1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Simple synchronous userspace interface to SPI devices
5 * Copyright (C) 2006 SWAPP
6 * Andrea Paterniani <a.paterniani@swapp-eng.it>
7 * Copyright (C) 2007 David Brownell (simplification, cleanup)
10 #include <linux/init.h>
11 #include <linux/module.h>
12 #include <linux/ioctl.h>
14 #include <linux/device.h>
15 #include <linux/err.h>
16 #include <linux/list.h>
17 #include <linux/errno.h>
18 #include <linux/mutex.h>
19 #include <linux/slab.h>
20 #include <linux/compat.h>
22 #include <linux/of_device.h>
23 #include <linux/acpi.h>
25 #include <linux/spi/spi.h>
26 #include <linux/spi/spidev.h>
28 #include <linux/uaccess.h>
32 * This supports access to SPI devices using normal userspace I/O calls.
33 * Note that while traditional UNIX/POSIX I/O semantics are half duplex,
34 * and often mask message boundaries, full SPI support requires full duplex
35 * transfers. There are several kinds of internal message boundaries to
36 * handle chipselect management and other protocol options.
38 * SPI has a character major number assigned. We allocate minor numbers
39 * dynamically using a bitmask. You must use hotplug tools, such as udev
40 * (or mdev with busybox) to create and destroy the /dev/spidevB.C device
41 * nodes, since there is no fixed association of minor numbers with any
42 * particular SPI bus or device.
44 #define SPIDEV_MAJOR 153 /* assigned */
45 #define N_SPI_MINORS 32 /* ... up to 256 */
47 static DECLARE_BITMAP(minors, N_SPI_MINORS);
50 /* Bit masks for spi_device.mode management. Note that incorrect
51 * settings for some settings can cause *lots* of trouble for other
52 * devices on a shared bus:
54 * - CS_HIGH ... this device will be active when it shouldn't be
55 * - 3WIRE ... when active, it won't behave as it should
56 * - NO_CS ... there will be no explicit message boundaries; this
57 * is completely incompatible with the shared bus model
58 * - READY ... transfers may proceed when they shouldn't.
60 * REVISIT should changing those flags be privileged?
62 #define SPI_MODE_MASK (SPI_CPHA | SPI_CPOL | SPI_CS_HIGH \
63 | SPI_LSB_FIRST | SPI_3WIRE | SPI_LOOP \
64 | SPI_NO_CS | SPI_READY | SPI_TX_DUAL \
65 | SPI_TX_QUAD | SPI_TX_OCTAL | SPI_RX_DUAL \
66 | SPI_RX_QUAD | SPI_RX_OCTAL)
71 struct spi_device *spi;
72 struct list_head device_entry;
74 /* TX/RX buffers are NULL unless this device is open (users > 0) */
75 struct mutex buf_lock;
82 static LIST_HEAD(device_list);
83 static DEFINE_MUTEX(device_list_lock);
85 static unsigned bufsiz = 4096;
86 module_param(bufsiz, uint, S_IRUGO);
87 MODULE_PARM_DESC(bufsiz, "data bytes in biggest supported SPI message");
89 /*-------------------------------------------------------------------------*/
92 spidev_sync(struct spidev_data *spidev, struct spi_message *message)
95 struct spi_device *spi;
97 spin_lock_irq(&spidev->spi_lock);
99 spin_unlock_irq(&spidev->spi_lock);
104 status = spi_sync(spi, message);
107 status = message->actual_length;
112 static inline ssize_t
113 spidev_sync_write(struct spidev_data *spidev, size_t len)
115 struct spi_transfer t = {
116 .tx_buf = spidev->tx_buffer,
118 .speed_hz = spidev->speed_hz,
120 struct spi_message m;
122 spi_message_init(&m);
