
897
898         /*
899          * We must not sleep from here until the port is marked fully in use.
900          */
901         if (info->xmit_buf)
902                 free_page(page);
903         else
904                 info->xmit_buf = (unsigned char *) page;
905
906         tty->driver_data = info;
907         tty_port_tty_set(port, tty);
908
909         if (port->count++ == 0) {
910                 atomic_inc(&rp_num_ports_open);
911
912 #ifdef ROCKET_DEBUG_OPEN
913                 printk(KERN_INFO "rocket mod++ = %d...\n",
914                                 atomic_read(&rp_num_ports_open));
915 #endif
916         }
917 #ifdef ROCKET_DEBUG_OPEN
918         printk(KERN_INFO "rp_open ttyR%d, count=%d\n", info->line, info->port.count);
919 #endif
920
921         /*
922          * Info->count is now 1; so it's safe to sleep now.
923          */
924         if (!tty_port_initialized(port)) {
925                 cp = &info->channel;
926                 sSetRxTrigger(cp, TRIG_1);
927                 if (sGetChanStatus(cp) & CD_ACT)
928                         info->cd_status = 1;
929                 else
930                         info->cd_status = 0;
931                 sDisRxStatusMode(cp);
932                 sFlushRxFIFO(cp);
933                 sFlushTxFIFO(cp);
934
935                 sEnInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
936                 sSetRxTrigger(cp, TRIG_1);
937
938                 sGetChanStatus(cp);
939                 sDisRxStatusMode(cp);
940                 sClrTxXOFF(cp);
941
942                 sDisCTSFlowCtl(cp);
943                 sDisTxSoftFlowCtl(cp);
944
945                 sEnRxFIFO(cp);
946                 sEnTransmit(cp);
947
948                 tty_port_set_initialized(&info->port, 1);
949
950                 /*
951                  * Set up the tty->alt_speed kludge
952                  */
953                 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI)
954                         tty->alt_speed = 57600;
955                 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI)
956                         tty->alt_speed = 115200;
957                 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI)
958                         tty->alt_speed = 230400;
959                 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP)
960                         tty->alt_speed = 460800;
961
962                 configure_r_port(tty, info, NULL);
963                 if (C_BAUD(tty)) {
964                         sSetDTR(cp);
965                         sSetRTS(cp);
966                 }
967         }
968         /*  Starts (or resets) the maint polling loop */
969         mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
970
971         retval = tty_port_block_til_ready(port, tty, filp);
972         if (retval) {
973 #ifdef ROCKET_DEBUG_OPEN
974                 printk(KERN_INFO "rp_open returning after block_til_ready with %d\n", retval);
975 #endif
976                 return retval;
977         }
978         return 0;
979 }
980
981 /*
982  *  Exception handler that closes a serial port. info->port.count is considered critical.
983  */
984 static void rp_close(struct tty_struct *tty, struct file *filp)
985 {
986         struct r_port *info = tty->driver_data;
987         struct tty_port *port = &info->port;
988         int timeout;
989         CHANNEL_t *cp;
990         
991         if (rocket_paranoia_check(info, "rp_close"))
992                 return;
993
994 #ifdef ROCKET_DEBUG_OPEN
995         printk(KERN_INFO "rp_close ttyR%d, count = %d\n", info->line, info->port.count);
996 #endif
997
998         if (tty_port_close_start(port, tty, filp) == 0)
999                 return;
1000
1001         mutex_lock(&port->mutex);
1002         cp = &info->channel;
1003         /*
1004          * Before we drop DTR, make sure the UART transmitter
1005          * has completely drained; this is especially
1006          * important if there is a transmit FIFO!
1007          */
1008         timeout = (sGetTxCnt(cp) + 1) * HZ / info->cps;
1009         if (timeout == 0)
1010                 timeout = 1;
1011         rp_wait_until_sent(tty, timeout);
1012         clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1013
1014         sDisTransmit(cp);
1015         sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1016         sDisCTSFlowCtl(cp);
1017         sDisTxSoftFlowCtl(cp);
1018         sClrTxXOFF(cp);
1019         sFlushRxFIFO(cp);
1020         sFlushTxFIFO(cp);
1021         sClrRTS(cp);
1022         if (C_HUPCL(tty))
1023                 sClrDTR(cp);
1024
1025         rp_flush_buffer(tty);
1026                 
1027         tty_ldisc_flush(tty);
1028
1029         clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1030
1031         /* We can't yet use tty_port_close_end as the buffer handling in this
1032            driver is a bit different to the usual */
1033
1034         if (port->blocked_open) {
1035                 if (port->close_delay) {
1036                         msleep_interruptible(jiffies_to_msecs(port->close_delay));
1037                 }
1038                 wake_up_interruptible(&port->open_wait);
1039         } else {
1040                 if (info->xmit_buf) {
1041                         free_page((unsigned long) info->xmit_buf);
1042                         info->xmit_buf = NULL;
1043                 }
1044         }
1045         spin_lock_irq(&port->lock);
1046         tty->closing = 0;
1047         spin_unlock_irq(&port->lock);
1048         tty_port_set_initialized(port, 0);
1049         tty_port_set_active(port, 0);
1050         mutex_unlock(&port->mutex);
1051         tty_port_tty_set(port, NULL);
1052
1053         atomic_dec(&rp_num_ports_open);
1054
1055 #ifdef ROCKET_DEBUG_OPEN
1056         printk(KERN_INFO "rocket mod-- = %d...\n",
1057                         atomic_read(&rp_num_ports_open));
1058         printk(KERN_INFO "rp_close ttyR%d complete shutdown\n", info->line);
1059 #endif
1060
1061 }
1062
1063 static void rp_set_termios(struct tty_struct *tty,
1064                            struct ktermios *old_termios)
1065 {
1066         struct r_port *info = tty->driver_data;
1067         CHANNEL_t *cp;
1068         unsigned cflag;
1069
1070         if (rocket_paranoia_check(info, "rp_set_termios"))
1071                 return;
1072
1073         cflag = tty->termios.c_cflag;
1074
1075         /*
1076          * This driver doesn't support CS5 or CS6
1077          */
1078         if (((cflag & CSIZE) == CS5) || ((cflag & CSIZE) == CS6))
1079                 tty->termios.c_cflag =
1080                     ((cflag & ~CSIZE) | (old_termios->c_cflag & CSIZE));
1081         /* Or CMSPAR */
1082         tty->termios.c_cflag &= ~CMSPAR;
1083
1084         configure_r_port(tty, info, old_termios);
1085
1086         cp = &info->channel;
1087
1088         /* Handle transition to B0 status */
1089         if ((old_termios->c_cflag & CBAUD) && !C_BAUD(tty)) {
1090                 sClrDTR(cp);
1091                 sClrRTS(cp);
1092         }
1093
1094         /* Handle transition away from B0 status */
1095         if (!(old_termios->c_cflag & CBAUD) && C_BAUD(tty)) {
1096                 sSetRTS(cp);
1097                 sSetDTR(cp);
1098         }
1099
1100         if ((old_termios->c_cflag & CRTSCTS) && !C_CRTSCTS(tty))
1101                 rp_start(tty);
1102 }
1103
1104 static int rp_break(struct tty_struct *tty, int break_state)
1105 {
1106         struct r_port *info = tty->driver_data;
1107         unsigned long flags;
1108
1109         if (rocket_paranoia_check(info, "rp_break"))
1110                 return -EINVAL;
1111
1112         spin_lock_irqsave(&info->slock, flags);
1113         if (break_state == -1)
1114                 sSendBreak(&info->channel);
1115         else
1116                 sClrBreak(&info->channel);
1117         spin_unlock_irqrestore(&info->slock, flags);
1118         return 0;
1119 }
1120
1121 /*
1122  * sGetChanRI used to be a macro in rocket_int.h. When the functionality for
1123  * the UPCI boards was added, it was decided to make this a function because
1124  * the macro was getting too complicated. All cases except the first one
1125  * (UPCIRingInd) are taken directly from the original macro.
1126  */
1127 static int sGetChanRI(CHANNEL_T * ChP)
1128 {
1129         CONTROLLER_t *CtlP = ChP->CtlP;
1130         int ChanNum = ChP->ChanNum;
1131         int RingInd = 0;
1132
1133         if (CtlP->UPCIRingInd)
1134                 RingInd = !(sInB(CtlP->UPCIRingInd) & sBitMapSetTbl[ChanNum]);
1135         else if (CtlP->AltChanRingIndicator)
1136                 RingInd = sInB((ByteIO_t) (ChP->ChanStat + 8)) & DSR_ACT;
1137         else if (CtlP->boardType == ROCKET_TYPE_PC104)
1138                 RingInd = !(sInB(CtlP->AiopIO[3]) & sBitMapSetTbl[ChanNum]);
1139
1140         return RingInd;
1141 }
1142
1143 /********************************************************************************************/
1144 /*  Here are the routines used by rp_ioctl.  These are all called from exception handlers.  */
1145
1146 /*
1147  *  Returns the state of the serial modem control lines.  These next 2 functions 
1148  *  are the way kernel versions > 2.5 handle modem control lines rather than IOCTLs.
1149  */
1150 static int rp_tiocmget(struct tty_struct *tty)
1151 {
1152         struct r_port *info = tty->driver_data;
1153         unsigned int control, result, ChanStatus;
1154
1155         ChanStatus = sGetChanStatusLo(&info->channel);
1156         control = info->channel.TxControl[3];
1157         result = ((control & SET_RTS) ? TIOCM_RTS : 0) | 
1158                 ((control & SET_DTR) ?  TIOCM_DTR : 0) |
1159                 ((ChanStatus & CD_ACT) ? TIOCM_CAR : 0) |
1160                 (sGetChanRI(&info->channel) ? TIOCM_RNG : 0) |
1161                 ((ChanStatus & DSR_ACT) ? TIOCM_DSR : 0) |
1162                 ((ChanStatus & CTS_ACT) ? TIOCM_CTS : 0);
1163
1164         return result;
1165 }
1166
1167 /* 
1168  *  Sets the modem control lines
1169  */
1170 static int rp_tiocmset(struct tty_struct *tty,
1171                                 unsigned int set, unsigned int clear)
1172 {
1173         struct r_port *info = tty->driver_data;
1174
1175         if (set & TIOCM_RTS)
1176                 info->channel.TxControl[3] |= SET_RTS;
1177         if (set & TIOCM_DTR)
1178                 info->channel.TxControl[3] |= SET_DTR;
1179         if (clear & TIOCM_RTS)
1180                 info->channel.TxControl[3] &= ~SET_RTS;
1181         if (clear & TIOCM_DTR)
1182                 info->channel.TxControl[3] &= ~SET_DTR;
1183
1184         out32(info->channel.IndexAddr, info->channel.TxControl);
1185         return 0;
1186 }
1187
1188 static int get_config(struct r_port *info, struct rocket_config __user *retinfo)
1189 {
1190         struct rocket_config tmp;
1191
1192         memset(&tmp, 0, sizeof (tmp));
1193         mutex_lock(&info->port.mutex);
1194         tmp.line = info->line;
1195         tmp.flags = info->flags;
1196         tmp.close_delay = info->port.close_delay;
1197         tmp.closing_wait = info->port.closing_wait;
1198         tmp.port = rcktpt_io_addr[(info->line >> 5) & 3];
1199         mutex_unlock(&info->port.mutex);
1200
1201         if (copy_to_user(retinfo, &tmp, sizeof (*retinfo)))
1202                 return -EFAULT;
1203         return 0;
1204 }
1205
1206 static int set_config(struct tty_struct *tty, struct r_port *info,
1207                                         struct rocket_config __user *new_info)
1208 {
1209         struct rocket_config new_serial;
1210
1211         if (copy_from_user(&new_serial, new_info, sizeof (new_serial)))
1212                 return -EFAULT;
1213
1214         mutex_lock(&info->port.mutex);
1215         if (!capable(CAP_SYS_ADMIN))
1216         {
1217                 if ((new_serial.flags & ~ROCKET_USR_MASK) != (info->flags & ~ROCKET_USR_MASK)) {
1218                         mutex_unlock(&info->port.mutex);
1219                         return -EPERM;
1220                 }
1221                 info->flags = ((info->flags & ~ROCKET_USR_MASK) | (new_serial.flags & ROCKET_USR_MASK));
1222                 configure_r_port(tty, info, NULL);
1223                 mutex_unlock(&info->port.mutex);
1224                 return 0;
1225         }
1226
1227         info->flags = ((info->flags & ~ROCKET_FLAGS) | (new_serial.flags & ROCKET_FLAGS));
1228         info->port.close_delay = new_serial.close_delay;
1229         info->port.closing_wait = new_serial.closing_wait;
1230
1231         if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI)
1232                 tty->alt_speed = 57600;
1233         if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI)
1234                 tty->alt_speed = 115200;
1235         if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI)
1236                 tty->alt_speed = 230400;
1237         if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP)
1238                 tty->alt_speed = 460800;
1239         mutex_unlock(&info->port.mutex);
1240
1241         configure_r_port(tty, info, NULL);
1242         return 0;
1243 }
1244
1245 /*
1246  *  This function fills in a rocket_ports struct with information
1247  *  about what boards/ports are in the system.  This info is passed
1248  *  to user space.  See setrocket.c where the info is used to create
1249  *  the /dev/ttyRx ports.
