1 // SPDX-License-Identifier: GPL-2.0-or-later
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
7 #include <linux/acpi.h>
8 #include <linux/cache.h>
9 #include <linux/clk/clk-conf.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/export.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/highmem.h>
17 #include <linux/idr.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/kernel.h>
21 #include <linux/kthread.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mutex.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/percpu.h>
27 #include <linux/platform_data/x86/apple.h>
28 #include <linux/pm_domain.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/property.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/sched/rt.h>
33 #include <linux/slab.h>
34 #include <linux/spi/spi.h>
35 #include <linux/spi/spi-mem.h>
36 #include <uapi/linux/sched/types.h>
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
43 #include "internals.h"
45 static DEFINE_IDR(spi_master_idr);
47 static void spidev_release(struct device *dev)
49 struct spi_device *spi = to_spi_device(dev);
51 spi_controller_put(spi->controller);
52 kfree(spi->driver_override);
53 free_percpu(spi->pcpu_statistics);
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
60 const struct spi_device *spi = to_spi_device(dev);
63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
67 return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
69 static DEVICE_ATTR_RO(modalias);
71 static ssize_t driver_override_store(struct device *dev,
72 struct device_attribute *a,
73 const char *buf, size_t count)
75 struct spi_device *spi = to_spi_device(dev);
78 ret = driver_set_override(dev, &spi->driver_override, buf, count);
85 static ssize_t driver_override_show(struct device *dev,
86 struct device_attribute *a, char *buf)
88 const struct spi_device *spi = to_spi_device(dev);
92 len = sysfs_emit(buf, "%s\n", spi->driver_override ? : "");
96 static DEVICE_ATTR_RW(driver_override);
98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
100 struct spi_statistics __percpu *pcpu_stats;
103 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
105 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
110 for_each_possible_cpu(cpu) {
111 struct spi_statistics *stat;
113 stat = per_cpu_ptr(pcpu_stats, cpu);
114 u64_stats_init(&stat->syncp);
120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
121 char *buf, size_t offset)
126 for_each_possible_cpu(i) {
127 const struct spi_statistics *pcpu_stats;
132 pcpu_stats = per_cpu_ptr(stat, i);
133 field = (void *)pcpu_stats + offset;
135 start = u64_stats_fetch_begin(&pcpu_stats->syncp);
136 inc = u64_stats_read(field);
137 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
140 return sysfs_emit(buf, "%llu\n", val);
143 #define SPI_STATISTICS_ATTRS(field, file) \
144 static ssize_t spi_controller_##field##_show(struct device *dev, \
145 struct device_attribute *attr, \
148 struct spi_controller *ctlr = container_of(dev, \
149 struct spi_controller, dev); \
150 return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
152 static struct device_attribute dev_attr_spi_controller_##field = { \
153 .attr = { .name = file, .mode = 0444 }, \
154 .show = spi_controller_##field##_show, \
156 static ssize_t spi_device_##field##_show(struct device *dev, \
157 struct device_attribute *attr, \
160 struct spi_device *spi = to_spi_device(dev); \
161 return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
163 static struct device_attribute dev_attr_spi_device_##field = { \
164 .attr = { .name = file, .mode = 0444 }, \
165 .show = spi_device_##field##_show, \
168 #define SPI_STATISTICS_SHOW_NAME(name, file, field) \
169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
172 return spi_emit_pcpu_stats(stat, buf, \
173 offsetof(struct spi_statistics, field)); \
175 SPI_STATISTICS_ATTRS(name, file)
177 #define SPI_STATISTICS_SHOW(field) \
178 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
181 SPI_STATISTICS_SHOW(messages);
182 SPI_STATISTICS_SHOW(transfers);
183 SPI_STATISTICS_SHOW(errors);
184 SPI_STATISTICS_SHOW(timedout);
186 SPI_STATISTICS_SHOW(spi_sync);
187 SPI_STATISTICS_SHOW(spi_sync_immediate);
188 SPI_STATISTICS_SHOW(spi_async);
190 SPI_STATISTICS_SHOW(bytes);
191 SPI_STATISTICS_SHOW(bytes_rx);
192 SPI_STATISTICS_SHOW(bytes_tx);
194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
195 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
196 "transfer_bytes_histo_" number, \
197 transfer_bytes_histo[index])
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
216 SPI_STATISTICS_SHOW(transfers_split_maxsize);
218 static struct attribute *spi_dev_attrs[] = {
219 &dev_attr_modalias.attr,
220 &dev_attr_driver_override.attr,
224 static const struct attribute_group spi_dev_group = {
225 .attrs = spi_dev_attrs,
228 static struct attribute *spi_device_statistics_attrs[] = {
229 &dev_attr_spi_device_messages.attr,
230 &dev_attr_spi_device_transfers.attr,
231 &dev_attr_spi_device_errors.attr,
232 &dev_attr_spi_device_timedout.attr,
233 &dev_attr_spi_device_spi_sync.attr,
234 &dev_attr_spi_device_spi_sync_immediate.attr,
235 &dev_attr_spi_device_spi_async.attr,
236 &dev_attr_spi_device_bytes.attr,
237 &dev_attr_spi_device_bytes_rx.attr,
238 &dev_attr_spi_device_bytes_tx.attr,
239 &dev_attr_spi_device_transfer_bytes_histo0.attr,
240 &dev_attr_spi_device_transfer_bytes_histo1.attr,
241 &dev_attr_spi_device_transfer_bytes_histo2.attr,
242 &dev_attr_spi_device_transfer_bytes_histo3.attr,
243 &dev_attr_spi_device_transfer_bytes_histo4.attr,
244 &dev_attr_spi_device_transfer_bytes_histo5.attr,
245 &dev_attr_spi_device_transfer_bytes_histo6.attr,
246 &dev_attr_spi_device_transfer_bytes_histo7.attr,
247 &dev_attr_spi_device_transfer_bytes_histo8.attr,
248 &dev_attr_spi_device_transfer_bytes_histo9.attr,
249 &dev_attr_spi_device_transfer_bytes_histo10.attr,
250 &dev_attr_spi_device_transfer_bytes_histo11.attr,
251 &dev_attr_spi_device_transfer_bytes_histo12.attr,
252 &dev_attr_spi_device_transfer_bytes_histo13.attr,
253 &dev_attr_spi_device_transfer_bytes_histo14.attr,
254 &dev_attr_spi_device_transfer_bytes_histo15.attr,
255 &dev_attr_spi_device_transfer_bytes_histo16.attr,
256 &dev_attr_spi_device_transfers_split_maxsize.attr,
260 static const struct attribute_group spi_device_statistics_group = {
261 .name = "statistics",
262 .attrs = spi_device_statistics_attrs,
265 static const struct attribute_group *spi_dev_groups[] = {
267 &spi_device_statistics_group,
271 static struct attribute *spi_controller_statistics_attrs[] = {
272 &dev_attr_spi_controller_messages.attr,
273 &dev_attr_spi_controller_transfers.attr,
274 &dev_attr_spi_controller_errors.attr,
275 &dev_attr_spi_controller_timedout.attr,
276 &dev_attr_spi_controller_spi_sync.attr,
277 &dev_attr_spi_controller_spi_sync_immediate.attr,
278 &dev_attr_spi_controller_spi_async.attr,
279 &dev_attr_spi_controller_bytes.attr,
280 &dev_attr_spi_controller_bytes_rx.attr,
281 &dev_attr_spi_controller_bytes_tx.attr,
282 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
283 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
284 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
285 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
286 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
287 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
288 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
289 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
290 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
291 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
292 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
293 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
294 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
295 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
296 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
297 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
298 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
299 &dev_attr_spi_controller_transfers_split_maxsize.attr,
303 static const struct attribute_group spi_controller_statistics_group = {
304 .name = "statistics",
305 .attrs = spi_controller_statistics_attrs,
308 static const struct attribute_group *spi_master_groups[] = {
309 &spi_controller_statistics_group,
313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
314 struct spi_transfer *xfer,
315 struct spi_controller *ctlr)
317 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
318 struct spi_statistics *stats;
324 stats = this_cpu_ptr(pcpu_stats);
325 u64_stats_update_begin(&stats->syncp);
327 u64_stats_inc(&stats->transfers);
328 u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
330 u64_stats_add(&stats->bytes, xfer->len);
331 if ((xfer->tx_buf) &&
332 (xfer->tx_buf != ctlr->dummy_tx))
333 u64_stats_add(&stats->bytes_tx, xfer->len);
334 if ((xfer->rx_buf) &&
335 (xfer->rx_buf != ctlr->dummy_rx))
336 u64_stats_add(&stats->bytes_rx, xfer->len);
338 u64_stats_update_end(&stats->syncp);
343 * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
344 * and the sysfs version makes coldplug work too.
