4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 #include <linux/kernel.h>
23 #include <linux/kmod.h>
24 #include <linux/device.h>
25 #include <linux/init.h>
26 #include <linux/cache.h>
27 #include <linux/mutex.h>
28 #include <linux/of_device.h>
29 #include <linux/of_irq.h>
30 #include <linux/slab.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/spi/spi.h>
33 #include <linux/of_gpio.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/export.h>
36 #include <linux/sched/rt.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/ioport.h>
40 #include <linux/acpi.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/spi.h>
45 static void spidev_release(struct device *dev)
47 struct spi_device *spi = to_spi_device(dev);
49 /* spi masters may cleanup for released devices */
50 if (spi->master->cleanup)
51 spi->master->cleanup(spi);
53 spi_master_put(spi->master);
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
60 const struct spi_device *spi = to_spi_device(dev);
62 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
64 static DEVICE_ATTR_RO(modalias);
66 static struct attribute *spi_dev_attrs[] = {
67 &dev_attr_modalias.attr,
70 ATTRIBUTE_GROUPS(spi_dev);
72 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
73 * and the sysfs version makes coldplug work too.
76 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
77 const struct spi_device *sdev)
80 if (!strcmp(sdev->modalias, id->name))
87 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
89 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
91 return spi_match_id(sdrv->id_table, sdev);
93 EXPORT_SYMBOL_GPL(spi_get_device_id);
95 static int spi_match_device(struct device *dev, struct device_driver *drv)
97 const struct spi_device *spi = to_spi_device(dev);
98 const struct spi_driver *sdrv = to_spi_driver(drv);
100 /* Attempt an OF style match */
101 if (of_driver_match_device(dev, drv))
105 if (acpi_driver_match_device(dev, drv))
109 return !!spi_match_id(sdrv->id_table, spi);
111 return strcmp(spi->modalias, drv->name) == 0;
114 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
116 const struct spi_device *spi = to_spi_device(dev);
118 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
122 #ifdef CONFIG_PM_SLEEP
123 static int spi_legacy_suspend(struct device *dev, pm_message_t message)
126 struct spi_driver *drv = to_spi_driver(dev->driver);
128 /* suspend will stop irqs and dma; no more i/o */
131 value = drv->suspend(to_spi_device(dev), message);
133 dev_dbg(dev, "... can't suspend\n");
138 static int spi_legacy_resume(struct device *dev)
141 struct spi_driver *drv = to_spi_driver(dev->driver);
143 /* resume may restart the i/o queue */
146 value = drv->resume(to_spi_device(dev));
148 dev_dbg(dev, "... can't resume\n");
153 static int spi_pm_suspend(struct device *dev)
155 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
158 return pm_generic_suspend(dev);
160 return spi_legacy_suspend(dev, PMSG_SUSPEND);
163 static int spi_pm_resume(struct device *dev)
165 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
168 return pm_generic_resume(dev);
170 return spi_legacy_resume(dev);
173 static int spi_pm_freeze(struct device *dev)
175 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
178 return pm_generic_freeze(dev);
180 return spi_legacy_suspend(dev, PMSG_FREEZE);
183 static int spi_pm_thaw(struct device *dev)
185 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
188 return pm_generic_thaw(dev);
190 return spi_legacy_resume(dev);
193 static int spi_pm_poweroff(struct device *dev)
195 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
198 return pm_generic_poweroff(dev);
200 return spi_legacy_suspend(dev, PMSG_HIBERNATE);
203 static int spi_pm_restore(struct device *dev)
205 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
208 return pm_generic_restore(dev);
210 return spi_legacy_resume(dev);
213 #define spi_pm_suspend NULL
214 #define spi_pm_resume NULL
215 #define spi_pm_freeze NULL
216 #define spi_pm_thaw NULL
217 #define spi_pm_poweroff NULL
218 #define spi_pm_restore NULL
221 static const struct dev_pm_ops spi_pm = {
222 .suspend = spi_pm_suspend,
223 .resume = spi_pm_resume,
224 .freeze = spi_pm_freeze,
226 .poweroff = spi_pm_poweroff,
227 .restore = spi_pm_restore,
229 pm_generic_runtime_suspend,
230 pm_generic_runtime_resume,
235 struct bus_type spi_bus_type = {
237 .dev_groups = spi_dev_groups,
238 .match = spi_match_device,
239 .uevent = spi_uevent,
242 EXPORT_SYMBOL_GPL(spi_bus_type);
245 static int spi_drv_probe(struct device *dev)
247 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
248 struct spi_device *spi = to_spi_device(dev);
251 acpi_dev_pm_attach(&spi->dev, true);
252 ret = sdrv->probe(spi);
254 acpi_dev_pm_detach(&spi->dev, true);
259 static int spi_drv_remove(struct device *dev)
261 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
262 struct spi_device *spi = to_spi_device(dev);
265 ret = sdrv->remove(spi);
266 acpi_dev_pm_detach(&spi->dev, true);
271 static void spi_drv_shutdown(struct device *dev)
273 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
275 sdrv->shutdown(to_spi_device(dev));
279 * spi_register_driver - register a SPI driver
280 * @sdrv: the driver to register
283 int spi_register_driver(struct spi_driver *sdrv)
285 sdrv->driver.bus = &spi_bus_type;
287 sdrv->driver.probe = spi_drv_probe;
289 sdrv->driver.remove = spi_drv_remove;
291 sdrv->driver.shutdown = spi_drv_shutdown;
292 return driver_register(&sdrv->driver);
294 EXPORT_SYMBOL_GPL(spi_register_driver);
296 /*-------------------------------------------------------------------------*/
298 /* SPI devices should normally not be created by SPI device drivers; that
299 * would make them board-specific. Similarly with SPI master drivers.
300 * Device registration normally goes into like arch/.../mach.../board-YYY.c
301 * with other readonly (flashable) information about mainboard devices.
305 struct list_head list;
306 struct spi_board_info board_info;
309 static LIST_HEAD(board_list);
310 static LIST_HEAD(spi_master_list);
313 * Used to protect add/del opertion for board_info list and
314 * spi_master list, and their matching process
316 static DEFINE_MUTEX(board_lock);
319 * spi_alloc_device - Allocate a new SPI device
320 * @master: Controller to which device is connected
323 * Allows a driver to allocate and initialize a spi_device without
324 * registering it immediately. This allows a driver to directly
325 * fill the spi_device with device parameters before calling
326 * spi_add_device() on it.