1250  */
1251 static int get_ports(struct r_port *info, struct rocket_ports __user *retports)
1252 {
1253         struct rocket_ports tmp;
1254         int board;
1255
1256         memset(&tmp, 0, sizeof (tmp));
1257         tmp.tty_major = rocket_driver->major;
1258
1259         for (board = 0; board < 4; board++) {
1260                 tmp.rocketModel[board].model = rocketModel[board].model;
1261                 strcpy(tmp.rocketModel[board].modelString, rocketModel[board].modelString);
1262                 tmp.rocketModel[board].numPorts = rocketModel[board].numPorts;
1263                 tmp.rocketModel[board].loadrm2 = rocketModel[board].loadrm2;
1264                 tmp.rocketModel[board].startingPortNumber = rocketModel[board].startingPortNumber;
1265         }
1266         if (copy_to_user(retports, &tmp, sizeof (*retports)))
1267                 return -EFAULT;
1268         return 0;
1269 }
1270
1271 static int reset_rm2(struct r_port *info, void __user *arg)
1272 {
1273         int reset;
1274
1275         if (!capable(CAP_SYS_ADMIN))
1276                 return -EPERM;
1277
1278         if (copy_from_user(&reset, arg, sizeof (int)))
1279                 return -EFAULT;
1280         if (reset)
1281                 reset = 1;
1282
1283         if (rcktpt_type[info->board] != ROCKET_TYPE_MODEMII &&
1284             rcktpt_type[info->board] != ROCKET_TYPE_MODEMIII)
1285                 return -EINVAL;
1286
1287         if (info->ctlp->BusType == isISA)
1288                 sModemReset(info->ctlp, info->chan, reset);
1289         else
1290                 sPCIModemReset(info->ctlp, info->chan, reset);
1291
1292         return 0;
1293 }
1294
1295 static int get_version(struct r_port *info, struct rocket_version __user *retvers)
1296 {
1297         if (copy_to_user(retvers, &driver_version, sizeof (*retvers)))
1298                 return -EFAULT;
1299         return 0;
1300 }
1301
1302 /*  IOCTL call handler into the driver */
1303 static int rp_ioctl(struct tty_struct *tty,
1304                     unsigned int cmd, unsigned long arg)
1305 {
1306         struct r_port *info = tty->driver_data;
1307         void __user *argp = (void __user *)arg;
1308         int ret = 0;
1309
1310         if (cmd != RCKP_GET_PORTS && rocket_paranoia_check(info, "rp_ioctl"))
1311                 return -ENXIO;
1312
1313         switch (cmd) {
1314         case RCKP_GET_STRUCT:
1315                 if (copy_to_user(argp, info, sizeof (struct r_port)))
1316                         ret = -EFAULT;
1317                 break;
1318         case RCKP_GET_CONFIG:
1319                 ret = get_config(info, argp);
1320                 break;
1321         case RCKP_SET_CONFIG:
1322                 ret = set_config(tty, info, argp);
1323                 break;
1324         case RCKP_GET_PORTS:
1325                 ret = get_ports(info, argp);
1326                 break;
1327         case RCKP_RESET_RM2:
1328                 ret = reset_rm2(info, argp);
1329                 break;
1330         case RCKP_GET_VERSION:
1331                 ret = get_version(info, argp);
1332                 break;
1333         default:
1334                 ret = -ENOIOCTLCMD;
1335         }
1336         return ret;
1337 }
1338
1339 static void rp_send_xchar(struct tty_struct *tty, char ch)
1340 {
1341         struct r_port *info = tty->driver_data;
1342         CHANNEL_t *cp;
1343
1344         if (rocket_paranoia_check(info, "rp_send_xchar"))
1345                 return;
1346
1347         cp = &info->channel;
1348         if (sGetTxCnt(cp))
1349                 sWriteTxPrioByte(cp, ch);
1350         else
1351                 sWriteTxByte(sGetTxRxDataIO(cp), ch);
1352 }
1353
1354 static void rp_throttle(struct tty_struct *tty)
1355 {
1356         struct r_port *info = tty->driver_data;
1357
1358 #ifdef ROCKET_DEBUG_THROTTLE
1359         printk(KERN_INFO "throttle %s ....\n", tty->name);
1360 #endif
1361
1362         if (rocket_paranoia_check(info, "rp_throttle"))
1363                 return;
1364
1365         if (I_IXOFF(tty))
1366                 rp_send_xchar(tty, STOP_CHAR(tty));
1367
1368         sClrRTS(&info->channel);
1369 }
1370
1371 static void rp_unthrottle(struct tty_struct *tty)
1372 {
1373         struct r_port *info = tty->driver_data;
1374 #ifdef ROCKET_DEBUG_THROTTLE
1375         printk(KERN_INFO "unthrottle %s ....\n", tty->name);
1376 #endif
1377
1378         if (rocket_paranoia_check(info, "rp_unthrottle"))
1379                 return;
1380
1381         if (I_IXOFF(tty))
1382                 rp_send_xchar(tty, START_CHAR(tty));
1383
1384         sSetRTS(&info->channel);
1385 }
1386
1387 /*
1388  * ------------------------------------------------------------
1389  * rp_stop() and rp_start()
1390  *
1391  * This routines are called before setting or resetting tty->stopped.
1392  * They enable or disable transmitter interrupts, as necessary.
1393  * ------------------------------------------------------------
1394  */
1395 static void rp_stop(struct tty_struct *tty)
1396 {
1397         struct r_port *info = tty->driver_data;
1398
1399 #ifdef ROCKET_DEBUG_FLOW
1400         printk(KERN_INFO "stop %s: %d %d....\n", tty->name,
1401                info->xmit_cnt, info->xmit_fifo_room);
1402 #endif
1403
1404         if (rocket_paranoia_check(info, "rp_stop"))
1405                 return;
1406
1407         if (sGetTxCnt(&info->channel))
1408                 sDisTransmit(&info->channel);
1409 }
1410
1411 static void rp_start(struct tty_struct *tty)
1412 {
1413         struct r_port *info = tty->driver_data;
1414
1415 #ifdef ROCKET_DEBUG_FLOW
1416         printk(KERN_INFO "start %s: %d %d....\n", tty->name,
1417                info->xmit_cnt, info->xmit_fifo_room);
1418 #endif
1419
1420         if (rocket_paranoia_check(info, "rp_stop"))
1421                 return;
1422
1423         sEnTransmit(&info->channel);
1424         set_bit((info->aiop * 8) + info->chan,
1425                 (void *) &xmit_flags[info->board]);
1426 }
1427
1428 /*
1429  * rp_wait_until_sent() --- wait until the transmitter is empty
1430  */
1431 static void rp_wait_until_sent(struct tty_struct *tty, int timeout)
1432 {
1433         struct r_port *info = tty->driver_data;
1434         CHANNEL_t *cp;
1435         unsigned long orig_jiffies;
1436         int check_time, exit_time;
1437         int txcnt;
1438
1439         if (rocket_paranoia_check(info, "rp_wait_until_sent"))
1440                 return;
1441
1442         cp = &info->channel;
1443
1444         orig_jiffies = jiffies;
1445 #ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1446         printk(KERN_INFO "In %s(%d) (jiff=%lu)...\n", __func__, timeout,
1447                jiffies);
1448         printk(KERN_INFO "cps=%d...\n", info->cps);
1449 #endif
1450         while (1) {
1451                 txcnt = sGetTxCnt(cp);
1452                 if (!txcnt) {
1453                         if (sGetChanStatusLo(cp) & TXSHRMT)
1454                                 break;
1455                         check_time = (HZ / info->cps) / 5;
1456                 } else {
1457                         check_time = HZ * txcnt / info->cps;
1458                 }
1459                 if (timeout) {
1460                         exit_time = orig_jiffies + timeout - jiffies;
1461                         if (exit_time <= 0)
1462                                 break;
1463                         if (exit_time < check_time)
1464                                 check_time = exit_time;
1465                 }
1466                 if (check_time == 0)
1467                         check_time = 1;
1468 #ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1469                 printk(KERN_INFO "txcnt = %d (jiff=%lu,check=%d)...\n", txcnt,
1470                                 jiffies, check_time);
1471 #endif
1472                 msleep_interruptible(jiffies_to_msecs(check_time));
1473                 if (signal_pending(current))
1474                         break;
1475         }
1476         __set_current_state(TASK_RUNNING);
1477 #ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1478         printk(KERN_INFO "txcnt = %d (jiff=%lu)...done\n", txcnt, jiffies);
1479 #endif
1480 }
1481
1482 /*
1483  * rp_hangup() --- called by tty_hangup() when a hangup is signaled.
1484  */
1485 static void rp_hangup(struct tty_struct *tty)
1486 {
1487         CHANNEL_t *cp;
1488         struct r_port *info = tty->driver_data;
1489         unsigned long flags;
1490
1491         if (rocket_paranoia_check(info, "rp_hangup"))
1492                 return;
1493
1494 #if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_HANGUP))
1495         printk(KERN_INFO "rp_hangup of ttyR%d...\n", info->line);
1496 #endif
1497         rp_flush_buffer(tty);
1498         spin_lock_irqsave(&info->port.lock, flags);
1499         if (info->port.count)
1500                 atomic_dec(&rp_num_ports_open);
1501         clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1502         spin_unlock_irqrestore(&info->port.lock, flags);
1503
1504         tty_port_hangup(&info->port);
1505
1506         cp = &info->channel;
1507         sDisRxFIFO(cp);
1508         sDisTransmit(cp);
1509         sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1510         sDisCTSFlowCtl(cp);
1511         sDisTxSoftFlowCtl(cp);
1512         sClrTxXOFF(cp);
1513         tty_port_set_initialized(&info->port, 0);
1514
1515         wake_up_interruptible(&info->port.open_wait);
1516 }
1517
1518 /*
1519  *  Exception handler - write char routine.  The RocketPort driver uses a
1520  *  double-buffering strategy, with the twist that if the in-memory CPU
1521  *  buffer is empty, and there's space in the transmit FIFO, the
1522  *  writing routines will write directly to transmit FIFO.