346 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
348 while (id->name[0]) {
349 if (!strcmp(name, id->name))
356 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
358 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
360 return spi_match_id(sdrv->id_table, sdev->modalias);
362 EXPORT_SYMBOL_GPL(spi_get_device_id);
364 const void *spi_get_device_match_data(const struct spi_device *sdev)
368 match = device_get_match_data(&sdev->dev);
372 return (const void *)spi_get_device_id(sdev)->driver_data;
374 EXPORT_SYMBOL_GPL(spi_get_device_match_data);
376 static int spi_match_device(struct device *dev, struct device_driver *drv)
378 const struct spi_device *spi = to_spi_device(dev);
379 const struct spi_driver *sdrv = to_spi_driver(drv);
381 /* Check override first, and if set, only use the named driver */
382 if (spi->driver_override)
383 return strcmp(spi->driver_override, drv->name) == 0;
385 /* Attempt an OF style match */
386 if (of_driver_match_device(dev, drv))
390 if (acpi_driver_match_device(dev, drv))
394 return !!spi_match_id(sdrv->id_table, spi->modalias);
396 return strcmp(spi->modalias, drv->name) == 0;
399 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
401 const struct spi_device *spi = to_spi_device(dev);
404 rc = acpi_device_uevent_modalias(dev, env);
408 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
411 static int spi_probe(struct device *dev)
413 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
414 struct spi_device *spi = to_spi_device(dev);
417 ret = of_clk_set_defaults(dev->of_node, false);
422 spi->irq = of_irq_get(dev->of_node, 0);
423 if (spi->irq == -EPROBE_DEFER)
424 return -EPROBE_DEFER;
429 ret = dev_pm_domain_attach(dev, true);
434 ret = sdrv->probe(spi);
436 dev_pm_domain_detach(dev, true);
442 static void spi_remove(struct device *dev)
444 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
447 sdrv->remove(to_spi_device(dev));
449 dev_pm_domain_detach(dev, true);
452 static void spi_shutdown(struct device *dev)
455 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
458 sdrv->shutdown(to_spi_device(dev));
462 struct bus_type spi_bus_type = {
464 .dev_groups = spi_dev_groups,
465 .match = spi_match_device,
466 .uevent = spi_uevent,
468 .remove = spi_remove,
469 .shutdown = spi_shutdown,
471 EXPORT_SYMBOL_GPL(spi_bus_type);
474 * __spi_register_driver - register a SPI driver
475 * @owner: owner module of the driver to register
476 * @sdrv: the driver to register
479 * Return: zero on success, else a negative error code.
481 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
483 sdrv->driver.owner = owner;
484 sdrv->driver.bus = &spi_bus_type;
487 * For Really Good Reasons we use spi: modaliases not of:
488 * modaliases for DT so module autoloading won't work if we
489 * don't have a spi_device_id as well as a compatible string.
491 if (sdrv->driver.of_match_table) {
492 const struct of_device_id *of_id;
494 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
498 /* Strip off any vendor prefix */
499 of_name = strnchr(of_id->compatible,
500 sizeof(of_id->compatible), ',');
504 of_name = of_id->compatible;
506 if (sdrv->id_table) {
507 const struct spi_device_id *spi_id;
509 spi_id = spi_match_id(sdrv->id_table, of_name);
513 if (strcmp(sdrv->driver.name, of_name) == 0)
517 pr_warn("SPI driver %s has no spi_device_id for %s\n",
518 sdrv->driver.name, of_id->compatible);
522 return driver_register(&sdrv->driver);
524 EXPORT_SYMBOL_GPL(__spi_register_driver);
526 /*-------------------------------------------------------------------------*/
529 * SPI devices should normally not be created by SPI device drivers; that
530 * would make them board-specific. Similarly with SPI controller drivers.
531 * Device registration normally goes into like arch/.../mach.../board-YYY.c
532 * with other readonly (flashable) information about mainboard devices.
536 struct list_head list;
537 struct spi_board_info board_info;
540 static LIST_HEAD(board_list);
541 static LIST_HEAD(spi_controller_list);
544 * Used to protect add/del operation for board_info list and
545 * spi_controller list, and their matching process also used
546 * to protect object of type struct idr.
548 static DEFINE_MUTEX(board_lock);
551 * spi_alloc_device - Allocate a new SPI device
552 * @ctlr: Controller to which device is connected
555 * Allows a driver to allocate and initialize a spi_device without
556 * registering it immediately. This allows a driver to directly
557 * fill the spi_device with device parameters before calling
558 * spi_add_device() on it.
560 * Caller is responsible to call spi_add_device() on the returned
561 * spi_device structure to add it to the SPI controller. If the caller
562 * needs to discard the spi_device without adding it, then it should
563 * call spi_dev_put() on it.
565 * Return: a pointer to the new device, or NULL.
567 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
569 struct spi_device *spi;
571 if (!spi_controller_get(ctlr))
574 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
576 spi_controller_put(ctlr);
580 spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
581 if (!spi->pcpu_statistics) {
583 spi_controller_put(ctlr);
587 spi->master = spi->controller = ctlr;
588 spi->dev.parent = &ctlr->dev;
589 spi->dev.bus = &spi_bus_type;
590 spi->dev.release = spidev_release;
591 spi->mode = ctlr->buswidth_override_bits;
593 device_initialize(&spi->dev);
596 EXPORT_SYMBOL_GPL(spi_alloc_device);
598 static void spi_dev_set_name(struct spi_device *spi)
600 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
603 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
607 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
608 spi_get_chipselect(spi, 0));
611 static int spi_dev_check(struct device *dev, void *data)
613 struct spi_device *spi = to_spi_device(dev);
614 struct spi_device *new_spi = data;
616 if (spi->controller == new_spi->controller &&
617 spi_get_chipselect(spi, 0) == spi_get_chipselect(new_spi, 0))
622 static void spi_cleanup(struct spi_device *spi)
624 if (spi->controller->cleanup)
625 spi->controller->cleanup(spi);
628 static int __spi_add_device(struct spi_device *spi)
630 struct spi_controller *ctlr = spi->controller;
631 struct device *dev = ctlr->dev.parent;
634 /* Chipselects are numbered 0..max; validate. */
635 if (spi_get_chipselect(spi, 0) >= ctlr->num_chipselect) {
636 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, 0),
637 ctlr->num_chipselect);
641 /* Set the bus ID string */
642 spi_dev_set_name(spi);
645 * We need to make sure there's no other device with this
646 * chipselect **BEFORE** we call setup(), else we'll trash
649 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
651 dev_err(dev, "chipselect %d already in use\n",
652 spi_get_chipselect(spi, 0));
656 /* Controller may unregister concurrently */
657 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
658 !device_is_registered(&ctlr->dev)) {
663 spi_set_csgpiod(spi, 0, ctlr->cs_gpiods[spi_get_chipselect(spi, 0)]);
666 * Drivers may modify this initial i/o setup, but will
667 * normally rely on the device being setup. Devices
668 * using SPI_CS_HIGH can't coexist well otherwise...
