Merge tag 'hwmon-for-v6.0-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/groec...
[platform/kernel/linux-starfive.git] / drivers / spi / spi.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pm_domain.h>
24 #include <linux/property.h>
25 #include <linux/export.h>
26 #include <linux/sched/rt.h>
27 #include <uapi/linux/sched/types.h>
28 #include <linux/delay.h>
29 #include <linux/kthread.h>
30 #include <linux/ioport.h>
31 #include <linux/acpi.h>
32 #include <linux/highmem.h>
33 #include <linux/idr.h>
34 #include <linux/platform_data/x86/apple.h>
35 #include <linux/ptp_clock_kernel.h>
36 #include <linux/percpu.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42
43 #include "internals.h"
44
45 static DEFINE_IDR(spi_master_idr);
46
47 static void spidev_release(struct device *dev)
48 {
49         struct spi_device       *spi = to_spi_device(dev);
50
51         spi_controller_put(spi->controller);
52         kfree(spi->driver_override);
53         free_percpu(spi->pcpu_statistics);
54         kfree(spi);
55 }
56
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60         const struct spi_device *spi = to_spi_device(dev);
61         int len;
62
63         len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64         if (len != -ENODEV)
65                 return len;
66
67         return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70
71 static ssize_t driver_override_store(struct device *dev,
72                                      struct device_attribute *a,
73                                      const char *buf, size_t count)
74 {
75         struct spi_device *spi = to_spi_device(dev);
76         int ret;
77
78         ret = driver_set_override(dev, &spi->driver_override, buf, count);
79         if (ret)
80                 return ret;
81
82         return count;
83 }
84
85 static ssize_t driver_override_show(struct device *dev,
86                                     struct device_attribute *a, char *buf)
87 {
88         const struct spi_device *spi = to_spi_device(dev);
89         ssize_t len;
90
91         device_lock(dev);
92         len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
93         device_unlock(dev);
94         return len;
95 }
96 static DEVICE_ATTR_RW(driver_override);
97
98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
99 {
100         struct spi_statistics __percpu *pcpu_stats;
101
102         if (dev)
103                 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
104         else
105                 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
106
107         if (pcpu_stats) {
108                 int cpu;
109
110                 for_each_possible_cpu(cpu) {
111                         struct spi_statistics *stat;
112
113                         stat = per_cpu_ptr(pcpu_stats, cpu);
114                         u64_stats_init(&stat->syncp);
115                 }
116         }
117         return pcpu_stats;
118 }
119
120 #define spi_pcpu_stats_totalize(ret, in, field)                         \
121 do {                                                                    \
122         int i;                                                          \
123         ret = 0;                                                        \
124         for_each_possible_cpu(i) {                                      \
125                 const struct spi_statistics *pcpu_stats;                \
126                 u64 inc;                                                \
127                 unsigned int start;                                     \
128                 pcpu_stats = per_cpu_ptr(in, i);                        \
129                 do {                                                    \
130                         start = u64_stats_fetch_begin_irq(              \
131                                         &pcpu_stats->syncp);            \
132                         inc = u64_stats_read(&pcpu_stats->field);       \
133                 } while (u64_stats_fetch_retry_irq(                     \
134                                         &pcpu_stats->syncp, start));    \
135                 ret += inc;                                             \
136         }                                                               \
137 } while (0)
138
139 #define SPI_STATISTICS_ATTRS(field, file)                               \
140 static ssize_t spi_controller_##field##_show(struct device *dev,        \
141                                              struct device_attribute *attr, \
142                                              char *buf)                 \
143 {                                                                       \
144         struct spi_controller *ctlr = container_of(dev,                 \
145                                          struct spi_controller, dev);   \
146         return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
147 }                                                                       \
148 static struct device_attribute dev_attr_spi_controller_##field = {      \
149         .attr = { .name = file, .mode = 0444 },                         \
150         .show = spi_controller_##field##_show,                          \
151 };                                                                      \
152 static ssize_t spi_device_##field##_show(struct device *dev,            \
153                                          struct device_attribute *attr, \
154                                         char *buf)                      \
155 {                                                                       \
156         struct spi_device *spi = to_spi_device(dev);                    \
157         return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
158 }                                                                       \
159 static struct device_attribute dev_attr_spi_device_##field = {          \
160         .attr = { .name = file, .mode = 0444 },                         \
161         .show = spi_device_##field##_show,                              \
162 }
163
164 #define SPI_STATISTICS_SHOW_NAME(name, file, field)                     \
165 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
166                                             char *buf)                  \
167 {                                                                       \
168         ssize_t len;                                                    \
169         u64 val;                                                        \
170         spi_pcpu_stats_totalize(val, stat, field);                      \
171         len = sysfs_emit(buf, "%llu\n", val);                           \
172         return len;                                                     \
173 }                                                                       \
174 SPI_STATISTICS_ATTRS(name, file)
175
176 #define SPI_STATISTICS_SHOW(field)                                      \
177         SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
178                                  field)
179
180 SPI_STATISTICS_SHOW(messages);
181 SPI_STATISTICS_SHOW(transfers);
182 SPI_STATISTICS_SHOW(errors);
183 SPI_STATISTICS_SHOW(timedout);
184
185 SPI_STATISTICS_SHOW(spi_sync);
186 SPI_STATISTICS_SHOW(spi_sync_immediate);
187 SPI_STATISTICS_SHOW(spi_async);
188
189 SPI_STATISTICS_SHOW(bytes);
190 SPI_STATISTICS_SHOW(bytes_rx);
191 SPI_STATISTICS_SHOW(bytes_tx);
192
193 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)              \
194         SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,           \
195                                  "transfer_bytes_histo_" number,        \
196                                  transfer_bytes_histo[index])
197 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
214
215 SPI_STATISTICS_SHOW(transfers_split_maxsize);
216
217 static struct attribute *spi_dev_attrs[] = {
218         &dev_attr_modalias.attr,
219         &dev_attr_driver_override.attr,
220         NULL,
221 };
222
223 static const struct attribute_group spi_dev_group = {
224         .attrs  = spi_dev_attrs,
225 };
226
227 static struct attribute *spi_device_statistics_attrs[] = {
228         &dev_attr_spi_device_messages.attr,
229         &dev_attr_spi_device_transfers.attr,
230         &dev_attr_spi_device_errors.attr,
231         &dev_attr_spi_device_timedout.attr,
232         &dev_attr_spi_device_spi_sync.attr,
233         &dev_attr_spi_device_spi_sync_immediate.attr,
234         &dev_attr_spi_device_spi_async.attr,
235         &dev_attr_spi_device_bytes.attr,
236         &dev_attr_spi_device_bytes_rx.attr,
237         &dev_attr_spi_device_bytes_tx.attr,
238         &dev_attr_spi_device_transfer_bytes_histo0.attr,
239         &dev_attr_spi_device_transfer_bytes_histo1.attr,
240         &dev_attr_spi_device_transfer_bytes_histo2.attr,
241         &dev_attr_spi_device_transfer_bytes_histo3.attr,
242         &dev_attr_spi_device_transfer_bytes_histo4.attr,
243         &dev_attr_spi_device_transfer_bytes_histo5.attr,
244         &dev_attr_spi_device_transfer_bytes_histo6.attr,
245         &dev_attr_spi_device_transfer_bytes_histo7.attr,
246         &dev_attr_spi_device_transfer_bytes_histo8.attr,
247         &dev_attr_spi_device_transfer_bytes_histo9.attr,
248         &dev_attr_spi_device_transfer_bytes_histo10.attr,
249         &dev_attr_spi_device_transfer_bytes_histo11.attr,
250         &dev_attr_spi_device_transfer_bytes_histo12.attr,
251         &dev_attr_spi_device_transfer_bytes_histo13.attr,
252         &dev_attr_spi_device_transfer_bytes_histo14.attr,
253         &dev_attr_spi_device_transfer_bytes_histo15.attr,
254         &dev_attr_spi_device_transfer_bytes_histo16.attr,
255         &dev_attr_spi_device_transfers_split_maxsize.attr,
256         NULL,
257 };
258
259 static const struct attribute_group spi_device_statistics_group = {
260         .name  = "statistics",
261         .attrs  = spi_device_statistics_attrs,
262 };
263
264 static const struct attribute_group *spi_dev_groups[] = {
265         &spi_dev_group,
266         &spi_device_statistics_group,
267         NULL,
268 };
269
270 static struct attribute *spi_controller_statistics_attrs[] = {
271         &dev_attr_spi_controller_messages.attr,
272         &dev_attr_spi_controller_transfers.attr,
273         &dev_attr_spi_controller_errors.attr,
274         &dev_attr_spi_controller_timedout.attr,
275         &dev_attr_spi_controller_spi_sync.attr,
276         &dev_attr_spi_controller_spi_sync_immediate.attr,
277         &dev_attr_spi_controller_spi_async.attr,
278         &dev_attr_spi_controller_bytes.attr,
279         &dev_attr_spi_controller_bytes_rx.attr,
280         &dev_attr_spi_controller_bytes_tx.attr,
281         &dev_attr_spi_controller_transfer_bytes_histo0.attr,
282         &dev_attr_spi_controller_transfer_bytes_histo1.attr,
283         &dev_attr_spi_controller_transfer_bytes_histo2.attr,
284         &dev_attr_spi_controller_transfer_bytes_histo3.attr,
285         &dev_attr_spi_controller_transfer_bytes_histo4.attr,
286         &dev_attr_spi_controller_transfer_bytes_histo5.attr,
287         &dev_attr_spi_controller_transfer_bytes_histo6.attr,
288         &dev_attr_spi_controller_transfer_bytes_histo7.attr,
289         &dev_attr_spi_controller_transfer_bytes_histo8.attr,
290         &dev_attr_spi_controller_transfer_bytes_histo9.attr,
291         &dev_attr_spi_controller_transfer_bytes_histo10.attr,
292         &dev_attr_spi_controller_transfer_bytes_histo11.attr,
293         &dev_attr_spi_controller_transfer_bytes_histo12.attr,
294         &dev_attr_spi_controller_transfer_bytes_histo13.attr,
295         &dev_attr_spi_controller_transfer_bytes_histo14.attr,
296         &dev_attr_spi_controller_transfer_bytes_histo15.attr,
297         &dev_attr_spi_controller_transfer_bytes_histo16.attr,
298         &dev_attr_spi_controller_transfers_split_maxsize.attr,
299         NULL,
300 };
301
302 static const struct attribute_group spi_controller_statistics_group = {
303         .name  = "statistics",
304         .attrs  = spi_controller_statistics_attrs,
305 };
306
307 static const struct attribute_group *spi_master_groups[] = {
308         &spi_controller_statistics_group,
309         NULL,
310 };
311
312 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
313                                               struct spi_transfer *xfer,
314                                               struct spi_controller *ctlr)
315 {
316         int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
317         struct spi_statistics *stats;
318
319         if (l2len < 0)
320                 l2len = 0;
321
322         get_cpu();
323         stats = this_cpu_ptr(pcpu_stats);
324         u64_stats_update_begin(&stats->syncp);
325
326         u64_stats_inc(&stats->transfers);
327         u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
328
329         u64_stats_add(&stats->bytes, xfer->len);
330         if ((xfer->tx_buf) &&
331             (xfer->tx_buf != ctlr->dummy_tx))
332                 u64_stats_add(&stats->bytes_tx, xfer->len);
333         if ((xfer->rx_buf) &&
334             (xfer->rx_buf != ctlr->dummy_rx))
335                 u64_stats_add(&stats->bytes_rx, xfer->len);
336
337         u64_stats_update_end(&stats->syncp);
338         put_cpu();
339 }
340
341 /*
342  * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
343  * and the sysfs version makes coldplug work too.
344  */
345 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
346 {
347         while (id->name[0]) {
348                 if (!strcmp(name, id->name))
349                         return id;
350                 id++;
351         }
352         return NULL;
353 }
354
355 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
356 {
357         const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
358
359         return spi_match_id(sdrv->id_table, sdev->modalias);
360 }
361 EXPORT_SYMBOL_GPL(spi_get_device_id);
362
363 static int spi_match_device(struct device *dev, struct device_driver *drv)
364 {
365         const struct spi_device *spi = to_spi_device(dev);
366         const struct spi_driver *sdrv = to_spi_driver(drv);
367
368         /* Check override first, and if set, only use the named driver */
369         if (spi->driver_override)
370                 return strcmp(spi->driver_override, drv->name) == 0;
371
372         /* Attempt an OF style match */
373         if (of_driver_match_device(dev, drv))
374                 return 1;
375
376         /* Then try ACPI */
377         if (acpi_driver_match_device(dev, drv))
378                 return 1;
379
380         if (sdrv->id_table)
381                 return !!spi_match_id(sdrv->id_table, spi->modalias);
382
383         return strcmp(spi->modalias, drv->name) == 0;
384 }
385
386 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
387 {
388         const struct spi_device         *spi = to_spi_device(dev);
389         int rc;
390
391         rc = acpi_device_uevent_modalias(dev, env);
392         if (rc != -ENODEV)
393                 return rc;
394
395         return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
396 }
397
398 static int spi_probe(struct device *dev)
399 {
400         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
401         struct spi_device               *spi = to_spi_device(dev);
402         int ret;
403
404         ret = of_clk_set_defaults(dev->of_node, false);
405         if (ret)
406                 return ret;
407
408         if (dev->of_node) {
409                 spi->irq = of_irq_get(dev->of_node, 0);
410                 if (spi->irq == -EPROBE_DEFER)
411                         return -EPROBE_DEFER;
412                 if (spi->irq < 0)
413                         spi->irq = 0;
414         }
415
416         ret = dev_pm_domain_attach(dev, true);
417         if (ret)
418                 return ret;
419
420         if (sdrv->probe) {
421                 ret = sdrv->probe(spi);
422                 if (ret)
423                         dev_pm_domain_detach(dev, true);
424         }
425
426         return ret;
427 }
428
429 static void spi_remove(struct device *dev)
430 {
431         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
432
433         if (sdrv->remove)
434                 sdrv->remove(to_spi_device(dev));
435
436         dev_pm_domain_detach(dev, true);
437 }
438
439 static void spi_shutdown(struct device *dev)
440 {
441         if (dev->driver) {
442                 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
443
444                 if (sdrv->shutdown)
445                         sdrv->shutdown(to_spi_device(dev));
446         }
447 }
448
449 struct bus_type spi_bus_type = {
450         .name           = "spi",
451         .dev_groups     = spi_dev_groups,
452         .match          = spi_match_device,
453         .uevent         = spi_uevent,
454         .probe          = spi_probe,
455         .remove         = spi_remove,
456         .shutdown       = spi_shutdown,
457 };
458 EXPORT_SYMBOL_GPL(spi_bus_type);
459
460 /**
461  * __spi_register_driver - register a SPI driver
462  * @owner: owner module of the driver to register
463  * @sdrv: the driver to register
464  * Context: can sleep
465  *
466  * Return: zero on success, else a negative error code.
467  */
468 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
469 {
470         sdrv->driver.owner = owner;
471         sdrv->driver.bus = &spi_bus_type;
472
473         /*
474          * For Really Good Reasons we use spi: modaliases not of:
475          * modaliases for DT so module autoloading won't work if we
476          * don't have a spi_device_id as well as a compatible string.
477          */
478         if (sdrv->driver.of_match_table) {
479                 const struct of_device_id *of_id;
480
481                 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
482                      of_id++) {
483                         const char *of_name;
484
485                         /* Strip off any vendor prefix */
486                         of_name = strnchr(of_id->compatible,
487                                           sizeof(of_id->compatible), ',');
488                         if (of_name)
489                                 of_name++;
490                         else
491                                 of_name = of_id->compatible;
492
493                         if (sdrv->id_table) {
494                                 const struct spi_device_id *spi_id;
495
496                                 spi_id = spi_match_id(sdrv->id_table, of_name);
497                                 if (spi_id)
498                                         continue;
499                         } else {
500                                 if (strcmp(sdrv->driver.name, of_name) == 0)
501                                         continue;
502                         }
503
504                         pr_warn("SPI driver %s has no spi_device_id for %s\n",
505                                 sdrv->driver.name, of_id->compatible);
506                 }
507         }
508
509         return driver_register(&sdrv->driver);
510 }
511 EXPORT_SYMBOL_GPL(__spi_register_driver);
512
513 /*-------------------------------------------------------------------------*/
514
515 /*
516  * SPI devices should normally not be created by SPI device drivers; that
517  * would make them board-specific.  Similarly with SPI controller drivers.
518  * Device registration normally goes into like arch/.../mach.../board-YYY.c
519  * with other readonly (flashable) information about mainboard devices.
520  */
521
522 struct boardinfo {
523         struct list_head        list;
524         struct spi_board_info   board_info;
525 };
526
527 static LIST_HEAD(board_list);
528 static LIST_HEAD(spi_controller_list);
529
530 /*
531  * Used to protect add/del operation for board_info list and
532  * spi_controller list, and their matching process also used
533  * to protect object of type struct idr.
534  */
535 static DEFINE_MUTEX(board_lock);
536
537 /**
538  * spi_alloc_device - Allocate a new SPI device
539  * @ctlr: Controller to which device is connected
540  * Context: can sleep
541  *
542  * Allows a driver to allocate and initialize a spi_device without
543  * registering it immediately.  This allows a driver to directly
544  * fill the spi_device with device parameters before calling
545  * spi_add_device() on it.
