1 // SPDX-License-Identifier: GPL-2.0
3 * Thunderbolt driver - switch/port utility functions
5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6 * Copyright (C) 2018, Intel Corporation
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/nvmem-provider.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sizes.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
20 /* Switch NVM support */
24 struct nvm_auth_status {
25 struct list_head list;
30 static bool clx_enabled = true;
31 module_param_named(clx, clx_enabled, bool, 0444);
32 MODULE_PARM_DESC(clx, "allow low power states on the high-speed lanes (default: true)");
35 * Hold NVM authentication failure status per switch This information
36 * needs to stay around even when the switch gets power cycled so we
39 static LIST_HEAD(nvm_auth_status_cache);
40 static DEFINE_MUTEX(nvm_auth_status_lock);
42 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
44 struct nvm_auth_status *st;
46 list_for_each_entry(st, &nvm_auth_status_cache, list) {
47 if (uuid_equal(&st->uuid, sw->uuid))
54 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
56 struct nvm_auth_status *st;
58 mutex_lock(&nvm_auth_status_lock);
59 st = __nvm_get_auth_status(sw);
60 mutex_unlock(&nvm_auth_status_lock);
62 *status = st ? st->status : 0;
65 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
67 struct nvm_auth_status *st;
69 if (WARN_ON(!sw->uuid))
72 mutex_lock(&nvm_auth_status_lock);
73 st = __nvm_get_auth_status(sw);
76 st = kzalloc(sizeof(*st), GFP_KERNEL);
80 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
81 INIT_LIST_HEAD(&st->list);
82 list_add_tail(&st->list, &nvm_auth_status_cache);
87 mutex_unlock(&nvm_auth_status_lock);
90 static void nvm_clear_auth_status(const struct tb_switch *sw)
92 struct nvm_auth_status *st;
94 mutex_lock(&nvm_auth_status_lock);
95 st = __nvm_get_auth_status(sw);
100 mutex_unlock(&nvm_auth_status_lock);
103 static int nvm_validate_and_write(struct tb_switch *sw)
105 unsigned int image_size, hdr_size;
106 const u8 *buf = sw->nvm->buf;
113 image_size = sw->nvm->buf_data_size;
114 if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
118 * FARB pointer must point inside the image and must at least
119 * contain parts of the digital section we will be reading here.
121 hdr_size = (*(u32 *)buf) & 0xffffff;
122 if (hdr_size + NVM_DEVID + 2 >= image_size)
125 /* Digital section start should be aligned to 4k page */
126 if (!IS_ALIGNED(hdr_size, SZ_4K))
130 * Read digital section size and check that it also fits inside
133 ds_size = *(u16 *)(buf + hdr_size);
134 if (ds_size >= image_size)
137 if (!sw->safe_mode) {
141 * Make sure the device ID in the image matches the one
142 * we read from the switch config space.
144 device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
145 if (device_id != sw->config.device_id)
148 if (sw->generation < 3) {
149 /* Write CSS headers first */
150 ret = dma_port_flash_write(sw->dma_port,
151 DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
152 DMA_PORT_CSS_MAX_SIZE);
157 /* Skip headers in the image */
159 image_size -= hdr_size;
162 if (tb_switch_is_usb4(sw))
163 ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
165 ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
167 sw->nvm->flushed = true;
171 static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
176 * Root switch NVM upgrade requires that we disconnect the
177 * existing paths first (in case it is not in safe mode
180 if (!sw->safe_mode) {
183 ret = tb_domain_disconnect_all_paths(sw->tb);
187 * The host controller goes away pretty soon after this if
188 * everything goes well so getting timeout is expected.
190 ret = dma_port_flash_update_auth(sw->dma_port);
191 if (!ret || ret == -ETIMEDOUT)
195 * Any error from update auth operation requires power
196 * cycling of the host router.
198 tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
199 if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
200 nvm_set_auth_status(sw, status);
204 * From safe mode we can get out by just power cycling the
207 dma_port_power_cycle(sw->dma_port);
211 static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
213 int ret, retries = 10;
215 ret = dma_port_flash_update_auth(sw->dma_port);
221 /* Power cycle is required */
228 * Poll here for the authentication status. It takes some time
229 * for the device to respond (we get timeout for a while). Once
230 * we get response the device needs to be power cycled in order
231 * to the new NVM to be taken into use.
236 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
237 if (ret < 0 && ret != -ETIMEDOUT)
241 tb_sw_warn(sw, "failed to authenticate NVM\n");
242 nvm_set_auth_status(sw, status);
245 tb_sw_info(sw, "power cycling the switch now\n");
246 dma_port_power_cycle(sw->dma_port);
256 static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
258 struct pci_dev *root_port;
261 * During host router NVM upgrade we should not allow root port to
262 * go into D3cold because some root ports cannot trigger PME
263 * itself. To be on the safe side keep the root port in D0 during
264 * the whole upgrade process.
266 root_port = pcie_find_root_port(sw->tb->nhi->pdev);
268 pm_runtime_get_noresume(&root_port->dev);
271 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
273 struct pci_dev *root_port;
275 root_port = pcie_find_root_port(sw->tb->nhi->pdev);
277 pm_runtime_put(&root_port->dev);
280 static inline bool nvm_readable(struct tb_switch *sw)
282 if (tb_switch_is_usb4(sw)) {
284 * USB4 devices must support NVM operations but it is
285 * optional for hosts. Therefore we query the NVM sector
286 * size here and if it is supported assume NVM
287 * operations are implemented.
289 return usb4_switch_nvm_sector_size(sw) > 0;
292 /* Thunderbolt 2 and 3 devices support NVM through DMA port */
293 return !!sw->dma_port;
296 static inline bool nvm_upgradeable(struct tb_switch *sw)
298 if (sw->no_nvm_upgrade)
300 return nvm_readable(sw);
303 static inline int nvm_read(struct tb_switch *sw, unsigned int address,
304 void *buf, size_t size)
306 if (tb_switch_is_usb4(sw))
307 return usb4_switch_nvm_read(sw, address, buf, size);
308 return dma_port_flash_read(sw->dma_port, address, buf, size);
311 static int nvm_authenticate(struct tb_switch *sw, bool auth_only)
315 if (tb_switch_is_usb4(sw)) {
317 ret = usb4_switch_nvm_set_offset(sw, 0);
321 sw->nvm->authenticating = true;
322 return usb4_switch_nvm_authenticate(sw);
323 } else if (auth_only) {
327 sw->nvm->authenticating = true;
329 nvm_authenticate_start_dma_port(sw);
330 ret = nvm_authenticate_host_dma_port(sw);
332 ret = nvm_authenticate_device_dma_port(sw);
338 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
341 struct tb_nvm *nvm = priv;
342 struct tb_switch *sw = tb_to_switch(nvm->dev);
345 pm_runtime_get_sync(&sw->dev);
347 if (!mutex_trylock(&sw->tb->lock)) {
348 ret = restart_syscall();
352 ret = nvm_read(sw, offset, val, bytes);
353 mutex_unlock(&sw->tb->lock);
356 pm_runtime_mark_last_busy(&sw->dev);
357 pm_runtime_put_autosuspend(&sw->dev);
362 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
365 struct tb_nvm *nvm = priv;
366 struct tb_switch *sw = tb_to_switch(nvm->dev);
369 if (!mutex_trylock(&sw->tb->lock))
370 return restart_syscall();
373 * Since writing the NVM image might require some special steps,
374 * for example when CSS headers are written, we cache the image
375 * locally here and handle the special cases when the user asks
376 * us to authenticate the image.
378 ret = tb_nvm_write_buf(nvm, offset, val, bytes);
379 mutex_unlock(&sw->tb->lock);
384 static int tb_switch_nvm_add(struct tb_switch *sw)
390 if (!nvm_readable(sw))
394 * The NVM format of non-Intel hardware is not known so
395 * currently restrict NVM upgrade for Intel hardware. We may
396 * relax this in the future when we learn other NVM formats.
398 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL &&
399 sw->config.vendor_id != 0x8087) {
401 "NVM format of vendor %#x is not known, disabling NVM upgrade\n",
402 sw->config.vendor_id);
406 nvm = tb_nvm_alloc(&sw->dev);
411 * If the switch is in safe-mode the only accessible portion of
412 * the NVM is the non-active one where userspace is expected to
413 * write new functional NVM.
415 if (!sw->safe_mode) {
416 u32 nvm_size, hdr_size;
418 ret = nvm_read(sw, NVM_FLASH_SIZE, &val, sizeof(val));
422 hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
423 nvm_size = (SZ_1M << (val & 7)) / 8;
424 nvm_size = (nvm_size - hdr_size) / 2;
426 ret = nvm_read(sw, NVM_VERSION, &val, sizeof(val));
430 nvm->major = val >> 16;
431 nvm->minor = val >> 8;
433 ret = tb_nvm_add_active(nvm, nvm_size, tb_switch_nvm_read);
438 if (!sw->no_nvm_upgrade) {
439 ret = tb_nvm_add_non_active(nvm, NVM_MAX_SIZE,
440 tb_switch_nvm_write);
453 static void tb_switch_nvm_remove(struct tb_switch *sw)
463 /* Remove authentication status in case the switch is unplugged */
464 if (!nvm->authenticating)
465 nvm_clear_auth_status(sw);
470 /* port utility functions */
472 static const char *tb_port_type(const struct tb_regs_port_header *port)
474 switch (port->type >> 16) {
476 switch ((u8) port->type) {
501 static void tb_dump_port(struct tb *tb, const struct tb_port *port)
503 const struct tb_regs_port_header *regs = &port->config;
506 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
507 regs->port_number, regs->vendor_id, regs->device_id,
508 regs->revision, regs->thunderbolt_version, tb_port_type(regs),
510 tb_dbg(tb, " Max hop id (in/out): %d/%d\n",
511 regs->max_in_hop_id, regs->max_out_hop_id);
512 tb_dbg(tb, " Max counters: %d\n", regs->max_counters);
513 tb_dbg(tb, " NFC Credits: %#x\n", regs->nfc_credits);
514 tb_dbg(tb, " Credits (total/control): %u/%u\n", port->total_credits,
519 * tb_port_state() - get connectedness state of a port
520 * @port: the port to check
522 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
524 * Return: Returns an enum tb_port_state on success or an error code on failure.
526 int tb_port_state(struct tb_port *port)
528 struct tb_cap_phy phy;
530 if (port->cap_phy == 0) {
531 tb_port_WARN(port, "does not have a PHY\n");
534 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
541 * tb_wait_for_port() - wait for a port to become ready
542 * @port: Port to wait
543 * @wait_if_unplugged: Wait also when port is unplugged
545 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
546 * wait_if_unplugged is set then we also wait if the port is in state
547 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
548 * switch resume). Otherwise we only wait if a device is registered but the link
549 * has not yet been established.