670 status = spi_setup(spi);
672 dev_err(dev, "can't setup %s, status %d\n",
673 dev_name(&spi->dev), status);
677 /* Device may be bound to an active driver when this returns */
678 status = device_add(&spi->dev);
680 dev_err(dev, "can't add %s, status %d\n",
681 dev_name(&spi->dev), status);
684 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
691 * spi_add_device - Add spi_device allocated with spi_alloc_device
692 * @spi: spi_device to register
694 * Companion function to spi_alloc_device. Devices allocated with
695 * spi_alloc_device can be added onto the SPI bus with this function.
697 * Return: 0 on success; negative errno on failure
699 int spi_add_device(struct spi_device *spi)
701 struct spi_controller *ctlr = spi->controller;
704 mutex_lock(&ctlr->add_lock);
705 status = __spi_add_device(spi);
706 mutex_unlock(&ctlr->add_lock);
709 EXPORT_SYMBOL_GPL(spi_add_device);
712 * spi_new_device - instantiate one new SPI device
713 * @ctlr: Controller to which device is connected
714 * @chip: Describes the SPI device
717 * On typical mainboards, this is purely internal; and it's not needed
718 * after board init creates the hard-wired devices. Some development
719 * platforms may not be able to use spi_register_board_info though, and
720 * this is exported so that for example a USB or parport based adapter
721 * driver could add devices (which it would learn about out-of-band).
723 * Return: the new device, or NULL.
725 struct spi_device *spi_new_device(struct spi_controller *ctlr,
726 struct spi_board_info *chip)
728 struct spi_device *proxy;
732 * NOTE: caller did any chip->bus_num checks necessary.
734 * Also, unless we change the return value convention to use
735 * error-or-pointer (not NULL-or-pointer), troubleshootability
736 * suggests syslogged diagnostics are best here (ugh).
739 proxy = spi_alloc_device(ctlr);
743 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
745 spi_set_chipselect(proxy, 0, chip->chip_select);
746 proxy->max_speed_hz = chip->max_speed_hz;
747 proxy->mode = chip->mode;
748 proxy->irq = chip->irq;
749 strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
750 proxy->dev.platform_data = (void *) chip->platform_data;
751 proxy->controller_data = chip->controller_data;
752 proxy->controller_state = NULL;
755 status = device_add_software_node(&proxy->dev, chip->swnode);
757 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
758 chip->modalias, status);
763 status = spi_add_device(proxy);
770 device_remove_software_node(&proxy->dev);
774 EXPORT_SYMBOL_GPL(spi_new_device);
777 * spi_unregister_device - unregister a single SPI device
778 * @spi: spi_device to unregister
780 * Start making the passed SPI device vanish. Normally this would be handled
781 * by spi_unregister_controller().
783 void spi_unregister_device(struct spi_device *spi)
788 if (spi->dev.of_node) {
789 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
790 of_node_put(spi->dev.of_node);
792 if (ACPI_COMPANION(&spi->dev))
793 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
794 device_remove_software_node(&spi->dev);
795 device_del(&spi->dev);
797 put_device(&spi->dev);
799 EXPORT_SYMBOL_GPL(spi_unregister_device);
801 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
802 struct spi_board_info *bi)
804 struct spi_device *dev;
806 if (ctlr->bus_num != bi->bus_num)
809 dev = spi_new_device(ctlr, bi);
811 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
816 * spi_register_board_info - register SPI devices for a given board
817 * @info: array of chip descriptors
818 * @n: how many descriptors are provided
821 * Board-specific early init code calls this (probably during arch_initcall)
822 * with segments of the SPI device table. Any device nodes are created later,
823 * after the relevant parent SPI controller (bus_num) is defined. We keep
824 * this table of devices forever, so that reloading a controller driver will
825 * not make Linux forget about these hard-wired devices.
827 * Other code can also call this, e.g. a particular add-on board might provide
828 * SPI devices through its expansion connector, so code initializing that board
829 * would naturally declare its SPI devices.
831 * The board info passed can safely be __initdata ... but be careful of
832 * any embedded pointers (platform_data, etc), they're copied as-is.
834 * Return: zero on success, else a negative error code.
836 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
838 struct boardinfo *bi;
844 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
848 for (i = 0; i < n; i++, bi++, info++) {
849 struct spi_controller *ctlr;
851 memcpy(&bi->board_info, info, sizeof(*info));
853 mutex_lock(&board_lock);
854 list_add_tail(&bi->list, &board_list);
855 list_for_each_entry(ctlr, &spi_controller_list, list)
856 spi_match_controller_to_boardinfo(ctlr,
858 mutex_unlock(&board_lock);
864 /*-------------------------------------------------------------------------*/
866 /* Core methods for SPI resource management */
869 * spi_res_alloc - allocate a spi resource that is life-cycle managed
870 * during the processing of a spi_message while using
872 * @spi: the SPI device for which we allocate memory
873 * @release: the release code to execute for this resource
874 * @size: size to alloc and return
875 * @gfp: GFP allocation flags
877 * Return: the pointer to the allocated data
879 * This may get enhanced in the future to allocate from a memory pool
880 * of the @spi_device or @spi_controller to avoid repeated allocations.
882 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
883 size_t size, gfp_t gfp)
885 struct spi_res *sres;
887 sres = kzalloc(sizeof(*sres) + size, gfp);
891 INIT_LIST_HEAD(&sres->entry);
892 sres->release = release;
898 * spi_res_free - free an SPI resource
899 * @res: pointer to the custom data of a resource
901 static void spi_res_free(void *res)
903 struct spi_res *sres = container_of(res, struct spi_res, data);
908 WARN_ON(!list_empty(&sres->entry));
913 * spi_res_add - add a spi_res to the spi_message
914 * @message: the SPI message
915 * @res: the spi_resource
917 static void spi_res_add(struct spi_message *message, void *res)
919 struct spi_res *sres = container_of(res, struct spi_res, data);
921 WARN_ON(!list_empty(&sres->entry));
922 list_add_tail(&sres->entry, &message->resources);
926 * spi_res_release - release all SPI resources for this message
927 * @ctlr: the @spi_controller
928 * @message: the @spi_message
930 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
932 struct spi_res *res, *tmp;
934 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
936 res->release(ctlr, message, res->data);
938 list_del(&res->entry);
944 /*-------------------------------------------------------------------------*/
946 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
948 bool activate = enable;
951 * Avoid calling into the driver (or doing delays) if the chip select
952 * isn't actually changing from the last time this was called.