1523  *  Write buffer and counters protected by spinlocks
1524  */
1525 static int rp_put_char(struct tty_struct *tty, unsigned char ch)
1526 {
1527         struct r_port *info = tty->driver_data;
1528         CHANNEL_t *cp;
1529         unsigned long flags;
1530
1531         if (rocket_paranoia_check(info, "rp_put_char"))
1532                 return 0;
1533
1534         /*
1535          * Grab the port write mutex, locking out other processes that try to
1536          * write to this port
1537          */
1538         mutex_lock(&info->write_mtx);
1539
1540 #ifdef ROCKET_DEBUG_WRITE
1541         printk(KERN_INFO "rp_put_char %c...\n", ch);
1542 #endif
1543
1544         spin_lock_irqsave(&info->slock, flags);
1545         cp = &info->channel;
1546
1547         if (!tty->stopped && info->xmit_fifo_room == 0)
1548                 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1549
1550         if (tty->stopped || info->xmit_fifo_room == 0 || info->xmit_cnt != 0) {
1551                 info->xmit_buf[info->xmit_head++] = ch;
1552                 info->xmit_head &= XMIT_BUF_SIZE - 1;
1553                 info->xmit_cnt++;
1554                 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1555         } else {
1556                 sOutB(sGetTxRxDataIO(cp), ch);
1557                 info->xmit_fifo_room--;
1558         }
1559         spin_unlock_irqrestore(&info->slock, flags);
1560         mutex_unlock(&info->write_mtx);
1561         return 1;
1562 }
1563
1564 /*
1565  *  Exception handler - write routine, called when user app writes to the device.
1566  *  A per port write mutex is used to protect from another process writing to
1567  *  this port at the same time.  This other process could be running on the other CPU
1568  *  or get control of the CPU if the copy_from_user() blocks due to a page fault (swapped out). 
1569  *  Spinlocks protect the info xmit members.
1570  */
1571 static int rp_write(struct tty_struct *tty,
1572                     const unsigned char *buf, int count)
1573 {
1574         struct r_port *info = tty->driver_data;
1575         CHANNEL_t *cp;
1576         const unsigned char *b;
1577         int c, retval = 0;
1578         unsigned long flags;
1579
1580         if (count <= 0 || rocket_paranoia_check(info, "rp_write"))
1581                 return 0;
1582
1583         if (mutex_lock_interruptible(&info->write_mtx))
1584                 return -ERESTARTSYS;
1585
1586 #ifdef ROCKET_DEBUG_WRITE
1587         printk(KERN_INFO "rp_write %d chars...\n", count);
1588 #endif
1589         cp = &info->channel;
1590
1591         if (!tty->stopped && info->xmit_fifo_room < count)
1592                 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1593
1594         /*
1595          *  If the write queue for the port is empty, and there is FIFO space, stuff bytes 
1596          *  into FIFO.  Use the write queue for temp storage.
1597          */
1598         if (!tty->stopped && info->xmit_cnt == 0 && info->xmit_fifo_room > 0) {
1599                 c = min(count, info->xmit_fifo_room);
1600                 b = buf;
1601
1602                 /*  Push data into FIFO, 2 bytes at a time */
1603                 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) b, c / 2);
1604
1605                 /*  If there is a byte remaining, write it */
1606                 if (c & 1)
1607                         sOutB(sGetTxRxDataIO(cp), b[c - 1]);
1608
1609                 retval += c;
1610                 buf += c;
1611                 count -= c;
1612
1613                 spin_lock_irqsave(&info->slock, flags);
1614                 info->xmit_fifo_room -= c;
1615                 spin_unlock_irqrestore(&info->slock, flags);
1616         }
1617
1618         /* If count is zero, we wrote it all and are done */
1619         if (!count)
1620                 goto end;
1621
1622         /*  Write remaining data into the port's xmit_buf */
1623         while (1) {
1624                 /* Hung up ? */
1625                 if (!tty_port_active(&info->port))
1626                         goto end;
1627                 c = min(count, XMIT_BUF_SIZE - info->xmit_cnt - 1);
1628                 c = min(c, XMIT_BUF_SIZE - info->xmit_head);
1629                 if (c <= 0)
1630                         break;
1631
1632                 b = buf;
1633                 memcpy(info->xmit_buf + info->xmit_head, b, c);
1634
1635                 spin_lock_irqsave(&info->slock, flags);
1636                 info->xmit_head =
1637                     (info->xmit_head + c) & (XMIT_BUF_SIZE - 1);
1638                 info->xmit_cnt += c;
1639                 spin_unlock_irqrestore(&info->slock, flags);
1640
1641                 buf += c;
1642                 count -= c;
1643                 retval += c;
1644         }
1645
1646         if ((retval > 0) && !tty->stopped)
1647                 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1648         
1649 end:
1650         if (info->xmit_cnt < WAKEUP_CHARS) {
1651                 tty_wakeup(tty);
1652 #ifdef ROCKETPORT_HAVE_POLL_WAIT
1653                 wake_up_interruptible(&tty->poll_wait);
1654 #endif
1655         }
1656         mutex_unlock(&info->write_mtx);
1657         return retval;
1658 }
1659
1660 /*
1661  * Return the number of characters that can be sent.  We estimate
1662  * only using the in-memory transmit buffer only, and ignore the
1663  * potential space in the transmit FIFO.
1664  */
1665 static int rp_write_room(struct tty_struct *tty)
1666 {
1667         struct r_port *info = tty->driver_data;
1668         int ret;
1669
1670         if (rocket_paranoia_check(info, "rp_write_room"))
1671                 return 0;
1672
1673         ret = XMIT_BUF_SIZE - info->xmit_cnt - 1;
1674         if (ret < 0)
1675                 ret = 0;
1676 #ifdef ROCKET_DEBUG_WRITE
1677         printk(KERN_INFO "rp_write_room returns %d...\n", ret);
1678 #endif
1679         return ret;
1680 }
1681
1682 /*
1683  * Return the number of characters in the buffer.  Again, this only
1684  * counts those characters in the in-memory transmit buffer.
1685  */
1686 static int rp_chars_in_buffer(struct tty_struct *tty)
1687 {
1688         struct r_port *info = tty->driver_data;
1689
1690         if (rocket_paranoia_check(info, "rp_chars_in_buffer"))
1691                 return 0;
1692
1693 #ifdef ROCKET_DEBUG_WRITE
1694         printk(KERN_INFO "rp_chars_in_buffer returns %d...\n", info->xmit_cnt);
1695 #endif
1696         return info->xmit_cnt;
1697 }
1698
1699 /*
1700  *  Flushes the TX fifo for a port, deletes data in the xmit_buf stored in the
1701  *  r_port struct for the port.  Note that spinlock are used to protect info members,
1702  *  do not call this function if the spinlock is already held.
1703  */
1704 static void rp_flush_buffer(struct tty_struct *tty)
1705 {
1706         struct r_port *info = tty->driver_data;
1707         CHANNEL_t *cp;
1708         unsigned long flags;
1709
1710         if (rocket_paranoia_check(info, "rp_flush_buffer"))
1711                 return;
1712
1713         spin_lock_irqsave(&info->slock, flags);
1714         info->xmit_cnt = info->xmit_head = info->xmit_tail = 0;
1715         spin_unlock_irqrestore(&info->slock, flags);
1716
1717 #ifdef ROCKETPORT_HAVE_POLL_WAIT
1718         wake_up_interruptible(&tty->poll_wait);
1719 #endif
1720         tty_wakeup(tty);
1721
1722         cp = &info->channel;
1723         sFlushTxFIFO(cp);
1724 }
1725
1726 #ifdef CONFIG_PCI
1727
1728 static const struct pci_device_id rocket_pci_ids[] = {
1729         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4QUAD) },
1730         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8OCTA) },
1731         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8OCTA) },
1732         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8INTF) },
1733         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8INTF) },
1734         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8J) },
1735         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4J) },
1736         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8SNI) },
1737         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16SNI) },
1738         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16INTF) },
1739         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP16INTF) },
1740         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_CRP16INTF) },
1741         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP32INTF) },
1742         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP32INTF) },
1743         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP4) },
1744         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP8) },
1745         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_232) },
1746         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_422) },
1747         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP6M) },
1748         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4M) },
1749         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_8PORT) },
1750         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_4PORT) },
1751         { }
1752 };
1753 MODULE_DEVICE_TABLE(pci, rocket_pci_ids);
1754
1755 /*  Resets the speaker controller on RocketModem II and III devices */
1756 static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model)
1757 {
1758         ByteIO_t addr;
1759
1760         /* RocketModem II speaker control is at the 8th port location of offset 0x40 */
1761         if ((model == MODEL_RP4M) || (model == MODEL_RP6M)) {
1762                 addr = CtlP->AiopIO[0] + 0x4F;
1763                 sOutB(addr, 0);
1764         }
1765
1766         /* RocketModem III speaker control is at the 1st port location of offset 0x80 */
1767         if ((model == MODEL_UPCI_RM3_8PORT)
1768             || (model == MODEL_UPCI_RM3_4PORT)) {
1769                 addr = CtlP->AiopIO[0] + 0x88;
1770                 sOutB(addr, 0);
1771         }
1772 }
1773
1774 /***************************************************************************
1775 Function: sPCIInitController
1776 Purpose:  Initialization of controller global registers and controller
1777           structure.
1778 Call:     sPCIInitController(CtlP,CtlNum,AiopIOList,AiopIOListSize,
1779                           IRQNum,Frequency,PeriodicOnly)
1780           CONTROLLER_T *CtlP; Ptr to controller structure
1781           int CtlNum; Controller number
1782           ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
1783              This list must be in the order the AIOPs will be found on the
1784              controller.  Once an AIOP in the list is not found, it is
1785              assumed that there are no more AIOPs on the controller.
1786           int AiopIOListSize; Number of addresses in AiopIOList
1787           int IRQNum; Interrupt Request number.  Can be any of the following:
1788                          0: Disable global interrupts
1789                          3: IRQ 3
1790                          4: IRQ 4
1791                          5: IRQ 5
1792                          9: IRQ 9
1793                          10: IRQ 10
1794                          11: IRQ 11
1795                          12: IRQ 12
1796                          15: IRQ 15
1797           Byte_t Frequency: A flag identifying the frequency
1798                    of the periodic interrupt, can be any one of the following:
1799                       FREQ_DIS - periodic interrupt disabled
1800                       FREQ_137HZ - 137 Hertz
1801                       FREQ_69HZ - 69 Hertz
1802                       FREQ_34HZ - 34 Hertz
1803                       FREQ_17HZ - 17 Hertz
1804                       FREQ_9HZ - 9 Hertz
1805                       FREQ_4HZ - 4 Hertz
1806                    If IRQNum is set to 0 the Frequency parameter is
1807                    overidden, it is forced to a value of FREQ_DIS.
1808           int PeriodicOnly: 1 if all interrupts except the periodic
1809                                interrupt are to be blocked.
1810                             0 is both the periodic interrupt and
1811                                other channel interrupts are allowed.
1812                             If IRQNum is set to 0 the PeriodicOnly parameter is
1813                                overidden, it is forced to a value of 0.
1814 Return:   int: Number of AIOPs on the controller, or CTLID_NULL if controller
1815                initialization failed.
1816
1817 Comments:
1818           If periodic interrupts are to be disabled but AIOP interrupts
1819           are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
1820
1821           If interrupts are to be completely disabled set IRQNum to 0.
1822
1823           Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
1824           invalid combination.
1825
1826           This function performs initialization of global interrupt modes,
1827           but it does not actually enable global interrupts.  To enable
1828           and disable global interrupts use functions sEnGlobalInt() and
1829           sDisGlobalInt().  Enabling of global interrupts is normally not
1830           done until all other initializations are complete.
1831
1832           Even if interrupts are globally enabled, they must also be
1833           individually enabled for each channel that is to generate
1834           interrupts.