551 * Return: Returns an error code on failure. Returns 0 if the port is not
552 * connected or failed to reach state TB_PORT_UP within one second. Returns 1
553 * if the port is connected and in state TB_PORT_UP.
555 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
559 if (!port->cap_phy) {
560 tb_port_WARN(port, "does not have PHY\n");
563 if (tb_is_upstream_port(port)) {
564 tb_port_WARN(port, "is the upstream port\n");
569 state = tb_port_state(port);
572 if (state == TB_PORT_DISABLED) {
573 tb_port_dbg(port, "is disabled (state: 0)\n");
576 if (state == TB_PORT_UNPLUGGED) {
577 if (wait_if_unplugged) {
578 /* used during resume */
580 "is unplugged (state: 7), retrying...\n");
584 tb_port_dbg(port, "is unplugged (state: 7)\n");
587 if (state == TB_PORT_UP) {
588 tb_port_dbg(port, "is connected, link is up (state: 2)\n");
593 * After plug-in the state is TB_PORT_CONNECTING. Give it some
597 "is connected, link is not up (state: %d), retrying...\n",
602 "failed to reach state TB_PORT_UP. Ignoring port...\n");
607 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
608 * @port: Port to add/remove NFC credits
609 * @credits: Credits to add/remove
611 * Change the number of NFC credits allocated to @port by @credits. To remove
612 * NFC credits pass a negative amount of credits.
614 * Return: Returns 0 on success or an error code on failure.
616 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
620 if (credits == 0 || port->sw->is_unplugged)
624 * USB4 restricts programming NFC buffers to lane adapters only
625 * so skip other ports.
627 if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port))
630 nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
632 credits = max_t(int, -nfc_credits, credits);
634 nfc_credits += credits;
636 tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
637 port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
639 port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
640 port->config.nfc_credits |= nfc_credits;
642 return tb_port_write(port, &port->config.nfc_credits,
643 TB_CFG_PORT, ADP_CS_4, 1);
647 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
648 * @port: Port whose counters to clear
649 * @counter: Counter index to clear
651 * Return: Returns 0 on success or an error code on failure.
653 int tb_port_clear_counter(struct tb_port *port, int counter)
655 u32 zero[3] = { 0, 0, 0 };
656 tb_port_dbg(port, "clearing counter %d\n", counter);
657 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
661 * tb_port_unlock() - Unlock downstream port
662 * @port: Port to unlock
664 * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
665 * downstream router accessible for CM.
667 int tb_port_unlock(struct tb_port *port)
669 if (tb_switch_is_icm(port->sw))
671 if (!tb_port_is_null(port))
673 if (tb_switch_is_usb4(port->sw))
674 return usb4_port_unlock(port);
678 static int __tb_port_enable(struct tb_port *port, bool enable)
683 if (!tb_port_is_null(port))
686 ret = tb_port_read(port, &phy, TB_CFG_PORT,
687 port->cap_phy + LANE_ADP_CS_1, 1);
692 phy &= ~LANE_ADP_CS_1_LD;
694 phy |= LANE_ADP_CS_1_LD;
697 ret = tb_port_write(port, &phy, TB_CFG_PORT,
698 port->cap_phy + LANE_ADP_CS_1, 1);
702 tb_port_dbg(port, "lane %sabled\n", enable ? "en" : "dis");
707 * tb_port_enable() - Enable lane adapter
708 * @port: Port to enable (can be %NULL)
710 * This is used for lane 0 and 1 adapters to enable it.
712 int tb_port_enable(struct tb_port *port)
714 return __tb_port_enable(port, true);
718 * tb_port_disable() - Disable lane adapter
719 * @port: Port to disable (can be %NULL)
721 * This is used for lane 0 and 1 adapters to disable it.
723 int tb_port_disable(struct tb_port *port)
725 return __tb_port_enable(port, false);
729 * tb_init_port() - initialize a port
731 * This is a helper method for tb_switch_alloc. Does not check or initialize
732 * any downstream switches.
734 * Return: Returns 0 on success or an error code on failure.
736 static int tb_init_port(struct tb_port *port)
741 INIT_LIST_HEAD(&port->list);
743 /* Control adapter does not have configuration space */
747 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
749 if (res == -ENODEV) {
750 tb_dbg(port->sw->tb, " Port %d: not implemented\n",
752 port->disabled = true;
758 /* Port 0 is the switch itself and has no PHY. */
759 if (port->config.type == TB_TYPE_PORT) {
760 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
765 tb_port_WARN(port, "non switch port without a PHY\n");
767 cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
769 port->cap_usb4 = cap;
772 * USB4 ports the buffers allocated for the control path
773 * can be read from the path config space. Legacy
774 * devices we use hard-coded value.
776 if (tb_switch_is_usb4(port->sw)) {
777 struct tb_regs_hop hop;
779 if (!tb_port_read(port, &hop, TB_CFG_HOPS, 0, 2))
780 port->ctl_credits = hop.initial_credits;
782 if (!port->ctl_credits)
783 port->ctl_credits = 2;
786 cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
788 port->cap_adap = cap;
791 port->total_credits =
792 (port->config.nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
793 ADP_CS_4_TOTAL_BUFFERS_SHIFT;
795 tb_dump_port(port->sw->tb, port);
799 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
806 port_max_hopid = port->config.max_in_hop_id;
807 ida = &port->in_hopids;
809 port_max_hopid = port->config.max_out_hop_id;
810 ida = &port->out_hopids;
814 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
817 if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID)
818 min_hopid = TB_PATH_MIN_HOPID;
820 if (max_hopid < 0 || max_hopid > port_max_hopid)
821 max_hopid = port_max_hopid;
823 return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
827 * tb_port_alloc_in_hopid() - Allocate input HopID from port
828 * @port: Port to allocate HopID for
829 * @min_hopid: Minimum acceptable input HopID
830 * @max_hopid: Maximum acceptable input HopID
832 * Return: HopID between @min_hopid and @max_hopid or negative errno in
835 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
837 return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
841 * tb_port_alloc_out_hopid() - Allocate output HopID from port
842 * @port: Port to allocate HopID for
843 * @min_hopid: Minimum acceptable output HopID
844 * @max_hopid: Maximum acceptable output HopID
846 * Return: HopID between @min_hopid and @max_hopid or negative errno in
849 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
851 return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
855 * tb_port_release_in_hopid() - Release allocated input HopID from port
856 * @port: Port whose HopID to release
857 * @hopid: HopID to release
859 void tb_port_release_in_hopid(struct tb_port *port, int hopid)
861 ida_simple_remove(&port->in_hopids, hopid);
865 * tb_port_release_out_hopid() - Release allocated output HopID from port
866 * @port: Port whose HopID to release
867 * @hopid: HopID to release
869 void tb_port_release_out_hopid(struct tb_port *port, int hopid)
871 ida_simple_remove(&port->out_hopids, hopid);
874 static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
875 const struct tb_switch *sw)
877 u64 mask = (1ULL << parent->config.depth * 8) - 1;
878 return (tb_route(parent) & mask) == (tb_route(sw) & mask);
882 * tb_next_port_on_path() - Return next port for given port on a path
883 * @start: Start port of the walk
884 * @end: End port of the walk
885 * @prev: Previous port (%NULL if this is the first)
887 * This function can be used to walk from one port to another if they
888 * are connected through zero or more switches. If the @prev is dual
889 * link port, the function follows that link and returns another end on
892 * If the @end port has been reached, return %NULL.
894 * Domain tb->lock must be held when this function is called.
896 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
897 struct tb_port *prev)
899 struct tb_port *next;
904 if (prev->sw == end->sw) {
910 if (tb_switch_is_reachable(prev->sw, end->sw)) {
911 next = tb_port_at(tb_route(end->sw), prev->sw);
912 /* Walk down the topology if next == prev */
914 (next == prev || next->dual_link_port == prev))
917 if (tb_is_upstream_port(prev)) {
920 next = tb_upstream_port(prev->sw);
922 * Keep the same link if prev and next are both
925 if (next->dual_link_port &&
926 next->link_nr != prev->link_nr) {
927 next = next->dual_link_port;
932 return next != prev ? next : NULL;
936 * tb_port_get_link_speed() - Get current link speed
937 * @port: Port to check (USB4 or CIO)
939 * Returns link speed in Gb/s or negative errno in case of failure.
941 int tb_port_get_link_speed(struct tb_port *port)
949 ret = tb_port_read(port, &val, TB_CFG_PORT,
950 port->cap_phy + LANE_ADP_CS_1, 1);
954 speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
955 LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
956 return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10;
960 * tb_port_get_link_width() - Get current link width
961 * @port: Port to check (USB4 or CIO)
963 * Returns link width. Return values can be 1 (Single-Lane), 2 (Dual-Lane)
964 * or negative errno in case of failure.
966 int tb_port_get_link_width(struct tb_port *port)
974 ret = tb_port_read(port, &val, TB_CFG_PORT,
975 port->cap_phy + LANE_ADP_CS_1, 1);
979 return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
980 LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
983 static bool tb_port_is_width_supported(struct tb_port *port, int width)
991 ret = tb_port_read(port, &phy, TB_CFG_PORT,
992 port->cap_phy + LANE_ADP_CS_0, 1);
996 widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >>
997 LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT;
999 return !!(widths & width);
1003 * tb_port_set_link_width() - Set target link width of the lane adapter
1004 * @port: Lane adapter
1005 * @width: Target link width (%1 or %2)
1007 * Sets the target link width of the lane adapter to @width. Does not
1008 * enable/disable lane bonding. For that call tb_port_set_lane_bonding().
1010 * Return: %0 in case of success and negative errno in case of error
1012 int tb_port_set_link_width(struct tb_port *port, unsigned int width)
1020 ret = tb_port_read(port, &val, TB_CFG_PORT,
1021 port->cap_phy + LANE_ADP_CS_1, 1);
1025 val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
1028 val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
1029 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1032 val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
1033 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1039 return tb_port_write(port, &val, TB_CFG_PORT,
1040 port->cap_phy + LANE_ADP_CS_1, 1);
1044 * tb_port_set_lane_bonding() - Enable/disable lane bonding
1045 * @port: Lane adapter
1046 * @bonding: enable/disable bonding
1048 * Enables or disables lane bonding. This should be called after target
1049 * link width has been set (tb_port_set_link_width()). Note in most
1050 * cases one should use tb_port_lane_bonding_enable() instead to enable
1053 * As a side effect sets @port->bonding accordingly (and does the same
1056 * Return: %0 in case of success and negative errno in case of error
1058 int tb_port_set_lane_bonding(struct tb_port *port, bool bonding)
1066 ret = tb_port_read(port, &val, TB_CFG_PORT,
1067 port->cap_phy + LANE_ADP_CS_1, 1);
1072 val |= LANE_ADP_CS_1_LB;
1074 val &= ~LANE_ADP_CS_1_LB;
1076 ret = tb_port_write(port, &val, TB_CFG_PORT,
1077 port->cap_phy + LANE_ADP_CS_1, 1);
1082 * When lane 0 bonding is set it will affect lane 1 too so
1085 port->bonded = bonding;
1086 port->dual_link_port->bonded = bonding;
1092 * tb_port_lane_bonding_enable() - Enable bonding on port
1093 * @port: port to enable
1095 * Enable bonding by setting the link width of the port and the other
1096 * port in case of dual link port. Does not wait for the link to
1097 * actually reach the bonded state so caller needs to call
1098 * tb_port_wait_for_link_width() before enabling any paths through the
1099 * link to make sure the link is in expected state.