954 if (!force && ((enable && spi->controller->last_cs == spi_get_chipselect(spi, 0)) ||
955 (!enable && spi->controller->last_cs != spi_get_chipselect(spi, 0))) &&
956 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
959 trace_spi_set_cs(spi, activate);
961 spi->controller->last_cs = enable ? spi_get_chipselect(spi, 0) : -1;
962 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
964 if ((spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) && !activate)
965 spi_delay_exec(&spi->cs_hold, NULL);
967 if (spi->mode & SPI_CS_HIGH)
970 if (spi_get_csgpiod(spi, 0)) {
971 if (!(spi->mode & SPI_NO_CS)) {
973 * Historically ACPI has no means of the GPIO polarity and
974 * thus the SPISerialBus() resource defines it on the per-chip
975 * basis. In order to avoid a chain of negations, the GPIO
976 * polarity is considered being Active High. Even for the cases
977 * when _DSD() is involved (in the updated versions of ACPI)
978 * the GPIO CS polarity must be defined Active High to avoid
979 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
982 if (has_acpi_companion(&spi->dev))
983 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), !enable);
985 /* Polarity handled by GPIO library */
986 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), activate);
988 /* Some SPI masters need both GPIO CS & slave_select */
989 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) &&
990 spi->controller->set_cs)
991 spi->controller->set_cs(spi, !enable);
992 } else if (spi->controller->set_cs) {
993 spi->controller->set_cs(spi, !enable);
996 if (spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) {
998 spi_delay_exec(&spi->cs_setup, NULL);
1000 spi_delay_exec(&spi->cs_inactive, NULL);
1004 #ifdef CONFIG_HAS_DMA
1005 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1006 struct sg_table *sgt, void *buf, size_t len,
1007 enum dma_data_direction dir, unsigned long attrs)
1009 const bool vmalloced_buf = is_vmalloc_addr(buf);
1010 unsigned int max_seg_size = dma_get_max_seg_size(dev);
1011 #ifdef CONFIG_HIGHMEM
1012 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1013 (unsigned long)buf < (PKMAP_BASE +
1014 (LAST_PKMAP * PAGE_SIZE)));
1016 const bool kmap_buf = false;
1020 struct page *vm_page;
1021 struct scatterlist *sg;
1026 if (vmalloced_buf || kmap_buf) {
1027 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1028 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1029 } else if (virt_addr_valid(buf)) {
1030 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1031 sgs = DIV_ROUND_UP(len, desc_len);
1036 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1041 for (i = 0; i < sgs; i++) {
1043 if (vmalloced_buf || kmap_buf) {
1045 * Next scatterlist entry size is the minimum between
1046 * the desc_len and the remaining buffer length that
1049 min = min_t(size_t, desc_len,
1051 PAGE_SIZE - offset_in_page(buf)));
1053 vm_page = vmalloc_to_page(buf);
1055 vm_page = kmap_to_page(buf);
1060 sg_set_page(sg, vm_page,
1061 min, offset_in_page(buf));
1063 min = min_t(size_t, len, desc_len);
1065 sg_set_buf(sg, sg_buf, min);
1073 ret = dma_map_sgtable(dev, sgt, dir, attrs);
1082 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1083 struct sg_table *sgt, void *buf, size_t len,
1084 enum dma_data_direction dir)
1086 return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1089 static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1090 struct device *dev, struct sg_table *sgt,
1091 enum dma_data_direction dir,
1092 unsigned long attrs)
1094 if (sgt->orig_nents) {
1095 dma_unmap_sgtable(dev, sgt, dir, attrs);
1097 sgt->orig_nents = 0;
1102 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1103 struct sg_table *sgt, enum dma_data_direction dir)
1105 spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1108 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1110 struct device *tx_dev, *rx_dev;
1111 struct spi_transfer *xfer;
1118 tx_dev = ctlr->dma_tx->device->dev;
1119 else if (ctlr->dma_map_dev)
1120 tx_dev = ctlr->dma_map_dev;
1122 tx_dev = ctlr->dev.parent;
1125 rx_dev = ctlr->dma_rx->device->dev;
1126 else if (ctlr->dma_map_dev)
1127 rx_dev = ctlr->dma_map_dev;
1129 rx_dev = ctlr->dev.parent;
1131 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1132 /* The sync is done before each transfer. */
1133 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1135 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1138 if (xfer->tx_buf != NULL) {
1139 ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1140 (void *)xfer->tx_buf,
1141 xfer->len, DMA_TO_DEVICE,
1147 if (xfer->rx_buf != NULL) {
1148 ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1149 xfer->rx_buf, xfer->len,
1150 DMA_FROM_DEVICE, attrs);
1152 spi_unmap_buf_attrs(ctlr, tx_dev,
1153 &xfer->tx_sg, DMA_TO_DEVICE,
1161 ctlr->cur_rx_dma_dev = rx_dev;
1162 ctlr->cur_tx_dma_dev = tx_dev;
1163 ctlr->cur_msg_mapped = true;
1168 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1170 struct device *rx_dev = ctlr->cur_rx_dma_dev;
1171 struct device *tx_dev = ctlr->cur_tx_dma_dev;
1172 struct spi_transfer *xfer;
1174 if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1177 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1178 /* The sync has already been done after each transfer. */
1179 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1181 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1184 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1185 DMA_FROM_DEVICE, attrs);
1186 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1187 DMA_TO_DEVICE, attrs);
1190 ctlr->cur_msg_mapped = false;
1195 static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1196 struct spi_transfer *xfer)
1198 struct device *rx_dev = ctlr->cur_rx_dma_dev;
1199 struct device *tx_dev = ctlr->cur_tx_dma_dev;
1201 if (!ctlr->cur_msg_mapped)
1204 if (xfer->tx_sg.orig_nents)
1205 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1206 if (xfer->rx_sg.orig_nents)
1207 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1210 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1211 struct spi_transfer *xfer)
1213 struct device *rx_dev = ctlr->cur_rx_dma_dev;
1214 struct device *tx_dev = ctlr->cur_tx_dma_dev;
1216 if (!ctlr->cur_msg_mapped)
1219 if (xfer->rx_sg.orig_nents)
1220 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1221 if (xfer->tx_sg.orig_nents)
1222 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1224 #else /* !CONFIG_HAS_DMA */
1225 static inline int __spi_map_msg(struct spi_controller *ctlr,
1226 struct spi_message *msg)
1231 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1232 struct spi_message *msg)
1237 static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1238 struct spi_transfer *xfer)
1242 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1243 struct spi_transfer *xfer)
1246 #endif /* !CONFIG_HAS_DMA */
1248 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1249 struct spi_message *msg)
1251 struct spi_transfer *xfer;
1253 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1255 * Restore the original value of tx_buf or rx_buf if they are
1258 if (xfer->tx_buf == ctlr->dummy_tx)
1259 xfer->tx_buf = NULL;
1260 if (xfer->rx_buf == ctlr->dummy_rx)
1261 xfer->rx_buf = NULL;
1264 return __spi_unmap_msg(ctlr, msg);
1267 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1269 struct spi_transfer *xfer;
1271 unsigned int max_tx, max_rx;
1273 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1274 && !(msg->spi->mode & SPI_3WIRE)) {
1278 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1279 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1281 max_tx = max(xfer->len, max_tx);
1282 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1284 max_rx = max(xfer->len, max_rx);
1288 tmp = krealloc(ctlr->dummy_tx, max_tx,
1289 GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1292 ctlr->dummy_tx = tmp;
1296 tmp = krealloc(ctlr->dummy_rx, max_rx,
1297 GFP_KERNEL | GFP_DMA);
1300 ctlr->dummy_rx = tmp;
1303 if (max_tx || max_rx) {
1304 list_for_each_entry(xfer, &msg->transfers,
1309 xfer->tx_buf = ctlr->dummy_tx;
1311 xfer->rx_buf = ctlr->dummy_rx;
1316 return __spi_map_msg(ctlr, msg);
1319 static int spi_transfer_wait(struct spi_controller *ctlr,
1320 struct spi_message *msg,
1321 struct spi_transfer *xfer)
1323 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1324 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1325 u32 speed_hz = xfer->speed_hz;
1326 unsigned long long ms;
1328 if (spi_controller_is_slave(ctlr)) {
1329 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1330 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1338 * For each byte we wait for 8 cycles of the SPI clock.
1339 * Since speed is defined in Hz and we want milliseconds,
1340 * use respective multiplier, but before the division,
1341 * otherwise we may get 0 for short transfers.
1343 ms = 8LL * MSEC_PER_SEC * xfer->len;
1344 do_div(ms, speed_hz);
1347 * Increase it twice and add 200 ms tolerance, use
1348 * predefined maximum in case of overflow.