1835
1836 Warnings: No range checking on any of the parameters is done.
1837
1838           No context switches are allowed while executing this function.
1839
1840           After this function all AIOPs on the controller are disabled,
1841           they can be enabled with sEnAiop().
1842 */
1843 static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum,
1844                               ByteIO_t * AiopIOList, int AiopIOListSize,
1845                               WordIO_t ConfigIO, int IRQNum, Byte_t Frequency,
1846                               int PeriodicOnly, int altChanRingIndicator,
1847                               int UPCIRingInd)
1848 {
1849         int i;
1850         ByteIO_t io;
1851
1852         CtlP->AltChanRingIndicator = altChanRingIndicator;
1853         CtlP->UPCIRingInd = UPCIRingInd;
1854         CtlP->CtlNum = CtlNum;
1855         CtlP->CtlID = CTLID_0001;       /* controller release 1 */
1856         CtlP->BusType = isPCI;  /* controller release 1 */
1857
1858         if (ConfigIO) {
1859                 CtlP->isUPCI = 1;
1860                 CtlP->PCIIO = ConfigIO + _PCI_9030_INT_CTRL;
1861                 CtlP->PCIIO2 = ConfigIO + _PCI_9030_GPIO_CTRL;
1862                 CtlP->AiopIntrBits = upci_aiop_intr_bits;
1863         } else {
1864                 CtlP->isUPCI = 0;
1865                 CtlP->PCIIO =
1866                     (WordIO_t) ((ByteIO_t) AiopIOList[0] + _PCI_INT_FUNC);
1867                 CtlP->AiopIntrBits = aiop_intr_bits;
1868         }
1869
1870         sPCIControllerEOI(CtlP);        /* clear EOI if warm init */
1871         /* Init AIOPs */
1872         CtlP->NumAiop = 0;
1873         for (i = 0; i < AiopIOListSize; i++) {
1874                 io = AiopIOList[i];
1875                 CtlP->AiopIO[i] = (WordIO_t) io;
1876                 CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
1877
1878                 CtlP->AiopID[i] = sReadAiopID(io);      /* read AIOP ID */
1879                 if (CtlP->AiopID[i] == AIOPID_NULL)     /* if AIOP does not exist */
1880                         break;  /* done looking for AIOPs */
1881
1882                 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */
1883                 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE);    /* clock prescaler */
1884                 sOutB(io + _INDX_DATA, sClockPrescale);
1885                 CtlP->NumAiop++;        /* bump count of AIOPs */
1886         }
1887
1888         if (CtlP->NumAiop == 0)
1889                 return (-1);
1890         else
1891                 return (CtlP->NumAiop);
1892 }
1893
1894 /*
1895  *  Called when a PCI card is found.  Retrieves and stores model information,
1896  *  init's aiopic and serial port hardware.
1897  *  Inputs:  i is the board number (0-n)
1898  */
1899 static __init int register_PCI(int i, struct pci_dev *dev)
1900 {
1901         int num_aiops, aiop, max_num_aiops, num_chan, chan;
1902         unsigned int aiopio[MAX_AIOPS_PER_BOARD];
1903         CONTROLLER_t *ctlp;
1904
1905         int fast_clock = 0;
1906         int altChanRingIndicator = 0;
1907         int ports_per_aiop = 8;
1908         WordIO_t ConfigIO = 0;
1909         ByteIO_t UPCIRingInd = 0;
1910
1911         if (!dev || !pci_match_id(rocket_pci_ids, dev) ||
1912             pci_enable_device(dev))
1913                 return 0;
1914
1915         rcktpt_io_addr[i] = pci_resource_start(dev, 0);
1916
1917         rcktpt_type[i] = ROCKET_TYPE_NORMAL;
1918         rocketModel[i].loadrm2 = 0;
1919         rocketModel[i].startingPortNumber = nextLineNumber;
1920
1921         /*  Depending on the model, set up some config variables */
1922         switch (dev->device) {
1923         case PCI_DEVICE_ID_RP4QUAD:
1924                 max_num_aiops = 1;
1925                 ports_per_aiop = 4;
1926                 rocketModel[i].model = MODEL_RP4QUAD;
1927                 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/quad cable");
1928                 rocketModel[i].numPorts = 4;
1929                 break;
1930         case PCI_DEVICE_ID_RP8OCTA:
1931                 max_num_aiops = 1;
1932                 rocketModel[i].model = MODEL_RP8OCTA;
1933                 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/octa cable");
1934                 rocketModel[i].numPorts = 8;
1935                 break;
1936         case PCI_DEVICE_ID_URP8OCTA:
1937                 max_num_aiops = 1;
1938                 rocketModel[i].model = MODEL_UPCI_RP8OCTA;
1939                 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/octa cable");
1940                 rocketModel[i].numPorts = 8;
1941                 break;
1942         case PCI_DEVICE_ID_RP8INTF:
1943                 max_num_aiops = 1;
1944                 rocketModel[i].model = MODEL_RP8INTF;
1945                 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/external I/F");
1946                 rocketModel[i].numPorts = 8;
1947                 break;
1948         case PCI_DEVICE_ID_URP8INTF:
1949                 max_num_aiops = 1;
1950                 rocketModel[i].model = MODEL_UPCI_RP8INTF;
1951                 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/external I/F");
1952                 rocketModel[i].numPorts = 8;
1953                 break;
1954         case PCI_DEVICE_ID_RP8J:
1955                 max_num_aiops = 1;
1956                 rocketModel[i].model = MODEL_RP8J;
1957                 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/RJ11 connectors");
1958                 rocketModel[i].numPorts = 8;
1959                 break;
1960         case PCI_DEVICE_ID_RP4J:
1961                 max_num_aiops = 1;
1962                 ports_per_aiop = 4;
1963                 rocketModel[i].model = MODEL_RP4J;
1964                 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/RJ45 connectors");
1965                 rocketModel[i].numPorts = 4;
1966                 break;
1967         case PCI_DEVICE_ID_RP8SNI:
1968                 max_num_aiops = 1;
1969                 rocketModel[i].model = MODEL_RP8SNI;
1970                 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/ custom DB78");
1971                 rocketModel[i].numPorts = 8;
1972                 break;
1973         case PCI_DEVICE_ID_RP16SNI:
1974                 max_num_aiops = 2;
1975                 rocketModel[i].model = MODEL_RP16SNI;
1976                 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/ custom DB78");
1977                 rocketModel[i].numPorts = 16;
1978                 break;
1979         case PCI_DEVICE_ID_RP16INTF:
1980                 max_num_aiops = 2;
1981                 rocketModel[i].model = MODEL_RP16INTF;
1982                 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/external I/F");
1983                 rocketModel[i].numPorts = 16;
1984                 break;
1985         case PCI_DEVICE_ID_URP16INTF:
1986                 max_num_aiops = 2;
1987                 rocketModel[i].model = MODEL_UPCI_RP16INTF;
1988                 strcpy(rocketModel[i].modelString, "RocketPort UPCI 16 port w/external I/F");
1989                 rocketModel[i].numPorts = 16;
1990                 break;
1991         case PCI_DEVICE_ID_CRP16INTF:
1992                 max_num_aiops = 2;
1993                 rocketModel[i].model = MODEL_CPCI_RP16INTF;
1994                 strcpy(rocketModel[i].modelString, "RocketPort Compact PCI 16 port w/external I/F");
1995                 rocketModel[i].numPorts = 16;
1996                 break;
1997         case PCI_DEVICE_ID_RP32INTF:
1998                 max_num_aiops = 4;
1999                 rocketModel[i].model = MODEL_RP32INTF;
2000                 strcpy(rocketModel[i].modelString, "RocketPort 32 port w/external I/F");
2001                 rocketModel[i].numPorts = 32;
2002                 break;
2003         case PCI_DEVICE_ID_URP32INTF:
2004                 max_num_aiops = 4;
2005                 rocketModel[i].model = MODEL_UPCI_RP32INTF;
2006                 strcpy(rocketModel[i].modelString, "RocketPort UPCI 32 port w/external I/F");
2007                 rocketModel[i].numPorts = 32;
2008                 break;
2009         case PCI_DEVICE_ID_RPP4:
2010                 max_num_aiops = 1;
2011                 ports_per_aiop = 4;
2012                 altChanRingIndicator++;
2013                 fast_clock++;
2014                 rocketModel[i].model = MODEL_RPP4;
2015                 strcpy(rocketModel[i].modelString, "RocketPort Plus 4 port");
2016                 rocketModel[i].numPorts = 4;
2017                 break;
2018         case PCI_DEVICE_ID_RPP8:
2019                 max_num_aiops = 2;
2020                 ports_per_aiop = 4;
2021                 altChanRingIndicator++;
2022                 fast_clock++;
2023                 rocketModel[i].model = MODEL_RPP8;
2024                 strcpy(rocketModel[i].modelString, "RocketPort Plus 8 port");
2025                 rocketModel[i].numPorts = 8;
2026                 break;
2027         case PCI_DEVICE_ID_RP2_232:
2028                 max_num_aiops = 1;
2029                 ports_per_aiop = 2;
2030                 altChanRingIndicator++;
2031                 fast_clock++;
2032                 rocketModel[i].model = MODEL_RP2_232;
2033                 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS232");
2034                 rocketModel[i].numPorts = 2;
2035                 break;
2036         case PCI_DEVICE_ID_RP2_422:
2037                 max_num_aiops = 1;
2038                 ports_per_aiop = 2;
2039                 altChanRingIndicator++;
2040                 fast_clock++;
2041                 rocketModel[i].model = MODEL_RP2_422;
2042                 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS422");
2043                 rocketModel[i].numPorts = 2;
2044                 break;
2045         case PCI_DEVICE_ID_RP6M:
2046
2047                 max_num_aiops = 1;
2048                 ports_per_aiop = 6;
2049
2050                 /*  If revision is 1, the rocketmodem flash must be loaded.
2051                  *  If it is 2 it is a "socketed" version. */
2052                 if (dev->revision == 1) {
2053                         rcktpt_type[i] = ROCKET_TYPE_MODEMII;
2054                         rocketModel[i].loadrm2 = 1;
2055                 } else {
2056                         rcktpt_type[i] = ROCKET_TYPE_MODEM;
2057                 }
2058
2059                 rocketModel[i].model = MODEL_RP6M;
2060                 strcpy(rocketModel[i].modelString, "RocketModem 6 port");
2061                 rocketModel[i].numPorts = 6;
2062                 break;
2063         case PCI_DEVICE_ID_RP4M:
2064                 max_num_aiops = 1;
2065                 ports_per_aiop = 4;
2066                 if (dev->revision == 1) {
2067                         rcktpt_type[i] = ROCKET_TYPE_MODEMII;
2068                         rocketModel[i].loadrm2 = 1;
2069                 } else {
2070                         rcktpt_type[i] = ROCKET_TYPE_MODEM;
2071                 }
2072
2073                 rocketModel[i].model = MODEL_RP4M;
2074                 strcpy(rocketModel[i].modelString, "RocketModem 4 port");
2075                 rocketModel[i].numPorts = 4;
2076                 break;
2077         default:
2078                 max_num_aiops = 0;
2079                 break;
2080         }
2081
2082         /*
2083          * Check for UPCI boards.
2084          */
2085
2086         switch (dev->device) {
2087         case PCI_DEVICE_ID_URP32INTF:
2088         case PCI_DEVICE_ID_URP8INTF:
2089         case PCI_DEVICE_ID_URP16INTF:
2090         case PCI_DEVICE_ID_CRP16INTF:
2091         case PCI_DEVICE_ID_URP8OCTA:
2092                 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2093                 ConfigIO = pci_resource_start(dev, 1);
2094                 if (dev->device == PCI_DEVICE_ID_URP8OCTA) {
2095                         UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2096
2097                         /*
2098                          * Check for octa or quad cable.
2099                          */
2100                         if (!