546  *
547  * Caller is responsible to call spi_add_device() on the returned
548  * spi_device structure to add it to the SPI controller.  If the caller
549  * needs to discard the spi_device without adding it, then it should
550  * call spi_dev_put() on it.
551  *
552  * Return: a pointer to the new device, or NULL.
553  */
554 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
555 {
556         struct spi_device       *spi;
557
558         if (!spi_controller_get(ctlr))
559                 return NULL;
560
561         spi = kzalloc(sizeof(*spi), GFP_KERNEL);
562         if (!spi) {
563                 spi_controller_put(ctlr);
564                 return NULL;
565         }
566
567         spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
568         if (!spi->pcpu_statistics) {
569                 kfree(spi);
570                 spi_controller_put(ctlr);
571                 return NULL;
572         }
573
574         spi->master = spi->controller = ctlr;
575         spi->dev.parent = &ctlr->dev;
576         spi->dev.bus = &spi_bus_type;
577         spi->dev.release = spidev_release;
578         spi->mode = ctlr->buswidth_override_bits;
579
580         device_initialize(&spi->dev);
581         return spi;
582 }
583 EXPORT_SYMBOL_GPL(spi_alloc_device);
584
585 static void spi_dev_set_name(struct spi_device *spi)
586 {
587         struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
588
589         if (adev) {
590                 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
591                 return;
592         }
593
594         dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
595                      spi->chip_select);
596 }
597
598 static int spi_dev_check(struct device *dev, void *data)
599 {
600         struct spi_device *spi = to_spi_device(dev);
601         struct spi_device *new_spi = data;
602
603         if (spi->controller == new_spi->controller &&
604             spi->chip_select == new_spi->chip_select)
605                 return -EBUSY;
606         return 0;
607 }
608
609 static void spi_cleanup(struct spi_device *spi)
610 {
611         if (spi->controller->cleanup)
612                 spi->controller->cleanup(spi);
613 }
614
615 static int __spi_add_device(struct spi_device *spi)
616 {
617         struct spi_controller *ctlr = spi->controller;
618         struct device *dev = ctlr->dev.parent;
619         int status;
620
621         /*
622          * We need to make sure there's no other device with this
623          * chipselect **BEFORE** we call setup(), else we'll trash
624          * its configuration.
625          */
626         status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
627         if (status) {
628                 dev_err(dev, "chipselect %d already in use\n",
629                                 spi->chip_select);
630                 return status;
631         }
632
633         /* Controller may unregister concurrently */
634         if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
635             !device_is_registered(&ctlr->dev)) {
636                 return -ENODEV;
637         }
638
639         if (ctlr->cs_gpiods)
640                 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
641
642         /*
643          * Drivers may modify this initial i/o setup, but will
644          * normally rely on the device being setup.  Devices
645          * using SPI_CS_HIGH can't coexist well otherwise...
646          */
647         status = spi_setup(spi);
648         if (status < 0) {
649                 dev_err(dev, "can't setup %s, status %d\n",
650                                 dev_name(&spi->dev), status);
651                 return status;
652         }
653
654         /* Device may be bound to an active driver when this returns */
655         status = device_add(&spi->dev);
656         if (status < 0) {
657                 dev_err(dev, "can't add %s, status %d\n",
658                                 dev_name(&spi->dev), status);
659                 spi_cleanup(spi);
660         } else {
661                 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
662         }
663
664         return status;
665 }
666
667 /**
668  * spi_add_device - Add spi_device allocated with spi_alloc_device
669  * @spi: spi_device to register
670  *
671  * Companion function to spi_alloc_device.  Devices allocated with
672  * spi_alloc_device can be added onto the spi bus with this function.
673  *
674  * Return: 0 on success; negative errno on failure
675  */
676 int spi_add_device(struct spi_device *spi)
677 {
678         struct spi_controller *ctlr = spi->controller;
679         struct device *dev = ctlr->dev.parent;
680         int status;
681
682         /* Chipselects are numbered 0..max; validate. */
683         if (spi->chip_select >= ctlr->num_chipselect) {
684                 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
685                         ctlr->num_chipselect);
686                 return -EINVAL;
687         }
688
689         /* Set the bus ID string */
690         spi_dev_set_name(spi);
691
692         mutex_lock(&ctlr->add_lock);
693         status = __spi_add_device(spi);
694         mutex_unlock(&ctlr->add_lock);
695         return status;
696 }
697 EXPORT_SYMBOL_GPL(spi_add_device);
698
699 static int spi_add_device_locked(struct spi_device *spi)
700 {
701         struct spi_controller *ctlr = spi->controller;
702         struct device *dev = ctlr->dev.parent;
703
704         /* Chipselects are numbered 0..max; validate. */
705         if (spi->chip_select >= ctlr->num_chipselect) {
706                 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
707                         ctlr->num_chipselect);
708                 return -EINVAL;
709         }
710
711         /* Set the bus ID string */
712         spi_dev_set_name(spi);
713
714         WARN_ON(!mutex_is_locked(&ctlr->add_lock));
715         return __spi_add_device(spi);
716 }
717
718 /**
719  * spi_new_device - instantiate one new SPI device
720  * @ctlr: Controller to which device is connected
721  * @chip: Describes the SPI device
722  * Context: can sleep
723  *
724  * On typical mainboards, this is purely internal; and it's not needed
725  * after board init creates the hard-wired devices.  Some development
726  * platforms may not be able to use spi_register_board_info though, and
727  * this is exported so that for example a USB or parport based adapter
728  * driver could add devices (which it would learn about out-of-band).
729  *
730  * Return: the new device, or NULL.
731  */
732 struct spi_device *spi_new_device(struct spi_controller *ctlr,
733                                   struct spi_board_info *chip)
734 {
735         struct spi_device       *proxy;
736         int                     status;
737
738         /*
739          * NOTE:  caller did any chip->bus_num checks necessary.
740          *
741          * Also, unless we change the return value convention to use
742          * error-or-pointer (not NULL-or-pointer), troubleshootability
743          * suggests syslogged diagnostics are best here (ugh).
744          */
745
746         proxy = spi_alloc_device(ctlr);
747         if (!proxy)
748                 return NULL;
749
750         WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
751
752         proxy->chip_select = chip->chip_select;
753         proxy->max_speed_hz = chip->max_speed_hz;
754         proxy->mode = chip->mode;
755         proxy->irq = chip->irq;
756         strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
757         proxy->dev.platform_data = (void *) chip->platform_data;
758         proxy->controller_data = chip->controller_data;
759         proxy->controller_state = NULL;
760
761         if (chip->swnode) {
762                 status = device_add_software_node(&proxy->dev, chip->swnode);
763                 if (status) {
764                         dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
765                                 chip->modalias, status);
766                         goto err_dev_put;
767                 }
768         }
769
770         status = spi_add_device(proxy);
771         if (status < 0)
772                 goto err_dev_put;
773
774         return proxy;
775
776 err_dev_put:
777         device_remove_software_node(&proxy->dev);
778         spi_dev_put(proxy);
779         return NULL;
780 }
781 EXPORT_SYMBOL_GPL(spi_new_device);
782
783 /**
784  * spi_unregister_device - unregister a single SPI device
785  * @spi: spi_device to unregister
786  *
787  * Start making the passed SPI device vanish. Normally this would be handled
788  * by spi_unregister_controller().
789  */
790 void spi_unregister_device(struct spi_device *spi)
791 {
792         if (!spi)
793                 return;
794
795         if (spi->dev.of_node) {
796                 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
797                 of_node_put(spi->dev.of_node);
798         }
799         if (ACPI_COMPANION(&spi->dev))
800                 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
801         device_remove_software_node(&spi->dev);
802         device_del(&spi->dev);
803         spi_cleanup(spi);
804         put_device(&spi->dev);
805 }
806 EXPORT_SYMBOL_GPL(spi_unregister_device);
807
808 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
809                                               struct spi_board_info *bi)
810 {
811         struct spi_device *dev;
812
813         if (ctlr->bus_num != bi->bus_num)
814                 return;
815
816         dev = spi_new_device(ctlr, bi);
817         if (!dev)
818                 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
819                         bi->modalias);
820 }
821
822 /**
823  * spi_register_board_info - register SPI devices for a given board
824  * @info: array of chip descriptors
825  * @n: how many descriptors are provided
826  * Context: can sleep
827  *
828  * Board-specific early init code calls this (probably during arch_initcall)
829  * with segments of the SPI device table.  Any device nodes are created later,
830  * after the relevant parent SPI controller (bus_num) is defined.  We keep
831  * this table of devices forever, so that reloading a controller driver will
832  * not make Linux forget about these hard-wired devices.
833  *
834  * Other code can also call this, e.g. a particular add-on board might provide
835  * SPI devices through its expansion connector, so code initializing that board
836  * would naturally declare its SPI devices.
837  *
838  * The board info passed can safely be __initdata ... but be careful of
839  * any embedded pointers (platform_data, etc), they're copied as-is.
840  *
841  * Return: zero on success, else a negative error code.
842  */
843 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
844 {
845         struct boardinfo *bi;
846         int i;
847
848         if (!n)
849                 return 0;
850
851         bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
852         if (!bi)
853                 return -ENOMEM;
854
855         for (i = 0; i < n; i++, bi++, info++) {
856                 struct spi_controller *ctlr;
857
858                 memcpy(&bi->board_info, info, sizeof(*info));
859
860                 mutex_lock(&board_lock);
861                 list_add_tail(&bi->list, &board_list);
862                 list_for_each_entry(ctlr, &spi_controller_list, list)
863                         spi_match_controller_to_boardinfo(ctlr,
864                                                           &bi->board_info);
865                 mutex_unlock(&board_lock);
866         }
867
868         return 0;
869 }
870
871 /*-------------------------------------------------------------------------*/
872
873 /* Core methods for SPI resource management */
874
875 /**
876  * spi_res_alloc - allocate a spi resource that is life-cycle managed
877  *                 during the processing of a spi_message while using
878  *                 spi_transfer_one
879  * @spi:     the spi device for which we allocate memory
880  * @release: the release code to execute for this resource
881  * @size:    size to alloc and return
882  * @gfp:     GFP allocation flags
883  *
884  * Return: the pointer to the allocated data
885  *
886  * This may get enhanced in the future to allocate from a memory pool
887  * of the @spi_device or @spi_controller to avoid repeated allocations.
888  */
889 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
890                            size_t size, gfp_t gfp)
891 {
892         struct spi_res *sres;
893
894         sres = kzalloc(sizeof(*sres) + size, gfp);
895         if (!sres)
896                 return NULL;
897
898         INIT_LIST_HEAD(&sres->entry);
899         sres->release = release;
900
901         return sres->data;
902 }
903
904 /**
905  * spi_res_free - free an spi resource
906  * @res: pointer to the custom data of a resource
907  */
908 static void spi_res_free(void *res)
909 {
910         struct spi_res *sres = container_of(res, struct spi_res, data);
911
912         if (!res)
913                 return;
914
915         WARN_ON(!list_empty(&sres->entry));
916         kfree(sres);
917 }
918
919 /**
920  * spi_res_add - add a spi_res to the spi_message
921  * @message: the spi message
922  * @res:     the spi_resource
923  */
924 static void spi_res_add(struct spi_message *message, void *res)
925 {
926         struct spi_res *sres = container_of(res, struct spi_res, data);
927
928         WARN_ON(!list_empty(&sres->entry));
929         list_add_tail(&sres->entry, &message->resources);
930 }
931
932 /**
933  * spi_res_release - release all spi resources for this message
934  * @ctlr:  the @spi_controller
935  * @message: the @spi_message
936  */
937 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
938 {
939         struct spi_res *res, *tmp;
940
941         list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
942                 if (res->release)
943                         res->release(ctlr, message, res->data);
944
945                 list_del(&res->entry);
946
947                 kfree(res);
948         }
949 }
950
951 /*-------------------------------------------------------------------------*/
952
953 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
954 {
955         bool activate = enable;
956
957         /*
958          * Avoid calling into the driver (or doing delays) if the chip select
959          * isn't actually changing from the last time this was called.
960          */
961         if (!force && ((enable && spi->controller->last_cs == spi->chip_select) ||
962                                 (!enable && spi->controller->last_cs != spi->chip_select)) &&
963             (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
964                 return;
965
966         trace_spi_set_cs(spi, activate);
967
968         spi->controller->last_cs = enable ? spi->chip_select : -1;
969         spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
970
971         if ((spi->cs_gpiod || !spi->controller->set_cs_timing) && !activate) {
972                 spi_delay_exec(&spi->cs_hold, NULL);
973         }
974
975         if (spi->mode & SPI_CS_HIGH)
976                 enable = !enable;
977
978         if (spi->cs_gpiod) {
979                 if (!(spi->mode & SPI_NO_CS)) {
980                         /*
981                          * Historically ACPI has no means of the GPIO polarity and
982                          * thus the SPISerialBus() resource defines it on the per-chip
983                          * basis. In order to avoid a chain of negations, the GPIO
984                          * polarity is considered being Active High. Even for the cases
985                          * when _DSD() is involved (in the updated versions of ACPI)
986                          * the GPIO CS polarity must be defined Active High to avoid
987                          * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
988                          * into account.
989                          */
990                         if (has_acpi_companion(&spi->dev))
991                                 gpiod_set_value_cansleep(spi->cs_gpiod, !enable);
992                         else
993                                 /* Polarity handled by GPIO library */
994                                 gpiod_set_value_cansleep(spi->cs_gpiod, activate);
995                 }
996                 /* Some SPI masters need both GPIO CS & slave_select */
997                 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
998                     spi->controller->set_cs)
999                         spi->controller->set_cs(spi, !enable);
1000         } else if (spi->controller->set_cs) {
1001                 spi->controller->set_cs(spi, !enable);
1002         }
1003
1004         if (spi->cs_gpiod || !spi->controller->set_cs_timing) {
1005                 if (activate)
1006                         spi_delay_exec(&spi->cs_setup, NULL);
1007                 else
1008                         spi_delay_exec(&spi->cs_inactive, NULL);
1009         }
1010 }
1011
1012 #ifdef CONFIG_HAS_DMA
1013 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1014                 struct sg_table *sgt, void *buf, size_t len,
1015                 enum dma_data_direction dir)
1016 {
1017         const bool vmalloced_buf = is_vmalloc_addr(buf);
1018         unsigned int max_seg_size = dma_get_max_seg_size(dev);
1019 #ifdef CONFIG_HIGHMEM
1020         const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1021                                 (unsigned long)buf < (PKMAP_BASE +
1022                                         (LAST_PKMAP * PAGE_SIZE)));
1023 #else
1024         const bool kmap_buf = false;
1025 #endif
1026         int desc_len;
1027         int sgs;
1028         struct page *vm_page;
1029         struct scatterlist *sg;
1030         void *sg_buf;
1031         size_t min;
1032         int i, ret;
1033
1034         if (vmalloced_buf || kmap_buf) {
1035                 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1036                 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1037         } else if (virt_addr_valid(buf)) {
1038                 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1039                 sgs = DIV_ROUND_UP(len, desc_len);
1040         } else {
1041                 return -EINVAL;
1042         }
1043
1044         ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1045         if (ret != 0)
1046                 return ret;
1047
1048         sg = &sgt->sgl[0];
1049         for (i = 0; i < sgs; i++) {
1050
1051                 if (vmalloced_buf || kmap_buf) {
1052                         /*
1053                          * Next scatterlist entry size is the minimum between
1054                          * the desc_len and the remaining buffer length that
1055                          * fits in a page.
