upload tizen1.0 source
[kernel/linux-2.6.36.git] / drivers / staging / zram / zram_drv.c
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *
6  * This code is released using a dual license strategy: BSD/GPL
7  * You can choose the licence that better fits your requirements.
8  *
9  * Released under the terms of 3-clause BSD License
10  * Released under the terms of GNU General Public License Version 2.0
11  *
12  * Project home: http://compcache.googlecode.com
13  */
14
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/lzo.h>
29 #include <linux/string.h>
30 #include <linux/vmalloc.h>
31
32 #include "zram_drv.h"
33
34 /* Globals */
35 static int zram_major;
36 static struct zram *devices;
37
38 /* Module params (documentation at end) */
39 static unsigned int num_devices;
40
41 static int zram_test_flag(struct zram *zram, u32 index,
42                         enum zram_pageflags flag)
43 {
44         return zram->table[index].flags & BIT(flag);
45 }
46
47 static void zram_set_flag(struct zram *zram, u32 index,
48                         enum zram_pageflags flag)
49 {
50         zram->table[index].flags |= BIT(flag);
51 }
52
53 static void zram_clear_flag(struct zram *zram, u32 index,
54                         enum zram_pageflags flag)
55 {
56         zram->table[index].flags &= ~BIT(flag);
57 }
58
59 static int page_zero_filled(void *ptr)
60 {
61         unsigned int pos;
62         unsigned long *page;
63
64         page = (unsigned long *)ptr;
65
66         for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
67                 if (page[pos])
68                         return 0;
69         }
70
71         return 1;
72 }
73
74 static void zram_set_disksize(struct zram *zram, size_t totalram_bytes)
75 {
76         if (!zram->disksize) {
77                 pr_info(
78                 "disk size not provided. You can use disksize_kb module "
79                 "param to specify size.\nUsing default: (%u%% of RAM).\n",
80                 default_disksize_perc_ram
81                 );
82                 zram->disksize = default_disksize_perc_ram *
83                                         (totalram_bytes / 100);
84         }
85
86         if (zram->disksize > 2 * (totalram_bytes)) {
87                 pr_info(
88                 "There is little point creating a zram of greater than "
89                 "twice the size of memory since we expect a 2:1 compression "
90                 "ratio. Note that zram uses about 0.1%% of the size of "
91                 "the disk when not in use so a huge zram is "
92                 "wasteful.\n"
93                 "\tMemory Size: %zu kB\n"
94                 "\tSize you selected: %zu kB\n"
95                 "Continuing anyway ...\n",
96                 totalram_bytes >> 10, zram->disksize
97                 );
98         }
99
100         zram->disksize &= PAGE_MASK;
101 }
102
103 static void zram_ioctl_get_stats(struct zram *zram,
104                         struct zram_ioctl_stats *s)
105 {
106         s->disksize = zram->disksize;
107
108 #if defined(CONFIG_ZRAM_STATS)
109         {
110         struct zram_stats *rs = &zram->stats;
111         size_t succ_writes, mem_used;
112         unsigned int good_compress_perc = 0, no_compress_perc = 0;
113
114         mem_used = xv_get_total_size_bytes(zram->mem_pool)
115                         + (rs->pages_expand << PAGE_SHIFT);
116         succ_writes = zram_stat64_read(zram, &rs->num_writes) -
117                         zram_stat64_read(zram, &rs->failed_writes);
118
119         if (succ_writes && rs->pages_stored) {
120                 good_compress_perc = rs->good_compress * 100
121                                         / rs->pages_stored;
122                 no_compress_perc = rs->pages_expand * 100
123                                         / rs->pages_stored;
124         }
125
126         s->num_reads = zram_stat64_read(zram, &rs->num_reads);
127         s->num_writes = zram_stat64_read(zram, &rs->num_writes);
128         s->failed_reads = zram_stat64_read(zram, &rs->failed_reads);
129         s->failed_writes = zram_stat64_read(zram, &rs->failed_writes);
130         s->invalid_io = zram_stat64_read(zram, &rs->invalid_io);
131         s->notify_free = zram_stat64_read(zram, &rs->notify_free);
132         s->pages_zero = rs->pages_zero;
133
134         s->good_compress_pct = good_compress_perc;
135         s->pages_expand_pct = no_compress_perc;
136
137         s->pages_stored = rs->pages_stored;
138         s->pages_used = mem_used >> PAGE_SHIFT;
139         s->orig_data_size = rs->pages_stored << PAGE_SHIFT;
140         s->compr_data_size = rs->compr_size;
141         s->mem_used_total = mem_used;
142         }
143 #endif /* CONFIG_ZRAM_STATS */
144 }
145
146 static void zram_free_page(struct zram *zram, size_t index)
147 {
148         u32 clen;
149         void *obj;
150
151         struct page *page = zram->table[index].page;
152         u32 offset = zram->table[index].offset;
153
154         if (unlikely(!page)) {
155                 /*
156                  * No memory is allocated for zero filled pages.