1101 * Return: %0 in case of success and negative errno in case of error
1103 int tb_port_lane_bonding_enable(struct tb_port *port)
1108 * Enable lane bonding for both links if not already enabled by
1109 * for example the boot firmware.
1111 ret = tb_port_get_link_width(port);
1113 ret = tb_port_set_link_width(port, 2);
1118 ret = tb_port_get_link_width(port->dual_link_port);
1120 ret = tb_port_set_link_width(port->dual_link_port, 2);
1125 ret = tb_port_set_lane_bonding(port, true);
1132 tb_port_set_link_width(port->dual_link_port, 1);
1134 tb_port_set_link_width(port, 1);
1139 * tb_port_lane_bonding_disable() - Disable bonding on port
1140 * @port: port to disable
1142 * Disable bonding by setting the link width of the port and the
1143 * other port in case of dual link port.
1145 void tb_port_lane_bonding_disable(struct tb_port *port)
1147 tb_port_set_lane_bonding(port, false);
1148 tb_port_set_link_width(port->dual_link_port, 1);
1149 tb_port_set_link_width(port, 1);
1153 * tb_port_wait_for_link_width() - Wait until link reaches specific width
1154 * @port: Port to wait for
1155 * @width: Expected link width (%1 or %2)
1156 * @timeout_msec: Timeout in ms how long to wait
1158 * Should be used after both ends of the link have been bonded (or
1159 * bonding has been disabled) to wait until the link actually reaches
1160 * the expected state. Returns %-ETIMEDOUT if the @width was not reached
1161 * within the given timeout, %0 if it did.
1163 int tb_port_wait_for_link_width(struct tb_port *port, int width,
1166 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1170 ret = tb_port_get_link_width(port);
1173 * Sometimes we get port locked error when
1174 * polling the lanes so we can ignore it and
1179 } else if (ret == width) {
1183 usleep_range(1000, 2000);
1184 } while (ktime_before(ktime_get(), timeout));
1189 static int tb_port_do_update_credits(struct tb_port *port)
1194 ret = tb_port_read(port, &nfc_credits, TB_CFG_PORT, ADP_CS_4, 1);
1198 if (nfc_credits != port->config.nfc_credits) {
1201 total = (nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
1202 ADP_CS_4_TOTAL_BUFFERS_SHIFT;
1204 tb_port_dbg(port, "total credits changed %u -> %u\n",
1205 port->total_credits, total);
1207 port->config.nfc_credits = nfc_credits;
1208 port->total_credits = total;
1215 * tb_port_update_credits() - Re-read port total credits
1216 * @port: Port to update
1218 * After the link is bonded (or bonding was disabled) the port total
1219 * credits may change, so this function needs to be called to re-read
1220 * the credits. Updates also the second lane adapter.
1222 int tb_port_update_credits(struct tb_port *port)
1226 ret = tb_port_do_update_credits(port);
1229 return tb_port_do_update_credits(port->dual_link_port);
1232 static int tb_port_start_lane_initialization(struct tb_port *port)
1236 if (tb_switch_is_usb4(port->sw))
1239 ret = tb_lc_start_lane_initialization(port);
1240 return ret == -EINVAL ? 0 : ret;
1244 * Returns true if the port had something (router, XDomain) connected
1247 static bool tb_port_resume(struct tb_port *port)
1249 bool has_remote = tb_port_has_remote(port);
1252 usb4_port_device_resume(port->usb4);
1253 } else if (!has_remote) {
1255 * For disconnected downstream lane adapters start lane
1256 * initialization now so we detect future connects.
1258 * For XDomain start the lane initialzation now so the
1259 * link gets re-established.
1261 * This is only needed for non-USB4 ports.
1263 if (!tb_is_upstream_port(port) || port->xdomain)
1264 tb_port_start_lane_initialization(port);
1267 return has_remote || port->xdomain;
1271 * tb_port_is_enabled() - Is the adapter port enabled
1272 * @port: Port to check
1274 bool tb_port_is_enabled(struct tb_port *port)
1276 switch (port->config.type) {
1277 case TB_TYPE_PCIE_UP:
1278 case TB_TYPE_PCIE_DOWN:
1279 return tb_pci_port_is_enabled(port);
1281 case TB_TYPE_DP_HDMI_IN:
1282 case TB_TYPE_DP_HDMI_OUT:
1283 return tb_dp_port_is_enabled(port);
1285 case TB_TYPE_USB3_UP:
1286 case TB_TYPE_USB3_DOWN:
1287 return tb_usb3_port_is_enabled(port);
1295 * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1296 * @port: USB3 adapter port to check
1298 bool tb_usb3_port_is_enabled(struct tb_port *port)
1302 if (tb_port_read(port, &data, TB_CFG_PORT,
1303 port->cap_adap + ADP_USB3_CS_0, 1))
1306 return !!(data & ADP_USB3_CS_0_PE);
1310 * tb_usb3_port_enable() - Enable USB3 adapter port
1311 * @port: USB3 adapter port to enable
1312 * @enable: Enable/disable the USB3 adapter
1314 int tb_usb3_port_enable(struct tb_port *port, bool enable)
1316 u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1319 if (!port->cap_adap)
1321 return tb_port_write(port, &word, TB_CFG_PORT,
1322 port->cap_adap + ADP_USB3_CS_0, 1);
1326 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1327 * @port: PCIe port to check
1329 bool tb_pci_port_is_enabled(struct tb_port *port)
1333 if (tb_port_read(port, &data, TB_CFG_PORT,
1334 port->cap_adap + ADP_PCIE_CS_0, 1))
1337 return !!(data & ADP_PCIE_CS_0_PE);
1341 * tb_pci_port_enable() - Enable PCIe adapter port
1342 * @port: PCIe port to enable
1343 * @enable: Enable/disable the PCIe adapter
1345 int tb_pci_port_enable(struct tb_port *port, bool enable)
1347 u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1348 if (!port->cap_adap)
1350 return tb_port_write(port, &word, TB_CFG_PORT,
1351 port->cap_adap + ADP_PCIE_CS_0, 1);
1355 * tb_dp_port_hpd_is_active() - Is HPD already active
1356 * @port: DP out port to check
1358 * Checks if the DP OUT adapter port has HDP bit already set.
1360 int tb_dp_port_hpd_is_active(struct tb_port *port)
1365 ret = tb_port_read(port, &data, TB_CFG_PORT,
1366 port->cap_adap + ADP_DP_CS_2, 1);
1370 return !!(data & ADP_DP_CS_2_HDP);
1374 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1375 * @port: Port to clear HPD
1377 * If the DP IN port has HDP set, this function can be used to clear it.
1379 int tb_dp_port_hpd_clear(struct tb_port *port)
1384 ret = tb_port_read(port, &data, TB_CFG_PORT,
1385 port->cap_adap + ADP_DP_CS_3, 1);
1389 data |= ADP_DP_CS_3_HDPC;
1390 return tb_port_write(port, &data, TB_CFG_PORT,
1391 port->cap_adap + ADP_DP_CS_3, 1);
1395 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1396 * @port: DP IN/OUT port to set hops
1397 * @video: Video Hop ID
1398 * @aux_tx: AUX TX Hop ID
1399 * @aux_rx: AUX RX Hop ID
1401 * Programs specified Hop IDs for DP IN/OUT port. Can be called for USB4
1402 * router DP adapters too but does not program the values as the fields
1405 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1406 unsigned int aux_tx, unsigned int aux_rx)
1411 if (tb_switch_is_usb4(port->sw))
1414 ret = tb_port_read(port, data, TB_CFG_PORT,
1415 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1419 data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1420 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1421 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1423 data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1424 ADP_DP_CS_0_VIDEO_HOPID_MASK;
1425 data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1426 data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1427 ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1429 return tb_port_write(port, data, TB_CFG_PORT,
1430 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1434 * tb_dp_port_is_enabled() - Is DP adapter port enabled
1435 * @port: DP adapter port to check
1437 bool tb_dp_port_is_enabled(struct tb_port *port)
1441 if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1445 return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1449 * tb_dp_port_enable() - Enables/disables DP paths of a port
1450 * @port: DP IN/OUT port
1451 * @enable: Enable/disable DP path
1453 * Once Hop IDs are programmed DP paths can be enabled or disabled by
1454 * calling this function.
1456 int tb_dp_port_enable(struct tb_port *port, bool enable)
1461 ret = tb_port_read(port, data, TB_CFG_PORT,
1462 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1467 data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1469 data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1471 return tb_port_write(port, data, TB_CFG_PORT,
1472 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1475 /* switch utility functions */
1477 static const char *tb_switch_generation_name(const struct tb_switch *sw)
1479 switch (sw->generation) {
1481 return "Thunderbolt 1";
1483 return "Thunderbolt 2";
1485 return "Thunderbolt 3";
1493 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1495 const struct tb_regs_switch_header *regs = &sw->config;
1497 tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1498 tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1499 regs->revision, regs->thunderbolt_version);
1500 tb_dbg(tb, " Max Port Number: %d\n", regs->max_port_number);
1501 tb_dbg(tb, " Config:\n");
1503 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1504 regs->upstream_port_number, regs->depth,
1505 (((u64) regs->route_hi) << 32) | regs->route_lo,
1506 regs->enabled, regs->plug_events_delay);
1507 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n",
1508 regs->__unknown1, regs->__unknown4);
1512 * tb_switch_reset() - reconfigure route, enable and send TB_CFG_PKG_RESET
1513 * @sw: Switch to reset
1515 * Return: Returns 0 on success or an error code on failure.
1517 int tb_switch_reset(struct tb_switch *sw)
1519 struct tb_cfg_result res;
1521 if (sw->generation > 1)
1524 tb_sw_dbg(sw, "resetting switch\n");
1526 res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2,
1527 TB_CFG_SWITCH, 2, 2);
1530 res = tb_cfg_reset(sw->tb->ctl, tb_route(sw));
1537 * tb_switch_wait_for_bit() - Wait for specified value of bits in offset
1538 * @sw: Router to read the offset value from
1539 * @offset: Offset in the router config space to read from
1540 * @bit: Bit mask in the offset to wait for
1541 * @value: Value of the bits to wait for
1542 * @timeout_msec: Timeout in ms how long to wait
1544 * Wait till the specified bits in specified offset reach specified value.