328 * Caller is responsible to call spi_add_device() on the returned
329 * spi_device structure to add it to the SPI master. If the caller
330 * needs to discard the spi_device without adding it, then it should
331 * call spi_dev_put() on it.
333 * Returns a pointer to the new device, or NULL.
335 struct spi_device *spi_alloc_device(struct spi_master *master)
337 struct spi_device *spi;
338 struct device *dev = master->dev.parent;
340 if (!spi_master_get(master))
343 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
345 dev_err(dev, "cannot alloc spi_device\n");
346 spi_master_put(master);
350 spi->master = master;
351 spi->dev.parent = &master->dev;
352 spi->dev.bus = &spi_bus_type;
353 spi->dev.release = spidev_release;
354 spi->cs_gpio = -ENOENT;
355 device_initialize(&spi->dev);
358 EXPORT_SYMBOL_GPL(spi_alloc_device);
360 static void spi_dev_set_name(struct spi_device *spi)
362 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
365 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
369 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
374 * spi_add_device - Add spi_device allocated with spi_alloc_device
375 * @spi: spi_device to register
377 * Companion function to spi_alloc_device. Devices allocated with
378 * spi_alloc_device can be added onto the spi bus with this function.
380 * Returns 0 on success; negative errno on failure
382 int spi_add_device(struct spi_device *spi)
384 static DEFINE_MUTEX(spi_add_lock);
385 struct spi_master *master = spi->master;
386 struct device *dev = master->dev.parent;
390 /* Chipselects are numbered 0..max; validate. */
391 if (spi->chip_select >= master->num_chipselect) {
392 dev_err(dev, "cs%d >= max %d\n",
394 master->num_chipselect);
398 /* Set the bus ID string */
399 spi_dev_set_name(spi);
401 /* We need to make sure there's no other device with this
402 * chipselect **BEFORE** we call setup(), else we'll trash
403 * its configuration. Lock against concurrent add() calls.
405 mutex_lock(&spi_add_lock);
407 d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
409 dev_err(dev, "chipselect %d already in use\n",
416 if (master->cs_gpios)
417 spi->cs_gpio = master->cs_gpios[spi->chip_select];
419 /* Drivers may modify this initial i/o setup, but will
420 * normally rely on the device being setup. Devices
421 * using SPI_CS_HIGH can't coexist well otherwise...
423 status = spi_setup(spi);
425 dev_err(dev, "can't setup %s, status %d\n",
426 dev_name(&spi->dev), status);
430 /* Device may be bound to an active driver when this returns */
431 status = device_add(&spi->dev);
433 dev_err(dev, "can't add %s, status %d\n",
434 dev_name(&spi->dev), status);
436 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
439 mutex_unlock(&spi_add_lock);
442 EXPORT_SYMBOL_GPL(spi_add_device);
445 * spi_new_device - instantiate one new SPI device
446 * @master: Controller to which device is connected
447 * @chip: Describes the SPI device
450 * On typical mainboards, this is purely internal; and it's not needed
451 * after board init creates the hard-wired devices. Some development
452 * platforms may not be able to use spi_register_board_info though, and
453 * this is exported so that for example a USB or parport based adapter
454 * driver could add devices (which it would learn about out-of-band).
456 * Returns the new device, or NULL.
458 struct spi_device *spi_new_device(struct spi_master *master,
459 struct spi_board_info *chip)
461 struct spi_device *proxy;
464 /* NOTE: caller did any chip->bus_num checks necessary.
466 * Also, unless we change the return value convention to use
467 * error-or-pointer (not NULL-or-pointer), troubleshootability
468 * suggests syslogged diagnostics are best here (ugh).
471 proxy = spi_alloc_device(master);
475 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
477 proxy->chip_select = chip->chip_select;
478 proxy->max_speed_hz = chip->max_speed_hz;
479 proxy->mode = chip->mode;
480 proxy->irq = chip->irq;
481 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
482 proxy->dev.platform_data = (void *) chip->platform_data;
483 proxy->controller_data = chip->controller_data;
484 proxy->controller_state = NULL;
486 status = spi_add_device(proxy);
494 EXPORT_SYMBOL_GPL(spi_new_device);
496 static void spi_match_master_to_boardinfo(struct spi_master *master,
497 struct spi_board_info *bi)
499 struct spi_device *dev;
501 if (master->bus_num != bi->bus_num)
504 dev = spi_new_device(master, bi);
506 dev_err(master->dev.parent, "can't create new device for %s\n",
511 * spi_register_board_info - register SPI devices for a given board
512 * @info: array of chip descriptors
513 * @n: how many descriptors are provided
516 * Board-specific early init code calls this (probably during arch_initcall)
517 * with segments of the SPI device table. Any device nodes are created later,
518 * after the relevant parent SPI controller (bus_num) is defined. We keep
519 * this table of devices forever, so that reloading a controller driver will
520 * not make Linux forget about these hard-wired devices.
522 * Other code can also call this, e.g. a particular add-on board might provide
523 * SPI devices through its expansion connector, so code initializing that board
524 * would naturally declare its SPI devices.
526 * The board info passed can safely be __initdata ... but be careful of
527 * any embedded pointers (platform_data, etc), they're copied as-is.
529 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
531 struct boardinfo *bi;
534 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
538 for (i = 0; i < n; i++, bi++, info++) {
539 struct spi_master *master;
541 memcpy(&bi->board_info, info, sizeof(*info));
542 mutex_lock(&board_lock);
543 list_add_tail(&bi->list, &board_list);
544 list_for_each_entry(master, &spi_master_list, list)
545 spi_match_master_to_boardinfo(master, &bi->board_info);
546 mutex_unlock(&board_lock);
552 /*-------------------------------------------------------------------------*/
554 static void spi_set_cs(struct spi_device *spi, bool enable)
556 if (spi->mode & SPI_CS_HIGH)
559 if (spi->cs_gpio >= 0)
560 gpio_set_value(spi->cs_gpio, !enable);
561 else if (spi->master->set_cs)
562 spi->master->set_cs(spi, !enable);
566 * spi_transfer_one_message - Default implementation of transfer_one_message()
568 * This is a standard implementation of transfer_one_message() for
569 * drivers which impelment a transfer_one() operation. It provides
570 * standard handling of delays and chip select management.