123 spi_message_add_tail(&t, &m);
124 return spidev_sync(spidev, &m);
127 static inline ssize_t
128 spidev_sync_read(struct spidev_data *spidev, size_t len)
130 struct spi_transfer t = {
131 .rx_buf = spidev->rx_buffer,
133 .speed_hz = spidev->speed_hz,
135 struct spi_message m;
137 spi_message_init(&m);
138 spi_message_add_tail(&t, &m);
139 return spidev_sync(spidev, &m);
142 /*-------------------------------------------------------------------------*/
144 /* Read-only message with current device setup */
146 spidev_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
148 struct spidev_data *spidev;
151 /* chipselect only toggles at start or end of operation */
155 spidev = filp->private_data;
157 mutex_lock(&spidev->buf_lock);
158 status = spidev_sync_read(spidev, count);
160 unsigned long missing;
162 missing = copy_to_user(buf, spidev->rx_buffer, status);
163 if (missing == status)
166 status = status - missing;
168 mutex_unlock(&spidev->buf_lock);
173 /* Write-only message with current device setup */
175 spidev_write(struct file *filp, const char __user *buf,
176 size_t count, loff_t *f_pos)
178 struct spidev_data *spidev;
180 unsigned long missing;
182 /* chipselect only toggles at start or end of operation */
186 spidev = filp->private_data;
188 mutex_lock(&spidev->buf_lock);
189 missing = copy_from_user(spidev->tx_buffer, buf, count);
191 status = spidev_sync_write(spidev, count);
194 mutex_unlock(&spidev->buf_lock);
199 static int spidev_message(struct spidev_data *spidev,
200 struct spi_ioc_transfer *u_xfers, unsigned n_xfers)
202 struct spi_message msg;
203 struct spi_transfer *k_xfers;
204 struct spi_transfer *k_tmp;
205 struct spi_ioc_transfer *u_tmp;
206 unsigned n, total, tx_total, rx_total;
208 int status = -EFAULT;
210 spi_message_init(&msg);
211 k_xfers = kcalloc(n_xfers, sizeof(*k_tmp), GFP_KERNEL);
215 /* Construct spi_message, copying any tx data to bounce buffer.
216 * We walk the array of user-provided transfers, using each one
217 * to initialize a kernel version of the same transfer.
219 tx_buf = spidev->tx_buffer;
220 rx_buf = spidev->rx_buffer;
224 for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;
226 n--, k_tmp++, u_tmp++) {
227 /* Ensure that also following allocations from rx_buf/tx_buf will meet
228 * DMA alignment requirements.
230 unsigned int len_aligned = ALIGN(u_tmp->len, ARCH_KMALLOC_MINALIGN);
232 k_tmp->len = u_tmp->len;
235 /* Since the function returns the total length of transfers
236 * on success, restrict the total to positive int values to
237 * avoid the return value looking like an error. Also check
238 * each transfer length to avoid arithmetic overflow.
240 if (total > INT_MAX || k_tmp->len > INT_MAX) {
246 /* this transfer needs space in RX bounce buffer */
247 rx_total += len_aligned;
248 if (rx_total > bufsiz) {
252 k_tmp->rx_buf = rx_buf;
253 rx_buf += len_aligned;
256 /* this transfer needs space in TX bounce buffer */
257 tx_total += len_aligned;
258 if (tx_total > bufsiz) {
262 k_tmp->tx_buf = tx_buf;
263 if (copy_from_user(tx_buf, (const u8 __user *)
264 (uintptr_t) u_tmp->tx_buf,
267 tx_buf += len_aligned;
270 k_tmp->cs_change = !!u_tmp->cs_change;
271 k_tmp->tx_nbits = u_tmp->tx_nbits;
272 k_tmp->rx_nbits = u_tmp->rx_nbits;