1056                          */
1057                         min = min_t(size_t, desc_len,
1058                                     min_t(size_t, len,
1059                                           PAGE_SIZE - offset_in_page(buf)));
1060                         if (vmalloced_buf)
1061                                 vm_page = vmalloc_to_page(buf);
1062                         else
1063                                 vm_page = kmap_to_page(buf);
1064                         if (!vm_page) {
1065                                 sg_free_table(sgt);
1066                                 return -ENOMEM;
1067                         }
1068                         sg_set_page(sg, vm_page,
1069                                     min, offset_in_page(buf));
1070                 } else {
1071                         min = min_t(size_t, len, desc_len);
1072                         sg_buf = buf;
1073                         sg_set_buf(sg, sg_buf, min);
1074                 }
1075
1076                 buf += min;
1077                 len -= min;
1078                 sg = sg_next(sg);
1079         }
1080
1081         ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
1082         if (!ret)
1083                 ret = -ENOMEM;
1084         if (ret < 0) {
1085                 sg_free_table(sgt);
1086                 return ret;
1087         }
1088
1089         sgt->nents = ret;
1090
1091         return 0;
1092 }
1093
1094 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1095                    struct sg_table *sgt, enum dma_data_direction dir)
1096 {
1097         if (sgt->orig_nents) {
1098                 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
1099                 sg_free_table(sgt);
1100         }
1101 }
1102
1103 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1104 {
1105         struct device *tx_dev, *rx_dev;
1106         struct spi_transfer *xfer;
1107         int ret;
1108
1109         if (!ctlr->can_dma)
1110                 return 0;
1111
1112         if (ctlr->dma_tx)
1113                 tx_dev = ctlr->dma_tx->device->dev;
1114         else if (ctlr->dma_map_dev)
1115                 tx_dev = ctlr->dma_map_dev;
1116         else
1117                 tx_dev = ctlr->dev.parent;
1118
1119         if (ctlr->dma_rx)
1120                 rx_dev = ctlr->dma_rx->device->dev;
1121         else if (ctlr->dma_map_dev)
1122                 rx_dev = ctlr->dma_map_dev;
1123         else
1124                 rx_dev = ctlr->dev.parent;
1125
1126         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1127                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1128                         continue;
1129
1130                 if (xfer->tx_buf != NULL) {
1131                         ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
1132                                           (void *)xfer->tx_buf, xfer->len,
1133                                           DMA_TO_DEVICE);
1134                         if (ret != 0)
1135                                 return ret;
1136                 }
1137
1138                 if (xfer->rx_buf != NULL) {
1139                         ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
1140                                           xfer->rx_buf, xfer->len,
1141                                           DMA_FROM_DEVICE);
1142                         if (ret != 0) {
1143                                 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
1144                                               DMA_TO_DEVICE);
1145                                 return ret;
1146                         }
1147                 }
1148         }
1149
1150         ctlr->cur_msg_mapped = true;
1151
1152         return 0;
1153 }
1154
1155 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1156 {
1157         struct spi_transfer *xfer;
1158         struct device *tx_dev, *rx_dev;
1159
1160         if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1161                 return 0;
1162
1163         if (ctlr->dma_tx)
1164                 tx_dev = ctlr->dma_tx->device->dev;
1165         else if (ctlr->dma_map_dev)
1166                 tx_dev = ctlr->dma_map_dev;
1167         else
1168                 tx_dev = ctlr->dev.parent;
1169
1170         if (ctlr->dma_rx)
1171                 rx_dev = ctlr->dma_rx->device->dev;
1172         else if (ctlr->dma_map_dev)
1173                 rx_dev = ctlr->dma_map_dev;
1174         else
1175                 rx_dev = ctlr->dev.parent;
1176
1177         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1178                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1179                         continue;
1180
1181                 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1182                 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1183         }
1184
1185         ctlr->cur_msg_mapped = false;
1186
1187         return 0;
1188 }
1189 #else /* !CONFIG_HAS_DMA */
1190 static inline int __spi_map_msg(struct spi_controller *ctlr,
1191                                 struct spi_message *msg)
1192 {
1193         return 0;
1194 }
1195
1196 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1197                                   struct spi_message *msg)
1198 {
1199         return 0;
1200 }
1201 #endif /* !CONFIG_HAS_DMA */
1202
1203 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1204                                 struct spi_message *msg)
1205 {
1206         struct spi_transfer *xfer;
1207
1208         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1209                 /*
1210                  * Restore the original value of tx_buf or rx_buf if they are
1211                  * NULL.
1212                  */
1213                 if (xfer->tx_buf == ctlr->dummy_tx)
1214                         xfer->tx_buf = NULL;
1215                 if (xfer->rx_buf == ctlr->dummy_rx)
1216                         xfer->rx_buf = NULL;
1217         }
1218
1219         return __spi_unmap_msg(ctlr, msg);
1220 }
1221
1222 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1223 {
1224         struct spi_transfer *xfer;
1225         void *tmp;
1226         unsigned int max_tx, max_rx;
1227
1228         if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1229                 && !(msg->spi->mode & SPI_3WIRE)) {
1230                 max_tx = 0;
1231                 max_rx = 0;
1232
1233                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1234                         if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1235                             !xfer->tx_buf)
1236                                 max_tx = max(xfer->len, max_tx);
1237                         if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1238                             !xfer->rx_buf)
1239                                 max_rx = max(xfer->len, max_rx);
1240                 }
1241
1242                 if (max_tx) {
1243                         tmp = krealloc(ctlr->dummy_tx, max_tx,
1244                                        GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1245                         if (!tmp)
1246                                 return -ENOMEM;
1247                         ctlr->dummy_tx = tmp;
1248                 }
1249
1250                 if (max_rx) {
1251                         tmp = krealloc(ctlr->dummy_rx, max_rx,
1252                                        GFP_KERNEL | GFP_DMA);
1253                         if (!tmp)
1254                                 return -ENOMEM;
1255                         ctlr->dummy_rx = tmp;
1256                 }
1257
1258                 if (max_tx || max_rx) {
1259                         list_for_each_entry(xfer, &msg->transfers,
1260                                             transfer_list) {
1261                                 if (!xfer->len)
1262                                         continue;
1263                                 if (!xfer->tx_buf)
1264                                         xfer->tx_buf = ctlr->dummy_tx;
1265                                 if (!xfer->rx_buf)
1266                                         xfer->rx_buf = ctlr->dummy_rx;
1267                         }
1268                 }
1269         }
1270
1271         return __spi_map_msg(ctlr, msg);
1272 }
1273
1274 static int spi_transfer_wait(struct spi_controller *ctlr,
1275                              struct spi_message *msg,
1276                              struct spi_transfer *xfer)
1277 {
1278         struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1279         struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1280         u32 speed_hz = xfer->speed_hz;
1281         unsigned long long ms;
1282
1283         if (spi_controller_is_slave(ctlr)) {
1284                 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1285                         dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1286                         return -EINTR;
1287                 }
1288         } else {
1289                 if (!speed_hz)
1290                         speed_hz = 100000;
1291
1292                 /*
1293                  * For each byte we wait for 8 cycles of the SPI clock.
1294                  * Since speed is defined in Hz and we want milliseconds,
1295                  * use respective multiplier, but before the division,
1296                  * otherwise we may get 0 for short transfers.
1297                  */
1298                 ms = 8LL * MSEC_PER_SEC * xfer->len;
1299                 do_div(ms, speed_hz);
1300
1301                 /*
1302                  * Increase it twice and add 200 ms tolerance, use
1303                  * predefined maximum in case of overflow.
1304                  */
1305                 ms += ms + 200;
1306                 if (ms > UINT_MAX)
1307                         ms = UINT_MAX;
1308
1309                 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1310                                                  msecs_to_jiffies(ms));
1311
1312                 if (ms == 0) {
1313                         SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1314                         SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1315                         dev_err(&msg->spi->dev,
1316                                 "SPI transfer timed out\n");
1317                         return -ETIMEDOUT;
1318                 }
1319         }
1320
1321         return 0;
1322 }
1323
1324 static void _spi_transfer_delay_ns(u32 ns)
1325 {
1326         if (!ns)
1327                 return;
1328         if (ns <= NSEC_PER_USEC) {
1329                 ndelay(ns);
1330         } else {
1331                 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1332
1333                 if (us <= 10)
1334                         udelay(us);
1335                 else
1336                         usleep_range(us, us + DIV_ROUND_UP(us, 10));
1337         }
1338 }
1339
1340 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1341 {
1342         u32 delay = _delay->value;
1343         u32 unit = _delay->unit;
1344         u32 hz;
1345
1346         if (!delay)
1347                 return 0;
1348
1349         switch (unit) {
1350         case SPI_DELAY_UNIT_USECS:
1351                 delay *= NSEC_PER_USEC;
1352                 break;
1353         case SPI_DELAY_UNIT_NSECS:
1354                 /* Nothing to do here */
1355                 break;
1356         case SPI_DELAY_UNIT_SCK:
1357                 /* Clock cycles need to be obtained from spi_transfer */
1358                 if (!xfer)
1359                         return -EINVAL;
1360                 /*
1361                  * If there is unknown effective speed, approximate it
1362                  * by underestimating with half of the requested hz.
1363                  */
1364                 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1365                 if (!hz)
1366                         return -EINVAL;
1367
1368                 /* Convert delay to nanoseconds */
1369                 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1370                 break;
1371         default:
1372                 return -EINVAL;
1373         }
1374
1375         return delay;
1376 }
1377 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1378
1379 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1380 {
1381         int delay;
1382
1383         might_sleep();
1384
1385         if (!_delay)
1386                 return -EINVAL;
1387
1388         delay = spi_delay_to_ns(_delay, xfer);
1389         if (delay < 0)
1390                 return delay;
1391
1392         _spi_transfer_delay_ns(delay);
1393
1394         return 0;
1395 }
1396 EXPORT_SYMBOL_GPL(spi_delay_exec);
1397
1398 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1399                                           struct spi_transfer *xfer)
1400 {
1401         u32 default_delay_ns = 10 * NSEC_PER_USEC;
1402         u32 delay = xfer->cs_change_delay.value;
1403         u32 unit = xfer->cs_change_delay.unit;
1404         int ret;
1405
1406         /* Return early on "fast" mode - for everything but USECS */
1407         if (!delay) {
1408                 if (unit == SPI_DELAY_UNIT_USECS)
1409                         _spi_transfer_delay_ns(default_delay_ns);
1410                 return;
1411         }
1412
1413         ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1414         if (ret) {
1415                 dev_err_once(&msg->spi->dev,
1416                              "Use of unsupported delay unit %i, using default of %luus\n",
1417                              unit, default_delay_ns / NSEC_PER_USEC);
1418                 _spi_transfer_delay_ns(default_delay_ns);
1419         }
1420 }
1421
1422 /*
1423  * spi_transfer_one_message - Default implementation of transfer_one_message()
1424  *
1425  * This is a standard implementation of transfer_one_message() for
1426  * drivers which implement a transfer_one() operation.  It provides
1427  * standard handling of delays and chip select management.
1428  */
1429 static int spi_transfer_one_message(struct spi_controller *ctlr,
1430                                     struct spi_message *msg)
1431 {
1432         struct spi_transfer *xfer;
1433         bool keep_cs = false;
1434         int ret = 0;
1435         struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1436         struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1437
1438         spi_set_cs(msg->spi, true, false);
1439
1440         SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1441         SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1442
1443         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1444                 trace_spi_transfer_start(msg, xfer);
1445
1446                 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1447                 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1448
1449                 if (!ctlr->ptp_sts_supported) {
1450                         xfer->ptp_sts_word_pre = 0;
1451                         ptp_read_system_prets(xfer->ptp_sts);
1452                 }
1453
1454                 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1455                         reinit_completion(&ctlr->xfer_completion);
1456
1457 fallback_pio:
1458                         ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1459                         if (ret < 0) {
1460                                 if (ctlr->cur_msg_mapped &&
1461                                    (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1462                                         __spi_unmap_msg(ctlr, msg);
1463                                         ctlr->fallback = true;
1464                                         xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1465                                         goto fallback_pio;
1466                                 }
1467
1468                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
1469                                                                errors);
1470                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
1471                                                                errors);
1472                                 dev_err(&msg->spi->dev,
1473                                         "SPI transfer failed: %d\n", ret);
1474                                 goto out;
1475                         }
1476
1477                         if (ret > 0) {
1478                                 ret = spi_transfer_wait(ctlr, msg, xfer);
1479                                 if (ret < 0)
1480                                         msg->status = ret;
1481                         }
1482                 } else {
1483                         if (xfer->len)
1484                                 dev_err(&msg->spi->dev,
1485                                         "Bufferless transfer has length %u\n",
1486                                         xfer->len);
1487                 }
1488
1489                 if (!ctlr->ptp_sts_supported) {
1490                         ptp_read_system_postts(xfer->ptp_sts);
1491                         xfer->ptp_sts_word_post = xfer->len;
1492                 }
1493
1494                 trace_spi_transfer_stop(msg, xfer);
1495
1496                 if (msg->status != -EINPROGRESS)
1497                         goto out;
1498
1499                 spi_transfer_delay_exec(xfer);
1500
1501                 if (xfer->cs_change) {
1502                         if (list_is_last(&xfer->transfer_list,
1503                                          &msg->transfers)) {
1504                                 keep_cs = true;
1505                         } else {
1506                                 spi_set_cs(msg->spi, false, false);
1507                                 _spi_transfer_cs_change_delay(msg, xfer);
1508                                 spi_set_cs(msg->spi, true, false);
1509                         }
1510                 }
1511
1512                 msg->actual_length += xfer->len;
1513         }
1514
1515 out:
1516         if (ret != 0 || !keep_cs)
1517                 spi_set_cs(msg->spi, false, false);
1518
1519         if (msg->status == -EINPROGRESS)
1520                 msg->status = ret;
1521
1522         if (msg->status && ctlr->handle_err)
1523                 ctlr->handle_err(ctlr, msg);
1524
1525         spi_finalize_current_message(ctlr);
1526
1527         return ret;
1528 }
1529
1530 /**
1531  * spi_finalize_current_transfer - report completion of a transfer
1532  * @ctlr: the controller reporting completion
1533  *
1534  * Called by SPI drivers using the core transfer_one_message()
1535  * implementation to notify it that the current interrupt driven
1536  * transfer has finished and the next one may be scheduled.
1537  */
1538 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1539 {
1540         complete(&ctlr->xfer_completion);
1541 }
1542 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1543
1544 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1545 {
1546         if (ctlr->auto_runtime_pm) {
1547                 pm_runtime_mark_last_busy(ctlr->dev.parent);
1548                 pm_runtime_put_autosuspend(ctlr->dev.parent);
1549         }
1550 }
1551
1552 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1553                 struct spi_message *msg, bool was_busy)
1554 {
1555         struct spi_transfer *xfer;
1556         int ret;
1557
1558         if (!was_busy && ctlr->auto_runtime_pm) {
1559                 ret = pm_runtime_get_sync(ctlr->dev.parent);
1560                 if (ret < 0) {
1561                         pm_runtime_put_noidle(ctlr->dev.parent);
1562                         dev_err(&ctlr->dev, "Failed to power device: %d\n",
1563                                 ret);
1564                         return ret;
1565                 }
1566         }
1567
1568         if (!was_busy)
1569                 trace_spi_controller_busy(ctlr);
1570
1571         if (!was_busy && ctlr->prepare_transfer_hardware) {
1572                 ret = ctlr->prepare_transfer_hardware(ctlr);
1573                 if (ret) {
1574                         dev_err(&ctlr->dev,
1575                                 "failed to prepare transfer hardware: %d\n",
1576                                 ret);
1577
1578                         if (ctlr->auto_runtime_pm)
1579                                 pm_runtime_put(ctlr->dev.parent);
1580
1581                         msg->status = ret;
1582                         spi_finalize_current_message(ctlr);
1583
1584                         return ret;
1585                 }
1586         }
1587
1588         trace_spi_message_start(msg);
1589
1590         if (ctlr->prepare_message) {
1591                 ret = ctlr->prepare_message(ctlr, msg);
1592                 if (ret) {
1593                         dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1594                                 ret);
1595                         msg->status = ret;
1596                         spi_finalize_current_message(ctlr);
1597                         return ret;
1598                 }
1599                 msg->prepared = true;
1600         }
1601
1602         ret = spi_map_msg(ctlr, msg);
1603         if (ret) {
1604                 msg->status = ret;
1605                 spi_finalize_current_message(ctlr);
1606                 return ret;
1607         }
1608
1609         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1610                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1611                         xfer->ptp_sts_word_pre = 0;
1612                         ptp_read_system_prets(xfer->ptp_sts);
1613                 }
1614         }
1615
1616         /*
1617          * Drivers implementation of transfer_one_message() must arrange for
1618          * spi_finalize_current_message() to get called. Most drivers will do
1619          * this in the calling context, but some don't. For those cases, a
1620          * completion is used to guarantee that this function does not return
1621          * until spi_finalize_current_message() is done accessing
1622          * ctlr->cur_msg.
1623          * Use of the following two flags enable to opportunistically skip the
1624          * use of the completion since its use involves expensive spin locks.
1625          * In case of a race with the context that calls
1626          * spi_finalize_current_message() the completion will always be used,
1627          * due to strict ordering of these flags using barriers.
1628          */
1629         WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1630         WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1631         reinit_completion(&ctlr->cur_msg_completion);
1632         smp_wmb(); /* Make these available to spi_finalize_current_message() */
1633
1634         ret = ctlr->transfer_one_message(ctlr, msg);
1635         if (ret) {
1636                 dev_err(&ctlr->dev,
1637                         "failed to transfer one message from queue\n");
1638                 return ret;
1639         }
1640
1641         WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1642         smp_mb(); /* See spi_finalize_current_message()... */
1643         if (READ_ONCE(ctlr->cur_msg_incomplete))
1644                 wait_for_completion(&ctlr->cur_msg_completion);
1645
1646         return 0;
1647 }
1648
1649 /**
1650  * __spi_pump_messages - function which processes spi message queue
1651  * @ctlr: controller to process queue for
1652  * @in_kthread: true if we are in the context of the message pump thread
1653  *
1654  * This function checks if there is any spi message in the queue that
1655  * needs processing and if so call out to the driver to initialize hardware
1656  * and transfer each message.
1657  *
1658  * Note that it is called both from the kthread itself and also from
1659  * inside spi_sync(); the queue extraction handling at the top of the
1660  * function should deal with this safely.
