ad8b86f5281b852c2e8def3507a9643e1f539800
[platform/kernel/linux-starfive.git] / drivers / thermal / cpufreq_cooling.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/drivers/thermal/cpufreq_cooling.c
4  *
5  *  Copyright (C) 2012  Samsung Electronics Co., Ltd(http://www.samsung.com)
6  *
7  *  Copyright (C) 2012-2018 Linaro Limited.
8  *
9  *  Authors:    Amit Daniel <amit.kachhap@linaro.org>
10  *              Viresh Kumar <viresh.kumar@linaro.org>
11  *
12  */
13 #include <linux/cpu.h>
14 #include <linux/cpufreq.h>
15 #include <linux/cpu_cooling.h>
16 #include <linux/device.h>
17 #include <linux/energy_model.h>
18 #include <linux/err.h>
19 #include <linux/export.h>
20 #include <linux/pm_opp.h>
21 #include <linux/pm_qos.h>
22 #include <linux/slab.h>
23 #include <linux/thermal.h>
24
25 #include <trace/events/thermal.h>
26
27 /*
28  * Cooling state <-> CPUFreq frequency
29  *
30  * Cooling states are translated to frequencies throughout this driver and this
31  * is the relation between them.
32  *
33  * Highest cooling state corresponds to lowest possible frequency.
34  *
35  * i.e.
36  *      level 0 --> 1st Max Freq
37  *      level 1 --> 2nd Max Freq
38  *      ...
39  */
40
41 /**
42  * struct time_in_idle - Idle time stats
43  * @time: previous reading of the absolute time that this cpu was idle
44  * @timestamp: wall time of the last invocation of get_cpu_idle_time_us()
45  */
46 struct time_in_idle {
47         u64 time;
48         u64 timestamp;
49 };
50
51 /**
52  * struct cpufreq_cooling_device - data for cooling device with cpufreq
53  * @last_load: load measured by the latest call to cpufreq_get_requested_power()
54  * @cpufreq_state: integer value representing the current state of cpufreq
55  *      cooling devices.
56  * @max_level: maximum cooling level. One less than total number of valid
57  *      cpufreq frequencies.
58  * @em: Reference on the Energy Model of the device
59  * @cdev: thermal_cooling_device pointer to keep track of the
60  *      registered cooling device.
61  * @policy: cpufreq policy.
62  * @cooling_ops: cpufreq callbacks to thermal cooling device ops
63  * @idle_time: idle time stats
64  * @qos_req: PM QoS contraint to apply
65  *
66  * This structure is required for keeping information of each registered
67  * cpufreq_cooling_device.
68  */
69 struct cpufreq_cooling_device {
70         u32 last_load;
71         unsigned int cpufreq_state;
72         unsigned int max_level;
73         struct em_perf_domain *em;
74         struct cpufreq_policy *policy;
75         struct thermal_cooling_device_ops cooling_ops;
76 #ifndef CONFIG_SMP
77         struct time_in_idle *idle_time;
78 #endif
79         struct freq_qos_request qos_req;
80 };
81
82 #ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
83 /**
84  * get_level: Find the level for a particular frequency
85  * @cpufreq_cdev: cpufreq_cdev for which the property is required
86  * @freq: Frequency
87  *
88  * Return: level corresponding to the frequency.
89  */
90 static unsigned long get_level(struct cpufreq_cooling_device *cpufreq_cdev,
91                                unsigned int freq)
92 {
93         int i;
94
95         for (i = cpufreq_cdev->max_level - 1; i >= 0; i--) {
96                 if (freq > cpufreq_cdev->em->table[i].frequency)
97                         break;
98         }
99
100         return cpufreq_cdev->max_level - i - 1;
101 }
102
103 static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_cdev,
104                              u32 freq)
105 {
106         int i;
107
108         for (i = cpufreq_cdev->max_level - 1; i >= 0; i--) {
109                 if (freq > cpufreq_cdev->em->table[i].frequency)
110                         break;
111         }
112
113         return cpufreq_cdev->em->table[i + 1].power;
114 }
115
116 static u32 cpu_power_to_freq(struct cpufreq_cooling_device *cpufreq_cdev,
117                              u32 power)
118 {
119         int i;
120
121         for (i = cpufreq_cdev->max_level; i > 0; i--) {
122                 if (power >= cpufreq_cdev->em->table[i].power)
123                         break;
124         }
125
126         return cpufreq_cdev->em->table[i].frequency;
127 }
128
129 /**
130  * get_load() - get load for a cpu
131  * @cpufreq_cdev: struct cpufreq_cooling_device for the cpu
132  * @cpu: cpu number
133  * @cpu_idx: index of the cpu in time_in_idle array
134  *
135  * Return: The average load of cpu @cpu in percentage since this
136  * function was last called.