1354 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1355 msecs_to_jiffies(ms));
1358 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1359 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1360 dev_err(&msg->spi->dev,
1361 "SPI transfer timed out\n");
1369 static void _spi_transfer_delay_ns(u32 ns)
1373 if (ns <= NSEC_PER_USEC) {
1376 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1381 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1385 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1387 u32 delay = _delay->value;
1388 u32 unit = _delay->unit;
1395 case SPI_DELAY_UNIT_USECS:
1396 delay *= NSEC_PER_USEC;
1398 case SPI_DELAY_UNIT_NSECS:
1399 /* Nothing to do here */
1401 case SPI_DELAY_UNIT_SCK:
1402 /* Clock cycles need to be obtained from spi_transfer */
1406 * If there is unknown effective speed, approximate it
1407 * by underestimating with half of the requested Hz.
1409 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1413 /* Convert delay to nanoseconds */
1414 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1422 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1424 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1433 delay = spi_delay_to_ns(_delay, xfer);
1437 _spi_transfer_delay_ns(delay);
1441 EXPORT_SYMBOL_GPL(spi_delay_exec);
1443 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1444 struct spi_transfer *xfer)
1446 u32 default_delay_ns = 10 * NSEC_PER_USEC;
1447 u32 delay = xfer->cs_change_delay.value;
1448 u32 unit = xfer->cs_change_delay.unit;
1451 /* Return early on "fast" mode - for everything but USECS */
1453 if (unit == SPI_DELAY_UNIT_USECS)
1454 _spi_transfer_delay_ns(default_delay_ns);
1458 ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1460 dev_err_once(&msg->spi->dev,
1461 "Use of unsupported delay unit %i, using default of %luus\n",
1462 unit, default_delay_ns / NSEC_PER_USEC);
1463 _spi_transfer_delay_ns(default_delay_ns);
1467 void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1468 struct spi_transfer *xfer)
1470 _spi_transfer_cs_change_delay(msg, xfer);
1472 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1475 * spi_transfer_one_message - Default implementation of transfer_one_message()
1477 * This is a standard implementation of transfer_one_message() for
1478 * drivers which implement a transfer_one() operation. It provides
1479 * standard handling of delays and chip select management.
1481 static int spi_transfer_one_message(struct spi_controller *ctlr,
1482 struct spi_message *msg)
1484 struct spi_transfer *xfer;
1485 bool keep_cs = false;
1487 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1488 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1490 xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1491 spi_set_cs(msg->spi, !xfer->cs_off, false);
1493 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1494 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1496 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1497 trace_spi_transfer_start(msg, xfer);
1499 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1500 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1502 if (!ctlr->ptp_sts_supported) {
1503 xfer->ptp_sts_word_pre = 0;
1504 ptp_read_system_prets(xfer->ptp_sts);
1507 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1508 reinit_completion(&ctlr->xfer_completion);
1511 spi_dma_sync_for_device(ctlr, xfer);
1512 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1514 spi_dma_sync_for_cpu(ctlr, xfer);
1516 if (ctlr->cur_msg_mapped &&
1517 (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1518 __spi_unmap_msg(ctlr, msg);
1519 ctlr->fallback = true;
1520 xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1524 SPI_STATISTICS_INCREMENT_FIELD(statm,
1526 SPI_STATISTICS_INCREMENT_FIELD(stats,
1528 dev_err(&msg->spi->dev,
1529 "SPI transfer failed: %d\n", ret);
1534 ret = spi_transfer_wait(ctlr, msg, xfer);
1539 spi_dma_sync_for_cpu(ctlr, xfer);
1542 dev_err(&msg->spi->dev,
1543 "Bufferless transfer has length %u\n",
1547 if (!ctlr->ptp_sts_supported) {
1548 ptp_read_system_postts(xfer->ptp_sts);
1549 xfer->ptp_sts_word_post = xfer->len;
1552 trace_spi_transfer_stop(msg, xfer);
1554 if (msg->status != -EINPROGRESS)
1557 spi_transfer_delay_exec(xfer);
1559 if (xfer->cs_change) {
1560 if (list_is_last(&xfer->transfer_list,
1565 spi_set_cs(msg->spi, false, false);
1566 _spi_transfer_cs_change_delay(msg, xfer);
1567 if (!list_next_entry(xfer, transfer_list)->cs_off)
1568 spi_set_cs(msg->spi, true, false);
1570 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1571 xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1572 spi_set_cs(msg->spi, xfer->cs_off, false);
1575 msg->actual_length += xfer->len;
1579 if (ret != 0 || !keep_cs)
1580 spi_set_cs(msg->spi, false, false);
1582 if (msg->status == -EINPROGRESS)
1585 if (msg->status && ctlr->handle_err)
1586 ctlr->handle_err(ctlr, msg);
1588 spi_finalize_current_message(ctlr);
1594 * spi_finalize_current_transfer - report completion of a transfer
1595 * @ctlr: the controller reporting completion
1597 * Called by SPI drivers using the core transfer_one_message()
1598 * implementation to notify it that the current interrupt driven
1599 * transfer has finished and the next one may be scheduled.
1601 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1603 complete(&ctlr->xfer_completion);
1605 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1607 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1609 if (ctlr->auto_runtime_pm) {
1610 pm_runtime_mark_last_busy(ctlr->dev.parent);
1611 pm_runtime_put_autosuspend(ctlr->dev.parent);
1615 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1616 struct spi_message *msg, bool was_busy)
1618 struct spi_transfer *xfer;
1621 if (!was_busy && ctlr->auto_runtime_pm) {
1622 ret = pm_runtime_get_sync(ctlr->dev.parent);
1624 pm_runtime_put_noidle(ctlr->dev.parent);
1625 dev_err(&ctlr->dev, "Failed to power device: %d\n",
1632 trace_spi_controller_busy(ctlr);
1634 if (!was_busy && ctlr->prepare_transfer_hardware) {
1635 ret = ctlr->prepare_transfer_hardware(ctlr);
1638 "failed to prepare transfer hardware: %d\n",
1641 if (ctlr->auto_runtime_pm)
1642 pm_runtime_put(ctlr->dev.parent);
1645 spi_finalize_current_message(ctlr);
1651 trace_spi_message_start(msg);
1653 ret = spi_split_transfers_maxsize(ctlr, msg,
1654 spi_max_transfer_size(msg->spi),
1655 GFP_KERNEL | GFP_DMA);
1658 spi_finalize_current_message(ctlr);
1662 if (ctlr->prepare_message) {
1663 ret = ctlr->prepare_message(ctlr, msg);
1665 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1668 spi_finalize_current_message(ctlr);
1671 msg->prepared = true;
1674 ret = spi_map_msg(ctlr, msg);
1677 spi_finalize_current_message(ctlr);
1681 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1682 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1683 xfer->ptp_sts_word_pre = 0;
1684 ptp_read_system_prets(xfer->ptp_sts);
1689 * Drivers implementation of transfer_one_message() must arrange for
1690 * spi_finalize_current_message() to get called. Most drivers will do
1691 * this in the calling context, but some don't. For those cases, a
1692 * completion is used to guarantee that this function does not return
1693 * until spi_finalize_current_message() is done accessing
1695 * Use of the following two flags enable to opportunistically skip the
1696 * use of the completion since its use involves expensive spin locks.
1697 * In case of a race with the context that calls
1698 * spi_finalize_current_message() the completion will always be used,
1699 * due to strict ordering of these flags using barriers.
1701 WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1702 WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1703 reinit_completion(&ctlr->cur_msg_completion);
1704 smp_wmb(); /* Make these available to spi_finalize_current_message() */
1706 ret = ctlr->transfer_one_message(ctlr, msg);
1709 "failed to transfer one message from queue\n");
1713 WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1714 smp_mb(); /* See spi_finalize_current_message()... */
1715 if (READ_ONCE(ctlr->cur_msg_incomplete))
1716 wait_for_completion(&ctlr->cur_msg_completion);
1722 * __spi_pump_messages - function which processes SPI message queue
1723 * @ctlr: controller to process queue for
1724 * @in_kthread: true if we are in the context of the message pump thread
1726 * This function checks if there is any SPI message in the queue that
1727 * needs processing and if so call out to the driver to initialize hardware
1728 * and transfer each message.