1661  */
1662 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1663 {
1664         struct spi_message *msg;
1665         bool was_busy = false;
1666         unsigned long flags;
1667         int ret;
1668
1669         /* Take the IO mutex */
1670         mutex_lock(&ctlr->io_mutex);
1671
1672         /* Lock queue */
1673         spin_lock_irqsave(&ctlr->queue_lock, flags);
1674
1675         /* Make sure we are not already running a message */
1676         if (ctlr->cur_msg)
1677                 goto out_unlock;
1678
1679         /* Check if the queue is idle */
1680         if (list_empty(&ctlr->queue) || !ctlr->running) {
1681                 if (!ctlr->busy)
1682                         goto out_unlock;
1683
1684                 /* Defer any non-atomic teardown to the thread */
1685                 if (!in_kthread) {
1686                         if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1687                             !ctlr->unprepare_transfer_hardware) {
1688                                 spi_idle_runtime_pm(ctlr);
1689                                 ctlr->busy = false;
1690                                 ctlr->queue_empty = true;
1691                                 trace_spi_controller_idle(ctlr);
1692                         } else {
1693                                 kthread_queue_work(ctlr->kworker,
1694                                                    &ctlr->pump_messages);
1695                         }
1696                         goto out_unlock;
1697                 }
1698
1699                 ctlr->busy = false;
1700                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1701
1702                 kfree(ctlr->dummy_rx);
1703                 ctlr->dummy_rx = NULL;
1704                 kfree(ctlr->dummy_tx);
1705                 ctlr->dummy_tx = NULL;
1706                 if (ctlr->unprepare_transfer_hardware &&
1707                     ctlr->unprepare_transfer_hardware(ctlr))
1708                         dev_err(&ctlr->dev,
1709                                 "failed to unprepare transfer hardware\n");
1710                 spi_idle_runtime_pm(ctlr);
1711                 trace_spi_controller_idle(ctlr);
1712
1713                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1714                 ctlr->queue_empty = true;
1715                 goto out_unlock;
1716         }
1717
1718         /* Extract head of queue */
1719         msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1720         ctlr->cur_msg = msg;
1721
1722         list_del_init(&msg->queue);
1723         if (ctlr->busy)
1724                 was_busy = true;
1725         else
1726                 ctlr->busy = true;
1727         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1728
1729         ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1730         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1731
1732         ctlr->cur_msg = NULL;
1733         ctlr->fallback = false;
1734
1735         mutex_unlock(&ctlr->io_mutex);
1736
1737         /* Prod the scheduler in case transfer_one() was busy waiting */
1738         if (!ret)
1739                 cond_resched();
1740         return;
1741
1742 out_unlock:
1743         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1744         mutex_unlock(&ctlr->io_mutex);
1745 }
1746
1747 /**
1748  * spi_pump_messages - kthread work function which processes spi message queue
1749  * @work: pointer to kthread work struct contained in the controller struct
1750  */
1751 static void spi_pump_messages(struct kthread_work *work)
1752 {
1753         struct spi_controller *ctlr =
1754                 container_of(work, struct spi_controller, pump_messages);
1755
1756         __spi_pump_messages(ctlr, true);
1757 }
1758
1759 /**
1760  * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1761  * @ctlr: Pointer to the spi_controller structure of the driver
1762  * @xfer: Pointer to the transfer being timestamped
1763  * @progress: How many words (not bytes) have been transferred so far
1764  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1765  *            transfer, for less jitter in time measurement. Only compatible
1766  *            with PIO drivers. If true, must follow up with
1767  *            spi_take_timestamp_post or otherwise system will crash.
1768  *            WARNING: for fully predictable results, the CPU frequency must
1769  *            also be under control (governor).
1770  *
1771  * This is a helper for drivers to collect the beginning of the TX timestamp
1772  * for the requested byte from the SPI transfer. The frequency with which this
1773  * function must be called (once per word, once for the whole transfer, once
1774  * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1775  * greater than or equal to the requested byte at the time of the call. The
1776  * timestamp is only taken once, at the first such call. It is assumed that
1777  * the driver advances its @tx buffer pointer monotonically.
1778  */
1779 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1780                             struct spi_transfer *xfer,
1781                             size_t progress, bool irqs_off)
1782 {
1783         if (!xfer->ptp_sts)
1784                 return;
1785
1786         if (xfer->timestamped)
1787                 return;
1788
1789         if (progress > xfer->ptp_sts_word_pre)
1790                 return;
1791
1792         /* Capture the resolution of the timestamp */
1793         xfer->ptp_sts_word_pre = progress;
1794
1795         if (irqs_off) {
1796                 local_irq_save(ctlr->irq_flags);
1797                 preempt_disable();
1798         }
1799
1800         ptp_read_system_prets(xfer->ptp_sts);
1801 }
1802 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1803
1804 /**
1805  * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1806  * @ctlr: Pointer to the spi_controller structure of the driver
1807  * @xfer: Pointer to the transfer being timestamped
1808  * @progress: How many words (not bytes) have been transferred so far
1809  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1810  *
1811  * This is a helper for drivers to collect the end of the TX timestamp for
1812  * the requested byte from the SPI transfer. Can be called with an arbitrary
1813  * frequency: only the first call where @tx exceeds or is equal to the
1814  * requested word will be timestamped.
1815  */
1816 void spi_take_timestamp_post(struct spi_controller *ctlr,
1817                              struct spi_transfer *xfer,
1818                              size_t progress, bool irqs_off)
1819 {
1820         if (!xfer->ptp_sts)
1821                 return;
1822
1823         if (xfer->timestamped)
1824                 return;
1825
1826         if (progress < xfer->ptp_sts_word_post)
1827                 return;
1828
1829         ptp_read_system_postts(xfer->ptp_sts);
1830
1831         if (irqs_off) {
1832                 local_irq_restore(ctlr->irq_flags);
1833                 preempt_enable();
1834         }
1835
1836         /* Capture the resolution of the timestamp */
1837         xfer->ptp_sts_word_post = progress;
1838
1839         xfer->timestamped = true;
1840 }
1841 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1842
1843 /**
1844  * spi_set_thread_rt - set the controller to pump at realtime priority
1845  * @ctlr: controller to boost priority of
1846  *
1847  * This can be called because the controller requested realtime priority
1848  * (by setting the ->rt value before calling spi_register_controller()) or
1849  * because a device on the bus said that its transfers needed realtime
1850  * priority.
1851  *
1852  * NOTE: at the moment if any device on a bus says it needs realtime then
1853  * the thread will be at realtime priority for all transfers on that
1854  * controller.  If this eventually becomes a problem we may see if we can
1855  * find a way to boost the priority only temporarily during relevant
1856  * transfers.
1857  */
1858 static void spi_set_thread_rt(struct spi_controller *ctlr)
1859 {
1860         dev_info(&ctlr->dev,
1861                 "will run message pump with realtime priority\n");
1862         sched_set_fifo(ctlr->kworker->task);
1863 }
1864
1865 static int spi_init_queue(struct spi_controller *ctlr)
1866 {
1867         ctlr->running = false;
1868         ctlr->busy = false;
1869         ctlr->queue_empty = true;
1870
1871         ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1872         if (IS_ERR(ctlr->kworker)) {
1873                 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1874                 return PTR_ERR(ctlr->kworker);
1875         }
1876
1877         kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1878
1879         /*
1880          * Controller config will indicate if this controller should run the
1881          * message pump with high (realtime) priority to reduce the transfer
1882          * latency on the bus by minimising the delay between a transfer
1883          * request and the scheduling of the message pump thread. Without this
1884          * setting the message pump thread will remain at default priority.
1885          */
1886         if (ctlr->rt)
1887                 spi_set_thread_rt(ctlr);
1888
1889         return 0;
1890 }
1891
1892 /**
1893  * spi_get_next_queued_message() - called by driver to check for queued
1894  * messages
1895  * @ctlr: the controller to check for queued messages
1896  *
1897  * If there are more messages in the queue, the next message is returned from
1898  * this call.
1899  *
1900  * Return: the next message in the queue, else NULL if the queue is empty.
1901  */
1902 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1903 {
1904         struct spi_message *next;
1905         unsigned long flags;
1906
1907         /* Get a pointer to the next message, if any */
1908         spin_lock_irqsave(&ctlr->queue_lock, flags);
1909         next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1910                                         queue);
1911         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1912
1913         return next;
1914 }
1915 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1916
1917 /**
1918  * spi_finalize_current_message() - the current message is complete
1919  * @ctlr: the controller to return the message to
1920  *
1921  * Called by the driver to notify the core that the message in the front of the
1922  * queue is complete and can be removed from the queue.
1923  */
1924 void spi_finalize_current_message(struct spi_controller *ctlr)
1925 {
1926         struct spi_transfer *xfer;
1927         struct spi_message *mesg;
1928         int ret;
1929
1930         mesg = ctlr->cur_msg;
1931
1932         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1933                 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1934                         ptp_read_system_postts(xfer->ptp_sts);
1935                         xfer->ptp_sts_word_post = xfer->len;
1936                 }
1937         }
1938
1939         if (unlikely(ctlr->ptp_sts_supported))
1940                 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1941                         WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1942
1943         spi_unmap_msg(ctlr, mesg);
1944
1945         /*
1946          * In the prepare_messages callback the SPI bus has the opportunity
1947          * to split a transfer to smaller chunks.
1948          *
1949          * Release the split transfers here since spi_map_msg() is done on
1950          * the split transfers.
1951          */
1952         spi_res_release(ctlr, mesg);
1953
1954         if (mesg->prepared && ctlr->unprepare_message) {
1955                 ret = ctlr->unprepare_message(ctlr, mesg);
1956                 if (ret) {
1957                         dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1958                                 ret);
1959                 }
1960         }
1961
1962         mesg->prepared = false;
1963
1964         WRITE_ONCE(ctlr->cur_msg_incomplete, false);
1965         smp_mb(); /* See __spi_pump_transfer_message()... */
1966         if (READ_ONCE(ctlr->cur_msg_need_completion))
1967                 complete(&ctlr->cur_msg_completion);
1968
1969         trace_spi_message_done(mesg);
1970
1971         mesg->state = NULL;
1972         if (mesg->complete)
1973                 mesg->complete(mesg->context);
1974 }
1975 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1976
1977 static int spi_start_queue(struct spi_controller *ctlr)
1978 {
1979         unsigned long flags;
1980
1981         spin_lock_irqsave(&ctlr->queue_lock, flags);
1982
1983         if (ctlr->running || ctlr->busy) {
1984                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1985                 return -EBUSY;
1986         }
1987
1988         ctlr->running = true;
1989         ctlr->cur_msg = NULL;
1990         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1991
1992         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1993
1994         return 0;
1995 }
1996
1997 static int spi_stop_queue(struct spi_controller *ctlr)
1998 {
1999         unsigned long flags;
2000         unsigned limit = 500;
2001         int ret = 0;
2002
2003         spin_lock_irqsave(&ctlr->queue_lock, flags);
2004
2005         /*
2006          * This is a bit lame, but is optimized for the common execution path.
2007          * A wait_queue on the ctlr->busy could be used, but then the common
2008          * execution path (pump_messages) would be required to call wake_up or
2009          * friends on every SPI message. Do this instead.
2010          */
2011         while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2012                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2013                 usleep_range(10000, 11000);
2014                 spin_lock_irqsave(&ctlr->queue_lock, flags);
2015         }
2016
2017         if (!list_empty(&ctlr->queue) || ctlr->busy)
2018                 ret = -EBUSY;
2019         else
2020                 ctlr->running = false;
2021
2022         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2023
2024         if (ret) {
2025                 dev_warn(&ctlr->dev, "could not stop message queue\n");
2026                 return ret;
2027         }
2028         return ret;
2029 }
2030
2031 static int spi_destroy_queue(struct spi_controller *ctlr)
2032 {
2033         int ret;
2034
2035         ret = spi_stop_queue(ctlr);
2036
2037         /*
2038          * kthread_flush_worker will block until all work is done.
2039          * If the reason that stop_queue timed out is that the work will never
2040          * finish, then it does no good to call flush/stop thread, so
2041          * return anyway.
2042          */
2043         if (ret) {
2044                 dev_err(&ctlr->dev, "problem destroying queue\n");
2045                 return ret;
2046         }
2047
2048         kthread_destroy_worker(ctlr->kworker);
2049
2050         return 0;
2051 }
2052
2053 static int __spi_queued_transfer(struct spi_device *spi,
2054                                  struct spi_message *msg,
2055                                  bool need_pump)
2056 {
2057         struct spi_controller *ctlr = spi->controller;
2058         unsigned long flags;
2059
2060         spin_lock_irqsave(&ctlr->queue_lock, flags);
2061
2062         if (!ctlr->running) {
2063                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2064                 return -ESHUTDOWN;
2065         }
2066         msg->actual_length = 0;
2067         msg->status = -EINPROGRESS;
2068
2069         list_add_tail(&msg->queue, &ctlr->queue);
2070         ctlr->queue_empty = false;
2071         if (!ctlr->busy && need_pump)
2072                 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2073
2074         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2075         return 0;
2076 }
2077
2078 /**
2079  * spi_queued_transfer - transfer function for queued transfers
2080  * @spi: spi device which is requesting transfer
2081  * @msg: spi message which is to handled is queued to driver queue
2082  *
2083  * Return: zero on success, else a negative error code.
2084  */
2085 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2086 {
2087         return __spi_queued_transfer(spi, msg, true);
2088 }
2089
2090 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2091 {
2092         int ret;
2093
2094         ctlr->transfer = spi_queued_transfer;
2095         if (!ctlr->transfer_one_message)
2096                 ctlr->transfer_one_message = spi_transfer_one_message;
2097
2098         /* Initialize and start queue */
2099         ret = spi_init_queue(ctlr);
2100         if (ret) {
2101                 dev_err(&ctlr->dev, "problem initializing queue\n");
2102                 goto err_init_queue;
2103         }
2104         ctlr->queued = true;
2105         ret = spi_start_queue(ctlr);
2106         if (ret) {
2107                 dev_err(&ctlr->dev, "problem starting queue\n");
2108                 goto err_start_queue;
2109         }
2110
2111         return 0;
2112
2113 err_start_queue:
2114         spi_destroy_queue(ctlr);
2115 err_init_queue:
2116         return ret;
2117 }
2118
2119 /**
2120  * spi_flush_queue - Send all pending messages in the queue from the callers'
2121  *                   context
2122  * @ctlr: controller to process queue for
2123  *
2124  * This should be used when one wants to ensure all pending messages have been
2125  * sent before doing something. Is used by the spi-mem code to make sure SPI
2126  * memory operations do not preempt regular SPI transfers that have been queued
2127  * before the spi-mem operation.
2128  */
2129 void spi_flush_queue(struct spi_controller *ctlr)
2130 {
2131         if (ctlr->transfer == spi_queued_transfer)
2132                 __spi_pump_messages(ctlr, false);
2133 }
2134
2135 /*-------------------------------------------------------------------------*/
2136
2137 #if defined(CONFIG_OF)
2138 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2139                            struct device_node *nc)
2140 {
2141         u32 value;
2142         int rc;
2143
2144         /* Mode (clock phase/polarity/etc.) */
2145         if (of_property_read_bool(nc, "spi-cpha"))
2146                 spi->mode |= SPI_CPHA;
2147         if (of_property_read_bool(nc, "spi-cpol"))
2148                 spi->mode |= SPI_CPOL;
2149         if (of_property_read_bool(nc, "spi-3wire"))
2150                 spi->mode |= SPI_3WIRE;
2151         if (of_property_read_bool(nc, "spi-lsb-first"))
2152                 spi->mode |= SPI_LSB_FIRST;
2153         if (of_property_read_bool(nc, "spi-cs-high"))
2154                 spi->mode |= SPI_CS_HIGH;
2155
2156         /* Device DUAL/QUAD mode */
2157         if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2158                 switch (value) {
2159                 case 0:
2160                         spi->mode |= SPI_NO_TX;
2161                         break;
2162                 case 1:
2163                         break;
2164                 case 2:
2165                         spi->mode |= SPI_TX_DUAL;
2166                         break;
2167                 case 4:
2168                         spi->mode |= SPI_TX_QUAD;
2169                         break;
2170                 case 8:
2171                         spi->mode |= SPI_TX_OCTAL;
2172                         break;
2173                 default:
2174                         dev_warn(&ctlr->dev,
2175                                 "spi-tx-bus-width %d not supported\n",
2176                                 value);
2177                         break;
2178                 }
2179         }
2180
2181         if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2182                 switch (value) {
2183                 case 0:
2184                         spi->mode |= SPI_NO_RX;
2185                         break;
2186                 case 1:
2187                         break;
2188                 case 2:
2189                         spi->mode |= SPI_RX_DUAL;
2190                         break;
2191                 case 4:
2192                         spi->mode |= SPI_RX_QUAD;
2193                         break;
2194                 case 8:
2195                         spi->mode |= SPI_RX_OCTAL;
2196                         break;
2197                 default:
2198                         dev_warn(&ctlr->dev,
2199                                 "spi-rx-bus-width %d not supported\n",
2200                                 value);
2201                         break;
2202                 }
2203         }
2204
2205         if (spi_controller_is_slave(ctlr)) {
2206                 if (!of_node_name_eq(nc, "slave")) {
2207                         dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2208                                 nc);
2209                         return -EINVAL;
2210                 }
2211                 return 0;
2212         }
2213
2214         /* Device address */
2215         rc = of_property_read_u32(nc, "reg", &value);
2216         if (rc) {
2217                 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2218                         nc, rc);
2219                 return rc;
2220         }
2221         spi->chip_select = value;
2222
2223         /* Device speed */
2224         if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2225                 spi->max_speed_hz = value;
2226
2227         return 0;
2228 }
2229
2230 static struct spi_device *
2231 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2232 {
2233         struct spi_device *spi;
2234         int rc;
2235
2236         /* Alloc an spi_device */
2237         spi = spi_alloc_device(ctlr);
2238         if (!spi) {
2239                 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2240                 rc = -ENOMEM;
2241                 goto err_out;
2242         }
2243
2244         /* Select device driver */
2245         rc = of_modalias_node(nc, spi->modalias,
2246                                 sizeof(spi->modalias));
2247         if (rc < 0) {
2248                 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2249                 goto err_out;
2250         }
2251
2252         rc = of_spi_parse_dt(ctlr, spi, nc);
2253         if (rc)
2254                 goto err_out;
2255
2256         /* Store a pointer to the node in the device structure */
2257         of_node_get(nc);
2258         spi->dev.of_node = nc;
2259         spi->dev.fwnode = of_fwnode_handle(nc);
2260
2261         /* Register the new device */
2262         rc = spi_add_device(spi);
2263         if (rc) {
2264                 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2265                 goto err_of_node_put;
2266         }
2267
2268         return spi;
2269
2270 err_of_node_put:
2271         of_node_put(nc);
2272 err_out:
2273         spi_dev_put(spi);
2274         return ERR_PTR(rc);
2275 }
2276
2277 /**
2278  * of_register_spi_devices() - Register child devices onto the SPI bus
2279  * @ctlr:       Pointer to spi_controller device
2280  *
2281  * Registers an spi_device for each child node of controller node which
2282  * represents a valid SPI slave.