137  */
138 #ifdef CONFIG_SMP
139 static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu,
140                     int cpu_idx)
141 {
142         unsigned long max = arch_scale_cpu_capacity(cpu);
143         unsigned long util;
144
145         util = sched_cpu_util(cpu, max);
146         return (util * 100) / max;
147 }
148 #else /* !CONFIG_SMP */
149 static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu,
150                     int cpu_idx)
151 {
152         u32 load;
153         u64 now, now_idle, delta_time, delta_idle;
154         struct time_in_idle *idle_time = &cpufreq_cdev->idle_time[cpu_idx];
155
156         now_idle = get_cpu_idle_time(cpu, &now, 0);
157         delta_idle = now_idle - idle_time->time;
158         delta_time = now - idle_time->timestamp;
159
160         if (delta_time <= delta_idle)
161                 load = 0;
162         else
163                 load = div64_u64(100 * (delta_time - delta_idle), delta_time);
164
165         idle_time->time = now_idle;
166         idle_time->timestamp = now;
167
168         return load;
169 }
170 #endif /* CONFIG_SMP */
171
172 /**
173  * get_dynamic_power() - calculate the dynamic power
174  * @cpufreq_cdev:       &cpufreq_cooling_device for this cdev
175  * @freq:       current frequency
176  *
177  * Return: the dynamic power consumed by the cpus described by
178  * @cpufreq_cdev.
179  */
180 static u32 get_dynamic_power(struct cpufreq_cooling_device *cpufreq_cdev,
181                              unsigned long freq)
182 {
183         u32 raw_cpu_power;
184
185         raw_cpu_power = cpu_freq_to_power(cpufreq_cdev, freq);
186         return (raw_cpu_power * cpufreq_cdev->last_load) / 100;
187 }
188
189 /**
190  * cpufreq_get_requested_power() - get the current power
191  * @cdev:       &thermal_cooling_device pointer
192  * @power:      pointer in which to store the resulting power
193  *
194  * Calculate the current power consumption of the cpus in milliwatts
195  * and store it in @power.  This function should actually calculate
196  * the requested power, but it's hard to get the frequency that
197  * cpufreq would have assigned if there were no thermal limits.
198  * Instead, we calculate the current power on the assumption that the
199  * immediate future will look like the immediate past.
200  *
201  * We use the current frequency and the average load since this
202  * function was last called.  In reality, there could have been
203  * multiple opps since this function was last called and that affects
204  * the load calculation.  While it's not perfectly accurate, this
205  * simplification is good enough and works.  REVISIT this, as more
206  * complex code may be needed if experiments show that it's not
207  * accurate enough.
208  *
209  * Return: 0 on success, -E* if getting the static power failed.