572 static int spi_transfer_one_message(struct spi_master *master,
573 struct spi_message *msg)
575 struct spi_transfer *xfer;
577 bool keep_cs = false;
580 spi_set_cs(msg->spi, true);
582 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
583 trace_spi_transfer_start(msg, xfer);
585 reinit_completion(&master->xfer_completion);
587 ret = master->transfer_one(master, msg->spi, xfer);
589 dev_err(&msg->spi->dev,
590 "SPI transfer failed: %d\n", ret);
595 wait_for_completion(&master->xfer_completion);
597 trace_spi_transfer_stop(msg, xfer);
599 if (msg->status != -EINPROGRESS)
602 if (xfer->delay_usecs)
603 udelay(xfer->delay_usecs);
605 if (xfer->cs_change) {
606 if (list_is_last(&xfer->transfer_list,
611 spi_set_cs(msg->spi, cur_cs);
615 msg->actual_length += xfer->len;
619 if (ret != 0 || !keep_cs)
620 spi_set_cs(msg->spi, false);
622 if (msg->status == -EINPROGRESS)
625 spi_finalize_current_message(master);
631 * spi_finalize_current_transfer - report completion of a transfer
633 * Called by SPI drivers using the core transfer_one_message()
634 * implementation to notify it that the current interrupt driven
635 * transfer has finised and the next one may be scheduled.
637 void spi_finalize_current_transfer(struct spi_master *master)
639 complete(&master->xfer_completion);
641 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
644 * spi_pump_messages - kthread work function which processes spi message queue
645 * @work: pointer to kthread work struct contained in the master struct
647 * This function checks if there is any spi message in the queue that
648 * needs processing and if so call out to the driver to initialize hardware
649 * and transfer each message.
652 static void spi_pump_messages(struct kthread_work *work)
654 struct spi_master *master =
655 container_of(work, struct spi_master, pump_messages);
657 bool was_busy = false;
660 /* Lock queue and check for queue work */
661 spin_lock_irqsave(&master->queue_lock, flags);
662 if (list_empty(&master->queue) || !master->running) {
664 spin_unlock_irqrestore(&master->queue_lock, flags);
667 master->busy = false;
668 spin_unlock_irqrestore(&master->queue_lock, flags);
669 if (master->unprepare_transfer_hardware &&
670 master->unprepare_transfer_hardware(master))
671 dev_err(&master->dev,
672 "failed to unprepare transfer hardware\n");
673 if (master->auto_runtime_pm) {
674 pm_runtime_mark_last_busy(master->dev.parent);
675 pm_runtime_put_autosuspend(master->dev.parent);
677 trace_spi_master_idle(master);
681 /* Make sure we are not already running a message */
682 if (master->cur_msg) {
683 spin_unlock_irqrestore(&master->queue_lock, flags);
686 /* Extract head of queue */
688 list_entry(master->queue.next, struct spi_message, queue);
690 list_del_init(&master->cur_msg->queue);
695 spin_unlock_irqrestore(&master->queue_lock, flags);
697 if (!was_busy && master->auto_runtime_pm) {
698 ret = pm_runtime_get_sync(master->dev.parent);
700 dev_err(&master->dev, "Failed to power device: %d\n",
707 trace_spi_master_busy(master);
709 if (!was_busy && master->prepare_transfer_hardware) {
710 ret = master->prepare_transfer_hardware(master);
712 dev_err(&master->dev,
713 "failed to prepare transfer hardware\n");
715 if (master->auto_runtime_pm)
716 pm_runtime_put(master->dev.parent);
721 trace_spi_message_start(master->cur_msg);
723 if (master->prepare_message) {
724 ret = master->prepare_message(master, master->cur_msg);
726 dev_err(&master->dev,
727 "failed to prepare message: %d\n", ret);
728 master->cur_msg->status = ret;
729 spi_finalize_current_message(master);
732 master->cur_msg_prepared = true;
735 ret = master->transfer_one_message(master, master->cur_msg);
737 dev_err(&master->dev,
738 "failed to transfer one message from queue\n");
743 static int spi_init_queue(struct spi_master *master)
745 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
747 INIT_LIST_HEAD(&master->queue);
748 spin_lock_init(&master->queue_lock);
750 master->running = false;
751 master->busy = false;
753 init_kthread_worker(&master->kworker);
754 master->kworker_task = kthread_run(kthread_worker_fn,
755 &master->kworker, "%s",
756 dev_name(&master->dev));
757 if (IS_ERR(master->kworker_task)) {
758 dev_err(&master->dev, "failed to create message pump task\n");
761 init_kthread_work(&master->pump_messages, spi_pump_messages);
764 * Master config will indicate if this controller should run the
765 * message pump with high (realtime) priority to reduce the transfer
766 * latency on the bus by minimising the delay between a transfer
767 * request and the scheduling of the message pump thread. Without this
768 * setting the message pump thread will remain at default priority.
771 dev_info(&master->dev,
772 "will run message pump with realtime priority\n");
773 sched_setscheduler(master->kworker_task, SCHED_FIFO, ¶m);
780 * spi_get_next_queued_message() - called by driver to check for queued
782 * @master: the master to check for queued messages
784 * If there are more messages in the queue, the next message is returned from
787 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
789 struct spi_message *next;
792 /* get a pointer to the next message, if any */
793 spin_lock_irqsave(&master->queue_lock, flags);
794 if (list_empty(&master->queue))
797 next = list_entry(master->queue.next,
798 struct spi_message, queue);
799 spin_unlock_irqrestore(&master->queue_lock, flags);
803 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
806 * spi_finalize_current_message() - the current message is complete
807 * @master: the master to return the message to
809 * Called by the driver to notify the core that the message in the front of the
810 * queue is complete and can be removed from the queue.