2101                             (sInW(ConfigIO + _PCI_9030_GPIO_CTRL) &
2102                              PCI_GPIO_CTRL_8PORT)) {
2103                                 ports_per_aiop = 4;
2104                                 rocketModel[i].numPorts = 4;
2105                         }
2106                 }
2107                 break;
2108         case PCI_DEVICE_ID_UPCI_RM3_8PORT:
2109                 max_num_aiops = 1;
2110                 rocketModel[i].model = MODEL_UPCI_RM3_8PORT;
2111                 strcpy(rocketModel[i].modelString, "RocketModem III 8 port");
2112                 rocketModel[i].numPorts = 8;
2113                 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2114                 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2115                 ConfigIO = pci_resource_start(dev, 1);
2116                 rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2117                 break;
2118         case PCI_DEVICE_ID_UPCI_RM3_4PORT:
2119                 max_num_aiops = 1;
2120                 rocketModel[i].model = MODEL_UPCI_RM3_4PORT;
2121                 strcpy(rocketModel[i].modelString, "RocketModem III 4 port");
2122                 rocketModel[i].numPorts = 4;
2123                 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2124                 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2125                 ConfigIO = pci_resource_start(dev, 1);
2126                 rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2127                 break;
2128         default:
2129                 break;
2130         }
2131
2132         if (fast_clock) {
2133                 sClockPrescale = 0x12;  /* mod 2 (divide by 3) */
2134                 rp_baud_base[i] = 921600;
2135         } else {
2136                 /*
2137                  * If support_low_speed is set, use the slow clock
2138                  * prescale, which supports 50 bps
2139                  */
2140                 if (support_low_speed) {
2141                         /* mod 9 (divide by 10) prescale */
2142                         sClockPrescale = 0x19;
2143                         rp_baud_base[i] = 230400;
2144                 } else {
2145                         /* mod 4 (divide by 5) prescale */
2146                         sClockPrescale = 0x14;
2147                         rp_baud_base[i] = 460800;
2148                 }
2149         }
2150
2151         for (aiop = 0; aiop < max_num_aiops; aiop++)
2152                 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x40);
2153         ctlp = sCtlNumToCtlPtr(i);
2154         num_aiops = sPCIInitController(ctlp, i, aiopio, max_num_aiops, ConfigIO, 0, FREQ_DIS, 0, altChanRingIndicator, UPCIRingInd);
2155         for (aiop = 0; aiop < max_num_aiops; aiop++)
2156                 ctlp->AiopNumChan[aiop] = ports_per_aiop;
2157
2158         dev_info(&dev->dev, "comtrol PCI controller #%d found at "
2159                 "address %04lx, %d AIOP(s) (%s), creating ttyR%d - %ld\n",
2160                 i, rcktpt_io_addr[i], num_aiops, rocketModel[i].modelString,
2161                 rocketModel[i].startingPortNumber,
2162                 rocketModel[i].startingPortNumber + rocketModel[i].numPorts-1);
2163
2164         if (num_aiops <= 0) {
2165                 rcktpt_io_addr[i] = 0;
2166                 return (0);
2167         }
2168         is_PCI[i] = 1;
2169
2170         /*  Reset the AIOPIC, init the serial ports */
2171         for (aiop = 0; aiop < num_aiops; aiop++) {
2172                 sResetAiopByNum(ctlp, aiop);
2173                 num_chan = ports_per_aiop;
2174                 for (chan = 0; chan < num_chan; chan++)
2175                         init_r_port(i, aiop, chan, dev);
2176         }
2177
2178         /*  Rocket modems must be reset */
2179         if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) ||
2180             (rcktpt_type[i] == ROCKET_TYPE_MODEMII) ||
2181             (rcktpt_type[i] == ROCKET_TYPE_MODEMIII)) {
2182                 num_chan = ports_per_aiop;
2183                 for (chan = 0; chan < num_chan; chan++)
2184                         sPCIModemReset(ctlp, chan, 1);
2185                 msleep(500);
2186                 for (chan = 0; chan < num_chan; chan++)
2187                         sPCIModemReset(ctlp, chan, 0);
2188                 msleep(500);
2189                 rmSpeakerReset(ctlp, rocketModel[i].model);
2190         }
2191         return (1);
2192 }
2193
2194 /*
2195  *  Probes for PCI cards, inits them if found
2196  *  Input:   board_found = number of ISA boards already found, or the
2197  *           starting board number
2198  *  Returns: Number of PCI boards found
2199  */
2200 static int __init init_PCI(int boards_found)
2201 {
2202         struct pci_dev *dev = NULL;
2203         int count = 0;
2204
2205         /*  Work through the PCI device list, pulling out ours */
2206         while ((dev = pci_get_device(PCI_VENDOR_ID_RP, PCI_ANY_ID, dev))) {
2207                 if (register_PCI(count + boards_found, dev))
2208                         count++;
2209         }
2210         return (count);
2211 }
2212
2213 #endif                          /* CONFIG_PCI */
2214
2215 /*
2216  *  Probes for ISA cards
2217  *  Input:   i = the board number to look for
2218  *  Returns: 1 if board found, 0 else
2219  */
2220 static int __init init_ISA(int i)
2221 {
2222         int num_aiops, num_chan = 0, total_num_chan = 0;
2223         int aiop, chan;
2224         unsigned int aiopio[MAX_AIOPS_PER_BOARD];
2225         CONTROLLER_t *ctlp;
2226         char *type_string;
2227
2228         /*  If io_addr is zero, no board configured */
2229         if (rcktpt_io_addr[i] == 0)
2230                 return (0);
2231
2232         /*  Reserve the IO region */
2233         if (!request_region(rcktpt_io_addr[i], 64, "Comtrol RocketPort")) {
2234                 printk(KERN_ERR "Unable to reserve IO region for configured "
2235                                 "ISA RocketPort at address 0x%lx, board not "
2236                                 "installed...\n", rcktpt_io_addr[i]);
2237                 rcktpt_io_addr[i] = 0;
2238                 return (0);
2239         }
2240
2241         ctlp = sCtlNumToCtlPtr(i);
2242
2243         ctlp->boardType = rcktpt_type[i];
2244
2245         switch (rcktpt_type[i]) {
2246         case ROCKET_TYPE_PC104:
2247                 type_string = "(PC104)";
2248                 break;
2249         case ROCKET_TYPE_MODEM:
2250                 type_string = "(RocketModem)";
2251                 break;
2252         case ROCKET_TYPE_MODEMII:
2253                 type_string = "(RocketModem II)";
2254                 break;
2255         default:
2256                 type_string = "";
2257                 break;
2258         }
2259
2260         /*
2261          * If support_low_speed is set, use the slow clock prescale,
2262          * which supports 50 bps
2263          */
2264         if (support_low_speed) {
2265                 sClockPrescale = 0x19;  /* mod 9 (divide by 10) prescale */
2266                 rp_baud_base[i] = 230400;
2267         } else {
2268                 sClockPrescale = 0x14;  /* mod 4 (divide by 5) prescale */
2269                 rp_baud_base[i] = 460800;
2270         }
2271
2272         for (aiop = 0; aiop < MAX_AIOPS_PER_BOARD; aiop++)
2273                 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x400);
2274
2275         num_aiops = sInitController(ctlp, i, controller + (i * 0x400), aiopio,  MAX_AIOPS_PER_BOARD, 0, FREQ_DIS, 0);
2276
2277         if (ctlp->boardType == ROCKET_TYPE_PC104) {
2278                 sEnAiop(ctlp, 2);       /* only one AIOPIC, but these */
2279                 sEnAiop(ctlp, 3);       /* CSels used for other stuff */
2280         }
2281
2282         /*  If something went wrong initing the AIOP's release the ISA IO memory */
2283         if (num_aiops <= 0) {
2284                 release_region(rcktpt_io_addr[i], 64);
2285                 rcktpt_io_addr[i] = 0;
2286                 return (0);
2287         }
2288   
2289         rocketModel[i].startingPortNumber = nextLineNumber;
2290
2291         for (aiop = 0; aiop < num_aiops; aiop++) {
2292                 sResetAiopByNum(ctlp, aiop);
2293                 sEnAiop(ctlp, aiop);
2294                 num_chan = sGetAiopNumChan(ctlp, aiop);
2295                 total_num_chan += num_chan;
2296                 for (chan = 0; chan < num_chan; chan++)
2297                         init_r_port(i, aiop, chan, NULL);
2298         }
2299         is_PCI[i] = 0;
2300         if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || (rcktpt_type[i] == ROCKET_TYPE_MODEMII)) {
2301                 num_chan = sGetAiopNumChan(ctlp, 0);
2302                 total_num_chan = num_chan;
2303                 for (chan = 0; chan < num_chan; chan++)
2304                         sModemReset(ctlp, chan, 1);
2305                 msleep(500);
2306                 for (chan = 0; chan < num_chan; chan++)
2307                         sModemReset(ctlp, chan, 0);
2308                 msleep(500);
2309                 strcpy(rocketModel[i].modelString, "RocketModem ISA");
2310         } else {
2311                 strcpy(rocketModel[i].modelString, "RocketPort ISA");
2312         }
2313         rocketModel[i].numPorts = total_num_chan;
2314         rocketModel[i].model = MODEL_ISA;
2315
2316         printk(KERN_INFO "RocketPort ISA card #%d found at 0x%lx - %d AIOPs %s\n", 
2317                i, rcktpt_io_addr[i], num_aiops, type_string);
2318
2319         printk(KERN_INFO "Installing %s, creating /dev/ttyR%d - %ld\n",
2320                rocketModel[i].modelString,
2321                rocketModel[i].startingPortNumber,
2322                rocketModel[i].startingPortNumber +
2323                rocketModel[i].numPorts - 1);
2324
2325         return (1);
2326 }
2327
2328 static const struct tty_operations rocket_ops = {
2329         .open = rp_open,
2330         .close = rp_close,
2331         .write = rp_write,
2332         .put_char = rp_put_char,
2333         .write_room = rp_write_room,
2334         .chars_in_buffer = rp_chars_in_buffer,
2335         .flush_buffer = rp_flush_buffer,
2336         .ioctl = rp_ioctl,
2337         .throttle = rp_throttle,
2338         .unthrottle = rp_unthrottle,
2339         .set_termios = rp_set_termios,
2340         .stop = rp_stop,
2341         .start = rp_start,
2342         .hangup = rp_hangup,
2343         .break_ctl = rp_break,
2344         .send_xchar = rp_send_xchar,
2345         .wait_until_sent = rp_wait_until_sent,
2346         .tiocmget = rp_tiocmget,
2347         .tiocmset = rp_tiocmset,
2348 };
2349
2350 static const struct tty_port_operations rocket_port_ops = {
2351         .carrier_raised = carrier_raised,
2352         .dtr_rts = dtr_rts,
2353 };
2354
2355 /*
2356  * The module "startup" routine; it's run when the module is loaded.
2357  */
2358 static int __init rp_init(void)
2359 {
2360         int ret = -ENOMEM, pci_boards_found, isa_boards_found, i;
2361
2362         printk(KERN_INFO "RocketPort device driver module, version %s, %s\n",
2363                ROCKET_VERSION, ROCKET_DATE);
2364
2365         rocket_driver = alloc_tty_driver(MAX_RP_PORTS);
2366         if (!rocket_driver)
2367                 goto err;
2368
2369         /*
2370          *  If board 1 is non-zero, there is at least one ISA configured.  If controller is 
2371          *  zero, use the default controller IO address of board1 + 0x40.