210  */
211 static int cpufreq_get_requested_power(struct thermal_cooling_device *cdev,
212                                        u32 *power)
213 {
214         unsigned long freq;
215         int i = 0, cpu;
216         u32 total_load = 0;
217         struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
218         struct cpufreq_policy *policy = cpufreq_cdev->policy;
219         u32 *load_cpu = NULL;
220
221         freq = cpufreq_quick_get(policy->cpu);
222
223         if (trace_thermal_power_cpu_get_power_enabled()) {
224                 u32 ncpus = cpumask_weight(policy->related_cpus);
225
226                 load_cpu = kcalloc(ncpus, sizeof(*load_cpu), GFP_KERNEL);
227         }
228
229         for_each_cpu(cpu, policy->related_cpus) {
230                 u32 load;
231
232                 if (cpu_online(cpu))
233                         load = get_load(cpufreq_cdev, cpu, i);
234                 else
235                         load = 0;
236
237                 total_load += load;
238                 if (load_cpu)
239                         load_cpu[i] = load;
240
241                 i++;
242         }
243
244         cpufreq_cdev->last_load = total_load;
245
246         *power = get_dynamic_power(cpufreq_cdev, freq);
247
248         if (load_cpu) {
249                 trace_thermal_power_cpu_get_power(policy->related_cpus, freq,
250                                                   load_cpu, i, *power);
251
252                 kfree(load_cpu);
253         }
254
255         return 0;
256 }
257
258 /**
259  * cpufreq_state2power() - convert a cpu cdev state to power consumed
260  * @cdev:       &thermal_cooling_device pointer
261  * @state:      cooling device state to be converted
262  * @power:      pointer in which to store the resulting power
263  *
264  * Convert cooling device state @state into power consumption in
265  * milliwatts assuming 100% load.  Store the calculated power in
266  * @power.
267  *
268  * Return: 0 on success, -EINVAL if the cooling device state could not
269  * be converted into a frequency or other -E* if there was an error
270  * when calculating the static power.
271  */
272 static int cpufreq_state2power(struct thermal_cooling_device *cdev,
273                                unsigned long state, u32 *power)
274 {
275         unsigned int freq, num_cpus, idx;
276         struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
277
278         /* Request state should be less than max_level */
279         if (state > cpufreq_cdev->max_level)
280                 return -EINVAL;
281
282         num_cpus = cpumask_weight(cpufreq_cdev->policy->cpus);
283
284         idx = cpufreq_cdev->max_level - state;
285         freq = cpufreq_cdev->em->table[idx].frequency;
286         *power = cpu_freq_to_power(cpufreq_cdev, freq) * num_cpus;
287
288         return 0;
289 }
290
291 /**
292  * cpufreq_power2state() - convert power to a cooling device state
293  * @cdev:       &thermal_cooling_device pointer
294  * @power:      power in milliwatts to be converted
295  * @state:      pointer in which to store the resulting state
296  *
297  * Calculate a cooling device state for the cpus described by @cdev
298  * that would allow them to consume at most @power mW and store it in
299  * @state.  Note that this calculation depends on external factors
300  * such as the cpu load or the current static power.  Calling this
301  * function with the same power as input can yield different cooling
302  * device states depending on those external factors.
303  *
304  * Return: 0 on success, -ENODEV if no cpus are online or -EINVAL if
305  * the calculated frequency could not be converted to a valid state.
306  * The latter should not happen unless the frequencies available to
307  * cpufreq have changed since the initialization of the cpu cooling
308  * device.
309  */
310 static int cpufreq_power2state(struct thermal_cooling_device *cdev,
311                                u32 power, unsigned long *state)
312 {
313         unsigned int target_freq;
314         u32 last_load, normalised_power;
315         struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
316         struct cpufreq_policy *policy = cpufreq_cdev->policy;
317
318         last_load = cpufreq_cdev->last_load ?: 1;
319         normalised_power = (power * 100) / last_load;
320         target_freq = cpu_power_to_freq(cpufreq_cdev, normalised_power);
321
322         *state = get_level(cpufreq_cdev, target_freq);
323         trace_thermal_power_cpu_limit(policy->related_cpus, target_freq, *state,
324                                       power);
325         return 0;
326 }
327
328 static inline bool em_is_sane(struct cpufreq_cooling_device *cpufreq_cdev,