1545 * Returns %0 in case of success, %-ETIMEDOUT if the @value was not reached
1546 * within the given timeout or a negative errno in case of failure.
1548 int tb_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
1549 u32 value, int timeout_msec)
1551 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1557 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
1561 if ((val & bit) == value)
1564 usleep_range(50, 100);
1565 } while (ktime_before(ktime_get(), timeout));
1571 * tb_plug_events_active() - enable/disable plug events on a switch
1573 * Also configures a sane plug_events_delay of 255ms.
1575 * Return: Returns 0 on success or an error code on failure.
1577 static int tb_plug_events_active(struct tb_switch *sw, bool active)
1582 if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw))
1585 sw->config.plug_events_delay = 0xff;
1586 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1590 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1595 data = data & 0xFFFFFF83;
1596 switch (sw->config.device_id) {
1597 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1598 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1599 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1603 * Skip Alpine Ridge, it needs to have vendor
1604 * specific USB hotplug event enabled for the
1605 * internal xHCI to work.
1607 if (!tb_switch_is_alpine_ridge(sw))
1608 data |= TB_PLUG_EVENTS_USB_DISABLE;
1613 return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1614 sw->cap_plug_events + 1, 1);
1617 static ssize_t authorized_show(struct device *dev,
1618 struct device_attribute *attr,
1621 struct tb_switch *sw = tb_to_switch(dev);
1623 return sprintf(buf, "%u\n", sw->authorized);
1626 static int disapprove_switch(struct device *dev, void *not_used)
1628 char *envp[] = { "AUTHORIZED=0", NULL };
1629 struct tb_switch *sw;
1631 sw = tb_to_switch(dev);
1632 if (sw && sw->authorized) {
1635 /* First children */
1636 ret = device_for_each_child_reverse(&sw->dev, NULL, disapprove_switch);
1640 ret = tb_domain_disapprove_switch(sw->tb, sw);
1645 kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1651 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1653 char envp_string[13];
1655 char *envp[] = { envp_string, NULL };
1657 if (!mutex_trylock(&sw->tb->lock))
1658 return restart_syscall();
1660 if (!!sw->authorized == !!val)
1664 /* Disapprove switch */
1667 ret = disapprove_switch(&sw->dev, NULL);
1672 /* Approve switch */
1675 ret = tb_domain_approve_switch_key(sw->tb, sw);
1677 ret = tb_domain_approve_switch(sw->tb, sw);
1680 /* Challenge switch */
1683 ret = tb_domain_challenge_switch_key(sw->tb, sw);
1691 sw->authorized = val;
1693 * Notify status change to the userspace, informing the new
1694 * value of /sys/bus/thunderbolt/devices/.../authorized.
1696 sprintf(envp_string, "AUTHORIZED=%u", sw->authorized);
1697 kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1701 mutex_unlock(&sw->tb->lock);
1705 static ssize_t authorized_store(struct device *dev,
1706 struct device_attribute *attr,
1707 const char *buf, size_t count)
1709 struct tb_switch *sw = tb_to_switch(dev);
1713 ret = kstrtouint(buf, 0, &val);
1719 pm_runtime_get_sync(&sw->dev);
1720 ret = tb_switch_set_authorized(sw, val);
1721 pm_runtime_mark_last_busy(&sw->dev);
1722 pm_runtime_put_autosuspend(&sw->dev);
1724 return ret ? ret : count;
1726 static DEVICE_ATTR_RW(authorized);
1728 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1731 struct tb_switch *sw = tb_to_switch(dev);
1733 return sprintf(buf, "%u\n", sw->boot);
1735 static DEVICE_ATTR_RO(boot);
1737 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1740 struct tb_switch *sw = tb_to_switch(dev);
1742 return sprintf(buf, "%#x\n", sw->device);
1744 static DEVICE_ATTR_RO(device);
1747 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1749 struct tb_switch *sw = tb_to_switch(dev);
1751 return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
1753 static DEVICE_ATTR_RO(device_name);
1756 generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1758 struct tb_switch *sw = tb_to_switch(dev);
1760 return sprintf(buf, "%u\n", sw->generation);
1762 static DEVICE_ATTR_RO(generation);
1764 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1767 struct tb_switch *sw = tb_to_switch(dev);
1770 if (!mutex_trylock(&sw->tb->lock))
1771 return restart_syscall();
1774 ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1776 ret = sprintf(buf, "\n");
1778 mutex_unlock(&sw->tb->lock);
1782 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1783 const char *buf, size_t count)
1785 struct tb_switch *sw = tb_to_switch(dev);
1786 u8 key[TB_SWITCH_KEY_SIZE];
1787 ssize_t ret = count;
1790 if (!strcmp(buf, "\n"))
1792 else if (hex2bin(key, buf, sizeof(key)))
1795 if (!mutex_trylock(&sw->tb->lock))
1796 return restart_syscall();
1798 if (sw->authorized) {
1805 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1811 mutex_unlock(&sw->tb->lock);
1814 static DEVICE_ATTR(key, 0600, key_show, key_store);
1816 static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1819 struct tb_switch *sw = tb_to_switch(dev);
1821 return sprintf(buf, "%u.0 Gb/s\n", sw->link_speed);
1825 * Currently all lanes must run at the same speed but we expose here
1826 * both directions to allow possible asymmetric links in the future.
1828 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1829 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1831 static ssize_t lanes_show(struct device *dev, struct device_attribute *attr,
1834 struct tb_switch *sw = tb_to_switch(dev);
1836 return sprintf(buf, "%u\n", sw->link_width);
1840 * Currently link has same amount of lanes both directions (1 or 2) but
1841 * expose them separately to allow possible asymmetric links in the future.
1843 static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL);
1844 static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL);
1846 static ssize_t nvm_authenticate_show(struct device *dev,
1847 struct device_attribute *attr, char *buf)
1849 struct tb_switch *sw = tb_to_switch(dev);
1852 nvm_get_auth_status(sw, &status);
1853 return sprintf(buf, "%#x\n", status);
1856 static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
1859 struct tb_switch *sw = tb_to_switch(dev);
1862 pm_runtime_get_sync(&sw->dev);
1864 if (!mutex_trylock(&sw->tb->lock)) {
1865 ret = restart_syscall();
1869 /* If NVMem devices are not yet added */
1875 ret = kstrtoint(buf, 10, &val);
1879 /* Always clear the authentication status */
1880 nvm_clear_auth_status(sw);
1883 if (val == AUTHENTICATE_ONLY) {
1887 ret = nvm_authenticate(sw, true);
1889 if (!sw->nvm->flushed) {
1890 if (!sw->nvm->buf) {
1895 ret = nvm_validate_and_write(sw);
1896 if (ret || val == WRITE_ONLY)
1899 if (val == WRITE_AND_AUTHENTICATE) {
1901 ret = tb_lc_force_power(sw);
1903 ret = nvm_authenticate(sw, false);
1909 mutex_unlock(&sw->tb->lock);
1911 pm_runtime_mark_last_busy(&sw->dev);
1912 pm_runtime_put_autosuspend(&sw->dev);
1917 static ssize_t nvm_authenticate_store(struct device *dev,
1918 struct device_attribute *attr, const char *buf, size_t count)
1920 int ret = nvm_authenticate_sysfs(dev, buf, false);
1925 static DEVICE_ATTR_RW(nvm_authenticate);
1927 static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
1928 struct device_attribute *attr, char *buf)
1930 return nvm_authenticate_show(dev, attr, buf);
1933 static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
1934 struct device_attribute *attr, const char *buf, size_t count)
1938 ret = nvm_authenticate_sysfs(dev, buf, true);
1939 return ret ? ret : count;
1941 static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
1943 static ssize_t nvm_version_show(struct device *dev,
1944 struct device_attribute *attr, char *buf)
1946 struct tb_switch *sw = tb_to_switch(dev);
1949 if (!mutex_trylock(&sw->tb->lock))
1950 return restart_syscall();
1957 ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
1959 mutex_unlock(&sw->tb->lock);
1963 static DEVICE_ATTR_RO(nvm_version);
1965 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
1968 struct tb_switch *sw = tb_to_switch(dev);
1970 return sprintf(buf, "%#x\n", sw->vendor);
1972 static DEVICE_ATTR_RO(vendor);
1975 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1977 struct tb_switch *sw = tb_to_switch(dev);
1979 return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
1981 static DEVICE_ATTR_RO(vendor_name);
1983 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
1986 struct tb_switch *sw = tb_to_switch(dev);
1988 return sprintf(buf, "%pUb\n", sw->uuid);
1990 static DEVICE_ATTR_RO(unique_id);
1992 static struct attribute *switch_attrs[] = {
1993 &dev_attr_authorized.attr,
1994 &dev_attr_boot.attr,
1995 &dev_attr_device.attr,
1996 &dev_attr_device_name.attr,
1997 &dev_attr_generation.attr,
1999 &dev_attr_nvm_authenticate.attr,
2000 &dev_attr_nvm_authenticate_on_disconnect.attr,
2001 &dev_attr_nvm_version.attr,
2002 &dev_attr_rx_speed.attr,
2003 &dev_attr_rx_lanes.attr,
2004 &dev_attr_tx_speed.attr,
2005 &dev_attr_tx_lanes.attr,
2006 &dev_attr_vendor.attr,
2007 &dev_attr_vendor_name.attr,
2008 &dev_attr_unique_id.attr,
2012 static umode_t switch_attr_is_visible(struct kobject *kobj,
2013 struct attribute *attr, int n)
2015 struct device *dev = kobj_to_dev(kobj);
2016 struct tb_switch *sw = tb_to_switch(dev);
2018 if (attr == &dev_attr_authorized.attr) {
2019 if (sw->tb->security_level == TB_SECURITY_NOPCIE ||
2020 sw->tb->security_level == TB_SECURITY_DPONLY)
2022 } else if (attr == &dev_attr_device.attr) {
2025 } else if (attr == &dev_attr_device_name.attr) {
2026 if (!sw->device_name)
2028 } else if (attr == &dev_attr_vendor.attr) {
2031 } else if (attr == &dev_attr_vendor_name.attr) {
2032 if (!sw->vendor_name)
2034 } else if (attr == &dev_attr_key.attr) {
2036 sw->tb->security_level == TB_SECURITY_SECURE &&
2037 sw->security_level == TB_SECURITY_SECURE)
2040 } else if (attr == &dev_attr_rx_speed.attr ||
2041 attr == &dev_attr_rx_lanes.attr ||
2042 attr == &dev_attr_tx_speed.attr ||
2043 attr == &dev_attr_tx_lanes.attr) {
2047 } else if (attr == &dev_attr_nvm_authenticate.attr) {
2048 if (nvm_upgradeable(sw))
2051 } else if (attr == &dev_attr_nvm_version.attr) {
2052 if (nvm_readable(sw))
2055 } else if (attr == &dev_attr_boot.attr) {
2059 } else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
2060 if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
2065 return sw->safe_mode ? 0 : attr->mode;
2068 static const struct attribute_group switch_group = {
2069 .is_visible = switch_attr_is_visible,
2070 .attrs = switch_attrs,
2073 static const struct attribute_group *switch_groups[] = {
2078 static void tb_switch_release(struct device *dev)
2080 struct tb_switch *sw = tb_to_switch(dev);
2081 struct tb_port *port;
2083 dma_port_free(sw->dma_port);
2085 tb_switch_for_each_port(sw, port) {
2086 ida_destroy(&port->in_hopids);
2087 ida_destroy(&port->out_hopids);
2091 kfree(sw->device_name);
2092 kfree(sw->vendor_name);
2099 static int tb_switch_uevent(struct device *dev, struct kobj_uevent_env *env)
2101 struct tb_switch *sw = tb_to_switch(dev);
2104 if (sw->config.thunderbolt_version == USB4_VERSION_1_0) {
2105 if (add_uevent_var(env, "USB4_VERSION=1.0"))
2109 if (!tb_route(sw)) {
2112 const struct tb_port *port;
2115 /* Device is hub if it has any downstream ports */
2116 tb_switch_for_each_port(sw, port) {
2117 if (!port->disabled && !tb_is_upstream_port(port) &&
2118 tb_port_is_null(port)) {
2124 type = hub ? "hub" : "device";
2127 if (add_uevent_var(env, "USB4_TYPE=%s", type))
2133 * Currently only need to provide the callbacks. Everything else is handled
2134 * in the connection manager.