2372          */
2373         if (board1) {
2374                 if (controller == 0)
2375                         controller = board1 + 0x40;
2376         } else {
2377                 controller = 0;  /*  Used as a flag, meaning no ISA boards */
2378         }
2379
2380         /*  If an ISA card is configured, reserve the 4 byte IO space for the Mudbac controller */
2381         if (controller && (!request_region(controller, 4, "Comtrol RocketPort"))) {
2382                 printk(KERN_ERR "Unable to reserve IO region for first "
2383                         "configured ISA RocketPort controller 0x%lx.  "
2384                         "Driver exiting\n", controller);
2385                 ret = -EBUSY;
2386                 goto err_tty;
2387         }
2388
2389         /*  Store ISA variable retrieved from command line or .conf file. */
2390         rcktpt_io_addr[0] = board1;
2391         rcktpt_io_addr[1] = board2;
2392         rcktpt_io_addr[2] = board3;
2393         rcktpt_io_addr[3] = board4;
2394
2395         rcktpt_type[0] = modem1 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2396         rcktpt_type[0] = pc104_1[0] ? ROCKET_TYPE_PC104 : rcktpt_type[0];
2397         rcktpt_type[1] = modem2 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2398         rcktpt_type[1] = pc104_2[0] ? ROCKET_TYPE_PC104 : rcktpt_type[1];
2399         rcktpt_type[2] = modem3 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2400         rcktpt_type[2] = pc104_3[0] ? ROCKET_TYPE_PC104 : rcktpt_type[2];
2401         rcktpt_type[3] = modem4 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2402         rcktpt_type[3] = pc104_4[0] ? ROCKET_TYPE_PC104 : rcktpt_type[3];
2403
2404         /*
2405          * Set up the tty driver structure and then register this
2406          * driver with the tty layer.
2407          */
2408
2409         rocket_driver->flags = TTY_DRIVER_DYNAMIC_DEV;
2410         rocket_driver->name = "ttyR";
2411         rocket_driver->driver_name = "Comtrol RocketPort";
2412         rocket_driver->major = TTY_ROCKET_MAJOR;
2413         rocket_driver->minor_start = 0;
2414         rocket_driver->type = TTY_DRIVER_TYPE_SERIAL;
2415         rocket_driver->subtype = SERIAL_TYPE_NORMAL;
2416         rocket_driver->init_termios = tty_std_termios;
2417         rocket_driver->init_termios.c_cflag =
2418             B9600 | CS8 | CREAD | HUPCL | CLOCAL;
2419         rocket_driver->init_termios.c_ispeed = 9600;
2420         rocket_driver->init_termios.c_ospeed = 9600;
2421 #ifdef ROCKET_SOFT_FLOW
2422         rocket_driver->flags |= TTY_DRIVER_REAL_RAW;
2423 #endif
2424         tty_set_operations(rocket_driver, &rocket_ops);
2425
2426         ret = tty_register_driver(rocket_driver);
2427         if (ret < 0) {
2428                 printk(KERN_ERR "Couldn't install tty RocketPort driver\n");
2429                 goto err_controller;
2430         }
2431
2432 #ifdef ROCKET_DEBUG_OPEN
2433         printk(KERN_INFO "RocketPort driver is major %d\n", rocket_driver.major);
2434 #endif
2435
2436         /*
2437          *  OK, let's probe each of the controllers looking for boards.  Any boards found
2438          *  will be initialized here.
2439          */
2440         isa_boards_found = 0;
2441         pci_boards_found = 0;
2442
2443         for (i = 0; i < NUM_BOARDS; i++) {
2444                 if (init_ISA(i))
2445                         isa_boards_found++;
2446         }
2447
2448 #ifdef CONFIG_PCI
2449         if (isa_boards_found < NUM_BOARDS)
2450                 pci_boards_found = init_PCI(isa_boards_found);
2451 #endif
2452
2453         max_board = pci_boards_found + isa_boards_found;
2454
2455         if (max_board == 0) {
2456                 printk(KERN_ERR "No rocketport ports found; unloading driver\n");
2457                 ret = -ENXIO;
2458                 goto err_ttyu;
2459         }
2460
2461         return 0;
2462 err_ttyu:
2463         tty_unregister_driver(rocket_driver);
2464 err_controller:
2465         if (controller)
2466                 release_region(controller, 4);
2467 err_tty:
2468         put_tty_driver(rocket_driver);
2469 err:
2470         return ret;
2471 }
2472
2473
2474 static void rp_cleanup_module(void)
2475 {
2476         int retval;
2477         int i;
2478
2479         del_timer_sync(&rocket_timer);
2480
2481         retval = tty_unregister_driver(rocket_driver);
2482         if (retval)
2483                 printk(KERN_ERR "Error %d while trying to unregister "
2484                        "rocketport driver\n", -retval);
2485
2486         for (i = 0; i < MAX_RP_PORTS; i++)
2487                 if (rp_table[i]) {
2488                         tty_unregister_device(rocket_driver, i);
2489                         tty_port_destroy(&rp_table[i]->port);
2490                         kfree(rp_table[i]);
2491                 }
2492
2493         put_tty_driver(rocket_driver);
2494
2495         for (i = 0; i < NUM_BOARDS; i++) {
2496                 if (rcktpt_io_addr[i] <= 0 || is_PCI[i])
2497                         continue;
2498                 release_region(rcktpt_io_addr[i], 64);
2499         }
2500         if (controller)
2501                 release_region(controller, 4);
2502 }
2503
2504 /***************************************************************************
2505 Function: sInitController
2506 Purpose:  Initialization of controller global registers and controller
2507           structure.
2508 Call:     sInitController(CtlP,CtlNum,MudbacIO,AiopIOList,AiopIOListSize,
2509                           IRQNum,Frequency,PeriodicOnly)
2510           CONTROLLER_T *CtlP; Ptr to controller structure
2511           int CtlNum; Controller number
2512           ByteIO_t MudbacIO; Mudbac base I/O address.
2513           ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
2514              This list must be in the order the AIOPs will be found on the
2515              controller.  Once an AIOP in the list is not found, it is
2516              assumed that there are no more AIOPs on the controller.
2517           int AiopIOListSize; Number of addresses in AiopIOList
2518           int IRQNum; Interrupt Request number.  Can be any of the following:
2519                          0: Disable global interrupts
2520                          3: IRQ 3
2521                          4: IRQ 4
2522                          5: IRQ 5
2523                          9: IRQ 9
2524                          10: IRQ 10
2525                          11: IRQ 11
2526                          12: IRQ 12
2527                          15: IRQ 15
2528           Byte_t Frequency: A flag identifying the frequency
2529                    of the periodic interrupt, can be any one of the following:
2530                       FREQ_DIS - periodic interrupt disabled
2531                       FREQ_137HZ - 137 Hertz
2532                       FREQ_69HZ - 69 Hertz
2533                       FREQ_34HZ - 34 Hertz
2534                       FREQ_17HZ - 17 Hertz
2535                       FREQ_9HZ - 9 Hertz
2536                       FREQ_4HZ - 4 Hertz
2537                    If IRQNum is set to 0 the Frequency parameter is
2538                    overidden, it is forced to a value of FREQ_DIS.
2539           int PeriodicOnly: 1 if all interrupts except the periodic
2540                                interrupt are to be blocked.
2541                             0 is both the periodic interrupt and
2542                                other channel interrupts are allowed.
2543                             If IRQNum is set to 0 the PeriodicOnly parameter is
2544                                overidden, it is forced to a value of 0.
2545 Return:   int: Number of AIOPs on the controller, or CTLID_NULL if controller
2546                initialization failed.
2547
2548 Comments:
2549           If periodic interrupts are to be disabled but AIOP interrupts
2550           are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
2551
2552           If interrupts are to be completely disabled set IRQNum to 0.
2553
2554           Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
2555           invalid combination.
2556
2557           This function performs initialization of global interrupt modes,
2558           but it does not actually enable global interrupts.  To enable
2559           and disable global interrupts use functions sEnGlobalInt() and
2560           sDisGlobalInt().  Enabling of global interrupts is normally not
2561           done until all other initializations are complete.
2562
2563           Even if interrupts are globally enabled, they must also be
2564           individually enabled for each channel that is to generate
2565           interrupts.
2566
2567 Warnings: No range checking on any of the parameters is done.
2568
2569           No context switches are allowed while executing this function.
2570
2571           After this function all AIOPs on the controller are disabled,
2572           they can be enabled with sEnAiop().
2573 */
2574 static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
2575                            ByteIO_t * AiopIOList, int AiopIOListSize,
2576                            int IRQNum, Byte_t Frequency, int PeriodicOnly)
2577 {
2578         int i;
2579         ByteIO_t io;
2580         int done;
2581
2582         CtlP->AiopIntrBits = aiop_intr_bits;
2583         CtlP->AltChanRingIndicator = 0;
2584         CtlP->CtlNum = CtlNum;
2585         CtlP->CtlID = CTLID_0001;       /* controller release 1 */
2586         CtlP->BusType = isISA;
2587         CtlP->MBaseIO = MudbacIO;
2588         CtlP->MReg1IO = MudbacIO + 1;
2589         CtlP->MReg2IO = MudbacIO + 2;
2590         CtlP->MReg3IO = MudbacIO + 3;
2591 #if 1
2592         CtlP->MReg2 = 0;        /* interrupt disable */
2593         CtlP->MReg3 = 0;        /* no periodic interrupts */
2594 #else
2595         if (sIRQMap[IRQNum] == 0) {     /* interrupts globally disabled */
2596                 CtlP->MReg2 = 0;        /* interrupt disable */
2597                 CtlP->MReg3 = 0;        /* no periodic interrupts */
2598         } else {
2599                 CtlP->MReg2 = sIRQMap[IRQNum];  /* set IRQ number */
2600                 CtlP->MReg3 = Frequency;        /* set frequency */
2601                 if (PeriodicOnly) {     /* periodic interrupt only */
2602                         CtlP->MReg3 |= PERIODIC_ONLY;
2603                 }
2604         }
2605 #endif
2606         sOutB(CtlP->MReg2IO, CtlP->MReg2);
2607         sOutB(CtlP->MReg3IO, CtlP->MReg3);
2608         sControllerEOI(CtlP);   /* clear EOI if warm init */
2609         /* Init AIOPs */
2610         CtlP->NumAiop = 0;
2611         for (i = done = 0; i < AiopIOListSize; i++) {
2612                 io = AiopIOList[i];
2613                 CtlP->AiopIO[i] = (WordIO_t) io;
2614                 CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
2615                 sOutB(CtlP->MReg2IO, CtlP->MReg2 | (i & 0x03)); /* AIOP index */
2616                 sOutB(MudbacIO, (Byte_t) (io >> 6));    /* set up AIOP I/O in MUDBAC */
2617                 if (done)
2618                         continue;
2619                 sEnAiop(CtlP, i);       /* enable the AIOP */
2620                 CtlP->AiopID[i] = sReadAiopID(io);      /* read AIOP ID */
2621                 if (CtlP->AiopID[i] == AIOPID_NULL)     /* if AIOP does not exist */
2622                         done = 1;       /* done looking for AIOPs */
2623                 else {
2624                         CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */
2625                         sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE);    /* clock prescaler */
2626                         sOutB(io + _INDX_DATA, sClockPrescale);
2627                         CtlP->NumAiop++;        /* bump count of AIOPs */
2628                 }
2629                 sDisAiop(CtlP, i);      /* disable AIOP */
2630         }
2631
2632         if (CtlP->NumAiop == 0)
2633                 return (-1);
2634         else
2635                 return (CtlP->NumAiop);
2636 }
2637
2638 /***************************************************************************
2639 Function: sReadAiopID
2640 Purpose:  Read the AIOP idenfication number directly from an AIOP.
2641 Call:     sReadAiopID(io)
2642           ByteIO_t io: AIOP base I/O address
2643 Return:   int: Flag AIOPID_XXXX if a valid AIOP is found, where X
2644                  is replace by an identifying number.