1730 * Note that it is called both from the kthread itself and also from
1731 * inside spi_sync(); the queue extraction handling at the top of the
1732 * function should deal with this safely.
1734 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1736 struct spi_message *msg;
1737 bool was_busy = false;
1738 unsigned long flags;
1741 /* Take the I/O mutex */
1742 mutex_lock(&ctlr->io_mutex);
1745 spin_lock_irqsave(&ctlr->queue_lock, flags);
1747 /* Make sure we are not already running a message */
1751 /* Check if the queue is idle */
1752 if (list_empty(&ctlr->queue) || !ctlr->running) {
1756 /* Defer any non-atomic teardown to the thread */
1758 if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1759 !ctlr->unprepare_transfer_hardware) {
1760 spi_idle_runtime_pm(ctlr);
1762 ctlr->queue_empty = true;
1763 trace_spi_controller_idle(ctlr);
1765 kthread_queue_work(ctlr->kworker,
1766 &ctlr->pump_messages);
1772 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1774 kfree(ctlr->dummy_rx);
1775 ctlr->dummy_rx = NULL;
1776 kfree(ctlr->dummy_tx);
1777 ctlr->dummy_tx = NULL;
1778 if (ctlr->unprepare_transfer_hardware &&
1779 ctlr->unprepare_transfer_hardware(ctlr))
1781 "failed to unprepare transfer hardware\n");
1782 spi_idle_runtime_pm(ctlr);
1783 trace_spi_controller_idle(ctlr);
1785 spin_lock_irqsave(&ctlr->queue_lock, flags);
1786 ctlr->queue_empty = true;
1790 /* Extract head of queue */
1791 msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1792 ctlr->cur_msg = msg;
1794 list_del_init(&msg->queue);
1799 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1801 ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1802 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1804 ctlr->cur_msg = NULL;
1805 ctlr->fallback = false;
1807 mutex_unlock(&ctlr->io_mutex);
1809 /* Prod the scheduler in case transfer_one() was busy waiting */
1815 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1816 mutex_unlock(&ctlr->io_mutex);
1820 * spi_pump_messages - kthread work function which processes spi message queue
1821 * @work: pointer to kthread work struct contained in the controller struct
1823 static void spi_pump_messages(struct kthread_work *work)
1825 struct spi_controller *ctlr =
1826 container_of(work, struct spi_controller, pump_messages);
1828 __spi_pump_messages(ctlr, true);
1832 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1833 * @ctlr: Pointer to the spi_controller structure of the driver
1834 * @xfer: Pointer to the transfer being timestamped
1835 * @progress: How many words (not bytes) have been transferred so far
1836 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1837 * transfer, for less jitter in time measurement. Only compatible
1838 * with PIO drivers. If true, must follow up with
1839 * spi_take_timestamp_post or otherwise system will crash.
1840 * WARNING: for fully predictable results, the CPU frequency must
1841 * also be under control (governor).
1843 * This is a helper for drivers to collect the beginning of the TX timestamp
1844 * for the requested byte from the SPI transfer. The frequency with which this
1845 * function must be called (once per word, once for the whole transfer, once
1846 * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1847 * greater than or equal to the requested byte at the time of the call. The
1848 * timestamp is only taken once, at the first such call. It is assumed that
1849 * the driver advances its @tx buffer pointer monotonically.
1851 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1852 struct spi_transfer *xfer,
1853 size_t progress, bool irqs_off)
1858 if (xfer->timestamped)
1861 if (progress > xfer->ptp_sts_word_pre)
1864 /* Capture the resolution of the timestamp */
1865 xfer->ptp_sts_word_pre = progress;
1868 local_irq_save(ctlr->irq_flags);
1872 ptp_read_system_prets(xfer->ptp_sts);
1874 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1877 * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1878 * @ctlr: Pointer to the spi_controller structure of the driver
1879 * @xfer: Pointer to the transfer being timestamped
1880 * @progress: How many words (not bytes) have been transferred so far
1881 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1883 * This is a helper for drivers to collect the end of the TX timestamp for
1884 * the requested byte from the SPI transfer. Can be called with an arbitrary
1885 * frequency: only the first call where @tx exceeds or is equal to the
1886 * requested word will be timestamped.
1888 void spi_take_timestamp_post(struct spi_controller *ctlr,
1889 struct spi_transfer *xfer,
1890 size_t progress, bool irqs_off)
1895 if (xfer->timestamped)
1898 if (progress < xfer->ptp_sts_word_post)
1901 ptp_read_system_postts(xfer->ptp_sts);
1904 local_irq_restore(ctlr->irq_flags);
1908 /* Capture the resolution of the timestamp */
1909 xfer->ptp_sts_word_post = progress;
1911 xfer->timestamped = 1;
1913 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1916 * spi_set_thread_rt - set the controller to pump at realtime priority
1917 * @ctlr: controller to boost priority of
1919 * This can be called because the controller requested realtime priority
1920 * (by setting the ->rt value before calling spi_register_controller()) or
1921 * because a device on the bus said that its transfers needed realtime
1924 * NOTE: at the moment if any device on a bus says it needs realtime then
1925 * the thread will be at realtime priority for all transfers on that
1926 * controller. If this eventually becomes a problem we may see if we can
1927 * find a way to boost the priority only temporarily during relevant
1930 static void spi_set_thread_rt(struct spi_controller *ctlr)
1932 dev_info(&ctlr->dev,
1933 "will run message pump with realtime priority\n");
1934 sched_set_fifo(ctlr->kworker->task);
1937 static int spi_init_queue(struct spi_controller *ctlr)
1939 ctlr->running = false;
1941 ctlr->queue_empty = true;
1943 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1944 if (IS_ERR(ctlr->kworker)) {
1945 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1946 return PTR_ERR(ctlr->kworker);
1949 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1952 * Controller config will indicate if this controller should run the
1953 * message pump with high (realtime) priority to reduce the transfer
1954 * latency on the bus by minimising the delay between a transfer
1955 * request and the scheduling of the message pump thread. Without this
1956 * setting the message pump thread will remain at default priority.
1959 spi_set_thread_rt(ctlr);
1965 * spi_get_next_queued_message() - called by driver to check for queued
1967 * @ctlr: the controller to check for queued messages
1969 * If there are more messages in the queue, the next message is returned from
1972 * Return: the next message in the queue, else NULL if the queue is empty.
1974 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1976 struct spi_message *next;
1977 unsigned long flags;
1979 /* Get a pointer to the next message, if any */
1980 spin_lock_irqsave(&ctlr->queue_lock, flags);
1981 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1983 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1987 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1990 * spi_finalize_current_message() - the current message is complete
1991 * @ctlr: the controller to return the message to
1993 * Called by the driver to notify the core that the message in the front of the
1994 * queue is complete and can be removed from the queue.
1996 void spi_finalize_current_message(struct spi_controller *ctlr)
1998 struct spi_transfer *xfer;
1999 struct spi_message *mesg;
2002 mesg = ctlr->cur_msg;
2004 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2005 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2006 ptp_read_system_postts(xfer->ptp_sts);
2007 xfer->ptp_sts_word_post = xfer->len;
2011 if (unlikely(ctlr->ptp_sts_supported))
2012 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2013 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2015 spi_unmap_msg(ctlr, mesg);
2018 * In the prepare_messages callback the SPI bus has the opportunity
2019 * to split a transfer to smaller chunks.
2021 * Release the split transfers here since spi_map_msg() is done on
2022 * the split transfers.