157                  * Simply clear zero page flag.
158                  */
159                 if (zram_test_flag(zram, index, ZRAM_ZERO)) {
160                         zram_clear_flag(zram, index, ZRAM_ZERO);
161                         zram_stat_dec(&zram->stats.pages_zero);
162                 }
163                 return;
164         }
165
166         if (unlikely(zram_test_flag(zram, index, ZRAM_UNCOMPRESSED))) {
167                 clen = PAGE_SIZE;
168                 __free_page(page);
169                 zram_clear_flag(zram, index, ZRAM_UNCOMPRESSED);
170                 zram_stat_dec(&zram->stats.pages_expand);
171                 goto out;
172         }
173
174         obj = kmap_atomic(page, KM_USER0) + offset;
175         clen = xv_get_object_size(obj) - sizeof(struct zobj_header);
176         kunmap_atomic(obj, KM_USER0);
177
178         xv_free(zram->mem_pool, page, offset);
179         if (clen <= PAGE_SIZE / 2)
180                 zram_stat_dec(&zram->stats.good_compress);
181
182 out:
183         zram->stats.compr_size -= clen;
184         zram_stat_dec(&zram->stats.pages_stored);
185
186         zram->table[index].page = NULL;
187         zram->table[index].offset = 0;
188 }
189
190 static void handle_zero_page(struct page *page)
191 {
192         void *user_mem;
193
194         user_mem = kmap_atomic(page, KM_USER0);
195         memset(user_mem, 0, PAGE_SIZE);
196         kunmap_atomic(user_mem, KM_USER0);
197
198         flush_dcache_page(page);
199 }
200
201 static void handle_uncompressed_page(struct zram *zram,
202                                 struct page *page, u32 index)
203 {
204         unsigned char *user_mem, *cmem;
205
206         user_mem = kmap_atomic(page, KM_USER0);
207         cmem = kmap_atomic(zram->table[index].page, KM_USER1) +
208                         zram->table[index].offset;
209
210         memcpy(user_mem, cmem, PAGE_SIZE);
211         kunmap_atomic(user_mem, KM_USER0);
212         kunmap_atomic(cmem, KM_USER1);
213
214         flush_dcache_page(page);
215 }
216
217 static int zram_read(struct zram *zram, struct bio *bio)
218 {
219
220         int i;
221         u32 index;
222         struct bio_vec *bvec;
223
224         zram_stat64_inc(zram, &zram->stats.num_reads);
225
226         index = bio->bi_sector >> SECTORS_PER_PAGE_SHIFT;
227         bio_for_each_segment(bvec, bio, i) {
228                 int ret;
229                 size_t clen;
230                 struct page *page;
231                 struct zobj_header *zheader;
232                 unsigned char *user_mem, *cmem;
233
234                 page = bvec->bv_page;
235
236                 if (zram_test_flag(zram, index, ZRAM_ZERO)) {
237                         handle_zero_page(page);
238                         index++;
239                         continue;
240                 }
241
242                 /* Requested page is not present in compressed area */
243                 if (unlikely(!zram->table[index].page)) {
244                         pr_debug("Read before write: sector=%lu, size=%u",
245                                 (ulong)(bio->bi_sector), bio->bi_size);
246                         /* Do nothing */
247                         index++;
248                         continue;
249                 }
250
251                 /* Page is stored uncompressed since it's incompressible */
252                 if (unlikely(zram_test_flag(zram, index, ZRAM_UNCOMPRESSED))) {
253                         handle_uncompressed_page(zram, page, index);
254                         index++;
255                         continue;