2645           Flag AIOPID_NULL if no valid AIOP is found
2646 Warnings: No context switches are allowed while executing this function.
2647
2648 */
2649 static int sReadAiopID(ByteIO_t io)
2650 {
2651         Byte_t AiopID;          /* ID byte from AIOP */
2652
2653         sOutB(io + _CMD_REG, RESET_ALL);        /* reset AIOP */
2654         sOutB(io + _CMD_REG, 0x0);
2655         AiopID = sInW(io + _CHN_STAT0) & 0x07;
2656         if (AiopID == 0x06)
2657                 return (1);
2658         else                    /* AIOP does not exist */
2659                 return (-1);
2660 }
2661
2662 /***************************************************************************
2663 Function: sReadAiopNumChan
2664 Purpose:  Read the number of channels available in an AIOP directly from
2665           an AIOP.
2666 Call:     sReadAiopNumChan(io)
2667           WordIO_t io: AIOP base I/O address
2668 Return:   int: The number of channels available
2669 Comments: The number of channels is determined by write/reads from identical
2670           offsets within the SRAM address spaces for channels 0 and 4.
2671           If the channel 4 space is mirrored to channel 0 it is a 4 channel
2672           AIOP, otherwise it is an 8 channel.
2673 Warnings: No context switches are allowed while executing this function.
2674 */
2675 static int sReadAiopNumChan(WordIO_t io)
2676 {
2677         Word_t x;
2678         static Byte_t R[4] = { 0x00, 0x00, 0x34, 0x12 };
2679
2680         /* write to chan 0 SRAM */
2681         out32((DWordIO_t) io + _INDX_ADDR, R);
2682         sOutW(io + _INDX_ADDR, 0);      /* read from SRAM, chan 0 */
2683         x = sInW(io + _INDX_DATA);
2684         sOutW(io + _INDX_ADDR, 0x4000); /* read from SRAM, chan 4 */
2685         if (x != sInW(io + _INDX_DATA)) /* if different must be 8 chan */
2686                 return (8);
2687         else
2688                 return (4);
2689 }
2690
2691 /***************************************************************************
2692 Function: sInitChan
2693 Purpose:  Initialization of a channel and channel structure
2694 Call:     sInitChan(CtlP,ChP,AiopNum,ChanNum)
2695           CONTROLLER_T *CtlP; Ptr to controller structure
2696           CHANNEL_T *ChP; Ptr to channel structure
2697           int AiopNum; AIOP number within controller
2698           int ChanNum; Channel number within AIOP
2699 Return:   int: 1 if initialization succeeded, 0 if it fails because channel
2700                number exceeds number of channels available in AIOP.
2701 Comments: This function must be called before a channel can be used.
2702 Warnings: No range checking on any of the parameters is done.
2703
2704           No context switches are allowed while executing this function.
2705 */
2706 static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
2707                      int ChanNum)
2708 {
2709         int i;
2710         WordIO_t AiopIO;
2711         WordIO_t ChIOOff;
2712         Byte_t *ChR;
2713         Word_t ChOff;
2714         static Byte_t R[4];
2715         int brd9600;
2716
2717         if (ChanNum >= CtlP->AiopNumChan[AiopNum])
2718                 return 0;       /* exceeds num chans in AIOP */
2719
2720         /* Channel, AIOP, and controller identifiers */
2721         ChP->CtlP = CtlP;
2722         ChP->ChanID = CtlP->AiopID[AiopNum];
2723         ChP->AiopNum = AiopNum;
2724         ChP->ChanNum = ChanNum;
2725
2726         /* Global direct addresses */
2727         AiopIO = CtlP->AiopIO[AiopNum];
2728         ChP->Cmd = (ByteIO_t) AiopIO + _CMD_REG;
2729         ChP->IntChan = (ByteIO_t) AiopIO + _INT_CHAN;
2730         ChP->IntMask = (ByteIO_t) AiopIO + _INT_MASK;
2731         ChP->IndexAddr = (DWordIO_t) AiopIO + _INDX_ADDR;
2732         ChP->IndexData = AiopIO + _INDX_DATA;
2733
2734         /* Channel direct addresses */
2735         ChIOOff = AiopIO + ChP->ChanNum * 2;
2736         ChP->TxRxData = ChIOOff + _TD0;
2737         ChP->ChanStat = ChIOOff + _CHN_STAT0;
2738         ChP->TxRxCount = ChIOOff + _FIFO_CNT0;
2739         ChP->IntID = (ByteIO_t) AiopIO + ChP->ChanNum + _INT_ID0;
2740
2741         /* Initialize the channel from the RData array */
2742         for (i = 0; i < RDATASIZE; i += 4) {
2743                 R[0] = RData[i];
2744                 R[1] = RData[i + 1] + 0x10 * ChanNum;
2745                 R[2] = RData[i + 2];
2746                 R[3] = RData[i + 3];
2747                 out32(ChP->IndexAddr, R);
2748         }
2749
2750         ChR = ChP->R;
2751         for (i = 0; i < RREGDATASIZE; i += 4) {
2752                 ChR[i] = RRegData[i];
2753                 ChR[i + 1] = RRegData[i + 1] + 0x10 * ChanNum;
2754                 ChR[i + 2] = RRegData[i + 2];
2755                 ChR[i + 3] = RRegData[i + 3];
2756         }
2757
2758         /* Indexed registers */
2759         ChOff = (Word_t) ChanNum *0x1000;
2760
2761         if (sClockPrescale == 0x14)
2762                 brd9600 = 47;
2763         else
2764                 brd9600 = 23;
2765
2766         ChP->BaudDiv[0] = (Byte_t) (ChOff + _BAUD);
2767         ChP->BaudDiv[1] = (Byte_t) ((ChOff + _BAUD) >> 8);
2768         ChP->BaudDiv[2] = (Byte_t) brd9600;
2769         ChP->BaudDiv[3] = (Byte_t) (brd9600 >> 8);
2770         out32(ChP->IndexAddr, ChP->BaudDiv);
2771
2772         ChP->TxControl[0] = (Byte_t) (ChOff + _TX_CTRL);
2773         ChP->TxControl[1] = (Byte_t) ((ChOff + _TX_CTRL) >> 8);
2774         ChP->TxControl[2] = 0;
2775         ChP->TxControl[3] = 0;
2776         out32(ChP->IndexAddr, ChP->TxControl);
2777
2778         ChP->RxControl[0] = (Byte_t) (ChOff + _RX_CTRL);
2779         ChP->RxControl[1] = (Byte_t) ((ChOff + _RX_CTRL) >> 8);
2780         ChP->RxControl[2] = 0;
2781         ChP->RxControl[3] = 0;
2782         out32(ChP->IndexAddr, ChP->RxControl);
2783
2784         ChP->TxEnables[0] = (Byte_t) (ChOff + _TX_ENBLS);
2785         ChP->TxEnables[1] = (Byte_t) ((ChOff + _TX_ENBLS) >> 8);
2786         ChP->TxEnables[2] = 0;
2787         ChP->TxEnables[3] = 0;
2788         out32(ChP->IndexAddr, ChP->TxEnables);
2789
2790         ChP->TxCompare[0] = (Byte_t) (ChOff + _TXCMP1);
2791         ChP->TxCompare[1] = (Byte_t) ((ChOff + _TXCMP1) >> 8);
2792         ChP->TxCompare[2] = 0;
2793         ChP->TxCompare[3] = 0;
2794         out32(ChP->IndexAddr, ChP->TxCompare);
2795
2796         ChP->TxReplace1[0] = (Byte_t) (ChOff + _TXREP1B1);
2797         ChP->TxReplace1[1] = (Byte_t) ((ChOff + _TXREP1B1) >> 8);
2798         ChP->TxReplace1[2] = 0;
2799         ChP->TxReplace1[3] = 0;
2800         out32(ChP->IndexAddr, ChP->TxReplace1);
2801
2802         ChP->TxReplace2[0] = (Byte_t) (ChOff + _TXREP2);
2803         ChP->TxReplace2[1] = (Byte_t) ((ChOff + _TXREP2) >> 8);
2804         ChP->TxReplace2[2] = 0;
2805         ChP->TxReplace2[3] = 0;
2806         out32(ChP->IndexAddr, ChP->TxReplace2);
2807
2808         ChP->TxFIFOPtrs = ChOff + _TXF_OUTP;
2809         ChP->TxFIFO = ChOff + _TX_FIFO;
2810
2811         sOutB(ChP->Cmd, (Byte_t) ChanNum | RESTXFCNT);  /* apply reset Tx FIFO count */
2812         sOutB(ChP->Cmd, (Byte_t) ChanNum);      /* remove reset Tx FIFO count */
2813         sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs);      /* clear Tx in/out ptrs */
2814         sOutW(ChP->IndexData, 0);
2815         ChP->RxFIFOPtrs = ChOff + _RXF_OUTP;
2816         ChP->RxFIFO = ChOff + _RX_FIFO;
2817
2818         sOutB(ChP->Cmd, (Byte_t) ChanNum | RESRXFCNT);  /* apply reset Rx FIFO count */
2819         sOutB(ChP->Cmd, (Byte_t) ChanNum);      /* remove reset Rx FIFO count */
2820         sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs);      /* clear Rx out ptr */
2821         sOutW(ChP->IndexData, 0);
2822         sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2);  /* clear Rx in ptr */
2823         sOutW(ChP->IndexData, 0);
2824         ChP->TxPrioCnt = ChOff + _TXP_CNT;
2825         sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioCnt);
2826         sOutB(ChP->IndexData, 0);
2827         ChP->TxPrioPtr = ChOff + _TXP_PNTR;
2828         sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioPtr);
2829         sOutB(ChP->IndexData, 0);
2830         ChP->TxPrioBuf = ChOff + _TXP_BUF;
2831         sEnRxProcessor(ChP);    /* start the Rx processor */
2832
2833         return 1;
2834 }
2835
2836 /***************************************************************************
2837 Function: sStopRxProcessor
2838 Purpose:  Stop the receive processor from processing a channel.
2839 Call:     sStopRxProcessor(ChP)
2840           CHANNEL_T *ChP; Ptr to channel structure
2841
2842 Comments: The receive processor can be started again with sStartRxProcessor().
2843           This function causes the receive processor to skip over the
2844           stopped channel.  It does not stop it from processing other channels.
2845
2846 Warnings: No context switches are allowed while executing this function.
2847
2848           Do not leave the receive processor stopped for more than one
2849           character time.
2850
2851           After calling this function a delay of 4 uS is required to ensure
2852           that the receive processor is no longer processing this channel.
2853 */
2854 static void sStopRxProcessor(CHANNEL_T * ChP)
2855 {
2856         Byte_t R[4];
2857
2858         R[0] = ChP->R[0];
2859         R[1] = ChP->R[1];
2860         R[2] = 0x0a;
2861         R[3] = ChP->R[3];
2862         out32(ChP->IndexAddr, R);
2863 }
2864
2865 /***************************************************************************
2866 Function: sFlushRxFIFO
2867 Purpose:  Flush the Rx FIFO
2868 Call:     sFlushRxFIFO(ChP)
2869           CHANNEL_T *ChP; Ptr to channel structure
2870 Return:   void
2871 Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2872           while it is being flushed the receive processor is stopped
2873           and the transmitter is disabled.  After these operations a
2874           4 uS delay is done before clearing the pointers to allow
2875           the receive processor to stop.  These items are handled inside
2876           this function.