273 k_tmp->bits_per_word = u_tmp->bits_per_word;
274 k_tmp->delay.value = u_tmp->delay_usecs;
275 k_tmp->delay.unit = SPI_DELAY_UNIT_USECS;
276 k_tmp->speed_hz = u_tmp->speed_hz;
277 k_tmp->word_delay.value = u_tmp->word_delay_usecs;
278 k_tmp->word_delay.unit = SPI_DELAY_UNIT_USECS;
279 if (!k_tmp->speed_hz)
280 k_tmp->speed_hz = spidev->speed_hz;
282 dev_dbg(&spidev->spi->dev,
283 " xfer len %u %s%s%s%dbits %u usec %u usec %uHz\n",
285 k_tmp->rx_buf ? "rx " : "",
286 k_tmp->tx_buf ? "tx " : "",
287 k_tmp->cs_change ? "cs " : "",
288 k_tmp->bits_per_word ? : spidev->spi->bits_per_word,
290 k_tmp->word_delay.value,
291 k_tmp->speed_hz ? : spidev->spi->max_speed_hz);
293 spi_message_add_tail(k_tmp, &msg);
296 status = spidev_sync(spidev, &msg);
300 /* copy any rx data out of bounce buffer */
301 for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;
303 n--, k_tmp++, u_tmp++) {
305 if (copy_to_user((u8 __user *)
306 (uintptr_t) u_tmp->rx_buf, k_tmp->rx_buf,
320 static struct spi_ioc_transfer *
321 spidev_get_ioc_message(unsigned int cmd, struct spi_ioc_transfer __user *u_ioc,
326 /* Check type, command number and direction */
327 if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC
328 || _IOC_NR(cmd) != _IOC_NR(SPI_IOC_MESSAGE(0))
329 || _IOC_DIR(cmd) != _IOC_WRITE)
330 return ERR_PTR(-ENOTTY);
332 tmp = _IOC_SIZE(cmd);
333 if ((tmp % sizeof(struct spi_ioc_transfer)) != 0)
334 return ERR_PTR(-EINVAL);
335 *n_ioc = tmp / sizeof(struct spi_ioc_transfer);
339 /* copy into scratch area */
340 return memdup_user(u_ioc, tmp);
344 spidev_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
347 struct spidev_data *spidev;
348 struct spi_device *spi;
351 struct spi_ioc_transfer *ioc;
353 /* Check type and command number */
354 if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC)
357 /* guard against device removal before, or while,
358 * we issue this ioctl.
360 spidev = filp->private_data;
361 spin_lock_irq(&spidev->spi_lock);
362 spi = spi_dev_get(spidev->spi);
363 spin_unlock_irq(&spidev->spi_lock);
368 /* use the buffer lock here for triple duty:
369 * - prevent I/O (from us) so calling spi_setup() is safe;
370 * - prevent concurrent SPI_IOC_WR_* from morphing
371 * data fields while SPI_IOC_RD_* reads them;
372 * - SPI_IOC_MESSAGE needs the buffer locked "normally".
374 mutex_lock(&spidev->buf_lock);
378 case SPI_IOC_RD_MODE:
379 retval = put_user(spi->mode & SPI_MODE_MASK,
382 case SPI_IOC_RD_MODE32:
383 retval = put_user(spi->mode & SPI_MODE_MASK,
384 (__u32 __user *)arg);
386 case SPI_IOC_RD_LSB_FIRST:
387 retval = put_user((spi->mode & SPI_LSB_FIRST) ? 1 : 0,
390 case SPI_IOC_RD_BITS_PER_WORD:
391 retval = put_user(spi->bits_per_word, (__u8 __user *)arg);
393 case SPI_IOC_RD_MAX_SPEED_HZ:
394 retval = put_user(spidev->speed_hz, (__u32 __user *)arg);
398 case SPI_IOC_WR_MODE:
399 case SPI_IOC_WR_MODE32:
400 if (cmd == SPI_IOC_WR_MODE)
401 retval = get_user(tmp, (u8 __user *)arg);
403 retval = get_user(tmp, (u32 __user *)arg);
405 u32 save = spi->mode;
407 if (tmp & ~SPI_MODE_MASK) {
412 tmp |= spi->mode & ~SPI_MODE_MASK;
413 spi->mode = (u16)tmp;
414 retval = spi_setup(spi);
418 dev_dbg(&spi->dev, "spi mode %x\n", tmp);
421 case SPI_IOC_WR_LSB_FIRST:
422 retval = get_user(tmp, (__u8 __user *)arg);
424 u32 save = spi->mode;
427 spi->mode |= SPI_LSB_FIRST;
429 spi->mode &= ~SPI_LSB_FIRST;
430 retval = spi_setup(spi);
434 dev_dbg(&spi->dev, "%csb first\n",
438 case SPI_IOC_WR_BITS_PER_WORD:
439 retval = get_user(tmp, (__u8 __user *)arg);
441 u8 save = spi->bits_per_word;
443 spi->bits_per_word = tmp;
444 retval = spi_setup(spi);
446 spi->bits_per_word = save;
448 dev_dbg(&spi->dev, "%d bits per word\n", tmp);
451 case SPI_IOC_WR_MAX_SPEED_HZ:
452 retval = get_user(tmp, (__u32 __user *)arg);
454 u32 save = spi->max_speed_hz;
456 spi->max_speed_hz = tmp;
457 retval = spi_setup(spi);
459 spidev->speed_hz = tmp;
460 dev_dbg(&spi->dev, "%d Hz (max)\n",
463 spi->max_speed_hz = save;
468 /* segmented and/or full-duplex I/O request */
469 /* Check message and copy into scratch area */
470 ioc = spidev_get_ioc_message(cmd,
471 (struct spi_ioc_transfer __user *)arg, &n_ioc);
473 retval = PTR_ERR(ioc);
477 break; /* n_ioc is also 0 */
479 /* translate to spi_message, execute */
480 retval = spidev_message(spidev, ioc, n_ioc);
485 mutex_unlock(&spidev->buf_lock);
492 spidev_compat_ioc_message(struct file *filp, unsigned int cmd,
495 struct spi_ioc_transfer __user *u_ioc;
497 struct spidev_data *spidev;
498 struct spi_device *spi;
500 struct spi_ioc_transfer *ioc;
502 u_ioc = (struct spi_ioc_transfer __user *) compat_ptr(arg);
504 /* guard against device removal before, or while,
505 * we issue this ioctl.
507 spidev = filp->private_data;
508 spin_lock_irq(&spidev->spi_lock);
509 spi = spi_dev_get(spidev->spi);
510 spin_unlock_irq(&spidev->spi_lock);
515 /* SPI_IOC_MESSAGE needs the buffer locked "normally" */
516 mutex_lock(&spidev->buf_lock);
518 /* Check message and copy into scratch area */
519 ioc = spidev_get_ioc_message(cmd, u_ioc, &n_ioc);
521 retval = PTR_ERR(ioc);
525 goto done; /* n_ioc is also 0 */
527 /* Convert buffer pointers */
528 for (n = 0; n < n_ioc; n++) {
529 ioc[n].rx_buf = (uintptr_t) compat_ptr(ioc[n].rx_buf);
530 ioc[n].tx_buf = (uintptr_t) compat_ptr(ioc[n].tx_buf);
533 /* translate to spi_message, execute */
534 retval = spidev_message(spidev, ioc, n_ioc);
538 mutex_unlock(&spidev->buf_lock);
544 spidev_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
546 if (_IOC_TYPE(cmd) == SPI_IOC_MAGIC
547 && _IOC_NR(cmd) == _IOC_NR(SPI_IOC_MESSAGE(0))
548 && _IOC_DIR(cmd) == _IOC_WRITE)
549 return spidev_compat_ioc_message(filp, cmd, arg);
551 return spidev_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
554 #define spidev_compat_ioctl NULL
555 #endif /* CONFIG_COMPAT */
557 static int spidev_open(struct inode *inode, struct file *filp)
559 struct spidev_data *spidev;
562 mutex_lock(&device_list_lock);
564 list_for_each_entry(spidev, &device_list, device_entry) {
565 if (spidev->devt == inode->i_rdev) {
572 pr_debug("spidev: nothing for minor %d\n", iminor(inode));
576 if (!spidev->tx_buffer) {
577 spidev->tx_buffer = kmalloc(bufsiz, GFP_KERNEL);
578 if (!spidev->tx_buffer) {
579 dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
585 if (!spidev->rx_buffer) {
586 spidev->rx_buffer = kmalloc(bufsiz, GFP_KERNEL);
587 if (!spidev->rx_buffer) {
588 dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
590 goto err_alloc_rx_buf;