2283  */
2284 static void of_register_spi_devices(struct spi_controller *ctlr)
2285 {
2286         struct spi_device *spi;
2287         struct device_node *nc;
2288
2289         if (!ctlr->dev.of_node)
2290                 return;
2291
2292         for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2293                 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2294                         continue;
2295                 spi = of_register_spi_device(ctlr, nc);
2296                 if (IS_ERR(spi)) {
2297                         dev_warn(&ctlr->dev,
2298                                  "Failed to create SPI device for %pOF\n", nc);
2299                         of_node_clear_flag(nc, OF_POPULATED);
2300                 }
2301         }
2302 }
2303 #else
2304 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2305 #endif
2306
2307 /**
2308  * spi_new_ancillary_device() - Register ancillary SPI device
2309  * @spi:         Pointer to the main SPI device registering the ancillary device
2310  * @chip_select: Chip Select of the ancillary device
2311  *
2312  * Register an ancillary SPI device; for example some chips have a chip-select
2313  * for normal device usage and another one for setup/firmware upload.
2314  *
2315  * This may only be called from main SPI device's probe routine.
2316  *
2317  * Return: 0 on success; negative errno on failure
2318  */
2319 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2320                                              u8 chip_select)
2321 {
2322         struct spi_device *ancillary;
2323         int rc = 0;
2324
2325         /* Alloc an spi_device */
2326         ancillary = spi_alloc_device(spi->controller);
2327         if (!ancillary) {
2328                 rc = -ENOMEM;
2329                 goto err_out;
2330         }
2331
2332         strlcpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2333
2334         /* Use provided chip-select for ancillary device */
2335         ancillary->chip_select = chip_select;
2336
2337         /* Take over SPI mode/speed from SPI main device */
2338         ancillary->max_speed_hz = spi->max_speed_hz;
2339         ancillary->mode = spi->mode;
2340
2341         /* Register the new device */
2342         rc = spi_add_device_locked(ancillary);
2343         if (rc) {
2344                 dev_err(&spi->dev, "failed to register ancillary device\n");
2345                 goto err_out;
2346         }
2347
2348         return ancillary;
2349
2350 err_out:
2351         spi_dev_put(ancillary);
2352         return ERR_PTR(rc);
2353 }
2354 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2355
2356 #ifdef CONFIG_ACPI
2357 struct acpi_spi_lookup {
2358         struct spi_controller   *ctlr;
2359         u32                     max_speed_hz;
2360         u32                     mode;
2361         int                     irq;
2362         u8                      bits_per_word;
2363         u8                      chip_select;
2364         int                     n;
2365         int                     index;
2366 };
2367
2368 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2369 {
2370         struct acpi_resource_spi_serialbus *sb;
2371         int *count = data;
2372
2373         if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2374                 return 1;
2375
2376         sb = &ares->data.spi_serial_bus;
2377         if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2378                 return 1;
2379
2380         *count = *count + 1;
2381
2382         return 1;
2383 }
2384
2385 /**
2386  * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2387  * @adev:       ACPI device
2388  *
2389  * Returns the number of SpiSerialBus resources in the ACPI-device's
2390  * resource-list; or a negative error code.
2391  */
2392 int acpi_spi_count_resources(struct acpi_device *adev)
2393 {
2394         LIST_HEAD(r);
2395         int count = 0;
2396         int ret;
2397
2398         ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2399         if (ret < 0)
2400                 return ret;
2401
2402         acpi_dev_free_resource_list(&r);
2403
2404         return count;
2405 }
2406 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2407
2408 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2409                                             struct acpi_spi_lookup *lookup)
2410 {
2411         const union acpi_object *obj;
2412
2413         if (!x86_apple_machine)
2414                 return;
2415
2416         if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2417             && obj->buffer.length >= 4)
2418                 lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2419
2420         if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2421             && obj->buffer.length == 8)
2422                 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2423
2424         if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2425             && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2426                 lookup->mode |= SPI_LSB_FIRST;
2427
2428         if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2429             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2430                 lookup->mode |= SPI_CPOL;
2431
2432         if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2433             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2434                 lookup->mode |= SPI_CPHA;
2435 }
2436
2437 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev);
2438
2439 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2440 {
2441         struct acpi_spi_lookup *lookup = data;
2442         struct spi_controller *ctlr = lookup->ctlr;
2443
2444         if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2445                 struct acpi_resource_spi_serialbus *sb;
2446                 acpi_handle parent_handle;
2447                 acpi_status status;
2448
2449                 sb = &ares->data.spi_serial_bus;
2450                 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2451
2452                         if (lookup->index != -1 && lookup->n++ != lookup->index)
2453                                 return 1;
2454
2455                         status = acpi_get_handle(NULL,
2456                                                  sb->resource_source.string_ptr,
2457                                                  &parent_handle);
2458
2459                         if (ACPI_FAILURE(status))
2460                                 return -ENODEV;
2461
2462                         if (ctlr) {
2463                                 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2464                                         return -ENODEV;
2465                         } else {
2466                                 struct acpi_device *adev;
2467
2468                                 adev = acpi_fetch_acpi_dev(parent_handle);
2469                                 if (!adev)
2470                                         return -ENODEV;
2471
2472                                 ctlr = acpi_spi_find_controller_by_adev(adev);
2473                                 if (!ctlr)
2474                                         return -EPROBE_DEFER;
2475
2476                                 lookup->ctlr = ctlr;
2477                         }
2478
2479                         /*
2480                          * ACPI DeviceSelection numbering is handled by the
2481                          * host controller driver in Windows and can vary
2482                          * from driver to driver. In Linux we always expect
2483                          * 0 .. max - 1 so we need to ask the driver to
2484                          * translate between the two schemes.
2485                          */
2486                         if (ctlr->fw_translate_cs) {
2487                                 int cs = ctlr->fw_translate_cs(ctlr,
2488                                                 sb->device_selection);
2489                                 if (cs < 0)
2490                                         return cs;
2491                                 lookup->chip_select = cs;
2492                         } else {
2493                                 lookup->chip_select = sb->device_selection;
2494                         }
2495
2496                         lookup->max_speed_hz = sb->connection_speed;
2497                         lookup->bits_per_word = sb->data_bit_length;
2498
2499                         if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2500                                 lookup->mode |= SPI_CPHA;
2501                         if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2502                                 lookup->mode |= SPI_CPOL;
2503                         if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2504                                 lookup->mode |= SPI_CS_HIGH;
2505                 }
2506         } else if (lookup->irq < 0) {
2507                 struct resource r;
2508
2509                 if (acpi_dev_resource_interrupt(ares, 0, &r))
2510                         lookup->irq = r.start;
2511         }
2512
2513         /* Always tell the ACPI core to skip this resource */
2514         return 1;
2515 }
2516
2517 /**
2518  * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2519  * @ctlr: controller to which the spi device belongs
2520  * @adev: ACPI Device for the spi device
2521  * @index: Index of the spi resource inside the ACPI Node
2522  *
2523  * This should be used to allocate a new spi device from and ACPI Node.
2524  * The caller is responsible for calling spi_add_device to register the spi device.
2525  *
2526  * If ctlr is set to NULL, the Controller for the spi device will be looked up
2527  * using the resource.
2528  * If index is set to -1, index is not used.
2529  * Note: If index is -1, ctlr must be set.
2530  *
2531  * Return: a pointer to the new device, or ERR_PTR on error.
2532  */
2533 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2534                                          struct acpi_device *adev,
2535                                          int index)
2536 {
2537         acpi_handle parent_handle = NULL;
2538         struct list_head resource_list;
2539         struct acpi_spi_lookup lookup = {};
2540         struct spi_device *spi;
2541         int ret;
2542
2543         if (!ctlr && index == -1)
2544                 return ERR_PTR(-EINVAL);
2545
2546         lookup.ctlr             = ctlr;
2547         lookup.irq              = -1;
2548         lookup.index            = index;
2549         lookup.n                = 0;
2550
2551         INIT_LIST_HEAD(&resource_list);
2552         ret = acpi_dev_get_resources(adev, &resource_list,
2553                                      acpi_spi_add_resource, &lookup);
2554         acpi_dev_free_resource_list(&resource_list);
2555
2556         if (ret < 0)
2557                 /* Found SPI in _CRS but it points to another controller */
2558                 return ERR_PTR(ret);
2559
2560         if (!lookup.max_speed_hz &&
2561             ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2562             ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2563                 /* Apple does not use _CRS but nested devices for SPI slaves */
2564                 acpi_spi_parse_apple_properties(adev, &lookup);
2565         }
2566
2567         if (!lookup.max_speed_hz)
2568                 return ERR_PTR(-ENODEV);
2569
2570         spi = spi_alloc_device(lookup.ctlr);
2571         if (!spi) {
2572                 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2573                         dev_name(&adev->dev));
2574                 return ERR_PTR(-ENOMEM);
2575         }
2576
2577         ACPI_COMPANION_SET(&spi->dev, adev);
2578         spi->max_speed_hz       = lookup.max_speed_hz;
2579         spi->mode               |= lookup.mode;
2580         spi->irq                = lookup.irq;
2581         spi->bits_per_word      = lookup.bits_per_word;
2582         spi->chip_select        = lookup.chip_select;
2583
2584         return spi;
2585 }
2586 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2587
2588 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2589                                             struct acpi_device *adev)
2590 {
2591         struct spi_device *spi;
2592
2593         if (acpi_bus_get_status(adev) || !adev->status.present ||
2594             acpi_device_enumerated(adev))
2595                 return AE_OK;
2596
2597         spi = acpi_spi_device_alloc(ctlr, adev, -1);
2598         if (IS_ERR(spi)) {
2599                 if (PTR_ERR(spi) == -ENOMEM)
2600                         return AE_NO_MEMORY;
2601                 else
2602                         return AE_OK;
2603         }
2604
2605         acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2606                           sizeof(spi->modalias));
2607
2608         if (spi->irq < 0)
2609                 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2610
2611         acpi_device_set_enumerated(adev);
2612
2613         adev->power.flags.ignore_parent = true;
2614         if (spi_add_device(spi)) {
2615                 adev->power.flags.ignore_parent = false;
2616                 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2617                         dev_name(&adev->dev));
2618                 spi_dev_put(spi);
2619         }
2620
2621         return AE_OK;
2622 }
2623
2624 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2625                                        void *data, void **return_value)
2626 {
2627         struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2628         struct spi_controller *ctlr = data;
2629
2630         if (!adev)
2631                 return AE_OK;
2632
2633         return acpi_register_spi_device(ctlr, adev);
2634 }
2635
2636 #define SPI_ACPI_ENUMERATE_MAX_DEPTH            32
2637
2638 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2639 {
2640         acpi_status status;
2641         acpi_handle handle;
2642
2643         handle = ACPI_HANDLE(ctlr->dev.parent);
2644         if (!handle)
2645                 return;
2646
2647         status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2648                                      SPI_ACPI_ENUMERATE_MAX_DEPTH,
2649                                      acpi_spi_add_device, NULL, ctlr, NULL);
2650         if (ACPI_FAILURE(status))
2651                 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2652 }
2653 #else
2654 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2655 #endif /* CONFIG_ACPI */
2656
2657 static void spi_controller_release(struct device *dev)
2658 {
2659         struct spi_controller *ctlr;
2660
2661         ctlr = container_of(dev, struct spi_controller, dev);
2662         kfree(ctlr);
2663 }
2664
2665 static struct class spi_master_class = {
2666         .name           = "spi_master",
2667         .owner          = THIS_MODULE,
2668         .dev_release    = spi_controller_release,
2669         .dev_groups     = spi_master_groups,
2670 };
2671
2672 #ifdef CONFIG_SPI_SLAVE
2673 /**
2674  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2675  *                   controller
2676  * @spi: device used for the current transfer
2677  */
2678 int spi_slave_abort(struct spi_device *spi)
2679 {
2680         struct spi_controller *ctlr = spi->controller;
2681
2682         if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2683                 return ctlr->slave_abort(ctlr);
2684
2685         return -ENOTSUPP;
2686 }
2687 EXPORT_SYMBOL_GPL(spi_slave_abort);
2688
2689 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2690                           char *buf)
2691 {
2692         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2693                                                    dev);
2694         struct device *child;
2695
2696         child = device_find_any_child(&ctlr->dev);
2697         return sprintf(buf, "%s\n",
2698                        child ? to_spi_device(child)->modalias : NULL);
2699 }
2700
2701 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2702                            const char *buf, size_t count)
2703 {
2704         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2705                                                    dev);
2706         struct spi_device *spi;
2707         struct device *child;
2708         char name[32];
2709         int rc;
2710
2711         rc = sscanf(buf, "%31s", name);
2712         if (rc != 1 || !name[0])
2713                 return -EINVAL;
2714
2715         child = device_find_any_child(&ctlr->dev);
2716         if (child) {
2717                 /* Remove registered slave */
2718                 device_unregister(child);
2719                 put_device(child);
2720         }
2721
2722         if (strcmp(name, "(null)")) {
2723                 /* Register new slave */
2724                 spi = spi_alloc_device(ctlr);
2725                 if (!spi)
2726                         return -ENOMEM;
2727
2728                 strlcpy(spi->modalias, name, sizeof(spi->modalias));
2729
2730                 rc = spi_add_device(spi);
2731                 if (rc) {
2732                         spi_dev_put(spi);
2733                         return rc;
2734                 }
2735         }
2736
2737         return count;
2738 }
2739
2740 static DEVICE_ATTR_RW(slave);
2741
2742 static struct attribute *spi_slave_attrs[] = {
2743         &dev_attr_slave.attr,
2744         NULL,
2745 };
2746
2747 static const struct attribute_group spi_slave_group = {
2748         .attrs = spi_slave_attrs,
2749 };
2750
2751 static const struct attribute_group *spi_slave_groups[] = {
2752         &spi_controller_statistics_group,
2753         &spi_slave_group,
2754         NULL,
2755 };
2756
2757 static struct class spi_slave_class = {
2758         .name           = "spi_slave",
2759         .owner          = THIS_MODULE,
2760         .dev_release    = spi_controller_release,
2761         .dev_groups     = spi_slave_groups,
2762 };
2763 #else
2764 extern struct class spi_slave_class;    /* dummy */
2765 #endif
2766
2767 /**
2768  * __spi_alloc_controller - allocate an SPI master or slave controller
2769  * @dev: the controller, possibly using the platform_bus
2770  * @size: how much zeroed driver-private data to allocate; the pointer to this
2771  *      memory is in the driver_data field of the returned device, accessible
2772  *      with spi_controller_get_devdata(); the memory is cacheline aligned;
2773  *      drivers granting DMA access to portions of their private data need to
2774  *      round up @size using ALIGN(size, dma_get_cache_alignment()).
2775  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2776  *      slave (true) controller
2777  * Context: can sleep
2778  *
2779  * This call is used only by SPI controller drivers, which are the
2780  * only ones directly touching chip registers.  It's how they allocate
2781  * an spi_controller structure, prior to calling spi_register_controller().
2782  *
2783  * This must be called from context that can sleep.
2784  *
2785  * The caller is responsible for assigning the bus number and initializing the
2786  * controller's methods before calling spi_register_controller(); and (after
2787  * errors adding the device) calling spi_controller_put() to prevent a memory
2788  * leak.
2789  *
2790  * Return: the SPI controller structure on success, else NULL.
2791  */
2792 struct spi_controller *__spi_alloc_controller(struct device *dev,
2793                                               unsigned int size, bool slave)
2794 {
2795         struct spi_controller   *ctlr;
2796         size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2797
2798         if (!dev)
2799                 return NULL;
2800
2801         ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2802         if (!ctlr)
2803                 return NULL;
2804
2805         device_initialize(&ctlr->dev);
2806         INIT_LIST_HEAD(&ctlr->queue);
2807         spin_lock_init(&ctlr->queue_lock);
2808         spin_lock_init(&ctlr->bus_lock_spinlock);
2809         mutex_init(&ctlr->bus_lock_mutex);
2810         mutex_init(&ctlr->io_mutex);
2811         mutex_init(&ctlr->add_lock);
2812         ctlr->bus_num = -1;
2813         ctlr->num_chipselect = 1;
2814         ctlr->slave = slave;
2815         if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2816                 ctlr->dev.class = &spi_slave_class;
2817         else
2818                 ctlr->dev.class = &spi_master_class;
2819         ctlr->dev.parent = dev;
2820         pm_suspend_ignore_children(&ctlr->dev, true);
2821         spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2822
2823         return ctlr;
2824 }
2825 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2826
2827 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2828 {
2829         spi_controller_put(*(struct spi_controller **)ctlr);
2830 }
2831
2832 /**
2833  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2834  * @dev: physical device of SPI controller
2835  * @size: how much zeroed driver-private data to allocate
2836  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2837  * Context: can sleep
2838  *
2839  * Allocate an SPI controller and automatically release a reference on it
2840  * when @dev is unbound from its driver.  Drivers are thus relieved from
2841  * having to call spi_controller_put().