2136 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
2138 struct tb_switch *sw = tb_to_switch(dev);
2139 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2141 if (cm_ops->runtime_suspend_switch)
2142 return cm_ops->runtime_suspend_switch(sw);
2147 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
2149 struct tb_switch *sw = tb_to_switch(dev);
2150 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2152 if (cm_ops->runtime_resume_switch)
2153 return cm_ops->runtime_resume_switch(sw);
2157 static const struct dev_pm_ops tb_switch_pm_ops = {
2158 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
2162 struct device_type tb_switch_type = {
2163 .name = "thunderbolt_device",
2164 .release = tb_switch_release,
2165 .uevent = tb_switch_uevent,
2166 .pm = &tb_switch_pm_ops,
2169 static int tb_switch_get_generation(struct tb_switch *sw)
2171 switch (sw->config.device_id) {
2172 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
2173 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
2174 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
2175 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
2176 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
2177 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
2178 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
2179 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
2182 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
2183 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
2184 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
2187 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
2188 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
2189 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
2190 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
2191 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
2192 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
2193 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
2194 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
2195 case PCI_DEVICE_ID_INTEL_ICL_NHI0:
2196 case PCI_DEVICE_ID_INTEL_ICL_NHI1:
2200 if (tb_switch_is_usb4(sw))
2204 * For unknown switches assume generation to be 1 to be
2207 tb_sw_warn(sw, "unsupported switch device id %#x\n",
2208 sw->config.device_id);
2213 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
2217 if (tb_switch_is_usb4(sw) ||
2218 (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
2219 max_depth = USB4_SWITCH_MAX_DEPTH;
2221 max_depth = TB_SWITCH_MAX_DEPTH;
2223 return depth > max_depth;
2227 * tb_switch_alloc() - allocate a switch
2228 * @tb: Pointer to the owning domain
2229 * @parent: Parent device for this switch
2230 * @route: Route string for this switch
2232 * Allocates and initializes a switch. Will not upload configuration to
2233 * the switch. For that you need to call tb_switch_configure()
2234 * separately. The returned switch should be released by calling
2237 * Return: Pointer to the allocated switch or ERR_PTR() in case of
2240 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
2243 struct tb_switch *sw;
2247 /* Unlock the downstream port so we can access the switch below */
2249 struct tb_switch *parent_sw = tb_to_switch(parent);
2250 struct tb_port *down;
2252 down = tb_port_at(route, parent_sw);
2253 tb_port_unlock(down);
2256 depth = tb_route_length(route);
2258 upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
2259 if (upstream_port < 0)
2260 return ERR_PTR(upstream_port);
2262 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2264 return ERR_PTR(-ENOMEM);
2267 ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
2269 goto err_free_sw_ports;
2271 sw->generation = tb_switch_get_generation(sw);
2273 tb_dbg(tb, "current switch config:\n");
2274 tb_dump_switch(tb, sw);
2276 /* configure switch */
2277 sw->config.upstream_port_number = upstream_port;
2278 sw->config.depth = depth;
2279 sw->config.route_hi = upper_32_bits(route);
2280 sw->config.route_lo = lower_32_bits(route);
2281 sw->config.enabled = 0;
2283 /* Make sure we do not exceed maximum topology limit */
2284 if (tb_switch_exceeds_max_depth(sw, depth)) {
2285 ret = -EADDRNOTAVAIL;
2286 goto err_free_sw_ports;
2289 /* initialize ports */
2290 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
2294 goto err_free_sw_ports;
2297 for (i = 0; i <= sw->config.max_port_number; i++) {
2298 /* minimum setup for tb_find_cap and tb_drom_read to work */
2299 sw->ports[i].sw = sw;
2300 sw->ports[i].port = i;
2302 /* Control port does not need HopID allocation */
2304 ida_init(&sw->ports[i].in_hopids);
2305 ida_init(&sw->ports[i].out_hopids);
2309 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
2311 sw->cap_plug_events = ret;
2313 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_TIME2);
2315 sw->cap_vsec_tmu = ret;
2317 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
2321 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_CP_LP);
2325 /* Root switch is always authorized */
2327 sw->authorized = true;
2329 device_initialize(&sw->dev);
2330 sw->dev.parent = parent;
2331 sw->dev.bus = &tb_bus_type;
2332 sw->dev.type = &tb_switch_type;
2333 sw->dev.groups = switch_groups;
2334 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2342 return ERR_PTR(ret);
2346 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
2347 * @tb: Pointer to the owning domain
2348 * @parent: Parent device for this switch
2349 * @route: Route string for this switch
2351 * This creates a switch in safe mode. This means the switch pretty much
2352 * lacks all capabilities except DMA configuration port before it is
2353 * flashed with a valid NVM firmware.
2355 * The returned switch must be released by calling tb_switch_put().
2357 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
2360 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
2362 struct tb_switch *sw;
2364 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2366 return ERR_PTR(-ENOMEM);
2369 sw->config.depth = tb_route_length(route);
2370 sw->config.route_hi = upper_32_bits(route);
2371 sw->config.route_lo = lower_32_bits(route);
2372 sw->safe_mode = true;
2374 device_initialize(&sw->dev);
2375 sw->dev.parent = parent;
2376 sw->dev.bus = &tb_bus_type;
2377 sw->dev.type = &tb_switch_type;
2378 sw->dev.groups = switch_groups;
2379 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2385 * tb_switch_configure() - Uploads configuration to the switch
2386 * @sw: Switch to configure
2388 * Call this function before the switch is added to the system. It will
2389 * upload configuration to the switch and makes it available for the
2390 * connection manager to use. Can be called to the switch again after
2391 * resume from low power states to re-initialize it.
2393 * Return: %0 in case of success and negative errno in case of failure
2395 int tb_switch_configure(struct tb_switch *sw)
2397 struct tb *tb = sw->tb;
2401 route = tb_route(sw);
2403 tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
2404 sw->config.enabled ? "restoring" : "initializing", route,
2405 tb_route_length(route), sw->config.upstream_port_number);
2407 sw->config.enabled = 1;
2409 if (tb_switch_is_usb4(sw)) {
2411 * For USB4 devices, we need to program the CM version
2412 * accordingly so that it knows to expose all the
2413 * additional capabilities.
2415 sw->config.cmuv = USB4_VERSION_1_0;
2417 /* Enumerate the switch */
2418 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2423 ret = usb4_switch_setup(sw);
2425 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2426 tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2427 sw->config.vendor_id);
2429 if (!sw->cap_plug_events) {
2430 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2434 /* Enumerate the switch */
2435 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2441 return tb_plug_events_active(sw, true);
2444 static int tb_switch_set_uuid(struct tb_switch *sw)
2453 if (tb_switch_is_usb4(sw)) {
2454 ret = usb4_switch_read_uid(sw, &sw->uid);
2460 * The newer controllers include fused UUID as part of
2461 * link controller specific registers
2463 ret = tb_lc_read_uuid(sw, uuid);
2473 * ICM generates UUID based on UID and fills the upper
2474 * two words with ones. This is not strictly following
2475 * UUID format but we want to be compatible with it so
2476 * we do the same here.
2478 uuid[0] = sw->uid & 0xffffffff;
2479 uuid[1] = (sw->uid >> 32) & 0xffffffff;
2480 uuid[2] = 0xffffffff;
2481 uuid[3] = 0xffffffff;
2484 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2490 static int tb_switch_add_dma_port(struct tb_switch *sw)
2495 switch (sw->generation) {
2497 /* Only root switch can be upgraded */
2504 ret = tb_switch_set_uuid(sw);
2511 * DMA port is the only thing available when the switch
2519 if (sw->no_nvm_upgrade)
2522 if (tb_switch_is_usb4(sw)) {
2523 ret = usb4_switch_nvm_authenticate_status(sw, &status);
2528 tb_sw_info(sw, "switch flash authentication failed\n");
2529 nvm_set_auth_status(sw, status);
2535 /* Root switch DMA port requires running firmware */
2536 if (!tb_route(sw) && !tb_switch_is_icm(sw))
2539 sw->dma_port = dma_port_alloc(sw);
2544 * If there is status already set then authentication failed
2545 * when the dma_port_flash_update_auth() returned. Power cycling
2546 * is not needed (it was done already) so only thing we do here
2547 * is to unblock runtime PM of the root port.
2549 nvm_get_auth_status(sw, &status);
2552 nvm_authenticate_complete_dma_port(sw);
2557 * Check status of the previous flash authentication. If there
2558 * is one we need to power cycle the switch in any case to make
2559 * it functional again.
2561 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2565 /* Now we can allow root port to suspend again */
2567 nvm_authenticate_complete_dma_port(sw);
2570 tb_sw_info(sw, "switch flash authentication failed\n");
2571 nvm_set_auth_status(sw, status);
2574 tb_sw_info(sw, "power cycling the switch now\n");
2575 dma_port_power_cycle(sw->dma_port);
2578 * We return error here which causes the switch adding failure.