329                               struct em_perf_domain *em) {
330         struct cpufreq_policy *policy;
331         unsigned int nr_levels;
332
333         if (!em || em_is_artificial(em))
334                 return false;
335
336         policy = cpufreq_cdev->policy;
337         if (!cpumask_equal(policy->related_cpus, em_span_cpus(em))) {
338                 pr_err("The span of pd %*pbl is misaligned with cpufreq policy %*pbl\n",
339                         cpumask_pr_args(em_span_cpus(em)),
340                         cpumask_pr_args(policy->related_cpus));
341                 return false;
342         }
343
344         nr_levels = cpufreq_cdev->max_level + 1;
345         if (em_pd_nr_perf_states(em) != nr_levels) {
346                 pr_err("The number of performance states in pd %*pbl (%u) doesn't match the number of cooling levels (%u)\n",
347                         cpumask_pr_args(em_span_cpus(em)),
348                         em_pd_nr_perf_states(em), nr_levels);
349                 return false;
350         }
351
352         return true;
353 }
354 #endif /* CONFIG_THERMAL_GOV_POWER_ALLOCATOR */
355
356 #ifdef CONFIG_SMP
357 static inline int allocate_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
358 {
359         return 0;
360 }
361
362 static inline void free_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
363 {
364 }
365 #else
366 static int allocate_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
367 {
368         unsigned int num_cpus = cpumask_weight(cpufreq_cdev->policy->related_cpus);
369
370         cpufreq_cdev->idle_time = kcalloc(num_cpus,
371                                           sizeof(*cpufreq_cdev->idle_time),
372                                           GFP_KERNEL);
373         if (!cpufreq_cdev->idle_time)
374                 return -ENOMEM;
375
376         return 0;
377 }
378
379 static void free_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
380 {
381         kfree(cpufreq_cdev->idle_time);
382         cpufreq_cdev->idle_time = NULL;
383 }
384 #endif /* CONFIG_SMP */
385
386 static unsigned int get_state_freq(struct cpufreq_cooling_device *cpufreq_cdev,
387                                    unsigned long state)
388 {
389         struct cpufreq_policy *policy;
390         unsigned long idx;
391
392 #ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
393         /* Use the Energy Model table if available */
394         if (cpufreq_cdev->em) {
395                 idx = cpufreq_cdev->max_level - state;
396                 return cpufreq_cdev->em->table[idx].frequency;
397         }
398 #endif
399
400         /* Otherwise, fallback on the CPUFreq table */
401         policy = cpufreq_cdev->policy;
402         if (policy->freq_table_sorted == CPUFREQ_TABLE_SORTED_ASCENDING)
403                 idx = cpufreq_cdev->max_level - state;
404         else
405                 idx = state;
406
407         return policy->freq_table[idx].frequency;
408 }
409
410 /* cpufreq cooling device callback functions are defined below */
411
412 /**
413  * cpufreq_get_max_state - callback function to get the max cooling state.
414  * @cdev: thermal cooling device pointer.
415  * @state: fill this variable with the max cooling state.
416  *
417  * Callback for the thermal cooling device to return the cpufreq
418  * max cooling state.
419  *
420  * Return: 0 on success, an error code otherwise.
421  */
422 static int cpufreq_get_max_state(struct thermal_cooling_device *cdev,
423                                  unsigned long *state)
424 {
425         struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
426
427         *state = cpufreq_cdev->max_level;
428         return 0;
429 }
430
431 /**
432  * cpufreq_get_cur_state - callback function to get the current cooling state.
433  * @cdev: thermal cooling device pointer.
434  * @state: fill this variable with the current cooling state.
435  *
436  * Callback for the thermal cooling device to return the cpufreq
437  * current cooling state.
438  *
439  * Return: 0 on success, an error code otherwise.
440  */
441 static int cpufreq_get_cur_state(struct thermal_cooling_device *cdev,
442                                  unsigned long *state)
443 {
444         struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
445
446         *state = cpufreq_cdev->cpufreq_state;
447
448         return 0;
449 }
450
451 /**
452  * cpufreq_set_cur_state - callback function to set the current cooling state.
453  * @cdev: thermal cooling device pointer.
454  * @state: set this variable to the current cooling state.
455  *
456  * Callback for the thermal cooling device to change the cpufreq
457  * current cooling state.
458  *
459  * Return: 0 on success, an error code otherwise.