595 filp->private_data = spidev;
596 stream_open(inode, filp);
598 mutex_unlock(&device_list_lock);
602 kfree(spidev->tx_buffer);
603 spidev->tx_buffer = NULL;
605 mutex_unlock(&device_list_lock);
609 static int spidev_release(struct inode *inode, struct file *filp)
611 struct spidev_data *spidev;
614 mutex_lock(&device_list_lock);
615 spidev = filp->private_data;
616 filp->private_data = NULL;
618 spin_lock_irq(&spidev->spi_lock);
619 /* ... after we unbound from the underlying device? */
620 dofree = (spidev->spi == NULL);
621 spin_unlock_irq(&spidev->spi_lock);
625 if (!spidev->users) {
627 kfree(spidev->tx_buffer);
628 spidev->tx_buffer = NULL;
630 kfree(spidev->rx_buffer);
631 spidev->rx_buffer = NULL;
636 spidev->speed_hz = spidev->spi->max_speed_hz;
638 #ifdef CONFIG_SPI_SLAVE
640 spi_slave_abort(spidev->spi);
642 mutex_unlock(&device_list_lock);
647 static const struct file_operations spidev_fops = {
648 .owner = THIS_MODULE,
649 /* REVISIT switch to aio primitives, so that userspace
650 * gets more complete API coverage. It'll simplify things
651 * too, except for the locking.
653 .write = spidev_write,
655 .unlocked_ioctl = spidev_ioctl,
656 .compat_ioctl = spidev_compat_ioctl,
658 .release = spidev_release,
662 /*-------------------------------------------------------------------------*/
664 /* The main reason to have this class is to make mdev/udev create the
665 * /dev/spidevB.C character device nodes exposing our userspace API.
666 * It also simplifies memory management.
669 static struct class *spidev_class;
672 static const struct of_device_id spidev_dt_ids[] = {
673 { .compatible = "rohm,dh2228fv" },
674 { .compatible = "lineartechnology,ltc2488" },
675 { .compatible = "ge,achc" },
676 { .compatible = "semtech,sx1301" },
677 { .compatible = "lwn,bk4" },
678 { .compatible = "dh,dhcom-board" },
679 { .compatible = "menlo,m53cpld" },
682 MODULE_DEVICE_TABLE(of, spidev_dt_ids);
687 /* Dummy SPI devices not to be used in production systems */
688 #define SPIDEV_ACPI_DUMMY 1
690 static const struct acpi_device_id spidev_acpi_ids[] = {
692 * The ACPI SPT000* devices are only meant for development and
693 * testing. Systems used in production should have a proper ACPI
694 * description of the connected peripheral and they should also use
695 * a proper driver instead of poking directly to the SPI bus.
697 { "SPT0001", SPIDEV_ACPI_DUMMY },
698 { "SPT0002", SPIDEV_ACPI_DUMMY },
699 { "SPT0003", SPIDEV_ACPI_DUMMY },
702 MODULE_DEVICE_TABLE(acpi, spidev_acpi_ids);
704 static void spidev_probe_acpi(struct spi_device *spi)
706 const struct acpi_device_id *id;
708 if (!has_acpi_companion(&spi->dev))
711 id = acpi_match_device(spidev_acpi_ids, &spi->dev);
715 if (id->driver_data == SPIDEV_ACPI_DUMMY)
716 dev_warn(&spi->dev, "do not use this driver in production systems!\n");
719 static inline void spidev_probe_acpi(struct spi_device *spi) {}
722 /*-------------------------------------------------------------------------*/
724 static int spidev_probe(struct spi_device *spi)
726 struct spidev_data *spidev;
731 * spidev should never be referenced in DT without a specific
732 * compatible string, it is a Linux implementation thing
733 * rather than a description of the hardware.