2579 * It should appear back after power cycle is complete.
2584 static void tb_switch_default_link_ports(struct tb_switch *sw)
2588 for (i = 1; i <= sw->config.max_port_number; i++) {
2589 struct tb_port *port = &sw->ports[i];
2590 struct tb_port *subordinate;
2592 if (!tb_port_is_null(port))
2595 /* Check for the subordinate port */
2596 if (i == sw->config.max_port_number ||
2597 !tb_port_is_null(&sw->ports[i + 1]))
2600 /* Link them if not already done so (by DROM) */
2601 subordinate = &sw->ports[i + 1];
2602 if (!port->dual_link_port && !subordinate->dual_link_port) {
2604 port->dual_link_port = subordinate;
2605 subordinate->link_nr = 1;
2606 subordinate->dual_link_port = port;
2608 tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2609 port->port, subordinate->port);
2614 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2616 const struct tb_port *up = tb_upstream_port(sw);
2618 if (!up->dual_link_port || !up->dual_link_port->remote)
2621 if (tb_switch_is_usb4(sw))
2622 return usb4_switch_lane_bonding_possible(sw);
2623 return tb_lc_lane_bonding_possible(sw);
2626 static int tb_switch_update_link_attributes(struct tb_switch *sw)
2629 bool change = false;
2632 if (!tb_route(sw) || tb_switch_is_icm(sw))
2635 up = tb_upstream_port(sw);
2637 ret = tb_port_get_link_speed(up);
2640 if (sw->link_speed != ret)
2642 sw->link_speed = ret;
2644 ret = tb_port_get_link_width(up);
2647 if (sw->link_width != ret)
2649 sw->link_width = ret;
2651 /* Notify userspace that there is possible link attribute change */
2652 if (device_is_registered(&sw->dev) && change)
2653 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2659 * tb_switch_lane_bonding_enable() - Enable lane bonding
2660 * @sw: Switch to enable lane bonding
2662 * Connection manager can call this function to enable lane bonding of a
2663 * switch. If conditions are correct and both switches support the feature,
2664 * lanes are bonded. It is safe to call this to any switch.
2666 int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2668 struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2669 struct tb_port *up, *down;
2670 u64 route = tb_route(sw);
2676 if (!tb_switch_lane_bonding_possible(sw))
2679 up = tb_upstream_port(sw);
2680 down = tb_port_at(route, parent);
2682 if (!tb_port_is_width_supported(up, 2) ||
2683 !tb_port_is_width_supported(down, 2))
2686 ret = tb_port_lane_bonding_enable(up);
2688 tb_port_warn(up, "failed to enable lane bonding\n");
2692 ret = tb_port_lane_bonding_enable(down);
2694 tb_port_warn(down, "failed to enable lane bonding\n");
2695 tb_port_lane_bonding_disable(up);
2699 ret = tb_port_wait_for_link_width(down, 2, 100);
2701 tb_port_warn(down, "timeout enabling lane bonding\n");
2705 tb_port_update_credits(down);
2706 tb_port_update_credits(up);
2707 tb_switch_update_link_attributes(sw);
2709 tb_sw_dbg(sw, "lane bonding enabled\n");
2714 * tb_switch_lane_bonding_disable() - Disable lane bonding
2715 * @sw: Switch whose lane bonding to disable
2717 * Disables lane bonding between @sw and parent. This can be called even
2718 * if lanes were not bonded originally.
2720 void tb_switch_lane_bonding_disable(struct tb_switch *sw)
2722 struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2723 struct tb_port *up, *down;
2728 up = tb_upstream_port(sw);
2732 down = tb_port_at(tb_route(sw), parent);
2734 tb_port_lane_bonding_disable(up);
2735 tb_port_lane_bonding_disable(down);
2738 * It is fine if we get other errors as the router might have
2741 if (tb_port_wait_for_link_width(down, 1, 100) == -ETIMEDOUT)
2742 tb_sw_warn(sw, "timeout disabling lane bonding\n");
2744 tb_port_update_credits(down);
2745 tb_port_update_credits(up);
2746 tb_switch_update_link_attributes(sw);
2748 tb_sw_dbg(sw, "lane bonding disabled\n");
2752 * tb_switch_configure_link() - Set link configured
2753 * @sw: Switch whose link is configured
2755 * Sets the link upstream from @sw configured (from both ends) so that
2756 * it will not be disconnected when the domain exits sleep. Can be
2757 * called for any switch.
2759 * It is recommended that this is called after lane bonding is enabled.
2761 * Returns %0 on success and negative errno in case of error.
2763 int tb_switch_configure_link(struct tb_switch *sw)
2765 struct tb_port *up, *down;
2768 if (!tb_route(sw) || tb_switch_is_icm(sw))
2771 up = tb_upstream_port(sw);
2772 if (tb_switch_is_usb4(up->sw))
2773 ret = usb4_port_configure(up);
2775 ret = tb_lc_configure_port(up);
2780 if (tb_switch_is_usb4(down->sw))
2781 return usb4_port_configure(down);
2782 return tb_lc_configure_port(down);
2786 * tb_switch_unconfigure_link() - Unconfigure link
2787 * @sw: Switch whose link is unconfigured
2789 * Sets the link unconfigured so the @sw will be disconnected if the
2790 * domain exists sleep.
2792 void tb_switch_unconfigure_link(struct tb_switch *sw)
2794 struct tb_port *up, *down;
2796 if (sw->is_unplugged)
2798 if (!tb_route(sw) || tb_switch_is_icm(sw))
2801 up = tb_upstream_port(sw);
2802 if (tb_switch_is_usb4(up->sw))
2803 usb4_port_unconfigure(up);
2805 tb_lc_unconfigure_port(up);
2808 if (tb_switch_is_usb4(down->sw))
2809 usb4_port_unconfigure(down);
2811 tb_lc_unconfigure_port(down);
2814 static void tb_switch_credits_init(struct tb_switch *sw)
2816 if (tb_switch_is_icm(sw))
2818 if (!tb_switch_is_usb4(sw))
2820 if (usb4_switch_credits_init(sw))
2821 tb_sw_info(sw, "failed to determine preferred buffer allocation, using defaults\n");
2825 * tb_switch_add() - Add a switch to the domain
2826 * @sw: Switch to add
2828 * This is the last step in adding switch to the domain. It will read
2829 * identification information from DROM and initializes ports so that
2830 * they can be used to connect other switches. The switch will be
2831 * exposed to the userspace when this function successfully returns. To
2832 * remove and release the switch, call tb_switch_remove().
2834 * Return: %0 in case of success and negative errno in case of failure
2836 int tb_switch_add(struct tb_switch *sw)
2841 * Initialize DMA control port now before we read DROM. Recent
2842 * host controllers have more complete DROM on NVM that includes
2843 * vendor and model identification strings which we then expose
2844 * to the userspace. NVM can be accessed through DMA
2845 * configuration based mailbox.
2847 ret = tb_switch_add_dma_port(sw);
2849 dev_err(&sw->dev, "failed to add DMA port\n");
2853 if (!sw->safe_mode) {
2854 tb_switch_credits_init(sw);
2857 ret = tb_drom_read(sw);
2859 dev_warn(&sw->dev, "reading DROM failed: %d\n", ret);
2860 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
2862 tb_check_quirks(sw);
2864 ret = tb_switch_set_uuid(sw);
2866 dev_err(&sw->dev, "failed to set UUID\n");
2870 for (i = 0; i <= sw->config.max_port_number; i++) {
2871 if (sw->ports[i].disabled) {
2872 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
2875 ret = tb_init_port(&sw->ports[i]);
2877 dev_err(&sw->dev, "failed to initialize port %d\n", i);
2882 tb_switch_default_link_ports(sw);
2884 ret = tb_switch_update_link_attributes(sw);
2888 ret = tb_switch_tmu_init(sw);
2893 ret = device_add(&sw->dev);
2895 dev_err(&sw->dev, "failed to add device: %d\n", ret);
2900 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
2901 sw->vendor, sw->device);
2902 if (sw->vendor_name && sw->device_name)
2903 dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
2907 ret = usb4_switch_add_ports(sw);
2909 dev_err(&sw->dev, "failed to add USB4 ports\n");
2913 ret = tb_switch_nvm_add(sw);
2915 dev_err(&sw->dev, "failed to add NVM devices\n");
2920 * Thunderbolt routers do not generate wakeups themselves but
2921 * they forward wakeups from tunneled protocols, so enable it
2924 device_init_wakeup(&sw->dev, true);
2926 pm_runtime_set_active(&sw->dev);
2928 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
2929 pm_runtime_use_autosuspend(&sw->dev);
2930 pm_runtime_mark_last_busy(&sw->dev);
2931 pm_runtime_enable(&sw->dev);
2932 pm_request_autosuspend(&sw->dev);
2935 tb_switch_debugfs_init(sw);
2939 usb4_switch_remove_ports(sw);
2941 device_del(&sw->dev);
2947 * tb_switch_remove() - Remove and release a switch
2948 * @sw: Switch to remove
2950 * This will remove the switch from the domain and release it after last
2951 * reference count drops to zero. If there are switches connected below
2952 * this switch, they will be removed as well.
2954 void tb_switch_remove(struct tb_switch *sw)
2956 struct tb_port *port;
2958 tb_switch_debugfs_remove(sw);
2961 pm_runtime_get_sync(&sw->dev);
2962 pm_runtime_disable(&sw->dev);
2965 /* port 0 is the switch itself and never has a remote */
2966 tb_switch_for_each_port(sw, port) {
2967 if (tb_port_has_remote(port)) {
2968 tb_switch_remove(port->remote->sw);
2969 port->remote = NULL;
2970 } else if (port->xdomain) {
2971 tb_xdomain_remove(port->xdomain);
2972 port->xdomain = NULL;
2975 /* Remove any downstream retimers */
2976 tb_retimer_remove_all(port);
2979 if (!sw->is_unplugged)
2980 tb_plug_events_active(sw, false);
2982 tb_switch_nvm_remove(sw);
2983 usb4_switch_remove_ports(sw);
2986 dev_info(&sw->dev, "device disconnected\n");
2987 device_unregister(&sw->dev);
2991 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
2992 * @sw: Router to mark unplugged
2994 void tb_sw_set_unplugged(struct tb_switch *sw)
2996 struct tb_port *port;
2998 if (sw == sw->tb->root_switch) {
2999 tb_sw_WARN(sw, "cannot unplug root switch\n");
3002 if (sw->is_unplugged) {
3003 tb_sw_WARN(sw, "is_unplugged already set\n");
3006 sw->is_unplugged = true;
3007 tb_switch_for_each_port(sw, port) {
3008 if (tb_port_has_remote(port))
3009 tb_sw_set_unplugged(port->remote->sw);
3010 else if (port->xdomain)
3011 port->xdomain->is_unplugged = true;
3015 static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags)
3018 tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags);
3020 tb_sw_dbg(sw, "disabling wakeup\n");
3022 if (tb_switch_is_usb4(sw))
3023 return usb4_switch_set_wake(sw, flags);
3024 return tb_lc_set_wake(sw, flags);
3027 int tb_switch_resume(struct tb_switch *sw)
3029 struct tb_port *port;
3032 tb_sw_dbg(sw, "resuming switch\n");
3035 * Check for UID of the connected switches except for root
3036 * switch which we assume cannot be removed.