812 void spi_finalize_current_message(struct spi_master *master)
814 struct spi_message *mesg;
818 spin_lock_irqsave(&master->queue_lock, flags);
819 mesg = master->cur_msg;
820 master->cur_msg = NULL;
822 queue_kthread_work(&master->kworker, &master->pump_messages);
823 spin_unlock_irqrestore(&master->queue_lock, flags);
825 if (master->cur_msg_prepared && master->unprepare_message) {
826 ret = master->unprepare_message(master, mesg);
828 dev_err(&master->dev,
829 "failed to unprepare message: %d\n", ret);
832 master->cur_msg_prepared = false;
836 mesg->complete(mesg->context);
838 trace_spi_message_done(mesg);
840 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
842 static int spi_start_queue(struct spi_master *master)
846 spin_lock_irqsave(&master->queue_lock, flags);
848 if (master->running || master->busy) {
849 spin_unlock_irqrestore(&master->queue_lock, flags);
853 master->running = true;
854 master->cur_msg = NULL;
855 spin_unlock_irqrestore(&master->queue_lock, flags);
857 queue_kthread_work(&master->kworker, &master->pump_messages);
862 static int spi_stop_queue(struct spi_master *master)
865 unsigned limit = 500;
868 spin_lock_irqsave(&master->queue_lock, flags);
871 * This is a bit lame, but is optimized for the common execution path.
872 * A wait_queue on the master->busy could be used, but then the common
873 * execution path (pump_messages) would be required to call wake_up or
874 * friends on every SPI message. Do this instead.
876 while ((!list_empty(&master->queue) || master->busy) && limit--) {
877 spin_unlock_irqrestore(&master->queue_lock, flags);
879 spin_lock_irqsave(&master->queue_lock, flags);
882 if (!list_empty(&master->queue) || master->busy)
885 master->running = false;
887 spin_unlock_irqrestore(&master->queue_lock, flags);
890 dev_warn(&master->dev,
891 "could not stop message queue\n");
897 static int spi_destroy_queue(struct spi_master *master)
901 ret = spi_stop_queue(master);
904 * flush_kthread_worker will block until all work is done.
905 * If the reason that stop_queue timed out is that the work will never
906 * finish, then it does no good to call flush/stop thread, so
910 dev_err(&master->dev, "problem destroying queue\n");
914 flush_kthread_worker(&master->kworker);
915 kthread_stop(master->kworker_task);
921 * spi_queued_transfer - transfer function for queued transfers
922 * @spi: spi device which is requesting transfer
923 * @msg: spi message which is to handled is queued to driver queue
925 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
927 struct spi_master *master = spi->master;
930 spin_lock_irqsave(&master->queue_lock, flags);
932 if (!master->running) {
933 spin_unlock_irqrestore(&master->queue_lock, flags);
936 msg->actual_length = 0;
937 msg->status = -EINPROGRESS;
939 list_add_tail(&msg->queue, &master->queue);
941 queue_kthread_work(&master->kworker, &master->pump_messages);
943 spin_unlock_irqrestore(&master->queue_lock, flags);
947 static int spi_master_initialize_queue(struct spi_master *master)
951 master->queued = true;
952 master->transfer = spi_queued_transfer;
953 if (!master->transfer_one_message)
954 master->transfer_one_message = spi_transfer_one_message;
956 /* Initialize and start queue */
957 ret = spi_init_queue(master);
959 dev_err(&master->dev, "problem initializing queue\n");
962 ret = spi_start_queue(master);
964 dev_err(&master->dev, "problem starting queue\n");
965 goto err_start_queue;
972 spi_destroy_queue(master);
976 /*-------------------------------------------------------------------------*/
978 #if defined(CONFIG_OF)
980 * of_register_spi_devices() - Register child devices onto the SPI bus
981 * @master: Pointer to spi_master device
983 * Registers an spi_device for each child node of master node which has a 'reg'
986 static void of_register_spi_devices(struct spi_master *master)
988 struct spi_device *spi;
989 struct device_node *nc;
993 if (!master->dev.of_node)
996 for_each_available_child_of_node(master->dev.of_node, nc) {
997 /* Alloc an spi_device */
998 spi = spi_alloc_device(master);
1000 dev_err(&master->dev, "spi_device alloc error for %s\n",
1006 /* Select device driver */
1007 if (of_modalias_node(nc, spi->modalias,
1008 sizeof(spi->modalias)) < 0) {
1009 dev_err(&master->dev, "cannot find modalias for %s\n",
1015 /* Device address */
1016 rc = of_property_read_u32(nc, "reg", &value);
1018 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1023 spi->chip_select = value;
1025 /* Mode (clock phase/polarity/etc.) */
1026 if (of_find_property(nc, "spi-cpha", NULL))
1027 spi->mode |= SPI_CPHA;
1028 if (of_find_property(nc, "spi-cpol", NULL))
1029 spi->mode |= SPI_CPOL;
1030 if (of_find_property(nc, "spi-cs-high", NULL))
1031 spi->mode |= SPI_CS_HIGH;
1032 if (of_find_property(nc, "spi-3wire", NULL))
1033 spi->mode |= SPI_3WIRE;
1035 /* Device DUAL/QUAD mode */
1036 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1041 spi->mode |= SPI_TX_DUAL;
1044 spi->mode |= SPI_TX_QUAD;
1047 dev_err(&master->dev,
1048 "spi-tx-bus-width %d not supported\n",
1055 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1060 spi->mode |= SPI_RX_DUAL;
1063 spi->mode |= SPI_RX_QUAD;
1066 dev_err(&master->dev,
1067 "spi-rx-bus-width %d not supported\n",
1075 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1077 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1082 spi->max_speed_hz = value;
1085 spi->irq = irq_of_parse_and_map(nc, 0);
1087 /* Store a pointer to the node in the device structure */
1089 spi->dev.of_node = nc;
1091 /* Register the new device */
1092 request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias);
1093 rc = spi_add_device(spi);
1095 dev_err(&master->dev, "spi_device register error %s\n",
1103 static void of_register_spi_devices(struct spi_master *master) { }
1107 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1109 struct spi_device *spi = data;
1111 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1112 struct acpi_resource_spi_serialbus *sb;
1114 sb = &ares->data.spi_serial_bus;
1115 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1116 spi->chip_select = sb->device_selection;
1117 spi->max_speed_hz = sb->connection_speed;