2024 spi_res_release(ctlr, mesg);
2026 if (mesg->prepared && ctlr->unprepare_message) {
2027 ret = ctlr->unprepare_message(ctlr, mesg);
2029 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2034 mesg->prepared = false;
2036 WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2037 smp_mb(); /* See __spi_pump_transfer_message()... */
2038 if (READ_ONCE(ctlr->cur_msg_need_completion))
2039 complete(&ctlr->cur_msg_completion);
2041 trace_spi_message_done(mesg);
2045 mesg->complete(mesg->context);
2047 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2049 static int spi_start_queue(struct spi_controller *ctlr)
2051 unsigned long flags;
2053 spin_lock_irqsave(&ctlr->queue_lock, flags);
2055 if (ctlr->running || ctlr->busy) {
2056 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2060 ctlr->running = true;
2061 ctlr->cur_msg = NULL;
2062 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2064 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2069 static int spi_stop_queue(struct spi_controller *ctlr)
2071 unsigned long flags;
2072 unsigned limit = 500;
2075 spin_lock_irqsave(&ctlr->queue_lock, flags);
2078 * This is a bit lame, but is optimized for the common execution path.
2079 * A wait_queue on the ctlr->busy could be used, but then the common
2080 * execution path (pump_messages) would be required to call wake_up or
2081 * friends on every SPI message. Do this instead.
2083 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2084 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2085 usleep_range(10000, 11000);
2086 spin_lock_irqsave(&ctlr->queue_lock, flags);
2089 if (!list_empty(&ctlr->queue) || ctlr->busy)
2092 ctlr->running = false;
2094 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2097 dev_warn(&ctlr->dev, "could not stop message queue\n");
2103 static int spi_destroy_queue(struct spi_controller *ctlr)
2107 ret = spi_stop_queue(ctlr);
2110 * kthread_flush_worker will block until all work is done.
2111 * If the reason that stop_queue timed out is that the work will never
2112 * finish, then it does no good to call flush/stop thread, so
2116 dev_err(&ctlr->dev, "problem destroying queue\n");
2120 kthread_destroy_worker(ctlr->kworker);
2125 static int __spi_queued_transfer(struct spi_device *spi,
2126 struct spi_message *msg,
2129 struct spi_controller *ctlr = spi->controller;
2130 unsigned long flags;
2132 spin_lock_irqsave(&ctlr->queue_lock, flags);
2134 if (!ctlr->running) {
2135 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2138 msg->actual_length = 0;
2139 msg->status = -EINPROGRESS;
2141 list_add_tail(&msg->queue, &ctlr->queue);
2142 ctlr->queue_empty = false;
2143 if (!ctlr->busy && need_pump)
2144 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2146 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2151 * spi_queued_transfer - transfer function for queued transfers
2152 * @spi: SPI device which is requesting transfer
2153 * @msg: SPI message which is to handled is queued to driver queue
2155 * Return: zero on success, else a negative error code.
2157 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2159 return __spi_queued_transfer(spi, msg, true);
2162 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2166 ctlr->transfer = spi_queued_transfer;
2167 if (!ctlr->transfer_one_message)
2168 ctlr->transfer_one_message = spi_transfer_one_message;
2170 /* Initialize and start queue */
2171 ret = spi_init_queue(ctlr);
2173 dev_err(&ctlr->dev, "problem initializing queue\n");
2174 goto err_init_queue;
2176 ctlr->queued = true;
2177 ret = spi_start_queue(ctlr);
2179 dev_err(&ctlr->dev, "problem starting queue\n");
2180 goto err_start_queue;
2186 spi_destroy_queue(ctlr);
2192 * spi_flush_queue - Send all pending messages in the queue from the callers'
2194 * @ctlr: controller to process queue for
2196 * This should be used when one wants to ensure all pending messages have been
2197 * sent before doing something. Is used by the spi-mem code to make sure SPI
2198 * memory operations do not preempt regular SPI transfers that have been queued
2199 * before the spi-mem operation.
2201 void spi_flush_queue(struct spi_controller *ctlr)
2203 if (ctlr->transfer == spi_queued_transfer)
2204 __spi_pump_messages(ctlr, false);
2207 /*-------------------------------------------------------------------------*/
2209 #if defined(CONFIG_OF)
2210 static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2211 struct spi_delay *delay, const char *prop)
2215 if (!of_property_read_u32(nc, prop, &value)) {
2216 if (value > U16_MAX) {
2217 delay->value = DIV_ROUND_UP(value, 1000);
2218 delay->unit = SPI_DELAY_UNIT_USECS;
2220 delay->value = value;
2221 delay->unit = SPI_DELAY_UNIT_NSECS;
2226 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2227 struct device_node *nc)
2232 /* Mode (clock phase/polarity/etc.) */
2233 if (of_property_read_bool(nc, "spi-cpha"))
2234 spi->mode |= SPI_CPHA;
2235 if (of_property_read_bool(nc, "spi-cpol"))
2236 spi->mode |= SPI_CPOL;
2237 if (of_property_read_bool(nc, "spi-3wire"))
2238 spi->mode |= SPI_3WIRE;
2239 if (of_property_read_bool(nc, "spi-lsb-first"))
2240 spi->mode |= SPI_LSB_FIRST;
2241 if (of_property_read_bool(nc, "spi-cs-high"))
2242 spi->mode |= SPI_CS_HIGH;
2244 /* Device DUAL/QUAD mode */
2245 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2248 spi->mode |= SPI_NO_TX;
2253 spi->mode |= SPI_TX_DUAL;
2256 spi->mode |= SPI_TX_QUAD;
2259 spi->mode |= SPI_TX_OCTAL;
2262 dev_warn(&ctlr->dev,
2263 "spi-tx-bus-width %d not supported\n",
2269 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2272 spi->mode |= SPI_NO_RX;
2277 spi->mode |= SPI_RX_DUAL;
2280 spi->mode |= SPI_RX_QUAD;
2283 spi->mode |= SPI_RX_OCTAL;
2286 dev_warn(&ctlr->dev,
2287 "spi-rx-bus-width %d not supported\n",
2293 if (spi_controller_is_slave(ctlr)) {
2294 if (!of_node_name_eq(nc, "slave")) {
2295 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2302 /* Device address */
2303 rc = of_property_read_u32(nc, "reg", &value);
2305 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2309 spi_set_chipselect(spi, 0, value);
2312 if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2313 spi->max_speed_hz = value;
2315 /* Device CS delays */
2316 of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2317 of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2318 of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2323 static struct spi_device *
2324 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2326 struct spi_device *spi;
2329 /* Alloc an spi_device */
2330 spi = spi_alloc_device(ctlr);
2332 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2337 /* Select device driver */
2338 rc = of_alias_from_compatible(nc, spi->modalias,
2339 sizeof(spi->modalias));
2341 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2345 rc = of_spi_parse_dt(ctlr, spi, nc);
2349 /* Store a pointer to the node in the device structure */
2352 device_set_node(&spi->dev, of_fwnode_handle(nc));
2354 /* Register the new device */
2355 rc = spi_add_device(spi);
2357 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2358 goto err_of_node_put;
2371 * of_register_spi_devices() - Register child devices onto the SPI bus
2372 * @ctlr: Pointer to spi_controller device
2374 * Registers an spi_device for each child node of controller node which
2375 * represents a valid SPI slave.
2377 static void of_register_spi_devices(struct spi_controller *ctlr)
2379 struct spi_device *spi;
2380 struct device_node *nc;
2382 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2383 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2385 spi = of_register_spi_device(ctlr, nc);
2387 dev_warn(&ctlr->dev,
2388 "Failed to create SPI device for %pOF\n", nc);
2389 of_node_clear_flag(nc, OF_POPULATED);
2394 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2398 * spi_new_ancillary_device() - Register ancillary SPI device
2399 * @spi: Pointer to the main SPI device registering the ancillary device
2400 * @chip_select: Chip Select of the ancillary device
2402 * Register an ancillary SPI device; for example some chips have a chip-select
2403 * for normal device usage and another one for setup/firmware upload.
2405 * This may only be called from main SPI device's probe routine.