3042 * Check first that we can still read the switch config
3043 * space. It may be that there is now another domain
3046 err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
3048 tb_sw_info(sw, "switch not present anymore\n");
3052 /* We don't have any way to confirm this was the same device */
3056 if (tb_switch_is_usb4(sw))
3057 err = usb4_switch_read_uid(sw, &uid);
3059 err = tb_drom_read_uid_only(sw, &uid);
3061 tb_sw_warn(sw, "uid read failed\n");
3064 if (sw->uid != uid) {
3066 "changed while suspended (uid %#llx -> %#llx)\n",
3072 err = tb_switch_configure(sw);
3077 tb_switch_set_wake(sw, 0);
3079 err = tb_switch_tmu_init(sw);
3083 /* check for surviving downstream switches */
3084 tb_switch_for_each_port(sw, port) {
3085 if (!tb_port_is_null(port))
3088 if (!tb_port_resume(port))
3091 if (tb_wait_for_port(port, true) <= 0) {
3093 "lost during suspend, disconnecting\n");
3094 if (tb_port_has_remote(port))
3095 tb_sw_set_unplugged(port->remote->sw);
3096 else if (port->xdomain)
3097 port->xdomain->is_unplugged = true;
3100 * Always unlock the port so the downstream
3101 * switch/domain is accessible.
3103 if (tb_port_unlock(port))
3104 tb_port_warn(port, "failed to unlock port\n");
3105 if (port->remote && tb_switch_resume(port->remote->sw)) {
3107 "lost during suspend, disconnecting\n");
3108 tb_sw_set_unplugged(port->remote->sw);
3116 * tb_switch_suspend() - Put a switch to sleep
3117 * @sw: Switch to suspend
3118 * @runtime: Is this runtime suspend or system sleep
3120 * Suspends router and all its children. Enables wakes according to
3121 * value of @runtime and then sets sleep bit for the router. If @sw is
3122 * host router the domain is ready to go to sleep once this function
3125 void tb_switch_suspend(struct tb_switch *sw, bool runtime)
3127 unsigned int flags = 0;
3128 struct tb_port *port;
3131 tb_sw_dbg(sw, "suspending switch\n");
3134 * Actually only needed for Titan Ridge but for simplicity can be
3135 * done for USB4 device too as CLx is re-enabled at resume.
3136 * CL0s and CL1 are enabled and supported together.
3138 if (tb_switch_is_clx_enabled(sw, TB_CL1)) {
3139 if (tb_switch_disable_clx(sw, TB_CL1))
3140 tb_sw_warn(sw, "failed to disable %s on upstream port\n",
3141 tb_switch_clx_name(TB_CL1));
3144 err = tb_plug_events_active(sw, false);
3148 tb_switch_for_each_port(sw, port) {
3149 if (tb_port_has_remote(port))
3150 tb_switch_suspend(port->remote->sw, runtime);
3154 /* Trigger wake when something is plugged in/out */
3155 flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT;
3156 flags |= TB_WAKE_ON_USB4;
3157 flags |= TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE | TB_WAKE_ON_DP;
3158 } else if (device_may_wakeup(&sw->dev)) {
3159 flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
3162 tb_switch_set_wake(sw, flags);
3164 if (tb_switch_is_usb4(sw))
3165 usb4_switch_set_sleep(sw);
3167 tb_lc_set_sleep(sw);
3171 * tb_switch_query_dp_resource() - Query availability of DP resource
3172 * @sw: Switch whose DP resource is queried
3175 * Queries availability of DP resource for DP tunneling using switch
3176 * specific means. Returns %true if resource is available.
3178 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
3180 if (tb_switch_is_usb4(sw))
3181 return usb4_switch_query_dp_resource(sw, in);
3182 return tb_lc_dp_sink_query(sw, in);
3186 * tb_switch_alloc_dp_resource() - Allocate available DP resource
3187 * @sw: Switch whose DP resource is allocated
3190 * Allocates DP resource for DP tunneling. The resource must be
3191 * available for this to succeed (see tb_switch_query_dp_resource()).
3192 * Returns %0 in success and negative errno otherwise.
3194 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3198 if (tb_switch_is_usb4(sw))
3199 ret = usb4_switch_alloc_dp_resource(sw, in);
3201 ret = tb_lc_dp_sink_alloc(sw, in);
3204 tb_sw_warn(sw, "failed to allocate DP resource for port %d\n",
3207 tb_sw_dbg(sw, "allocated DP resource for port %d\n", in->port);
3213 * tb_switch_dealloc_dp_resource() - De-allocate DP resource
3214 * @sw: Switch whose DP resource is de-allocated
3217 * De-allocates DP resource that was previously allocated for DP
3220 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3224 if (tb_switch_is_usb4(sw))
3225 ret = usb4_switch_dealloc_dp_resource(sw, in);
3227 ret = tb_lc_dp_sink_dealloc(sw, in);
3230 tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
3233 tb_sw_dbg(sw, "released DP resource for port %d\n", in->port);
3236 struct tb_sw_lookup {
3244 static int tb_switch_match(struct device *dev, const void *data)
3246 struct tb_switch *sw = tb_to_switch(dev);
3247 const struct tb_sw_lookup *lookup = data;
3251 if (sw->tb != lookup->tb)
3255 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
3257 if (lookup->route) {
3258 return sw->config.route_lo == lower_32_bits(lookup->route) &&
3259 sw->config.route_hi == upper_32_bits(lookup->route);
3262 /* Root switch is matched only by depth */
3266 return sw->link == lookup->link && sw->depth == lookup->depth;
3270 * tb_switch_find_by_link_depth() - Find switch by link and depth
3271 * @tb: Domain the switch belongs
3272 * @link: Link number the switch is connected
3273 * @depth: Depth of the switch in link
3275 * Returned switch has reference count increased so the caller needs to
3276 * call tb_switch_put() when done with the switch.
3278 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
3280 struct tb_sw_lookup lookup;
3283 memset(&lookup, 0, sizeof(lookup));
3286 lookup.depth = depth;
3288 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3290 return tb_to_switch(dev);
3296 * tb_switch_find_by_uuid() - Find switch by UUID
3297 * @tb: Domain the switch belongs
3298 * @uuid: UUID to look for
3300 * Returned switch has reference count increased so the caller needs to
3301 * call tb_switch_put() when done with the switch.
3303 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
3305 struct tb_sw_lookup lookup;
3308 memset(&lookup, 0, sizeof(lookup));
3312 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3314 return tb_to_switch(dev);
3320 * tb_switch_find_by_route() - Find switch by route string
3321 * @tb: Domain the switch belongs
3322 * @route: Route string to look for
3324 * Returned switch has reference count increased so the caller needs to
3325 * call tb_switch_put() when done with the switch.
3327 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
3329 struct tb_sw_lookup lookup;
3333 return tb_switch_get(tb->root_switch);
3335 memset(&lookup, 0, sizeof(lookup));
3337 lookup.route = route;
3339 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3341 return tb_to_switch(dev);
3347 * tb_switch_find_port() - return the first port of @type on @sw or NULL
3348 * @sw: Switch to find the port from
3349 * @type: Port type to look for
3351 struct tb_port *tb_switch_find_port(struct tb_switch *sw,
3352 enum tb_port_type type)
3354 struct tb_port *port;
3356 tb_switch_for_each_port(sw, port) {
3357 if (port->config.type == type)
3364 static int __tb_port_pm_secondary_set(struct tb_port *port, bool secondary)
3369 ret = tb_port_read(port, &phy, TB_CFG_PORT,
3370 port->cap_phy + LANE_ADP_CS_1, 1);
3375 phy |= LANE_ADP_CS_1_PMS;
3377 phy &= ~LANE_ADP_CS_1_PMS;
3379 return tb_port_write(port, &phy, TB_CFG_PORT,
3380 port->cap_phy + LANE_ADP_CS_1, 1);
3383 static int tb_port_pm_secondary_enable(struct tb_port *port)
3385 return __tb_port_pm_secondary_set(port, true);
3388 static int tb_port_pm_secondary_disable(struct tb_port *port)
3390 return __tb_port_pm_secondary_set(port, false);
3393 static int tb_switch_pm_secondary_resolve(struct tb_switch *sw)
3395 struct tb_switch *parent = tb_switch_parent(sw);
3396 struct tb_port *up, *down;
3402 up = tb_upstream_port(sw);
3403 down = tb_port_at(tb_route(sw), parent);
3404 ret = tb_port_pm_secondary_enable(up);
3408 return tb_port_pm_secondary_disable(down);
3411 /* Called for USB4 or Titan Ridge routers only */
3412 static bool tb_port_clx_supported(struct tb_port *port, enum tb_clx clx)
3417 /* Don't enable CLx in case of two single-lane links */
3418 if (!port->bonded && port->dual_link_port)
3421 /* Don't enable CLx in case of inter-domain link */
3425 if (tb_switch_is_usb4(port->sw)) {
3426 if (!usb4_port_clx_supported(port))
3428 } else if (!tb_lc_is_clx_supported(port)) {
3434 /* CL0s and CL1 are enabled and supported together */
3435 mask = LANE_ADP_CS_0_CL0S_SUPPORT | LANE_ADP_CS_0_CL1_SUPPORT;
3438 /* For now we support only CL0s and CL1. Not CL2 */
3444 ret = tb_port_read(port, &val, TB_CFG_PORT,
3445 port->cap_phy + LANE_ADP_CS_0, 1);
3449 return !!(val & mask);
3452 static int __tb_port_clx_set(struct tb_port *port, enum tb_clx clx, bool enable)
3457 /* CL0s and CL1 are enabled and supported together */
3459 mask = LANE_ADP_CS_1_CL0S_ENABLE | LANE_ADP_CS_1_CL1_ENABLE;
3461 /* For now we support only CL0s and CL1. Not CL2 */
3464 ret = tb_port_read(port, &phy, TB_CFG_PORT,
3465 port->cap_phy + LANE_ADP_CS_1, 1);
3474 return tb_port_write(port, &phy, TB_CFG_PORT,
3475 port->cap_phy + LANE_ADP_CS_1, 1);
3478 static int tb_port_clx_disable(struct tb_port *port, enum tb_clx clx)
3480 return __tb_port_clx_set(port, clx, false);
3483 static int tb_port_clx_enable(struct tb_port *port, enum tb_clx clx)
3485 return __tb_port_clx_set(port, clx, true);
3488 static int __tb_switch_enable_clx(struct tb_switch *sw, enum tb_clx clx)
3490 struct tb_switch *parent = tb_switch_parent(sw);
3491 bool up_clx_support, down_clx_support;
3492 struct tb_port *up, *down;
3495 if (!tb_switch_is_clx_supported(sw))
3499 * Enable CLx for host router's downstream port as part of the
3500 * downstream router enabling procedure.