1119 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1120 spi->mode |= SPI_CPHA;
1121 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1122 spi->mode |= SPI_CPOL;
1123 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1124 spi->mode |= SPI_CS_HIGH;
1126 } else if (spi->irq < 0) {
1129 if (acpi_dev_resource_interrupt(ares, 0, &r))
1133 /* Always tell the ACPI core to skip this resource */
1137 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1138 void *data, void **return_value)
1140 struct spi_master *master = data;
1141 struct list_head resource_list;
1142 struct acpi_device *adev;
1143 struct spi_device *spi;
1146 if (acpi_bus_get_device(handle, &adev))
1148 if (acpi_bus_get_status(adev) || !adev->status.present)
1151 spi = spi_alloc_device(master);
1153 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1154 dev_name(&adev->dev));
1155 return AE_NO_MEMORY;
1158 ACPI_COMPANION_SET(&spi->dev, adev);
1161 INIT_LIST_HEAD(&resource_list);
1162 ret = acpi_dev_get_resources(adev, &resource_list,
1163 acpi_spi_add_resource, spi);
1164 acpi_dev_free_resource_list(&resource_list);
1166 if (ret < 0 || !spi->max_speed_hz) {
1171 adev->power.flags.ignore_parent = true;
1172 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1173 if (spi_add_device(spi)) {
1174 adev->power.flags.ignore_parent = false;
1175 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1176 dev_name(&adev->dev));
1183 static void acpi_register_spi_devices(struct spi_master *master)
1188 handle = ACPI_HANDLE(master->dev.parent);
1192 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1193 acpi_spi_add_device, NULL,
1195 if (ACPI_FAILURE(status))
1196 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1199 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1200 #endif /* CONFIG_ACPI */
1202 static void spi_master_release(struct device *dev)
1204 struct spi_master *master;
1206 master = container_of(dev, struct spi_master, dev);
1210 static struct class spi_master_class = {
1211 .name = "spi_master",
1212 .owner = THIS_MODULE,
1213 .dev_release = spi_master_release,
1219 * spi_alloc_master - allocate SPI master controller
1220 * @dev: the controller, possibly using the platform_bus
1221 * @size: how much zeroed driver-private data to allocate; the pointer to this
1222 * memory is in the driver_data field of the returned device,
1223 * accessible with spi_master_get_devdata().
1224 * Context: can sleep
1226 * This call is used only by SPI master controller drivers, which are the
1227 * only ones directly touching chip registers. It's how they allocate
1228 * an spi_master structure, prior to calling spi_register_master().
1230 * This must be called from context that can sleep. It returns the SPI
1231 * master structure on success, else NULL.
1233 * The caller is responsible for assigning the bus number and initializing
1234 * the master's methods before calling spi_register_master(); and (after errors
1235 * adding the device) calling spi_master_put() and kfree() to prevent a memory
1238 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1240 struct spi_master *master;
1245 master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1249 device_initialize(&master->dev);
1250 master->bus_num = -1;
1251 master->num_chipselect = 1;
1252 master->dev.class = &spi_master_class;
1253 master->dev.parent = get_device(dev);
1254 spi_master_set_devdata(master, &master[1]);
1258 EXPORT_SYMBOL_GPL(spi_alloc_master);
1261 static int of_spi_register_master(struct spi_master *master)
1264 struct device_node *np = master->dev.of_node;
1269 nb = of_gpio_named_count(np, "cs-gpios");
1270 master->num_chipselect = max_t(int, nb, master->num_chipselect);
1272 /* Return error only for an incorrectly formed cs-gpios property */
1273 if (nb == 0 || nb == -ENOENT)
1278 cs = devm_kzalloc(&master->dev,
1279 sizeof(int) * master->num_chipselect,
1281 master->cs_gpios = cs;
1283 if (!master->cs_gpios)
1286 for (i = 0; i < master->num_chipselect; i++)
1289 for (i = 0; i < nb; i++)
1290 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1295 static int of_spi_register_master(struct spi_master *master)
1302 * spi_register_master - register SPI master controller
1303 * @master: initialized master, originally from spi_alloc_master()
1304 * Context: can sleep
1306 * SPI master controllers connect to their drivers using some non-SPI bus,
1307 * such as the platform bus. The final stage of probe() in that code
1308 * includes calling spi_register_master() to hook up to this SPI bus glue.
1310 * SPI controllers use board specific (often SOC specific) bus numbers,
1311 * and board-specific addressing for SPI devices combines those numbers
1312 * with chip select numbers. Since SPI does not directly support dynamic
1313 * device identification, boards need configuration tables telling which
1314 * chip is at which address.
1316 * This must be called from context that can sleep. It returns zero on
1317 * success, else a negative error code (dropping the master's refcount).
1318 * After a successful return, the caller is responsible for calling
1319 * spi_unregister_master().
1321 int spi_register_master(struct spi_master *master)
1323 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1324 struct device *dev = master->dev.parent;
1325 struct boardinfo *bi;
1326 int status = -ENODEV;
1332 status = of_spi_register_master(master);
1336 /* even if it's just one always-selected device, there must
1337 * be at least one chipselect
1339 if (master->num_chipselect == 0)
1342 if ((master->bus_num < 0) && master->dev.of_node)
1343 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1345 /* convention: dynamically assigned bus IDs count down from the max */
1346 if (master->bus_num < 0) {
1347 /* FIXME switch to an IDR based scheme, something like
1348 * I2C now uses, so we can't run out of "dynamic" IDs
1350 master->bus_num = atomic_dec_return(&dyn_bus_id);
1354 spin_lock_init(&master->bus_lock_spinlock);
1355 mutex_init(&master->bus_lock_mutex);
1356 master->bus_lock_flag = 0;
1357 init_completion(&master->xfer_completion);
1359 /* register the device, then userspace will see it.
1360 * registration fails if the bus ID is in use.