2877 Warnings: No context switches are allowed while executing this function.
2878 */
2879 static void sFlushRxFIFO(CHANNEL_T * ChP)
2880 {
2881         int i;
2882         Byte_t Ch;              /* channel number within AIOP */
2883         int RxFIFOEnabled;      /* 1 if Rx FIFO enabled */
2884
2885         if (sGetRxCnt(ChP) == 0)        /* Rx FIFO empty */
2886                 return;         /* don't need to flush */
2887
2888         RxFIFOEnabled = 0;
2889         if (ChP->R[0x32] == 0x08) {     /* Rx FIFO is enabled */
2890                 RxFIFOEnabled = 1;
2891                 sDisRxFIFO(ChP);        /* disable it */
2892                 for (i = 0; i < 2000 / 200; i++)        /* delay 2 uS to allow proc to disable FIFO */
2893                         sInB(ChP->IntChan);     /* depends on bus i/o timing */
2894         }
2895         sGetChanStatus(ChP);    /* clear any pending Rx errors in chan stat */
2896         Ch = (Byte_t) sGetChanNum(ChP);
2897         sOutB(ChP->Cmd, Ch | RESRXFCNT);        /* apply reset Rx FIFO count */
2898         sOutB(ChP->Cmd, Ch);    /* remove reset Rx FIFO count */
2899         sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs);      /* clear Rx out ptr */
2900         sOutW(ChP->IndexData, 0);
2901         sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2);  /* clear Rx in ptr */
2902         sOutW(ChP->IndexData, 0);
2903         if (RxFIFOEnabled)
2904                 sEnRxFIFO(ChP); /* enable Rx FIFO */
2905 }
2906
2907 /***************************************************************************
2908 Function: sFlushTxFIFO
2909 Purpose:  Flush the Tx FIFO
2910 Call:     sFlushTxFIFO(ChP)
2911           CHANNEL_T *ChP; Ptr to channel structure
2912 Return:   void
2913 Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2914           while it is being flushed the receive processor is stopped
2915           and the transmitter is disabled.  After these operations a
2916           4 uS delay is done before clearing the pointers to allow
2917           the receive processor to stop.  These items are handled inside
2918           this function.
2919 Warnings: No context switches are allowed while executing this function.
2920 */
2921 static void sFlushTxFIFO(CHANNEL_T * ChP)
2922 {
2923         int i;
2924         Byte_t Ch;              /* channel number within AIOP */
2925         int TxEnabled;          /* 1 if transmitter enabled */
2926
2927         if (sGetTxCnt(ChP) == 0)        /* Tx FIFO empty */
2928                 return;         /* don't need to flush */
2929
2930         TxEnabled = 0;
2931         if (ChP->TxControl[3] & TX_ENABLE) {
2932                 TxEnabled = 1;
2933                 sDisTransmit(ChP);      /* disable transmitter */
2934         }
2935         sStopRxProcessor(ChP);  /* stop Rx processor */
2936         for (i = 0; i < 4000 / 200; i++)        /* delay 4 uS to allow proc to stop */
2937                 sInB(ChP->IntChan);     /* depends on bus i/o timing */
2938         Ch = (Byte_t) sGetChanNum(ChP);
2939         sOutB(ChP->Cmd, Ch | RESTXFCNT);        /* apply reset Tx FIFO count */
2940         sOutB(ChP->Cmd, Ch);    /* remove reset Tx FIFO count */
2941         sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs);      /* clear Tx in/out ptrs */
2942         sOutW(ChP->IndexData, 0);
2943         if (TxEnabled)
2944                 sEnTransmit(ChP);       /* enable transmitter */
2945         sStartRxProcessor(ChP); /* restart Rx processor */
2946 }
2947
2948 /***************************************************************************
2949 Function: sWriteTxPrioByte
2950 Purpose:  Write a byte of priority transmit data to a channel
2951 Call:     sWriteTxPrioByte(ChP,Data)
2952           CHANNEL_T *ChP; Ptr to channel structure
2953           Byte_t Data; The transmit data byte
2954
2955 Return:   int: 1 if the bytes is successfully written, otherwise 0.
2956
2957 Comments: The priority byte is transmitted before any data in the Tx FIFO.
2958
2959 Warnings: No context switches are allowed while executing this function.
2960 */
2961 static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data)
2962 {
2963         Byte_t DWBuf[4];        /* buffer for double word writes */
2964         Word_t *WordPtr;        /* must be far because Win SS != DS */
2965         register DWordIO_t IndexAddr;
2966
2967         if (sGetTxCnt(ChP) > 1) {       /* write it to Tx priority buffer */
2968                 IndexAddr = ChP->IndexAddr;
2969                 sOutW((WordIO_t) IndexAddr, ChP->TxPrioCnt);    /* get priority buffer status */
2970                 if (sInB((ByteIO_t) ChP->IndexData) & PRI_PEND) /* priority buffer busy */
2971                         return (0);     /* nothing sent */
2972
2973                 WordPtr = (Word_t *) (&DWBuf[0]);
2974                 *WordPtr = ChP->TxPrioBuf;      /* data byte address */
2975
2976                 DWBuf[2] = Data;        /* data byte value */
2977                 out32(IndexAddr, DWBuf);        /* write it out */
2978
2979                 *WordPtr = ChP->TxPrioCnt;      /* Tx priority count address */
2980
2981                 DWBuf[2] = PRI_PEND + 1;        /* indicate 1 byte pending */
2982                 DWBuf[3] = 0;   /* priority buffer pointer */
2983                 out32(IndexAddr, DWBuf);        /* write it out */
2984         } else {                /* write it to Tx FIFO */
2985
2986                 sWriteTxByte(sGetTxRxDataIO(ChP), Data);
2987         }
2988         return (1);             /* 1 byte sent */
2989 }
2990
2991 /***************************************************************************
2992 Function: sEnInterrupts
2993 Purpose:  Enable one or more interrupts for a channel
2994 Call:     sEnInterrupts(ChP,Flags)
2995           CHANNEL_T *ChP; Ptr to channel structure
2996           Word_t Flags: Interrupt enable flags, can be any combination
2997              of the following flags:
2998                 TXINT_EN:   Interrupt on Tx FIFO empty
2999                 RXINT_EN:   Interrupt on Rx FIFO at trigger level (see
3000                             sSetRxTrigger())
3001                 SRCINT_EN:  Interrupt on SRC (Special Rx Condition)
3002                 MCINT_EN:   Interrupt on modem input change
3003                 CHANINT_EN: Allow channel interrupt signal to the AIOP's
3004                             Interrupt Channel Register.
3005 Return:   void
3006 Comments: If an interrupt enable flag is set in Flags, that interrupt will be
3007           enabled.  If an interrupt enable flag is not set in Flags, that
3008           interrupt will not be changed.  Interrupts can be disabled with
3009           function sDisInterrupts().
3010
3011           This function sets the appropriate bit for the channel in the AIOP's
3012           Interrupt Mask Register if the CHANINT_EN flag is set.  This allows
3013           this channel's bit to be set in the AIOP's Interrupt Channel Register.
3014
3015           Interrupts must also be globally enabled before channel interrupts
3016           will be passed on to the host.  This is done with function
3017           sEnGlobalInt().
3018
3019           In some cases it may be desirable to disable interrupts globally but
3020           enable channel interrupts.  This would allow the global interrupt
3021           status register to be used to determine which AIOPs need service.
3022 */
3023 static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags)
3024 {
3025         Byte_t Mask;            /* Interrupt Mask Register */
3026
3027         ChP->RxControl[2] |=
3028             ((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3029
3030         out32(ChP->IndexAddr, ChP->RxControl);
3031
3032         ChP->TxControl[2] |= ((Byte_t) Flags & TXINT_EN);
3033
3034         out32(ChP->IndexAddr, ChP->TxControl);
3035
3036         if (Flags & CHANINT_EN) {
3037                 Mask = sInB(ChP->IntMask) | sBitMapSetTbl[ChP->ChanNum];
3038                 sOutB(ChP->IntMask, Mask);
3039         }
3040 }
3041
3042 /***************************************************************************
3043 Function: sDisInterrupts
3044 Purpose:  Disable one or more interrupts for a channel
3045 Call:     sDisInterrupts(ChP,Flags)
3046           CHANNEL_T *ChP; Ptr to channel structure
3047           Word_t Flags: Interrupt flags, can be any combination
3048              of the following flags:
3049                 TXINT_EN:   Interrupt on Tx FIFO empty
3050                 RXINT_EN:   Interrupt on Rx FIFO at trigger level (see
3051                             sSetRxTrigger())
3052                 SRCINT_EN:  Interrupt on SRC (Special Rx Condition)
3053                 MCINT_EN:   Interrupt on modem input change
3054                 CHANINT_EN: Disable channel interrupt signal to the
3055                             AIOP's Interrupt Channel Register.
3056 Return:   void
3057 Comments: If an interrupt flag is set in Flags, that interrupt will be
3058           disabled.  If an interrupt flag is not set in Flags, that
3059           interrupt will not be changed.  Interrupts can be enabled with
3060           function sEnInterrupts().
3061
3062           This function clears the appropriate bit for the channel in the AIOP's
3063           Interrupt Mask Register if the CHANINT_EN flag is set.  This blocks
3064           this channel's bit from being set in the AIOP's Interrupt Channel
3065           Register.
3066 */
3067 static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags)
3068 {
3069         Byte_t Mask;            /* Interrupt Mask Register */
3070
3071         ChP->RxControl[2] &=
3072             ~((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3073         out32(ChP->IndexAddr, ChP->RxControl);
3074         ChP->TxControl[2] &= ~((Byte_t) Flags & TXINT_EN);
3075         out32(ChP->IndexAddr, ChP->TxControl);
3076
3077         if (Flags & CHANINT_EN) {
3078                 Mask = sInB(ChP->IntMask) & sBitMapClrTbl[ChP->ChanNum];
3079                 sOutB(ChP->IntMask, Mask);
3080         }
3081 }
3082
3083 static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode)
3084 {
3085         sOutB(ChP->CtlP->AiopIO[2], (mode & 0x18) | ChP->ChanNum);
3086 }
3087
3088 /*
3089  *  Not an official SSCI function, but how to reset RocketModems.
3090  *  ISA bus version
3091  */
3092 static void sModemReset(CONTROLLER_T * CtlP, int chan, int on)
3093 {
3094         ByteIO_t addr;
3095         Byte_t val;
3096
3097         addr = CtlP->AiopIO[0] + 0x400;
3098         val = sInB(CtlP->MReg3IO);
3099         /* if AIOP[1] is not enabled, enable it */
3100         if ((val & 2) == 0) {
3101                 val = sInB(CtlP->MReg2IO);
3102                 sOutB(CtlP->MReg2IO, (val & 0xfc) | (1 & 0x03));
3103                 sOutB(CtlP->MBaseIO, (unsigned char) (addr >> 6));
3104         }
3105
3106         sEnAiop(CtlP, 1);
3107         if (!on)
3108                 addr += 8;
3109         sOutB(addr + chan, 0);  /* apply or remove reset */
3110         sDisAiop(CtlP, 1);
3111 }
3112
3113 /*
3114  *  Not an official SSCI function, but how to reset RocketModems.
3115  *  PCI bus version
3116  */
3117 static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on)
3118 {
3119         ByteIO_t addr;
3120
3121         addr = CtlP->AiopIO[0] + 0x40;  /* 2nd AIOP */
3122         if (!on)
3123                 addr += 8;
3124         sOutB(addr + chan, 0);  /* apply or remove reset */
3125 }
3126
3127 /*  Returns the line number given the controller (board), aiop and channel number */
3128 static unsigned char GetLineNumber(int ctrl, int aiop, int ch)
3129 {
3130         return lineNumbers[(ctrl << 5) | (aiop << 3) | ch];
3131 }
3132
3133 /*
3134  *  Stores the line number associated with a given controller (board), aiop
3135  *  and channel number.  
3136  *  Returns:  The line number assigned 
3137  */
3138 static unsigned char SetLineNumber(int ctrl, int aiop, int ch)
3139 {
3140         lineNumbers[(ctrl << 5) | (aiop << 3) | ch] = nextLineNumber++;
3141         return (nextLineNumber - 1);
3142 }