2842  *
2843  * The arguments to this function are identical to __spi_alloc_controller().
2844  *
2845  * Return: the SPI controller structure on success, else NULL.
2846  */
2847 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2848                                                    unsigned int size,
2849                                                    bool slave)
2850 {
2851         struct spi_controller **ptr, *ctlr;
2852
2853         ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2854                            GFP_KERNEL);
2855         if (!ptr)
2856                 return NULL;
2857
2858         ctlr = __spi_alloc_controller(dev, size, slave);
2859         if (ctlr) {
2860                 ctlr->devm_allocated = true;
2861                 *ptr = ctlr;
2862                 devres_add(dev, ptr);
2863         } else {
2864                 devres_free(ptr);
2865         }
2866
2867         return ctlr;
2868 }
2869 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2870
2871 /**
2872  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2873  * @ctlr: The SPI master to grab GPIO descriptors for
2874  */
2875 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2876 {
2877         int nb, i;
2878         struct gpio_desc **cs;
2879         struct device *dev = &ctlr->dev;
2880         unsigned long native_cs_mask = 0;
2881         unsigned int num_cs_gpios = 0;
2882
2883         nb = gpiod_count(dev, "cs");
2884         if (nb < 0) {
2885                 /* No GPIOs at all is fine, else return the error */
2886                 if (nb == -ENOENT)
2887                         return 0;
2888                 return nb;
2889         }
2890
2891         ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2892
2893         cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2894                           GFP_KERNEL);
2895         if (!cs)
2896                 return -ENOMEM;
2897         ctlr->cs_gpiods = cs;
2898
2899         for (i = 0; i < nb; i++) {
2900                 /*
2901                  * Most chipselects are active low, the inverted
2902                  * semantics are handled by special quirks in gpiolib,
2903                  * so initializing them GPIOD_OUT_LOW here means
2904                  * "unasserted", in most cases this will drive the physical
2905                  * line high.
2906                  */
2907                 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2908                                                       GPIOD_OUT_LOW);
2909                 if (IS_ERR(cs[i]))
2910                         return PTR_ERR(cs[i]);
2911
2912                 if (cs[i]) {
2913                         /*
2914                          * If we find a CS GPIO, name it after the device and
2915                          * chip select line.
2916                          */
2917                         char *gpioname;
2918
2919                         gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2920                                                   dev_name(dev), i);
2921                         if (!gpioname)
2922                                 return -ENOMEM;
2923                         gpiod_set_consumer_name(cs[i], gpioname);
2924                         num_cs_gpios++;
2925                         continue;
2926                 }
2927
2928                 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2929                         dev_err(dev, "Invalid native chip select %d\n", i);
2930                         return -EINVAL;
2931                 }
2932                 native_cs_mask |= BIT(i);
2933         }
2934
2935         ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
2936
2937         if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
2938             ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
2939                 dev_err(dev, "No unused native chip select available\n");
2940                 return -EINVAL;
2941         }
2942
2943         return 0;
2944 }
2945
2946 static int spi_controller_check_ops(struct spi_controller *ctlr)
2947 {
2948         /*
2949          * The controller may implement only the high-level SPI-memory like
2950          * operations if it does not support regular SPI transfers, and this is
2951          * valid use case.
2952          * If ->mem_ops is NULL, we request that at least one of the
2953          * ->transfer_xxx() method be implemented.
2954          */
2955         if (ctlr->mem_ops) {
2956                 if (!ctlr->mem_ops->exec_op)
2957                         return -EINVAL;
2958         } else if (!ctlr->transfer && !ctlr->transfer_one &&
2959                    !ctlr->transfer_one_message) {
2960                 return -EINVAL;
2961         }
2962
2963         return 0;
2964 }
2965
2966 /**
2967  * spi_register_controller - register SPI master or slave controller
2968  * @ctlr: initialized master, originally from spi_alloc_master() or
2969  *      spi_alloc_slave()
2970  * Context: can sleep
2971  *
2972  * SPI controllers connect to their drivers using some non-SPI bus,
2973  * such as the platform bus.  The final stage of probe() in that code
2974  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2975  *
2976  * SPI controllers use board specific (often SOC specific) bus numbers,
2977  * and board-specific addressing for SPI devices combines those numbers
2978  * with chip select numbers.  Since SPI does not directly support dynamic
2979  * device identification, boards need configuration tables telling which
2980  * chip is at which address.
2981  *
2982  * This must be called from context that can sleep.  It returns zero on
2983  * success, else a negative error code (dropping the controller's refcount).
2984  * After a successful return, the caller is responsible for calling
2985  * spi_unregister_controller().
2986  *
2987  * Return: zero on success, else a negative error code.
2988  */
2989 int spi_register_controller(struct spi_controller *ctlr)
2990 {
2991         struct device           *dev = ctlr->dev.parent;
2992         struct boardinfo        *bi;
2993         int                     status;
2994         int                     id, first_dynamic;
2995
2996         if (!dev)
2997                 return -ENODEV;
2998
2999         /*
3000          * Make sure all necessary hooks are implemented before registering
3001          * the SPI controller.
3002          */
3003         status = spi_controller_check_ops(ctlr);
3004         if (status)
3005                 return status;
3006
3007         if (ctlr->bus_num >= 0) {
3008                 /* Devices with a fixed bus num must check-in with the num */
3009                 mutex_lock(&board_lock);
3010                 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
3011                         ctlr->bus_num + 1, GFP_KERNEL);
3012                 mutex_unlock(&board_lock);
3013                 if (WARN(id < 0, "couldn't get idr"))
3014                         return id == -ENOSPC ? -EBUSY : id;
3015                 ctlr->bus_num = id;
3016         } else if (ctlr->dev.of_node) {
3017                 /* Allocate dynamic bus number using Linux idr */
3018                 id = of_alias_get_id(ctlr->dev.of_node, "spi");
3019                 if (id >= 0) {
3020                         ctlr->bus_num = id;
3021                         mutex_lock(&board_lock);
3022                         id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
3023                                        ctlr->bus_num + 1, GFP_KERNEL);
3024                         mutex_unlock(&board_lock);
3025                         if (WARN(id < 0, "couldn't get idr"))
3026                                 return id == -ENOSPC ? -EBUSY : id;
3027                 }
3028         }
3029         if (ctlr->bus_num < 0) {
3030                 first_dynamic = of_alias_get_highest_id("spi");
3031                 if (first_dynamic < 0)
3032                         first_dynamic = 0;
3033                 else
3034                         first_dynamic++;
3035
3036                 mutex_lock(&board_lock);
3037                 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
3038                                0, GFP_KERNEL);
3039                 mutex_unlock(&board_lock);
3040                 if (WARN(id < 0, "couldn't get idr"))
3041                         return id;
3042                 ctlr->bus_num = id;
3043         }
3044         ctlr->bus_lock_flag = 0;
3045         init_completion(&ctlr->xfer_completion);
3046         init_completion(&ctlr->cur_msg_completion);
3047         if (!ctlr->max_dma_len)
3048                 ctlr->max_dma_len = INT_MAX;
3049
3050         /*
3051          * Register the device, then userspace will see it.
3052          * Registration fails if the bus ID is in use.
3053          */
3054         dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3055
3056         if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3057                 status = spi_get_gpio_descs(ctlr);
3058                 if (status)
3059                         goto free_bus_id;
3060                 /*
3061                  * A controller using GPIO descriptors always
3062                  * supports SPI_CS_HIGH if need be.
3063                  */
3064                 ctlr->mode_bits |= SPI_CS_HIGH;
3065         }
3066
3067         /*
3068          * Even if it's just one always-selected device, there must
3069          * be at least one chipselect.
3070          */
3071         if (!ctlr->num_chipselect) {
3072                 status = -EINVAL;
3073                 goto free_bus_id;
3074         }
3075
3076         /* Setting last_cs to -1 means no chip selected */
3077         ctlr->last_cs = -1;
3078
3079         status = device_add(&ctlr->dev);
3080         if (status < 0)
3081                 goto free_bus_id;
3082         dev_dbg(dev, "registered %s %s\n",
3083                         spi_controller_is_slave(ctlr) ? "slave" : "master",
3084                         dev_name(&ctlr->dev));
3085
3086         /*
3087          * If we're using a queued driver, start the queue. Note that we don't
3088          * need the queueing logic if the driver is only supporting high-level
3089          * memory operations.
3090          */
3091         if (ctlr->transfer) {
3092                 dev_info(dev, "controller is unqueued, this is deprecated\n");
3093         } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3094                 status = spi_controller_initialize_queue(ctlr);
3095                 if (status) {
3096                         device_del(&ctlr->dev);
3097                         goto free_bus_id;
3098                 }
3099         }
3100         /* Add statistics */
3101         ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3102         if (!ctlr->pcpu_statistics) {
3103                 dev_err(dev, "Error allocating per-cpu statistics\n");
3104                 status = -ENOMEM;
3105                 goto destroy_queue;
3106         }
3107
3108         mutex_lock(&board_lock);
3109         list_add_tail(&ctlr->list, &spi_controller_list);
3110         list_for_each_entry(bi, &board_list, list)
3111                 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3112         mutex_unlock(&board_lock);
3113
3114         /* Register devices from the device tree and ACPI */
3115         of_register_spi_devices(ctlr);
3116         acpi_register_spi_devices(ctlr);
3117         return status;
3118
3119 destroy_queue:
3120         spi_destroy_queue(ctlr);
3121 free_bus_id:
3122         mutex_lock(&board_lock);
3123         idr_remove(&spi_master_idr, ctlr->bus_num);
3124         mutex_unlock(&board_lock);
3125         return status;
3126 }
3127 EXPORT_SYMBOL_GPL(spi_register_controller);
3128
3129 static void devm_spi_unregister(struct device *dev, void *res)
3130 {
3131         spi_unregister_controller(*(struct spi_controller **)res);
3132 }
3133
3134 /**
3135  * devm_spi_register_controller - register managed SPI master or slave
3136  *      controller
3137  * @dev:    device managing SPI controller
3138  * @ctlr: initialized controller, originally from spi_alloc_master() or
3139  *      spi_alloc_slave()
3140  * Context: can sleep
3141  *
3142  * Register a SPI device as with spi_register_controller() which will
3143  * automatically be unregistered and freed.
3144  *
3145  * Return: zero on success, else a negative error code.
3146  */
3147 int devm_spi_register_controller(struct device *dev,
3148                                  struct spi_controller *ctlr)
3149 {
3150         struct spi_controller **ptr;
3151         int ret;
3152
3153         ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3154         if (!ptr)
3155                 return -ENOMEM;
3156
3157         ret = spi_register_controller(ctlr);
3158         if (!ret) {
3159                 *ptr = ctlr;
3160                 devres_add(dev, ptr);
3161         } else {
3162                 devres_free(ptr);
3163         }
3164
3165         return ret;
3166 }
3167 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3168
3169 static int __unregister(struct device *dev, void *null)
3170 {
3171         spi_unregister_device(to_spi_device(dev));
3172         return 0;
3173 }
3174
3175 /**
3176  * spi_unregister_controller - unregister SPI master or slave controller
3177  * @ctlr: the controller being unregistered
3178  * Context: can sleep
3179  *
3180  * This call is used only by SPI controller drivers, which are the
3181  * only ones directly touching chip registers.
3182  *
3183  * This must be called from context that can sleep.
3184  *
3185  * Note that this function also drops a reference to the controller.
3186  */
3187 void spi_unregister_controller(struct spi_controller *ctlr)
3188 {
3189         struct spi_controller *found;
3190         int id = ctlr->bus_num;
3191
3192         /* Prevent addition of new devices, unregister existing ones */
3193         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3194                 mutex_lock(&ctlr->add_lock);
3195
3196         device_for_each_child(&ctlr->dev, NULL, __unregister);
3197
3198         /* First make sure that this controller was ever added */
3199         mutex_lock(&board_lock);
3200         found = idr_find(&spi_master_idr, id);
3201         mutex_unlock(&board_lock);
3202         if (ctlr->queued) {
3203                 if (spi_destroy_queue(ctlr))
3204                         dev_err(&ctlr->dev, "queue remove failed\n");
3205         }
3206         mutex_lock(&board_lock);
3207         list_del(&ctlr->list);
3208         mutex_unlock(&board_lock);
3209
3210         device_del(&ctlr->dev);
3211
3212         /* Free bus id */
3213         mutex_lock(&board_lock);
3214         if (found == ctlr)
3215                 idr_remove(&spi_master_idr, id);
3216         mutex_unlock(&board_lock);
3217
3218         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3219                 mutex_unlock(&ctlr->add_lock);
3220
3221         /* Release the last reference on the controller if its driver
3222          * has not yet been converted to devm_spi_alloc_master/slave().
3223          */
3224         if (!ctlr->devm_allocated)
3225                 put_device(&ctlr->dev);
3226 }
3227 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3228
3229 int spi_controller_suspend(struct spi_controller *ctlr)
3230 {
3231         int ret;
3232
3233         /* Basically no-ops for non-queued controllers */
3234         if (!ctlr->queued)
3235                 return 0;
3236
3237         ret = spi_stop_queue(ctlr);
3238         if (ret)
3239                 dev_err(&ctlr->dev, "queue stop failed\n");
3240
3241         return ret;
3242 }
3243 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3244
3245 int spi_controller_resume(struct spi_controller *ctlr)
3246 {
3247         int ret;
3248
3249         if (!ctlr->queued)
3250                 return 0;
3251
3252         ret = spi_start_queue(ctlr);
3253         if (ret)
3254                 dev_err(&ctlr->dev, "queue restart failed\n");
3255
3256         return ret;
3257 }
3258 EXPORT_SYMBOL_GPL(spi_controller_resume);
3259
3260 /*-------------------------------------------------------------------------*/
3261
3262 /* Core methods for spi_message alterations */
3263
3264 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3265                                             struct spi_message *msg,
3266                                             void *res)
3267 {
3268         struct spi_replaced_transfers *rxfer = res;
3269         size_t i;
3270
3271         /* Call extra callback if requested */
3272         if (rxfer->release)
3273                 rxfer->release(ctlr, msg, res);
3274
3275         /* Insert replaced transfers back into the message */
3276         list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3277
3278         /* Remove the formerly inserted entries */
3279         for (i = 0; i < rxfer->inserted; i++)
3280                 list_del(&rxfer->inserted_transfers[i].transfer_list);
3281 }
3282
3283 /**
3284  * spi_replace_transfers - replace transfers with several transfers
3285  *                         and register change with spi_message.resources
3286  * @msg:           the spi_message we work upon
3287  * @xfer_first:    the first spi_transfer we want to replace
3288  * @remove:        number of transfers to remove
3289  * @insert:        the number of transfers we want to insert instead
3290  * @release:       extra release code necessary in some circumstances
3291  * @extradatasize: extra data to allocate (with alignment guarantees
3292  *                 of struct @spi_transfer)
3293  * @gfp:           gfp flags
3294  *
3295  * Returns: pointer to @spi_replaced_transfers,
3296  *          PTR_ERR(...) in case of errors.
3297  */
3298 static struct spi_replaced_transfers *spi_replace_transfers(
3299         struct spi_message *msg,
3300         struct spi_transfer *xfer_first,
3301         size_t remove,
3302         size_t insert,
3303         spi_replaced_release_t release,
3304         size_t extradatasize,
3305         gfp_t gfp)
3306 {
3307         struct spi_replaced_transfers *rxfer;
3308         struct spi_transfer *xfer;
3309         size_t i;
3310
3311         /* Allocate the structure using spi_res */
3312         rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3313                               struct_size(rxfer, inserted_transfers, insert)
3314                               + extradatasize,
3315                               gfp);
3316         if (!rxfer)
3317                 return ERR_PTR(-ENOMEM);
3318
3319         /* The release code to invoke before running the generic release */
3320         rxfer->release = release;
3321
3322         /* Assign extradata */
3323         if (extradatasize)
3324                 rxfer->extradata =
3325                         &rxfer->inserted_transfers[insert];
3326
3327         /* Init the replaced_transfers list */
3328         INIT_LIST_HEAD(&rxfer->replaced_transfers);
3329
3330         /*
3331          * Assign the list_entry after which we should reinsert
3332          * the @replaced_transfers - it may be spi_message.messages!
3333          */
3334         rxfer->replaced_after = xfer_first->transfer_list.prev;
3335
3336         /* Remove the requested number of transfers */
3337         for (i = 0; i < remove; i++) {
3338                 /*
3339                  * If the entry after replaced_after it is msg->transfers
3340                  * then we have been requested to remove more transfers
3341                  * than are in the list.
3342                  */
3343                 if (rxfer->replaced_after->next == &msg->transfers) {
3344                         dev_err(&msg->spi->dev,
3345                                 "requested to remove more spi_transfers than are available\n");
3346                         /* Insert replaced transfers back into the message */
3347                         list_splice(&rxfer->replaced_transfers,
3348                                     rxfer->replaced_after);
3349
3350                         /* Free the spi_replace_transfer structure... */
3351                         spi_res_free(rxfer);
3352
3353                         /* ...and return with an error */
3354                         return ERR_PTR(-EINVAL);
3355                 }
3356
3357                 /*
3358                  * Remove the entry after replaced_after from list of
3359                  * transfers and add it to list of replaced_transfers.