256                 }
257
258                 user_mem = kmap_atomic(page, KM_USER0);
259                 clen = PAGE_SIZE;
260
261                 cmem = kmap_atomic(zram->table[index].page, KM_USER1) +
262                                 zram->table[index].offset;
263
264                 ret = lzo1x_decompress_safe(
265                         cmem + sizeof(*zheader),
266                         xv_get_object_size(cmem) - sizeof(*zheader),
267                         user_mem, &clen);
268
269                 kunmap_atomic(user_mem, KM_USER0);
270                 kunmap_atomic(cmem, KM_USER1);
271
272                 /* Should NEVER happen. Return bio error if it does. */
273                 if (unlikely(ret != LZO_E_OK)) {
274                         pr_err("Decompression failed! err=%d, page=%u\n",
275                                 ret, index);
276                         zram_stat64_inc(zram, &zram->stats.failed_reads);
277                         goto out;
278                 }
279
280                 flush_dcache_page(page);
281                 index++;
282         }
283
284         set_bit(BIO_UPTODATE, &bio->bi_flags);
285         bio_endio(bio, 0);
286         return 0;
287
288 out:
289         bio_io_error(bio);
290         return 0;
291 }
292
293 static int zram_write(struct zram *zram, struct bio *bio)
294 {
295         int i;
296         u32 index;
297         struct bio_vec *bvec;
298
299         zram_stat64_inc(zram, &zram->stats.num_writes);
300
301         index = bio->bi_sector >> SECTORS_PER_PAGE_SHIFT;
302
303         bio_for_each_segment(bvec, bio, i) {
304                 int ret;
305                 u32 offset;
306                 size_t clen;
307                 struct zobj_header *zheader;
308                 struct page *page, *page_store;
309                 unsigned char *user_mem, *cmem, *src;
310
311                 page = bvec->bv_page;
312                 src = zram->compress_buffer;
313
314                 /*
315                  * System overwrites unused sectors. Free memory associated
316                  * with this sector now.
317                  */
318                 if (zram->table[index].page ||
319                                 zram_test_flag(zram, index, ZRAM_ZERO))
320                         zram_free_page(zram, index);
321
322                 mutex_lock(&zram->lock);
323
324                 user_mem = kmap_atomic(page, KM_USER0);
325                 if (page_zero_filled(user_mem)) {
326                         kunmap_atomic(user_mem, KM_USER0);
327                         mutex_unlock(&zram->lock);
328                         zram_stat_inc(&zram->stats.pages_zero);
329                         zram_set_flag(zram, index, ZRAM_ZERO);
330                         index++;
331                         continue;
332                 }
333
334                 ret = lzo1x_1_compress(user_mem, PAGE_SIZE, src, &clen,
335                                         zram->compress_workmem);
336
337                 kunmap_atomic(user_mem, KM_USER0);
338
339                 if (unlikely(ret != LZO_E_OK)) {
340                         mutex_unlock(&zram->lock);
341                         pr_err("Compression failed! err=%d\n", ret);
342                         zram_stat64_inc(zram, &zram->stats.failed_writes);
343                         goto out;
344                 }
345
346                 /*
347                  * Page is incompressible. Store it as-is (uncompressed)
348                  * since we do not want to return too many disk write
349                  * errors which has side effect of hanging the system.