460  */
461 static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev,
462                                  unsigned long state)
463 {
464         struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
465         struct cpumask *cpus;
466         unsigned int frequency;
467         int ret;
468
469         /* Request state should be less than max_level */
470         if (state > cpufreq_cdev->max_level)
471                 return -EINVAL;
472
473         /* Check if the old cooling action is same as new cooling action */
474         if (cpufreq_cdev->cpufreq_state == state)
475                 return 0;
476
477         frequency = get_state_freq(cpufreq_cdev, state);
478
479         ret = freq_qos_update_request(&cpufreq_cdev->qos_req, frequency);
480         if (ret >= 0) {
481                 cpufreq_cdev->cpufreq_state = state;
482                 cpus = cpufreq_cdev->policy->related_cpus;
483                 arch_update_thermal_pressure(cpus, frequency);
484                 ret = 0;
485         }
486
487         return ret;
488 }
489
490 /**
491  * __cpufreq_cooling_register - helper function to create cpufreq cooling device
492  * @np: a valid struct device_node to the cooling device device tree node
493  * @policy: cpufreq policy
494  * Normally this should be same as cpufreq policy->related_cpus.
495  * @em: Energy Model of the cpufreq policy
496  *
497  * This interface function registers the cpufreq cooling device with the name
498  * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
499  * cooling devices. It also gives the opportunity to link the cooling device
500  * with a device tree node, in order to bind it via the thermal DT code.
501  *
502  * Return: a valid struct thermal_cooling_device pointer on success,
503  * on failure, it returns a corresponding ERR_PTR().
504  */
505 static struct thermal_cooling_device *
506 __cpufreq_cooling_register(struct device_node *np,
507                         struct cpufreq_policy *policy,
508                         struct em_perf_domain *em)
509 {
510         struct thermal_cooling_device *cdev;
511         struct cpufreq_cooling_device *cpufreq_cdev;
512         unsigned int i;
513         struct device *dev;
514         int ret;
515         struct thermal_cooling_device_ops *cooling_ops;
516         char *name;
517
518         dev = get_cpu_device(policy->cpu);
519         if (unlikely(!dev)) {
520                 pr_warn("No cpu device for cpu %d\n", policy->cpu);
521                 return ERR_PTR(-ENODEV);
522         }
523
524         if (IS_ERR_OR_NULL(policy)) {
525                 pr_err("%s: cpufreq policy isn't valid: %p\n", __func__, policy);
526                 return ERR_PTR(-EINVAL);
527         }
528
529         i = cpufreq_table_count_valid_entries(policy);
530         if (!i) {
531                 pr_debug("%s: CPUFreq table not found or has no valid entries\n",
532                          __func__);
533                 return ERR_PTR(-ENODEV);
534         }
535
536         cpufreq_cdev = kzalloc(sizeof(*cpufreq_cdev), GFP_KERNEL);
537         if (!cpufreq_cdev)
538                 return ERR_PTR(-ENOMEM);
539
540         cpufreq_cdev->policy = policy;
541
542         ret = allocate_idle_time(cpufreq_cdev);
543         if (ret) {
544                 cdev = ERR_PTR(ret);
545                 goto free_cdev;
546         }
547
548         /* max_level is an index, not a counter */
549         cpufreq_cdev->max_level = i - 1;
550
551         cooling_ops = &cpufreq_cdev->cooling_ops;
552         cooling_ops->get_max_state = cpufreq_get_max_state;
553         cooling_ops->get_cur_state = cpufreq_get_cur_state;
554         cooling_ops->set_cur_state = cpufreq_set_cur_state;
555
556 #ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
557         if (em_is_sane(cpufreq_cdev, em)) {
558                 cpufreq_cdev->em = em;
559                 cooling_ops->get_requested_power = cpufreq_get_requested_power;
560                 cooling_ops->state2power = cpufreq_state2power;
561                 cooling_ops->power2state = cpufreq_power2state;
562         } else
563 #endif
564         if (policy->freq_table_sorted == CPUFREQ_TABLE_UNSORTED) {
565                 pr_err("%s: unsorted frequency tables are not supported\n",
566                        __func__);
567                 cdev = ERR_PTR(-EINVAL);
568                 goto free_idle_time;
569         }
570
571         ret = freq_qos_add_request(&policy->constraints,
572                                    &cpufreq_cdev->qos_req, FREQ_QOS_MAX,
573                                    get_state_freq(cpufreq_cdev, 0));
574         if (ret < 0) {
575                 pr_err("%s: Failed to add freq constraint (%d)\n", __func__,
576                        ret);
577                 cdev = ERR_PTR(ret);
578                 goto free_idle_time;
579         }
580
581         cdev = ERR_PTR(-ENOMEM);
582         name = kasprintf(GFP_KERNEL, "cpufreq-%s", dev_name(dev));
583         if (!name)
584                 goto remove_qos_req;
585
586         cdev = thermal_of_cooling_device_register(np, name, cpufreq_cdev,
587                                                   cooling_ops);
588         kfree(name);
589
590         if (IS_ERR(cdev))
591                 goto remove_qos_req;
592
593         return cdev;
594
595 remove_qos_req:
596         freq_qos_remove_request(&cpufreq_cdev->qos_req);
597 free_idle_time:
598         free_idle_time(cpufreq_cdev);
599 free_cdev:
600         kfree(cpufreq_cdev);
601         return cdev;
602 }
603
604 /**
605  * cpufreq_cooling_register - function to create cpufreq cooling device.