3360                  */
3361                 list_move_tail(rxfer->replaced_after->next,
3362                                &rxfer->replaced_transfers);
3363         }
3364
3365         /*
3366          * Create copy of the given xfer with identical settings
3367          * based on the first transfer to get removed.
3368          */
3369         for (i = 0; i < insert; i++) {
3370                 /* We need to run in reverse order */
3371                 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3372
3373                 /* Copy all spi_transfer data */
3374                 memcpy(xfer, xfer_first, sizeof(*xfer));
3375
3376                 /* Add to list */
3377                 list_add(&xfer->transfer_list, rxfer->replaced_after);
3378
3379                 /* Clear cs_change and delay for all but the last */
3380                 if (i) {
3381                         xfer->cs_change = false;
3382                         xfer->delay.value = 0;
3383                 }
3384         }
3385
3386         /* Set up inserted... */
3387         rxfer->inserted = insert;
3388
3389         /* ...and register it with spi_res/spi_message */
3390         spi_res_add(msg, rxfer);
3391
3392         return rxfer;
3393 }
3394
3395 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3396                                         struct spi_message *msg,
3397                                         struct spi_transfer **xferp,
3398                                         size_t maxsize,
3399                                         gfp_t gfp)
3400 {
3401         struct spi_transfer *xfer = *xferp, *xfers;
3402         struct spi_replaced_transfers *srt;
3403         size_t offset;
3404         size_t count, i;
3405
3406         /* Calculate how many we have to replace */
3407         count = DIV_ROUND_UP(xfer->len, maxsize);
3408
3409         /* Create replacement */
3410         srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3411         if (IS_ERR(srt))
3412                 return PTR_ERR(srt);
3413         xfers = srt->inserted_transfers;
3414
3415         /*
3416          * Now handle each of those newly inserted spi_transfers.
3417          * Note that the replacements spi_transfers all are preset
3418          * to the same values as *xferp, so tx_buf, rx_buf and len
3419          * are all identical (as well as most others)
3420          * so we just have to fix up len and the pointers.
3421          *
3422          * This also includes support for the depreciated
3423          * spi_message.is_dma_mapped interface.
3424          */
3425
3426         /*
3427          * The first transfer just needs the length modified, so we
3428          * run it outside the loop.
3429          */
3430         xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3431
3432         /* All the others need rx_buf/tx_buf also set */
3433         for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3434                 /* Update rx_buf, tx_buf and dma */
3435                 if (xfers[i].rx_buf)
3436                         xfers[i].rx_buf += offset;
3437                 if (xfers[i].rx_dma)
3438                         xfers[i].rx_dma += offset;
3439                 if (xfers[i].tx_buf)
3440                         xfers[i].tx_buf += offset;
3441                 if (xfers[i].tx_dma)
3442                         xfers[i].tx_dma += offset;
3443
3444                 /* Update length */
3445                 xfers[i].len = min(maxsize, xfers[i].len - offset);
3446         }
3447
3448         /*
3449          * We set up xferp to the last entry we have inserted,
3450          * so that we skip those already split transfers.
3451          */
3452         *xferp = &xfers[count - 1];
3453
3454         /* Increment statistics counters */
3455         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3456                                        transfers_split_maxsize);
3457         SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3458                                        transfers_split_maxsize);
3459
3460         return 0;
3461 }
3462
3463 /**
3464  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3465  *                               when an individual transfer exceeds a
3466  *                               certain size
3467  * @ctlr:    the @spi_controller for this transfer
3468  * @msg:   the @spi_message to transform
3469  * @maxsize:  the maximum when to apply this
3470  * @gfp: GFP allocation flags
3471  *
3472  * Return: status of transformation
3473  */
3474 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3475                                 struct spi_message *msg,
3476                                 size_t maxsize,
3477                                 gfp_t gfp)
3478 {
3479         struct spi_transfer *xfer;
3480         int ret;
3481
3482         /*
3483          * Iterate over the transfer_list,
3484          * but note that xfer is advanced to the last transfer inserted
3485          * to avoid checking sizes again unnecessarily (also xfer does
3486          * potentially belong to a different list by the time the
3487          * replacement has happened).
3488          */
3489         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3490                 if (xfer->len > maxsize) {
3491                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3492                                                            maxsize, gfp);
3493                         if (ret)
3494                                 return ret;
3495                 }
3496         }
3497
3498         return 0;
3499 }
3500 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3501
3502 /*-------------------------------------------------------------------------*/
3503
3504 /* Core methods for SPI controller protocol drivers.  Some of the
3505  * other core methods are currently defined as inline functions.
3506  */
3507
3508 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3509                                         u8 bits_per_word)
3510 {
3511         if (ctlr->bits_per_word_mask) {
3512                 /* Only 32 bits fit in the mask */
3513                 if (bits_per_word > 32)
3514                         return -EINVAL;
3515                 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3516                         return -EINVAL;
3517         }
3518
3519         return 0;
3520 }
3521
3522 /**
3523  * spi_setup - setup SPI mode and clock rate
3524  * @spi: the device whose settings are being modified
3525  * Context: can sleep, and no requests are queued to the device
3526  *
3527  * SPI protocol drivers may need to update the transfer mode if the
3528  * device doesn't work with its default.  They may likewise need
3529  * to update clock rates or word sizes from initial values.  This function
3530  * changes those settings, and must be called from a context that can sleep.
3531  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3532  * effect the next time the device is selected and data is transferred to
3533  * or from it.  When this function returns, the spi device is deselected.
3534  *
3535  * Note that this call will fail if the protocol driver specifies an option
3536  * that the underlying controller or its driver does not support.  For
3537  * example, not all hardware supports wire transfers using nine bit words,
3538  * LSB-first wire encoding, or active-high chipselects.
3539  *
3540  * Return: zero on success, else a negative error code.
3541  */
3542 int spi_setup(struct spi_device *spi)
3543 {
3544         unsigned        bad_bits, ugly_bits;
3545         int             status = 0;
3546
3547         /*
3548          * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3549          * are set at the same time.
3550          */
3551         if ((hweight_long(spi->mode &
3552                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3553             (hweight_long(spi->mode &
3554                 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3555                 dev_err(&spi->dev,
3556                 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3557                 return -EINVAL;
3558         }
3559         /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3560         if ((spi->mode & SPI_3WIRE) && (spi->mode &
3561                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3562                  SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3563                 return -EINVAL;
3564         /*
3565          * Help drivers fail *cleanly* when they need options
3566          * that aren't supported with their current controller.
3567          * SPI_CS_WORD has a fallback software implementation,
3568          * so it is ignored here.
3569          */
3570         bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3571                                  SPI_NO_TX | SPI_NO_RX);
3572         ugly_bits = bad_bits &
3573                     (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3574                      SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3575         if (ugly_bits) {
3576                 dev_warn(&spi->dev,
3577                          "setup: ignoring unsupported mode bits %x\n",
3578                          ugly_bits);
3579                 spi->mode &= ~ugly_bits;
3580                 bad_bits &= ~ugly_bits;
3581         }
3582         if (bad_bits) {
3583                 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3584                         bad_bits);
3585                 return -EINVAL;
3586         }
3587
3588         if (!spi->bits_per_word) {
3589                 spi->bits_per_word = 8;
3590         } else {
3591                 /*
3592                  * Some controllers may not support the default 8 bits-per-word
3593                  * so only perform the check when this is explicitly provided.
3594                  */
3595                 status = __spi_validate_bits_per_word(spi->controller,
3596                                                       spi->bits_per_word);
3597                 if (status)
3598                         return status;
3599         }
3600
3601         if (spi->controller->max_speed_hz &&
3602             (!spi->max_speed_hz ||
3603              spi->max_speed_hz > spi->controller->max_speed_hz))
3604                 spi->max_speed_hz = spi->controller->max_speed_hz;
3605
3606         mutex_lock(&spi->controller->io_mutex);
3607
3608         if (spi->controller->setup) {
3609                 status = spi->controller->setup(spi);
3610                 if (status) {
3611                         mutex_unlock(&spi->controller->io_mutex);
3612                         dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3613                                 status);
3614                         return status;
3615                 }
3616         }
3617
3618         if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3619                 status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3620                 if (status < 0) {
3621                         mutex_unlock(&spi->controller->io_mutex);
3622                         dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3623                                 status);
3624                         return status;
3625                 }
3626
3627                 /*
3628                  * We do not want to return positive value from pm_runtime_get,
3629                  * there are many instances of devices calling spi_setup() and
3630                  * checking for a non-zero return value instead of a negative
3631                  * return value.
3632                  */
3633                 status = 0;
3634
3635                 spi_set_cs(spi, false, true);
3636                 pm_runtime_mark_last_busy(spi->controller->dev.parent);
3637                 pm_runtime_put_autosuspend(spi->controller->dev.parent);
3638         } else {
3639                 spi_set_cs(spi, false, true);
3640         }
3641
3642         mutex_unlock(&spi->controller->io_mutex);
3643
3644         if (spi->rt && !spi->controller->rt) {
3645                 spi->controller->rt = true;
3646                 spi_set_thread_rt(spi->controller);
3647         }
3648
3649         trace_spi_setup(spi, status);
3650
3651         dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3652                         spi->mode & SPI_MODE_X_MASK,
3653                         (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3654                         (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3655                         (spi->mode & SPI_3WIRE) ? "3wire, " : "",
3656                         (spi->mode & SPI_LOOP) ? "loopback, " : "",
3657                         spi->bits_per_word, spi->max_speed_hz,
3658                         status);
3659
3660         return status;
3661 }
3662 EXPORT_SYMBOL_GPL(spi_setup);
3663
3664 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3665                                        struct spi_device *spi)
3666 {
3667         int delay1, delay2;
3668
3669         delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3670         if (delay1 < 0)
3671                 return delay1;
3672
3673         delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3674         if (delay2 < 0)
3675                 return delay2;
3676
3677         if (delay1 < delay2)
3678                 memcpy(&xfer->word_delay, &spi->word_delay,
3679                        sizeof(xfer->word_delay));
3680
3681         return 0;
3682 }
3683
3684 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3685 {
3686         struct spi_controller *ctlr = spi->controller;
3687         struct spi_transfer *xfer;
3688         int w_size;
3689
3690         if (list_empty(&message->transfers))
3691                 return -EINVAL;
3692
3693         /*
3694          * If an SPI controller does not support toggling the CS line on each
3695          * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3696          * for the CS line, we can emulate the CS-per-word hardware function by
3697          * splitting transfers into one-word transfers and ensuring that
3698          * cs_change is set for each transfer.
3699          */
3700         if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3701                                           spi->cs_gpiod)) {
3702                 size_t maxsize;
3703                 int ret;
3704
3705                 maxsize = (spi->bits_per_word + 7) / 8;
3706
3707                 /* spi_split_transfers_maxsize() requires message->spi */
3708                 message->spi = spi;
3709
3710                 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3711                                                   GFP_KERNEL);
3712                 if (ret)
3713                         return ret;
3714
3715                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3716                         /* Don't change cs_change on the last entry in the list */
3717                         if (list_is_last(&xfer->transfer_list, &message->transfers))
3718                                 break;
3719                         xfer->cs_change = 1;
3720                 }
3721         }
3722
3723         /*
3724          * Half-duplex links include original MicroWire, and ones with
3725          * only one data pin like SPI_3WIRE (switches direction) or where
3726          * either MOSI or MISO is missing.  They can also be caused by
3727          * software limitations.
3728          */
3729         if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3730             (spi->mode & SPI_3WIRE)) {
3731                 unsigned flags = ctlr->flags;
3732
3733                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3734                         if (xfer->rx_buf && xfer->tx_buf)
3735                                 return -EINVAL;
3736                         if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3737                                 return -EINVAL;
3738                         if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3739                                 return -EINVAL;
3740                 }
3741         }
3742
3743         /*
3744          * Set transfer bits_per_word and max speed as spi device default if
3745          * it is not set for this transfer.
3746          * Set transfer tx_nbits and rx_nbits as single transfer default
3747          * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3748          * Ensure transfer word_delay is at least as long as that required by
3749          * device itself.
3750          */
3751         message->frame_length = 0;
3752         list_for_each_entry(xfer, &message->transfers, transfer_list) {
3753                 xfer->effective_speed_hz = 0;
3754                 message->frame_length += xfer->len;
3755                 if (!xfer->bits_per_word)
3756                         xfer->bits_per_word = spi->bits_per_word;
3757
3758                 if (!xfer->speed_hz)
3759                         xfer->speed_hz = spi->max_speed_hz;
3760
3761                 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3762                         xfer->speed_hz = ctlr->max_speed_hz;
3763
3764                 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3765                         return -EINVAL;
3766
3767                 /*
3768                  * SPI transfer length should be multiple of SPI word size
3769                  * where SPI word size should be power-of-two multiple.
3770                  */
3771                 if (xfer->bits_per_word <= 8)
3772                         w_size = 1;
3773                 else if (xfer->bits_per_word <= 16)
3774                         w_size = 2;
3775                 else
3776                         w_size = 4;
3777
3778                 /* No partial transfers accepted */
3779                 if (xfer->len % w_size)
3780                         return -EINVAL;
3781
3782                 if (xfer->speed_hz && ctlr->min_speed_hz &&
3783                     xfer->speed_hz < ctlr->min_speed_hz)
3784                         return -EINVAL;
3785
3786                 if (xfer->tx_buf && !xfer->tx_nbits)
3787                         xfer->tx_nbits = SPI_NBITS_SINGLE;
3788                 if (xfer->rx_buf && !xfer->rx_nbits)
3789                         xfer->rx_nbits = SPI_NBITS_SINGLE;
3790                 /*
3791                  * Check transfer tx/rx_nbits:
3792                  * 1. check the value matches one of single, dual and quad
3793                  * 2. check tx/rx_nbits match the mode in spi_device
3794                  */
3795                 if (xfer->tx_buf) {
3796                         if (spi->mode & SPI_NO_TX)
3797                                 return -EINVAL;
3798                         if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3799                                 xfer->tx_nbits != SPI_NBITS_DUAL &&
3800                                 xfer->tx_nbits != SPI_NBITS_QUAD)
3801                                 return -EINVAL;
3802                         if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3803                                 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3804                                 return -EINVAL;
3805                         if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3806                                 !(spi->mode & SPI_TX_QUAD))
3807                                 return -EINVAL;
3808                 }
3809                 /* Check transfer rx_nbits */
3810                 if (xfer->rx_buf) {
3811                         if (spi->mode & SPI_NO_RX)
3812                                 return -EINVAL;
3813                         if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3814                                 xfer->rx_nbits != SPI_NBITS_DUAL &&
3815                                 xfer->rx_nbits != SPI_NBITS_QUAD)
3816                                 return -EINVAL;
3817                         if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3818                                 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3819                                 return -EINVAL;
3820                         if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3821                                 !(spi->mode & SPI_RX_QUAD))
3822                                 return -EINVAL;
3823                 }
3824
3825                 if (_spi_xfer_word_delay_update(xfer, spi))
3826                         return -EINVAL;
3827         }
3828
3829         message->status = -EINPROGRESS;
3830
3831         return 0;
3832 }
3833
3834 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3835 {
3836         struct spi_controller *ctlr = spi->controller;
3837         struct spi_transfer *xfer;
3838
3839         /*
3840          * Some controllers do not support doing regular SPI transfers. Return
3841          * ENOTSUPP when this is the case.
3842          */
3843         if (!ctlr->transfer)
3844                 return -ENOTSUPP;
3845
3846         message->spi = spi;
3847
3848         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
3849         SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
3850
3851         trace_spi_message_submit(message);
3852
3853         if (!ctlr->ptp_sts_supported) {
3854                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3855                         xfer->ptp_sts_word_pre = 0;
3856                         ptp_read_system_prets(xfer->ptp_sts);
3857                 }
3858         }
3859
3860         return ctlr->transfer(spi, message);
3861 }
3862
3863 /**
3864  * spi_async - asynchronous SPI transfer
3865  * @spi: device with which data will be exchanged
3866  * @message: describes the data transfers, including completion callback
3867  * Context: any (irqs may be blocked, etc)
3868  *
3869  * This call may be used in_irq and other contexts which can't sleep,
3870  * as well as from task contexts which can sleep.
3871  *
3872  * The completion callback is invoked in a context which can't sleep.
3873  * Before that invocation, the value of message->status is undefined.
3874  * When the callback is issued, message->status holds either zero (to
3875  * indicate complete success) or a negative error code.  After that
3876  * callback returns, the driver which issued the transfer request may
3877  * deallocate the associated memory; it's no longer in use by any SPI
3878  * core or controller driver code.
3879  *
3880  * Note that although all messages to a spi_device are handled in
3881  * FIFO order, messages may go to different devices in other orders.
3882  * Some device might be higher priority, or have various "hard" access
3883  * time requirements, for example.
3884  *
3885  * On detection of any fault during the transfer, processing of
3886  * the entire message is aborted, and the device is deselected.
3887  * Until returning from the associated message completion callback,
3888  * no other spi_message queued to that device will be processed.
3889  * (This rule applies equally to all the synchronous transfer calls,
3890  * which are wrappers around this core asynchronous primitive.)