350                  */
351                 if (unlikely(clen > max_zpage_size)) {
352                         clen = PAGE_SIZE;
353                         page_store = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
354                         if (unlikely(!page_store)) {
355                                 mutex_unlock(&zram->lock);
356                                 pr_info("Error allocating memory for "
357                                         "incompressible page: %u\n", index);
358                                 zram_stat64_inc(zram,
359                                         &zram->stats.failed_writes);
360                                 goto out;
361                         }
362
363                         offset = 0;
364                         zram_set_flag(zram, index, ZRAM_UNCOMPRESSED);
365                         zram_stat_inc(&zram->stats.pages_expand);
366                         zram->table[index].page = page_store;
367                         src = kmap_atomic(page, KM_USER0);
368                         goto memstore;
369                 }
370
371                 if (xv_malloc(zram->mem_pool, clen + sizeof(*zheader),
372                                 &zram->table[index].page, &offset,
373                                 GFP_NOIO | __GFP_HIGHMEM)) {
374                         mutex_unlock(&zram->lock);
375                         pr_info("Error allocating memory for compressed "
376                                 "page: %u, size=%zu\n", index, clen);
377                         zram_stat64_inc(zram, &zram->stats.failed_writes);
378                         goto out;
379                 }
380
381 memstore:
382                 zram->table[index].offset = offset;
383
384                 cmem = kmap_atomic(zram->table[index].page, KM_USER1) +
385                                 zram->table[index].offset;
386
387 #if 0
388                 /* Back-reference needed for memory defragmentation */
389                 if (!zram_test_flag(zram, index, ZRAM_UNCOMPRESSED)) {
390                         zheader = (struct zobj_header *)cmem;
391                         zheader->table_idx = index;
392                         cmem += sizeof(*zheader);
393                 }
394 #endif
395
396                 memcpy(cmem, src, clen);
397
398                 kunmap_atomic(cmem, KM_USER1);
399                 if (unlikely(zram_test_flag(zram, index, ZRAM_UNCOMPRESSED)))
400                         kunmap_atomic(src, KM_USER0);
401
402                 /* Update stats */
403                 zram->stats.compr_size += clen;
404                 zram_stat_inc(&zram->stats.pages_stored);
405                 if (clen <= PAGE_SIZE / 2)
406                         zram_stat_inc(&zram->stats.good_compress);
407
408                 mutex_unlock(&zram->lock);
409                 index++;
410         }
411
412         set_bit(BIO_UPTODATE, &bio->bi_flags);
413         bio_endio(bio, 0);
414         return 0;
415
416 out:
417         bio_io_error(bio);
418         return 0;
419 }
420
421 /*
422  * Check if request is within bounds and page aligned.
423  */
424 static inline int valid_io_request(struct zram *zram, struct bio *bio)
425 {
426         if (unlikely(
427                 (bio->bi_sector >= (zram->disksize >> SECTOR_SHIFT)) ||
428                 (bio->bi_sector & (SECTORS_PER_PAGE - 1)) ||
429                 (bio->bi_size & (PAGE_SIZE - 1)))) {
430
431                 return 0;
432         }
433
434         /* I/O request is valid */
435         return 1;
436 }
437
438 /*
439  * Handler function for all zram I/O requests.
440  */
441 static int zram_make_request(struct request_queue *queue, struct bio *bio)
442 {
443         int ret = 0;
444         struct zram *zram = queue->queuedata;
445
446         if (unlikely(!zram->init_done)) {
447                 bio_io_error(bio);
448                 return 0;
449         }
450
451         if (!valid_io_request(zram, bio)) {
452                 zram_stat64_inc(zram, &zram->stats.invalid_io);
453                 bio_io_error(bio);
454                 return 0;
455         }
456
457         switch (bio_data_dir(bio)) {
458         case READ:
459                 ret = zram_read(zram, bio);
460                 break;
461
462         case WRITE:
463                 ret = zram_write(zram, bio);
464                 break;
465         }
466
467         return ret;
468 }
469
470 static void reset_device(struct zram *zram)
471 {
472         size_t index;
473
474         /* Do not accept any new I/O request */
475         zram->init_done = 0;
476
477         /* Free various per-device buffers */
478         kfree(zram->compress_workmem);
479         free_pages((unsigned long)zram->compress_buffer, 1);
480
481         zram->compress_workmem = NULL;
482         zram->compress_buffer = NULL;
483
484         /* Free all pages that are still in this zram device */
485         for (index = 0; index < zram->disksize >> PAGE_SHIFT; index++) {
486                 struct page *page;
487                 u16 offset;
488
489                 page = zram->table[index].page;
490                 offset = zram->table[index].offset;