1362 dev_set_name(&master->dev, "spi%u", master->bus_num);
1363 status = device_add(&master->dev);
1366 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1367 dynamic ? " (dynamic)" : "");
1369 /* If we're using a queued driver, start the queue */
1370 if (master->transfer)
1371 dev_info(dev, "master is unqueued, this is deprecated\n");
1373 status = spi_master_initialize_queue(master);
1375 device_del(&master->dev);
1380 mutex_lock(&board_lock);
1381 list_add_tail(&master->list, &spi_master_list);
1382 list_for_each_entry(bi, &board_list, list)
1383 spi_match_master_to_boardinfo(master, &bi->board_info);
1384 mutex_unlock(&board_lock);
1386 /* Register devices from the device tree and ACPI */
1387 of_register_spi_devices(master);
1388 acpi_register_spi_devices(master);
1392 EXPORT_SYMBOL_GPL(spi_register_master);
1394 static void devm_spi_unregister(struct device *dev, void *res)
1396 spi_unregister_master(*(struct spi_master **)res);
1400 * dev_spi_register_master - register managed SPI master controller
1401 * @dev: device managing SPI master
1402 * @master: initialized master, originally from spi_alloc_master()
1403 * Context: can sleep
1405 * Register a SPI device as with spi_register_master() which will
1406 * automatically be unregister
1408 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1410 struct spi_master **ptr;
1413 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1417 ret = spi_register_master(master);
1420 devres_add(dev, ptr);
1427 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1429 static int __unregister(struct device *dev, void *null)
1431 spi_unregister_device(to_spi_device(dev));
1436 * spi_unregister_master - unregister SPI master controller
1437 * @master: the master being unregistered
1438 * Context: can sleep
1440 * This call is used only by SPI master controller drivers, which are the
1441 * only ones directly touching chip registers.
1443 * This must be called from context that can sleep.
1445 void spi_unregister_master(struct spi_master *master)
1449 if (master->queued) {
1450 if (spi_destroy_queue(master))
1451 dev_err(&master->dev, "queue remove failed\n");
1454 mutex_lock(&board_lock);
1455 list_del(&master->list);
1456 mutex_unlock(&board_lock);
1458 dummy = device_for_each_child(&master->dev, NULL, __unregister);
1459 device_unregister(&master->dev);
1461 EXPORT_SYMBOL_GPL(spi_unregister_master);
1463 int spi_master_suspend(struct spi_master *master)
1467 /* Basically no-ops for non-queued masters */
1468 if (!master->queued)
1471 ret = spi_stop_queue(master);
1473 dev_err(&master->dev, "queue stop failed\n");
1477 EXPORT_SYMBOL_GPL(spi_master_suspend);
1479 int spi_master_resume(struct spi_master *master)
1483 if (!master->queued)
1486 ret = spi_start_queue(master);
1488 dev_err(&master->dev, "queue restart failed\n");
1492 EXPORT_SYMBOL_GPL(spi_master_resume);
1494 static int __spi_master_match(struct device *dev, const void *data)
1496 struct spi_master *m;
1497 const u16 *bus_num = data;
1499 m = container_of(dev, struct spi_master, dev);
1500 return m->bus_num == *bus_num;
1504 * spi_busnum_to_master - look up master associated with bus_num
1505 * @bus_num: the master's bus number
1506 * Context: can sleep
1508 * This call may be used with devices that are registered after
1509 * arch init time. It returns a refcounted pointer to the relevant
1510 * spi_master (which the caller must release), or NULL if there is
1511 * no such master registered.
1513 struct spi_master *spi_busnum_to_master(u16 bus_num)
1516 struct spi_master *master = NULL;
1518 dev = class_find_device(&spi_master_class, NULL, &bus_num,
1519 __spi_master_match);
1521 master = container_of(dev, struct spi_master, dev);
1522 /* reference got in class_find_device */
1525 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1528 /*-------------------------------------------------------------------------*/
1530 /* Core methods for SPI master protocol drivers. Some of the
1531 * other core methods are currently defined as inline functions.
1535 * spi_setup - setup SPI mode and clock rate
1536 * @spi: the device whose settings are being modified
1537 * Context: can sleep, and no requests are queued to the device
1539 * SPI protocol drivers may need to update the transfer mode if the
1540 * device doesn't work with its default. They may likewise need
1541 * to update clock rates or word sizes from initial values. This function
1542 * changes those settings, and must be called from a context that can sleep.
1543 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1544 * effect the next time the device is selected and data is transferred to
1545 * or from it. When this function returns, the spi device is deselected.
1547 * Note that this call will fail if the protocol driver specifies an option
1548 * that the underlying controller or its driver does not support. For
1549 * example, not all hardware supports wire transfers using nine bit words,
1550 * LSB-first wire encoding, or active-high chipselects.
1552 int spi_setup(struct spi_device *spi)
1557 /* check mode to prevent that DUAL and QUAD set at the same time
1559 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1560 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1562 "setup: can not select dual and quad at the same time\n");
1565 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1567 if ((spi->mode & SPI_3WIRE) && (spi->mode &
1568 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
1570 /* help drivers fail *cleanly* when they need options
1571 * that aren't supported with their current master
1573 bad_bits = spi->mode & ~spi->master->mode_bits;
1575 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1580 if (!spi->bits_per_word)
1581 spi->bits_per_word = 8;
1583 if (spi->master->setup)
1584 status = spi->master->setup(spi);
1586 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
1587 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1588 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1589 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1590 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
1591 (spi->mode & SPI_LOOP) ? "loopback, " : "",
1592 spi->bits_per_word, spi->max_speed_hz,
1597 EXPORT_SYMBOL_GPL(spi_setup);
1599 static int __spi_async(struct spi_device *spi, struct spi_message *message)
1601 struct spi_master *master = spi->master;
1602 struct spi_transfer *xfer;
1606 trace_spi_message_submit(message);
1608 if (list_empty(&message->transfers))
1610 if (!message->complete)
1613 /* Half-duplex links include original MicroWire, and ones with
1614 * only one data pin like SPI_3WIRE (switches direction) or where
1615 * either MOSI or MISO is missing. They can also be caused by
1616 * software limitations.