3505 /* Enable CLx only for first hop router (depth = 1) */
3506 if (tb_route(parent))
3509 ret = tb_switch_pm_secondary_resolve(sw);
3513 up = tb_upstream_port(sw);
3514 down = tb_port_at(tb_route(sw), parent);
3516 up_clx_support = tb_port_clx_supported(up, clx);
3517 down_clx_support = tb_port_clx_supported(down, clx);
3519 tb_port_dbg(up, "%s %ssupported\n", tb_switch_clx_name(clx),
3520 up_clx_support ? "" : "not ");
3521 tb_port_dbg(down, "%s %ssupported\n", tb_switch_clx_name(clx),
3522 down_clx_support ? "" : "not ");
3524 if (!up_clx_support || !down_clx_support)
3527 ret = tb_port_clx_enable(up, clx);
3531 ret = tb_port_clx_enable(down, clx);
3533 tb_port_clx_disable(up, clx);
3537 ret = tb_switch_mask_clx_objections(sw);
3539 tb_port_clx_disable(up, clx);
3540 tb_port_clx_disable(down, clx);
3546 tb_port_dbg(up, "%s enabled\n", tb_switch_clx_name(clx));
3551 * tb_switch_enable_clx() - Enable CLx on upstream port of specified router
3552 * @sw: Router to enable CLx for
3553 * @clx: The CLx state to enable
3555 * Enable CLx state only for first hop router. That is the most common
3556 * use-case, that is intended for better thermal management, and so helps
3557 * to improve performance. CLx is enabled only if both sides of the link
3558 * support CLx, and if both sides of the link are not configured as two
3559 * single lane links and only if the link is not inter-domain link. The
3560 * complete set of conditions is described in CM Guide 1.0 section 8.1.
3562 * Return: Returns 0 on success or an error code on failure.
3564 int tb_switch_enable_clx(struct tb_switch *sw, enum tb_clx clx)
3566 struct tb_switch *root_sw = sw->tb->root_switch;
3572 * CLx is not enabled and validated on Intel USB4 platforms before
3575 if (root_sw->generation < 4 || tb_switch_is_tiger_lake(root_sw))
3580 /* CL0s and CL1 are enabled and supported together */
3581 return __tb_switch_enable_clx(sw, clx);
3588 static int __tb_switch_disable_clx(struct tb_switch *sw, enum tb_clx clx)
3590 struct tb_switch *parent = tb_switch_parent(sw);
3591 struct tb_port *up, *down;
3594 if (!tb_switch_is_clx_supported(sw))
3598 * Disable CLx for host router's downstream port as part of the
3599 * downstream router enabling procedure.
3604 /* Disable CLx only for first hop router (depth = 1) */
3605 if (tb_route(parent))
3608 up = tb_upstream_port(sw);
3609 down = tb_port_at(tb_route(sw), parent);
3610 ret = tb_port_clx_disable(up, clx);
3614 ret = tb_port_clx_disable(down, clx);
3618 sw->clx = TB_CLX_DISABLE;
3620 tb_port_dbg(up, "%s disabled\n", tb_switch_clx_name(clx));
3625 * tb_switch_disable_clx() - Disable CLx on upstream port of specified router
3626 * @sw: Router to disable CLx for
3627 * @clx: The CLx state to disable
3629 * Return: Returns 0 on success or an error code on failure.
3631 int tb_switch_disable_clx(struct tb_switch *sw, enum tb_clx clx)
3638 /* CL0s and CL1 are enabled and supported together */
3639 return __tb_switch_disable_clx(sw, clx);
3647 * tb_switch_mask_clx_objections() - Mask CLx objections for a router
3648 * @sw: Router to mask objections for
3650 * Mask the objections coming from the second depth routers in order to
3651 * stop these objections from interfering with the CLx states of the first
3654 int tb_switch_mask_clx_objections(struct tb_switch *sw)
3656 int up_port = sw->config.upstream_port_number;
3657 u32 offset, val[2], mask_obj, unmask_obj;
3660 /* Only Titan Ridge of pre-USB4 devices support CLx states */
3661 if (!tb_switch_is_titan_ridge(sw))
3668 * In Titan Ridge there are only 2 dual-lane Thunderbolt ports:
3669 * Port A consists of lane adapters 1,2 and
3670 * Port B consists of lane adapters 3,4
3671 * If upstream port is A, (lanes are 1,2), we mask objections from
3672 * port B (lanes 3,4) and unmask objections from Port A and vice-versa.
3675 mask_obj = TB_LOW_PWR_C0_PORT_B_MASK;
3676 unmask_obj = TB_LOW_PWR_C1_PORT_A_MASK;
3677 offset = TB_LOW_PWR_C1_CL1;
3679 mask_obj = TB_LOW_PWR_C1_PORT_A_MASK;
3680 unmask_obj = TB_LOW_PWR_C0_PORT_B_MASK;
3681 offset = TB_LOW_PWR_C3_CL1;
3684 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH,
3685 sw->cap_lp + offset, ARRAY_SIZE(val));
3689 for (i = 0; i < ARRAY_SIZE(val); i++) {
3691 val[i] &= ~unmask_obj;
3694 return tb_sw_write(sw, &val, TB_CFG_SWITCH,
3695 sw->cap_lp + offset, ARRAY_SIZE(val));
3699 * Can be used for read/write a specified PCIe bridge for any Thunderbolt 3
3700 * device. For now used only for Titan Ridge.
3702 static int tb_switch_pcie_bridge_write(struct tb_switch *sw, unsigned int bridge,
3703 unsigned int pcie_offset, u32 value)
3705 u32 offset, command, val;
3708 if (sw->generation != 3)
3711 offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_WR_DATA;
3712 ret = tb_sw_write(sw, &value, TB_CFG_SWITCH, offset, 1);
3716 command = pcie_offset & TB_PLUG_EVENTS_PCIE_CMD_DW_OFFSET_MASK;
3717 command |= BIT(bridge + TB_PLUG_EVENTS_PCIE_CMD_BR_SHIFT);
3718 command |= TB_PLUG_EVENTS_PCIE_CMD_RD_WR_MASK;
3719 command |= TB_PLUG_EVENTS_PCIE_CMD_COMMAND_VAL
3720 << TB_PLUG_EVENTS_PCIE_CMD_COMMAND_SHIFT;
3721 command |= TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK;
3723 offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_CMD;
3725 ret = tb_sw_write(sw, &command, TB_CFG_SWITCH, offset, 1);
3729 ret = tb_switch_wait_for_bit(sw, offset,
3730 TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK, 0, 100);
3734 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
3738 if (val & TB_PLUG_EVENTS_PCIE_CMD_TIMEOUT_MASK)
3745 * tb_switch_pcie_l1_enable() - Enable PCIe link to enter L1 state
3746 * @sw: Router to enable PCIe L1
3748 * For Titan Ridge switch to enter CLx state, its PCIe bridges shall enable
3749 * entry to PCIe L1 state. Shall be called after the upstream PCIe tunnel
3750 * was configured. Due to Intel platforms limitation, shall be called only
3751 * for first hop switch.
3753 int tb_switch_pcie_l1_enable(struct tb_switch *sw)
3755 struct tb_switch *parent = tb_switch_parent(sw);
3761 if (!tb_switch_is_titan_ridge(sw))
3764 /* Enable PCIe L1 enable only for first hop router (depth = 1) */
3765 if (tb_route(parent))
3768 /* Write to downstream PCIe bridge #5 aka Dn4 */
3769 ret = tb_switch_pcie_bridge_write(sw, 5, 0x143, 0x0c7806b1);
3773 /* Write to Upstream PCIe bridge #0 aka Up0 */
3774 return tb_switch_pcie_bridge_write(sw, 0, 0x143, 0x0c5806b1);
3778 * tb_switch_xhci_connect() - Connect internal xHCI
3779 * @sw: Router whose xHCI to connect
3781 * Can be called to any router. For Alpine Ridge and Titan Ridge
3782 * performs special flows that bring the xHCI functional for any device
3783 * connected to the type-C port. Call only after PCIe tunnel has been
3784 * established. The function only does the connect if not done already
3785 * so can be called several times for the same router.
3787 int tb_switch_xhci_connect(struct tb_switch *sw)
3789 struct tb_port *port1, *port3;
3792 if (sw->generation != 3)
3795 port1 = &sw->ports[1];
3796 port3 = &sw->ports[3];
3798 if (tb_switch_is_alpine_ridge(sw)) {
3799 bool usb_port1, usb_port3, xhci_port1, xhci_port3;
3801 usb_port1 = tb_lc_is_usb_plugged(port1);
3802 usb_port3 = tb_lc_is_usb_plugged(port3);
3803 xhci_port1 = tb_lc_is_xhci_connected(port1);
3804 xhci_port3 = tb_lc_is_xhci_connected(port3);
3806 /* Figure out correct USB port to connect */
3807 if (usb_port1 && !xhci_port1) {
3808 ret = tb_lc_xhci_connect(port1);
3812 if (usb_port3 && !xhci_port3)
3813 return tb_lc_xhci_connect(port3);
3814 } else if (tb_switch_is_titan_ridge(sw)) {
3815 ret = tb_lc_xhci_connect(port1);
3818 return tb_lc_xhci_connect(port3);
3825 * tb_switch_xhci_disconnect() - Disconnect internal xHCI
3826 * @sw: Router whose xHCI to disconnect
3828 * The opposite of tb_switch_xhci_connect(). Disconnects xHCI on both
3831 void tb_switch_xhci_disconnect(struct tb_switch *sw)
3833 if (sw->generation == 3) {
3834 struct tb_port *port1 = &sw->ports[1];
3835 struct tb_port *port3 = &sw->ports[3];
3837 tb_lc_xhci_disconnect(port1);
3838 tb_port_dbg(port1, "disconnected xHCI\n");
3839 tb_lc_xhci_disconnect(port3);
3840 tb_port_dbg(port3, "disconnected xHCI\n");