3891  *
3892  * Return: zero on success, else a negative error code.
3893  */
3894 int spi_async(struct spi_device *spi, struct spi_message *message)
3895 {
3896         struct spi_controller *ctlr = spi->controller;
3897         int ret;
3898         unsigned long flags;
3899
3900         ret = __spi_validate(spi, message);
3901         if (ret != 0)
3902                 return ret;
3903
3904         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3905
3906         if (ctlr->bus_lock_flag)
3907                 ret = -EBUSY;
3908         else
3909                 ret = __spi_async(spi, message);
3910
3911         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3912
3913         return ret;
3914 }
3915 EXPORT_SYMBOL_GPL(spi_async);
3916
3917 /**
3918  * spi_async_locked - version of spi_async with exclusive bus usage
3919  * @spi: device with which data will be exchanged
3920  * @message: describes the data transfers, including completion callback
3921  * Context: any (irqs may be blocked, etc)
3922  *
3923  * This call may be used in_irq and other contexts which can't sleep,
3924  * as well as from task contexts which can sleep.
3925  *
3926  * The completion callback is invoked in a context which can't sleep.
3927  * Before that invocation, the value of message->status is undefined.
3928  * When the callback is issued, message->status holds either zero (to
3929  * indicate complete success) or a negative error code.  After that
3930  * callback returns, the driver which issued the transfer request may
3931  * deallocate the associated memory; it's no longer in use by any SPI
3932  * core or controller driver code.
3933  *
3934  * Note that although all messages to a spi_device are handled in
3935  * FIFO order, messages may go to different devices in other orders.
3936  * Some device might be higher priority, or have various "hard" access
3937  * time requirements, for example.
3938  *
3939  * On detection of any fault during the transfer, processing of
3940  * the entire message is aborted, and the device is deselected.
3941  * Until returning from the associated message completion callback,
3942  * no other spi_message queued to that device will be processed.
3943  * (This rule applies equally to all the synchronous transfer calls,
3944  * which are wrappers around this core asynchronous primitive.)
3945  *
3946  * Return: zero on success, else a negative error code.
3947  */
3948 static int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3949 {
3950         struct spi_controller *ctlr = spi->controller;
3951         int ret;
3952         unsigned long flags;
3953
3954         ret = __spi_validate(spi, message);
3955         if (ret != 0)
3956                 return ret;
3957
3958         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3959
3960         ret = __spi_async(spi, message);
3961
3962         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3963
3964         return ret;
3965
3966 }
3967
3968 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
3969 {
3970         bool was_busy;
3971         int ret;
3972
3973         mutex_lock(&ctlr->io_mutex);
3974
3975         was_busy = ctlr->busy;
3976
3977         ctlr->cur_msg = msg;
3978         ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
3979         if (ret)
3980                 goto out;
3981
3982         ctlr->cur_msg = NULL;
3983         ctlr->fallback = false;
3984
3985         if (!was_busy) {
3986                 kfree(ctlr->dummy_rx);
3987                 ctlr->dummy_rx = NULL;
3988                 kfree(ctlr->dummy_tx);
3989                 ctlr->dummy_tx = NULL;
3990                 if (ctlr->unprepare_transfer_hardware &&
3991                     ctlr->unprepare_transfer_hardware(ctlr))
3992                         dev_err(&ctlr->dev,
3993                                 "failed to unprepare transfer hardware\n");
3994                 spi_idle_runtime_pm(ctlr);
3995         }
3996
3997 out:
3998         mutex_unlock(&ctlr->io_mutex);
3999 }
4000
4001 /*-------------------------------------------------------------------------*/
4002
4003 /*
4004  * Utility methods for SPI protocol drivers, layered on
4005  * top of the core.  Some other utility methods are defined as
4006  * inline functions.
4007  */
4008
4009 static void spi_complete(void *arg)
4010 {
4011         complete(arg);
4012 }
4013
4014 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4015 {
4016         DECLARE_COMPLETION_ONSTACK(done);
4017         int status;
4018         struct spi_controller *ctlr = spi->controller;
4019
4020         status = __spi_validate(spi, message);
4021         if (status != 0)
4022                 return status;
4023
4024         message->spi = spi;
4025
4026         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4027         SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4028
4029         /*
4030          * Checking queue_empty here only guarantees async/sync message
4031          * ordering when coming from the same context. It does not need to
4032          * guard against reentrancy from a different context. The io_mutex
4033          * will catch those cases.
4034          */
4035         if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4036                 message->actual_length = 0;
4037                 message->status = -EINPROGRESS;
4038
4039                 trace_spi_message_submit(message);
4040
4041                 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4042                 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4043
4044                 __spi_transfer_message_noqueue(ctlr, message);
4045
4046                 return message->status;
4047         }
4048
4049         /*
4050          * There are messages in the async queue that could have originated
4051          * from the same context, so we need to preserve ordering.
4052          * Therefor we send the message to the async queue and wait until they
4053          * are completed.
4054          */
4055         message->complete = spi_complete;
4056         message->context = &done;
4057         status = spi_async_locked(spi, message);
4058         if (status == 0) {
4059                 wait_for_completion(&done);
4060                 status = message->status;
4061         }
4062         message->context = NULL;
4063
4064         return status;
4065 }
4066
4067 /**
4068  * spi_sync - blocking/synchronous SPI data transfers
4069  * @spi: device with which data will be exchanged
4070  * @message: describes the data transfers
4071  * Context: can sleep
4072  *
4073  * This call may only be used from a context that may sleep.  The sleep
4074  * is non-interruptible, and has no timeout.  Low-overhead controller
4075  * drivers may DMA directly into and out of the message buffers.
4076  *
4077  * Note that the SPI device's chip select is active during the message,
4078  * and then is normally disabled between messages.  Drivers for some
4079  * frequently-used devices may want to minimize costs of selecting a chip,
4080  * by leaving it selected in anticipation that the next message will go
4081  * to the same chip.  (That may increase power usage.)
4082  *
4083  * Also, the caller is guaranteeing that the memory associated with the
4084  * message will not be freed before this call returns.
4085  *
4086  * Return: zero on success, else a negative error code.
4087  */
4088 int spi_sync(struct spi_device *spi, struct spi_message *message)
4089 {
4090         int ret;
4091
4092         mutex_lock(&spi->controller->bus_lock_mutex);
4093         ret = __spi_sync(spi, message);
4094         mutex_unlock(&spi->controller->bus_lock_mutex);
4095
4096         return ret;
4097 }
4098 EXPORT_SYMBOL_GPL(spi_sync);
4099
4100 /**
4101  * spi_sync_locked - version of spi_sync with exclusive bus usage
4102  * @spi: device with which data will be exchanged
4103  * @message: describes the data transfers
4104  * Context: can sleep
4105  *
4106  * This call may only be used from a context that may sleep.  The sleep
4107  * is non-interruptible, and has no timeout.  Low-overhead controller
4108  * drivers may DMA directly into and out of the message buffers.
4109  *
4110  * This call should be used by drivers that require exclusive access to the
4111  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4112  * be released by a spi_bus_unlock call when the exclusive access is over.
4113  *
4114  * Return: zero on success, else a negative error code.
4115  */
4116 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4117 {
4118         return __spi_sync(spi, message);
4119 }
4120 EXPORT_SYMBOL_GPL(spi_sync_locked);
4121
4122 /**
4123  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4124  * @ctlr: SPI bus master that should be locked for exclusive bus access
4125  * Context: can sleep
4126  *
4127  * This call may only be used from a context that may sleep.  The sleep
4128  * is non-interruptible, and has no timeout.
4129  *
4130  * This call should be used by drivers that require exclusive access to the
4131  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4132  * exclusive access is over. Data transfer must be done by spi_sync_locked
4133  * and spi_async_locked calls when the SPI bus lock is held.
4134  *
4135  * Return: always zero.
4136  */
4137 int spi_bus_lock(struct spi_controller *ctlr)
4138 {
4139         unsigned long flags;
4140
4141         mutex_lock(&ctlr->bus_lock_mutex);
4142
4143         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4144         ctlr->bus_lock_flag = 1;
4145         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4146
4147         /* Mutex remains locked until spi_bus_unlock() is called */
4148
4149         return 0;
4150 }
4151 EXPORT_SYMBOL_GPL(spi_bus_lock);
4152
4153 /**
4154  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4155  * @ctlr: SPI bus master that was locked for exclusive bus access
4156  * Context: can sleep
4157  *
4158  * This call may only be used from a context that may sleep.  The sleep
4159  * is non-interruptible, and has no timeout.
4160  *
4161  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4162  * call.
4163  *
4164  * Return: always zero.
4165  */
4166 int spi_bus_unlock(struct spi_controller *ctlr)
4167 {
4168         ctlr->bus_lock_flag = 0;
4169
4170         mutex_unlock(&ctlr->bus_lock_mutex);
4171
4172         return 0;
4173 }
4174 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4175
4176 /* Portable code must never pass more than 32 bytes */
4177 #define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
4178
4179 static u8       *buf;
4180
4181 /**
4182  * spi_write_then_read - SPI synchronous write followed by read
4183  * @spi: device with which data will be exchanged
4184  * @txbuf: data to be written (need not be dma-safe)
4185  * @n_tx: size of txbuf, in bytes
4186  * @rxbuf: buffer into which data will be read (need not be dma-safe)
4187  * @n_rx: size of rxbuf, in bytes
4188  * Context: can sleep
4189  *
4190  * This performs a half duplex MicroWire style transaction with the
4191  * device, sending txbuf and then reading rxbuf.  The return value
4192  * is zero for success, else a negative errno status code.
4193  * This call may only be used from a context that may sleep.
4194  *
4195  * Parameters to this routine are always copied using a small buffer.
4196  * Performance-sensitive or bulk transfer code should instead use
4197  * spi_{async,sync}() calls with dma-safe buffers.
4198  *
4199  * Return: zero on success, else a negative error code.
4200  */
4201 int spi_write_then_read(struct spi_device *spi,
4202                 const void *txbuf, unsigned n_tx,
4203                 void *rxbuf, unsigned n_rx)
4204 {
4205         static DEFINE_MUTEX(lock);
4206
4207         int                     status;
4208         struct spi_message      message;
4209         struct spi_transfer     x[2];
4210         u8                      *local_buf;
4211
4212         /*
4213          * Use preallocated DMA-safe buffer if we can. We can't avoid
4214          * copying here, (as a pure convenience thing), but we can
4215          * keep heap costs out of the hot path unless someone else is
4216          * using the pre-allocated buffer or the transfer is too large.
4217          */
4218         if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4219                 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4220                                     GFP_KERNEL | GFP_DMA);
4221                 if (!local_buf)
4222                         return -ENOMEM;
4223         } else {
4224                 local_buf = buf;
4225         }
4226
4227         spi_message_init(&message);
4228         memset(x, 0, sizeof(x));
4229         if (n_tx) {
4230                 x[0].len = n_tx;
4231                 spi_message_add_tail(&x[0], &message);
4232         }
4233         if (n_rx) {
4234                 x[1].len = n_rx;
4235                 spi_message_add_tail(&x[1], &message);
4236         }
4237
4238         memcpy(local_buf, txbuf, n_tx);
4239         x[0].tx_buf = local_buf;
4240         x[1].rx_buf = local_buf + n_tx;
4241
4242         /* Do the i/o */
4243         status = spi_sync(spi, &message);
4244         if (status == 0)
4245                 memcpy(rxbuf, x[1].rx_buf, n_rx);
4246
4247         if (x[0].tx_buf == buf)
4248                 mutex_unlock(&lock);
4249         else
4250                 kfree(local_buf);
4251
4252         return status;
4253 }
4254 EXPORT_SYMBOL_GPL(spi_write_then_read);
4255
4256 /*-------------------------------------------------------------------------*/
4257
4258 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4259 /* Must call put_device() when done with returned spi_device device */
4260 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4261 {
4262         struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4263
4264         return dev ? to_spi_device(dev) : NULL;
4265 }
4266
4267 /* The spi controllers are not using spi_bus, so we find it with another way */
4268 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4269 {
4270         struct device *dev;
4271
4272         dev = class_find_device_by_of_node(&spi_master_class, node);
4273         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4274                 dev = class_find_device_by_of_node(&spi_slave_class, node);
4275         if (!dev)
4276                 return NULL;
4277
4278         /* Reference got in class_find_device */
4279         return container_of(dev, struct spi_controller, dev);
4280 }
4281
4282 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4283                          void *arg)
4284 {
4285         struct of_reconfig_data *rd = arg;
4286         struct spi_controller *ctlr;
4287         struct spi_device *spi;
4288
4289         switch (of_reconfig_get_state_change(action, arg)) {
4290         case OF_RECONFIG_CHANGE_ADD:
4291                 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4292                 if (ctlr == NULL)
4293                         return NOTIFY_OK;       /* Not for us */
4294
4295                 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4296                         put_device(&ctlr->dev);
4297                         return NOTIFY_OK;
4298                 }
4299
4300                 spi = of_register_spi_device(ctlr, rd->dn);
4301                 put_device(&ctlr->dev);
4302
4303                 if (IS_ERR(spi)) {
4304                         pr_err("%s: failed to create for '%pOF'\n",
4305                                         __func__, rd->dn);
4306                         of_node_clear_flag(rd->dn, OF_POPULATED);
4307                         return notifier_from_errno(PTR_ERR(spi));
4308                 }
4309                 break;
4310
4311         case OF_RECONFIG_CHANGE_REMOVE:
4312                 /* Already depopulated? */
4313                 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4314                         return NOTIFY_OK;
4315
4316                 /* Find our device by node */
4317                 spi = of_find_spi_device_by_node(rd->dn);
4318                 if (spi == NULL)
4319                         return NOTIFY_OK;       /* No? not meant for us */
4320
4321                 /* Unregister takes one ref away */
4322                 spi_unregister_device(spi);
4323
4324                 /* And put the reference of the find */
4325                 put_device(&spi->dev);
4326                 break;
4327         }
4328
4329         return NOTIFY_OK;
4330 }
4331
4332 static struct notifier_block spi_of_notifier = {
4333         .notifier_call = of_spi_notify,
4334 };
4335 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4336 extern struct notifier_block spi_of_notifier;
4337 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4338
4339 #if IS_ENABLED(CONFIG_ACPI)
4340 static int spi_acpi_controller_match(struct device *dev, const void *data)
4341 {
4342         return ACPI_COMPANION(dev->parent) == data;
4343 }
4344
4345 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4346 {
4347         struct device *dev;
4348
4349         dev = class_find_device(&spi_master_class, NULL, adev,
4350                                 spi_acpi_controller_match);
4351         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4352                 dev = class_find_device(&spi_slave_class, NULL, adev,
4353                                         spi_acpi_controller_match);
4354         if (!dev)
4355                 return NULL;
4356
4357         return container_of(dev, struct spi_controller, dev);
4358 }
4359
4360 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4361 {
4362         struct device *dev;
4363
4364         dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4365         return to_spi_device(dev);
4366 }
4367
4368 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4369                            void *arg)
4370 {
4371         struct acpi_device *adev = arg;
4372         struct spi_controller *ctlr;
4373         struct spi_device *spi;
4374
4375         switch (value) {
4376         case ACPI_RECONFIG_DEVICE_ADD:
4377                 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4378                 if (!ctlr)
4379                         break;
4380
4381                 acpi_register_spi_device(ctlr, adev);
4382                 put_device(&ctlr->dev);
4383                 break;
4384         case ACPI_RECONFIG_DEVICE_REMOVE:
4385                 if (!acpi_device_enumerated(adev))
4386                         break;
4387
4388                 spi = acpi_spi_find_device_by_adev(adev);
4389                 if (!spi)
4390                         break;
4391
4392                 spi_unregister_device(spi);
4393                 put_device(&spi->dev);
4394                 break;
4395         }
4396
4397         return NOTIFY_OK;
4398 }
4399
4400 static struct notifier_block spi_acpi_notifier = {
4401         .notifier_call = acpi_spi_notify,
4402 };
4403 #else
4404 extern struct notifier_block spi_acpi_notifier;
4405 #endif
4406
4407 static int __init spi_init(void)
4408 {
4409         int     status;
4410
4411         buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4412         if (!buf) {
4413                 status = -ENOMEM;
4414                 goto err0;
4415         }
4416
4417         status = bus_register(&spi_bus_type);
4418         if (status < 0)
4419                 goto err1;
4420
4421         status = class_register(&spi_master_class);
4422         if (status < 0)
4423                 goto err2;
4424
4425         if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4426                 status = class_register(&spi_slave_class);
4427                 if (status < 0)
4428                         goto err3;
4429         }
4430
4431         if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4432                 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4433         if (IS_ENABLED(CONFIG_ACPI))
4434                 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4435
4436         return 0;
4437
4438 err3:
4439         class_unregister(&spi_master_class);
4440 err2:
4441         bus_unregister(&spi_bus_type);
4442 err1:
4443         kfree(buf);
4444         buf = NULL;
4445 err0:
4446         return status;
4447 }
4448
4449 /*
4450  * A board_info is normally registered in arch_initcall(),
4451  * but even essential drivers wait till later.
4452  *
4453  * REVISIT only boardinfo really needs static linking. The rest (device and
4454  * driver registration) _could_ be dynamically linked (modular) ... Costs
4455  * include needing to have boardinfo data structures be much more public.
4456  */
4457 postcore_initcall(spi_init);