1618 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1619 || (spi->mode & SPI_3WIRE)) {
1620 unsigned flags = master->flags;
1622 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1623 if (xfer->rx_buf && xfer->tx_buf)
1625 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1627 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1633 * Set transfer bits_per_word and max speed as spi device default if
1634 * it is not set for this transfer.
1635 * Set transfer tx_nbits and rx_nbits as single transfer default
1636 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
1638 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1639 message->frame_length += xfer->len;
1640 if (!xfer->bits_per_word)
1641 xfer->bits_per_word = spi->bits_per_word;
1642 if (!xfer->speed_hz) {
1643 xfer->speed_hz = spi->max_speed_hz;
1644 if (master->max_speed_hz &&
1645 xfer->speed_hz > master->max_speed_hz)
1646 xfer->speed_hz = master->max_speed_hz;
1649 if (master->bits_per_word_mask) {
1650 /* Only 32 bits fit in the mask */
1651 if (xfer->bits_per_word > 32)
1653 if (!(master->bits_per_word_mask &
1654 BIT(xfer->bits_per_word - 1)))
1658 if (xfer->speed_hz && master->min_speed_hz &&
1659 xfer->speed_hz < master->min_speed_hz)
1661 if (xfer->speed_hz && master->max_speed_hz &&
1662 xfer->speed_hz > master->max_speed_hz)
1665 if (xfer->tx_buf && !xfer->tx_nbits)
1666 xfer->tx_nbits = SPI_NBITS_SINGLE;
1667 if (xfer->rx_buf && !xfer->rx_nbits)
1668 xfer->rx_nbits = SPI_NBITS_SINGLE;
1669 /* check transfer tx/rx_nbits:
1670 * 1. keep the value is not out of single, dual and quad
1671 * 2. keep tx/rx_nbits is contained by mode in spi_device
1672 * 3. if SPI_3WIRE, tx/rx_nbits should be in single
1675 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
1676 xfer->tx_nbits != SPI_NBITS_DUAL &&
1677 xfer->tx_nbits != SPI_NBITS_QUAD)
1679 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
1680 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
1682 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
1683 !(spi->mode & SPI_TX_QUAD))
1685 if ((spi->mode & SPI_3WIRE) &&
1686 (xfer->tx_nbits != SPI_NBITS_SINGLE))
1689 /* check transfer rx_nbits */
1691 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
1692 xfer->rx_nbits != SPI_NBITS_DUAL &&
1693 xfer->rx_nbits != SPI_NBITS_QUAD)
1695 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
1696 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
1698 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
1699 !(spi->mode & SPI_RX_QUAD))
1701 if ((spi->mode & SPI_3WIRE) &&
1702 (xfer->rx_nbits != SPI_NBITS_SINGLE))
1707 message->status = -EINPROGRESS;
1708 return master->transfer(spi, message);
1712 * spi_async - asynchronous SPI transfer
1713 * @spi: device with which data will be exchanged
1714 * @message: describes the data transfers, including completion callback
1715 * Context: any (irqs may be blocked, etc)
1717 * This call may be used in_irq and other contexts which can't sleep,
1718 * as well as from task contexts which can sleep.
1720 * The completion callback is invoked in a context which can't sleep.
1721 * Before that invocation, the value of message->status is undefined.
1722 * When the callback is issued, message->status holds either zero (to
1723 * indicate complete success) or a negative error code. After that
1724 * callback returns, the driver which issued the transfer request may
1725 * deallocate the associated memory; it's no longer in use by any SPI
1726 * core or controller driver code.
1728 * Note that although all messages to a spi_device are handled in
1729 * FIFO order, messages may go to different devices in other orders.
1730 * Some device might be higher priority, or have various "hard" access
1731 * time requirements, for example.
1733 * On detection of any fault during the transfer, processing of
1734 * the entire message is aborted, and the device is deselected.
1735 * Until returning from the associated message completion callback,
1736 * no other spi_message queued to that device will be processed.
1737 * (This rule applies equally to all the synchronous transfer calls,
1738 * which are wrappers around this core asynchronous primitive.)
1740 int spi_async(struct spi_device *spi, struct spi_message *message)
1742 struct spi_master *master = spi->master;
1744 unsigned long flags;
1746 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1748 if (master->bus_lock_flag)
1751 ret = __spi_async(spi, message);
1753 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1757 EXPORT_SYMBOL_GPL(spi_async);
1760 * spi_async_locked - version of spi_async with exclusive bus usage
1761 * @spi: device with which data will be exchanged
1762 * @message: describes the data transfers, including completion callback
1763 * Context: any (irqs may be blocked, etc)
1765 * This call may be used in_irq and other contexts which can't sleep,
1766 * as well as from task contexts which can sleep.
1768 * The completion callback is invoked in a context which can't sleep.
1769 * Before that invocation, the value of message->status is undefined.
1770 * When the callback is issued, message->status holds either zero (to
1771 * indicate complete success) or a negative error code. After that
1772 * callback returns, the driver which issued the transfer request may
1773 * deallocate the associated memory; it's no longer in use by any SPI
1774 * core or controller driver code.
1776 * Note that although all messages to a spi_device are handled in
1777 * FIFO order, messages may go to different devices in other orders.
1778 * Some device might be higher priority, or have various "hard" access
1779 * time requirements, for example.
1781 * On detection of any fault during the transfer, processing of
1782 * the entire message is aborted, and the device is deselected.
1783 * Until returning from the associated message completion callback,
1784 * no other spi_message queued to that device will be processed.
1785 * (This rule applies equally to all the synchronous transfer calls,
1786 * which are wrappers around this core asynchronous primitive.)
1788 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
1790 struct spi_master *master = spi->master;
1792 unsigned long flags;
1794 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1796 ret = __spi_async(spi, message);
1798 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1803 EXPORT_SYMBOL_GPL(spi_async_locked);
1806 /*-------------------------------------------------------------------------*/
1808 /* Utility methods for SPI master protocol drivers, layered on
1809 * top of the core. Some other utility methods are defined as
1813 static void spi_complete(void *arg)
1818 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
1821 DECLARE_COMPLETION_ONSTACK(done);
1823 struct spi_master *master = spi->master;
1825 message->complete = spi_complete;
1826 message->context = &done;
1829 mutex_lock(&master->bus_lock_mutex);
1831 status = spi_async_locked(spi, message);
1834 mutex_unlock(&master->bus_lock_mutex);
1837 wait_for_completion(&done);
1838 status = message->status;
1840 message->context = NULL;
1845 * spi_sync - blocking/synchronous SPI data transfers
1846 * @spi: device with which data will be exchanged
1847 * @message: describes the data transfers
1848 * Context: can sleep
1850 * This call may only be used from a context that may sleep. The sleep
1851 * is non-interruptible, and has no timeout. Low-overhead controller
1852 * drivers may DMA directly into and out of the message buffers.