735 WARN(0 && spi->dev.of_node &&
736 of_device_is_compatible(spi->dev.of_node, "spidev"),
737 "%pOF: buggy DT: spidev listed directly in DT\n", spi->dev.of_node);
739 spidev_probe_acpi(spi);
741 /* Allocate driver data */
742 spidev = kzalloc(sizeof(*spidev), GFP_KERNEL);
746 /* Initialize the driver data */
748 spin_lock_init(&spidev->spi_lock);
749 mutex_init(&spidev->buf_lock);
751 INIT_LIST_HEAD(&spidev->device_entry);
753 /* If we can allocate a minor number, hook up this device.
754 * Reusing minors is fine so long as udev or mdev is working.
756 mutex_lock(&device_list_lock);
757 minor = find_first_zero_bit(minors, N_SPI_MINORS);
758 if (minor < N_SPI_MINORS) {
761 spidev->devt = MKDEV(SPIDEV_MAJOR, minor);
762 dev = device_create(spidev_class, &spi->dev, spidev->devt,
763 spidev, "spidev%d.%d",
764 spi->master->bus_num, spi->chip_select);
765 status = PTR_ERR_OR_ZERO(dev);
767 dev_dbg(&spi->dev, "no minor number available!\n");
771 set_bit(minor, minors);
772 list_add(&spidev->device_entry, &device_list);
774 mutex_unlock(&device_list_lock);
776 spidev->speed_hz = spi->max_speed_hz;
779 spi_set_drvdata(spi, spidev);
786 static int spidev_remove(struct spi_device *spi)
788 struct spidev_data *spidev = spi_get_drvdata(spi);
790 /* prevent new opens */
791 mutex_lock(&device_list_lock);
792 /* make sure ops on existing fds can abort cleanly */
793 spin_lock_irq(&spidev->spi_lock);
795 spin_unlock_irq(&spidev->spi_lock);
797 list_del(&spidev->device_entry);
798 device_destroy(spidev_class, spidev->devt);
799 clear_bit(MINOR(spidev->devt), minors);
800 if (spidev->users == 0)
802 mutex_unlock(&device_list_lock);
807 static struct spi_driver spidev_spi_driver = {
810 .of_match_table = of_match_ptr(spidev_dt_ids),
811 .acpi_match_table = ACPI_PTR(spidev_acpi_ids),
813 .probe = spidev_probe,
814 .remove = spidev_remove,
816 /* NOTE: suspend/resume methods are not necessary here.
817 * We don't do anything except pass the requests to/from
818 * the underlying controller. The refrigerator handles
819 * most issues; the controller driver handles the rest.
823 /*-------------------------------------------------------------------------*/
825 static int __init spidev_init(void)
829 /* Claim our 256 reserved device numbers. Then register a class
830 * that will key udev/mdev to add/remove /dev nodes. Last, register
831 * the driver which manages those device numbers.
833 BUILD_BUG_ON(N_SPI_MINORS > 256);
834 status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops);
838 spidev_class = class_create(THIS_MODULE, "spidev");
839 if (IS_ERR(spidev_class)) {
840 unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
841 return PTR_ERR(spidev_class);
844 status = spi_register_driver(&spidev_spi_driver);
846 class_destroy(spidev_class);
847 unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
851 module_init(spidev_init);
853 static void __exit spidev_exit(void)
855 spi_unregister_driver(&spidev_spi_driver);
856 class_destroy(spidev_class);
857 unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
859 module_exit(spidev_exit);
861 MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>");
862 MODULE_DESCRIPTION("User mode SPI device interface");
863 MODULE_LICENSE("GPL");
864 MODULE_ALIAS("spi:spidev");