491
492                 if (!page)
493                         continue;
494
495                 if (unlikely(zram_test_flag(zram, index, ZRAM_UNCOMPRESSED)))
496                         __free_page(page);
497                 else
498                         xv_free(zram->mem_pool, page, offset);
499         }
500
501         vfree(zram->table);
502         zram->table = NULL;
503
504         xv_destroy_pool(zram->mem_pool);
505         zram->mem_pool = NULL;
506
507         /* Reset stats */
508         memset(&zram->stats, 0, sizeof(zram->stats));
509
510         zram->disksize = 0;
511 }
512
513 static int zram_ioctl_init_device(struct zram *zram)
514 {
515         int ret;
516         size_t num_pages;
517
518         if (zram->init_done) {
519                 pr_info("Device already initialized!\n");
520                 return -EBUSY;
521         }
522
523         zram_set_disksize(zram, totalram_pages << PAGE_SHIFT);
524
525         zram->compress_workmem = kzalloc(LZO1X_MEM_COMPRESS, GFP_KERNEL);
526         if (!zram->compress_workmem) {
527                 pr_err("Error allocating compressor working memory!\n");
528                 ret = -ENOMEM;
529                 goto fail;
530         }
531
532         zram->compress_buffer = (void *)__get_free_pages(__GFP_ZERO, 1);
533         if (!zram->compress_buffer) {
534                 pr_err("Error allocating compressor buffer space\n");
535                 ret = -ENOMEM;
536                 goto fail;
537         }
538
539         num_pages = zram->disksize >> PAGE_SHIFT;
540         zram->table = vmalloc(num_pages * sizeof(*zram->table));
541         if (!zram->table) {
542                 pr_err("Error allocating zram address table\n");
543                 /* To prevent accessing table entries during cleanup */
544                 zram->disksize = 0;
545                 ret = -ENOMEM;
546                 goto fail;
547         }
548         memset(zram->table, 0, num_pages * sizeof(*zram->table));
549
550         set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
551
552         /* zram devices sort of resembles non-rotational disks */
553         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
554
555         zram->mem_pool = xv_create_pool();
556         if (!zram->mem_pool) {
557                 pr_err("Error creating memory pool\n");
558                 ret = -ENOMEM;
559                 goto fail;
560         }
561
562         zram->init_done = 1;
563
564         pr_debug("Initialization done!\n");
565         return 0;
566
567 fail:
568         reset_device(zram);
569
570         pr_err("Initialization failed: err=%d\n", ret);
571         return ret;
572 }
573
574 static int zram_ioctl_reset_device(struct zram *zram)
575 {
576         if (zram->init_done)
577                 reset_device(zram);
578
579         return 0;
580 }
581
582 static int zram_ioctl(struct block_device *bdev, fmode_t mode,
583                         unsigned int cmd, unsigned long arg)
584 {
585         int ret = 0;
586         size_t disksize_kb;
587
588         struct zram *zram = bdev->bd_disk->private_data;
589
590         switch (cmd) {
591         case ZRAMIO_SET_DISKSIZE_KB:
592                 if (zram->init_done) {
593                         ret = -EBUSY;
594                         goto out;
595                 }
596                 if (copy_from_user(&disksize_kb, (void *)arg,
597                                                 _IOC_SIZE(cmd))) {
598                         ret = -EFAULT;
599                         goto out;
600                 }
601                 zram->disksize = disksize_kb << 10;
602                 pr_info("Disk size set to %zu kB\n", disksize_kb);
603                 break;
604
605         case ZRAMIO_GET_STATS:
606         {
607                 struct zram_ioctl_stats *stats;
608                 if (!zram->init_done) {
609                         ret = -ENOTTY;
610                         goto out;
611                 }
612                 stats = kzalloc(sizeof(*stats), GFP_KERNEL);
613                 if (!stats) {
614                         ret = -ENOMEM;
615                         goto out;
616                 }
617                 zram_ioctl_get_stats(zram, stats);
618                 if (copy_to_user((void *)arg, stats, sizeof(*stats))) {
619                         kfree(stats);
620                         ret = -EFAULT;
621                         goto out;
622                 }
623                 kfree(stats);
624                 break;
625         }
626         case ZRAMIO_INIT:
627                 ret = zram_ioctl_init_device(zram);
628                 break;
629
630         case ZRAMIO_RESET:
631                 /* Do not reset an active device! */
632                 if (bdev->bd_holders) {
633                         ret = -EBUSY;
634                         goto out;
635                 }
636
637                 /* Make sure all pending I/O is finished */
638                 if (bdev)
639                         fsync_bdev(bdev);
640
641                 ret = zram_ioctl_reset_device(zram);
642                 break;
643
644         default:
645                 pr_info("Invalid ioctl %u\n", cmd);
646                 ret = -ENOTTY;
647         }
648
649 out:
650         return ret;
651 }
652
653 void zram_slot_free_notify(struct block_device *bdev, unsigned long index)
654 {
655         struct zram *zram;
656
657         zram = bdev->bd_disk->private_data;
658         zram_free_page(zram, index);
659         zram_stat64_inc(zram, &zram->stats.notify_free);
660 }
661
662 static const struct block_device_operations zram_devops = {
663         .ioctl = zram_ioctl,
664         .swap_slot_free_notify = zram_slot_free_notify,
665         .owner = THIS_MODULE
666 };
667
668 static int create_device(struct zram *zram, int device_id)
669 {
670         int ret = 0;
671
672         mutex_init(&zram->lock);
673         spin_lock_init(&zram->stat64_lock);
674
675         zram->queue = blk_alloc_queue(GFP_KERNEL);
676         if (!zram->queue) {
677                 pr_err("Error allocating disk queue for device %d\n",
678                         device_id);
679                 ret = -ENOMEM;
680                 goto out;
681         }
682
683         blk_queue_make_request(zram->queue, zram_make_request);
684         zram->queue->queuedata = zram;
685
686          /* gendisk structure */
687         zram->disk = alloc_disk(1);
688         if (!zram->disk) {
689                 blk_cleanup_queue(zram->queue);
690                 pr_warning("Error allocating disk structure for device %d\n",
691                         device_id);
692                 ret = -ENOMEM;
693                 goto out;
694         }
695
696         zram->disk->major = zram_major;
697         zram->disk->first_minor = device_id;
698         zram->disk->fops = &zram_devops;
699         zram->disk->queue = zram->queue;
700         zram->disk->private_data = zram;
701         snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
702
703         /* Actual capacity set using ZRAMIO_SET_DISKSIZE_KB ioctl */
704         set_capacity(zram->disk, 0);
705
706         /*
707          * To ensure that we always get PAGE_SIZE aligned
708          * and n*PAGE_SIZED sized I/O requests.
709          */
710         blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
711         blk_queue_logical_block_size(zram->disk->queue, PAGE_SIZE);
712         blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
713         blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
714
715         add_disk(zram->disk);
716
717         zram->init_done = 0;
718
719 out:
720         return ret;
721 }
722
723 static void destroy_device(struct zram *zram)
724 {
725         if (zram->disk) {
726                 del_gendisk(zram->disk);
727                 put_disk(zram->disk);
728         }
729
730         if (zram->queue)
731                 blk_cleanup_queue(zram->queue);
732 }
733
734 static int __init zram_init(void)
735 {
736         int ret, dev_id;
737
738         if (num_devices > max_num_devices) {
739                 pr_warning("Invalid value for num_devices: %u\n",
740                                 num_devices);
741                 ret = -EINVAL;
742                 goto out;
743         }
744
745         zram_major = register_blkdev(0, "zram");
746         if (zram_major <= 0) {
747                 pr_warning("Unable to get major number\n");
748                 ret = -EBUSY;
749                 goto out;
750         }
751
752         if (!num_devices) {
753                 pr_info("num_devices not specified. Using default: 1\n");
754                 num_devices = 1;
755         }
756
757         /* Allocate the device array and initialize each one */
758         pr_info("Creating %u devices ...\n", num_devices);
759         devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL);
760         if (!devices) {
761                 ret = -ENOMEM;
762                 goto unregister;
763         }
764
765         for (dev_id = 0; dev_id < num_devices; dev_id++) {
766                 ret = create_device(&devices[dev_id], dev_id);
767                 if (ret)
768                         goto free_devices;
769         }
770
771         return 0;
772
773 free_devices:
774         while (dev_id)
775                 destroy_device(&devices[--dev_id]);
776         kfree(devices);
777 unregister:
778         unregister_blkdev(zram_major, "zram");
779 out:
780         return ret;
781 }
782
783 static void __exit zram_exit(void)
784 {
785         int i;
786         struct zram *zram;
787
788         for (i = 0; i < num_devices; i++) {
789                 zram = &devices[i];
790
791                 destroy_device(zram);
792                 if (zram->init_done)
793                         reset_device(zram);
794         }
795
796         unregister_blkdev(zram_major, "zram");
797
798         kfree(devices);
799         pr_debug("Cleanup done!\n");
800 }
801
802 module_param(num_devices, uint, 0);
803 MODULE_PARM_DESC(num_devices, "Number of zram devices");
804
805 module_init(zram_init);
806 module_exit(zram_exit);
807
808 MODULE_LICENSE("Dual BSD/GPL");
809 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
810 MODULE_DESCRIPTION("Compressed RAM Block Device");