1854 * Note that the SPI device's chip select is active during the message,
1855 * and then is normally disabled between messages. Drivers for some
1856 * frequently-used devices may want to minimize costs of selecting a chip,
1857 * by leaving it selected in anticipation that the next message will go
1858 * to the same chip. (That may increase power usage.)
1860 * Also, the caller is guaranteeing that the memory associated with the
1861 * message will not be freed before this call returns.
1863 * It returns zero on success, else a negative error code.
1865 int spi_sync(struct spi_device *spi, struct spi_message *message)
1867 return __spi_sync(spi, message, 0);
1869 EXPORT_SYMBOL_GPL(spi_sync);
1872 * spi_sync_locked - version of spi_sync with exclusive bus usage
1873 * @spi: device with which data will be exchanged
1874 * @message: describes the data transfers
1875 * Context: can sleep
1877 * This call may only be used from a context that may sleep. The sleep
1878 * is non-interruptible, and has no timeout. Low-overhead controller
1879 * drivers may DMA directly into and out of the message buffers.
1881 * This call should be used by drivers that require exclusive access to the
1882 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
1883 * be released by a spi_bus_unlock call when the exclusive access is over.
1885 * It returns zero on success, else a negative error code.
1887 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
1889 return __spi_sync(spi, message, 1);
1891 EXPORT_SYMBOL_GPL(spi_sync_locked);
1894 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
1895 * @master: SPI bus master that should be locked for exclusive bus access
1896 * Context: can sleep
1898 * This call may only be used from a context that may sleep. The sleep
1899 * is non-interruptible, and has no timeout.
1901 * This call should be used by drivers that require exclusive access to the
1902 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
1903 * exclusive access is over. Data transfer must be done by spi_sync_locked
1904 * and spi_async_locked calls when the SPI bus lock is held.
1906 * It returns zero on success, else a negative error code.
1908 int spi_bus_lock(struct spi_master *master)
1910 unsigned long flags;
1912 mutex_lock(&master->bus_lock_mutex);
1914 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1915 master->bus_lock_flag = 1;
1916 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1918 /* mutex remains locked until spi_bus_unlock is called */
1922 EXPORT_SYMBOL_GPL(spi_bus_lock);
1925 * spi_bus_unlock - release the lock for exclusive SPI bus usage
1926 * @master: SPI bus master that was locked for exclusive bus access
1927 * Context: can sleep
1929 * This call may only be used from a context that may sleep. The sleep
1930 * is non-interruptible, and has no timeout.
1932 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
1935 * It returns zero on success, else a negative error code.
1937 int spi_bus_unlock(struct spi_master *master)
1939 master->bus_lock_flag = 0;
1941 mutex_unlock(&master->bus_lock_mutex);
1945 EXPORT_SYMBOL_GPL(spi_bus_unlock);
1947 /* portable code must never pass more than 32 bytes */
1948 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
1953 * spi_write_then_read - SPI synchronous write followed by read
1954 * @spi: device with which data will be exchanged
1955 * @txbuf: data to be written (need not be dma-safe)
1956 * @n_tx: size of txbuf, in bytes
1957 * @rxbuf: buffer into which data will be read (need not be dma-safe)
1958 * @n_rx: size of rxbuf, in bytes
1959 * Context: can sleep
1961 * This performs a half duplex MicroWire style transaction with the
1962 * device, sending txbuf and then reading rxbuf. The return value
1963 * is zero for success, else a negative errno status code.
1964 * This call may only be used from a context that may sleep.
1966 * Parameters to this routine are always copied using a small buffer;
1967 * portable code should never use this for more than 32 bytes.
1968 * Performance-sensitive or bulk transfer code should instead use
1969 * spi_{async,sync}() calls with dma-safe buffers.
1971 int spi_write_then_read(struct spi_device *spi,
1972 const void *txbuf, unsigned n_tx,
1973 void *rxbuf, unsigned n_rx)
1975 static DEFINE_MUTEX(lock);
1978 struct spi_message message;
1979 struct spi_transfer x[2];
1982 /* Use preallocated DMA-safe buffer if we can. We can't avoid
1983 * copying here, (as a pure convenience thing), but we can
1984 * keep heap costs out of the hot path unless someone else is
1985 * using the pre-allocated buffer or the transfer is too large.
1987 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
1988 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
1989 GFP_KERNEL | GFP_DMA);
1996 spi_message_init(&message);
1997 memset(x, 0, sizeof(x));
2000 spi_message_add_tail(&x[0], &message);
2004 spi_message_add_tail(&x[1], &message);
2007 memcpy(local_buf, txbuf, n_tx);
2008 x[0].tx_buf = local_buf;
2009 x[1].rx_buf = local_buf + n_tx;
2012 status = spi_sync(spi, &message);
2014 memcpy(rxbuf, x[1].rx_buf, n_rx);
2016 if (x[0].tx_buf == buf)
2017 mutex_unlock(&lock);
2023 EXPORT_SYMBOL_GPL(spi_write_then_read);
2025 /*-------------------------------------------------------------------------*/
2027 static int __init spi_init(void)
2031 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2037 status = bus_register(&spi_bus_type);
2041 status = class_register(&spi_master_class);
2047 bus_unregister(&spi_bus_type);
2055 /* board_info is normally registered in arch_initcall(),
2056 * but even essential drivers wait till later
2058 * REVISIT only boardinfo really needs static linking. the rest (device and
2059 * driver registration) _could_ be dynamically linked (modular) ... costs
2060 * include needing to have boardinfo data structures be much more public.
2062 postcore_initcall(spi_init);