606  * @policy: cpufreq policy
607  *
608  * This interface function registers the cpufreq cooling device with the name
609  * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
610  * cooling devices.
611  *
612  * Return: a valid struct thermal_cooling_device pointer on success,
613  * on failure, it returns a corresponding ERR_PTR().
614  */
615 struct thermal_cooling_device *
616 cpufreq_cooling_register(struct cpufreq_policy *policy)
617 {
618         return __cpufreq_cooling_register(NULL, policy, NULL);
619 }
620 EXPORT_SYMBOL_GPL(cpufreq_cooling_register);
621
622 /**
623  * of_cpufreq_cooling_register - function to create cpufreq cooling device.
624  * @policy: cpufreq policy
625  *
626  * This interface function registers the cpufreq cooling device with the name
627  * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
628  * cooling devices. Using this API, the cpufreq cooling device will be
629  * linked to the device tree node provided.
630  *
631  * Using this function, the cooling device will implement the power
632  * extensions by using a simple cpu power model.  The cpus must have
633  * registered their OPPs using the OPP library.
634  *
635  * It also takes into account, if property present in policy CPU node, the
636  * static power consumed by the cpu.
637  *
638  * Return: a valid struct thermal_cooling_device pointer on success,
639  * and NULL on failure.
640  */
641 struct thermal_cooling_device *
642 of_cpufreq_cooling_register(struct cpufreq_policy *policy)
643 {
644         struct device_node *np = of_get_cpu_node(policy->cpu, NULL);
645         struct thermal_cooling_device *cdev = NULL;
646
647         if (!np) {
648                 pr_err("cpufreq_cooling: OF node not available for cpu%d\n",
649                        policy->cpu);
650                 return NULL;
651         }
652
653         if (of_find_property(np, "#cooling-cells", NULL)) {
654                 struct em_perf_domain *em = em_cpu_get(policy->cpu);
655
656                 cdev = __cpufreq_cooling_register(np, policy, em);
657                 if (IS_ERR(cdev)) {
658                         pr_err("cpufreq_cooling: cpu%d failed to register as cooling device: %ld\n",
659                                policy->cpu, PTR_ERR(cdev));
660                         cdev = NULL;
661                 }
662         }
663
664         of_node_put(np);
665         return cdev;
666 }
667 EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register);
668
669 /**
670  * cpufreq_cooling_unregister - function to remove cpufreq cooling device.
671  * @cdev: thermal cooling device pointer.
672  *
673  * This interface function unregisters the "thermal-cpufreq-%x" cooling device.
674  */
675 void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
676 {
677         struct cpufreq_cooling_device *cpufreq_cdev;
678
679         if (!cdev)
680                 return;
681
682         cpufreq_cdev = cdev->devdata;
683
684         thermal_cooling_device_unregister(cdev);
685         freq_qos_remove_request(&cpufreq_cdev->qos_req);
686         free_idle_time(cpufreq_cdev);
687         kfree(cpufreq_cdev);
688 }
689 EXPORT_SYMBOL_GPL(cpufreq_cooling_unregister);