2407 * Return: 0 on success; negative errno on failure
2409 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2412 struct spi_controller *ctlr = spi->controller;
2413 struct spi_device *ancillary;
2416 /* Alloc an spi_device */
2417 ancillary = spi_alloc_device(ctlr);
2423 strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2425 /* Use provided chip-select for ancillary device */
2426 spi_set_chipselect(ancillary, 0, chip_select);
2428 /* Take over SPI mode/speed from SPI main device */
2429 ancillary->max_speed_hz = spi->max_speed_hz;
2430 ancillary->mode = spi->mode;
2432 WARN_ON(!mutex_is_locked(&ctlr->add_lock));
2434 /* Register the new device */
2435 rc = __spi_add_device(ancillary);
2437 dev_err(&spi->dev, "failed to register ancillary device\n");
2444 spi_dev_put(ancillary);
2447 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2450 struct acpi_spi_lookup {
2451 struct spi_controller *ctlr;
2461 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2463 struct acpi_resource_spi_serialbus *sb;
2466 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2469 sb = &ares->data.spi_serial_bus;
2470 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2473 *count = *count + 1;
2479 * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2480 * @adev: ACPI device
2482 * Return: the number of SpiSerialBus resources in the ACPI-device's
2483 * resource-list; or a negative error code.
2485 int acpi_spi_count_resources(struct acpi_device *adev)
2491 ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2495 acpi_dev_free_resource_list(&r);
2499 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2501 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2502 struct acpi_spi_lookup *lookup)
2504 const union acpi_object *obj;
2506 if (!x86_apple_machine)
2509 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2510 && obj->buffer.length >= 4)
2511 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2513 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2514 && obj->buffer.length == 8)
2515 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2517 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2518 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2519 lookup->mode |= SPI_LSB_FIRST;
2521 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2522 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
2523 lookup->mode |= SPI_CPOL;
2525 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2526 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
2527 lookup->mode |= SPI_CPHA;
2530 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev);
2532 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2534 struct acpi_spi_lookup *lookup = data;
2535 struct spi_controller *ctlr = lookup->ctlr;
2537 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2538 struct acpi_resource_spi_serialbus *sb;
2539 acpi_handle parent_handle;
2542 sb = &ares->data.spi_serial_bus;
2543 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2545 if (lookup->index != -1 && lookup->n++ != lookup->index)
2548 status = acpi_get_handle(NULL,
2549 sb->resource_source.string_ptr,
2552 if (ACPI_FAILURE(status))
2556 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2559 struct acpi_device *adev;
2561 adev = acpi_fetch_acpi_dev(parent_handle);
2565 ctlr = acpi_spi_find_controller_by_adev(adev);
2567 return -EPROBE_DEFER;
2569 lookup->ctlr = ctlr;
2573 * ACPI DeviceSelection numbering is handled by the
2574 * host controller driver in Windows and can vary
2575 * from driver to driver. In Linux we always expect
2576 * 0 .. max - 1 so we need to ask the driver to
2577 * translate between the two schemes.
2579 if (ctlr->fw_translate_cs) {
2580 int cs = ctlr->fw_translate_cs(ctlr,
2581 sb->device_selection);
2584 lookup->chip_select = cs;
2586 lookup->chip_select = sb->device_selection;
2589 lookup->max_speed_hz = sb->connection_speed;
2590 lookup->bits_per_word = sb->data_bit_length;
2592 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2593 lookup->mode |= SPI_CPHA;
2594 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2595 lookup->mode |= SPI_CPOL;
2596 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2597 lookup->mode |= SPI_CS_HIGH;
2599 } else if (lookup->irq < 0) {
2602 if (acpi_dev_resource_interrupt(ares, 0, &r))
2603 lookup->irq = r.start;
2606 /* Always tell the ACPI core to skip this resource */
2611 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2612 * @ctlr: controller to which the spi device belongs
2613 * @adev: ACPI Device for the spi device
2614 * @index: Index of the spi resource inside the ACPI Node
2616 * This should be used to allocate a new SPI device from and ACPI Device node.
2617 * The caller is responsible for calling spi_add_device to register the SPI device.
2619 * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2620 * using the resource.
2621 * If index is set to -1, index is not used.
2622 * Note: If index is -1, ctlr must be set.
2624 * Return: a pointer to the new device, or ERR_PTR on error.
2626 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2627 struct acpi_device *adev,
2630 acpi_handle parent_handle = NULL;
2631 struct list_head resource_list;
2632 struct acpi_spi_lookup lookup = {};
2633 struct spi_device *spi;
2636 if (!ctlr && index == -1)
2637 return ERR_PTR(-EINVAL);
2641 lookup.index = index;
2644 INIT_LIST_HEAD(&resource_list);
2645 ret = acpi_dev_get_resources(adev, &resource_list,
2646 acpi_spi_add_resource, &lookup);
2647 acpi_dev_free_resource_list(&resource_list);
2650 /* Found SPI in _CRS but it points to another controller */
2651 return ERR_PTR(ret);
2653 if (!lookup.max_speed_hz &&
2654 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2655 ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2656 /* Apple does not use _CRS but nested devices for SPI slaves */
2657 acpi_spi_parse_apple_properties(adev, &lookup);
2660 if (!lookup.max_speed_hz)
2661 return ERR_PTR(-ENODEV);
2663 spi = spi_alloc_device(lookup.ctlr);
2665 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2666 dev_name(&adev->dev));
2667 return ERR_PTR(-ENOMEM);
2670 ACPI_COMPANION_SET(&spi->dev, adev);
2671 spi->max_speed_hz = lookup.max_speed_hz;
2672 spi->mode |= lookup.mode;
2673 spi->irq = lookup.irq;
2674 spi->bits_per_word = lookup.bits_per_word;
2675 spi_set_chipselect(spi, 0, lookup.chip_select);
2679 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2681 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2682 struct acpi_device *adev)
2684 struct spi_device *spi;
2686 if (acpi_bus_get_status(adev) || !adev->status.present ||
2687 acpi_device_enumerated(adev))
2690 spi = acpi_spi_device_alloc(ctlr, adev, -1);
2692 if (PTR_ERR(spi) == -ENOMEM)
2693 return AE_NO_MEMORY;
2698 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2699 sizeof(spi->modalias));
2702 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2704 acpi_device_set_enumerated(adev);
2706 adev->power.flags.ignore_parent = true;
2707 if (spi_add_device(spi)) {
2708 adev->power.flags.ignore_parent = false;
2709 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2710 dev_name(&adev->dev));
2717 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2718 void *data, void **return_value)
2720 struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2721 struct spi_controller *ctlr = data;
2726 return acpi_register_spi_device(ctlr, adev);
2729 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32
2731 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2736 handle = ACPI_HANDLE(ctlr->dev.parent);
2740 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2741 SPI_ACPI_ENUMERATE_MAX_DEPTH,
2742 acpi_spi_add_device, NULL, ctlr, NULL);
2743 if (ACPI_FAILURE(status))
2744 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2747 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2748 #endif /* CONFIG_ACPI */
2750 static void spi_controller_release(struct device *dev)
2752 struct spi_controller *ctlr;
2754 ctlr = container_of(dev, struct spi_controller, dev);
2758 static struct class spi_master_class = {
2759 .name = "spi_master",
2760 .dev_release = spi_controller_release,
2761 .dev_groups = spi_master_groups,
2764 #ifdef CONFIG_SPI_SLAVE
2766 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2768 * @spi: device used for the current transfer
2770 int spi_slave_abort(struct spi_device *spi)
2772 struct spi_controller *ctlr = spi->controller;
2774 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2775 return ctlr->slave_abort(ctlr);
2779 EXPORT_SYMBOL_GPL(spi_slave_abort);
2781 int spi_target_abort(struct spi_device *spi)
2783 struct spi_controller *ctlr = spi->controller;
2785 if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2786 return ctlr->target_abort(ctlr);
2790 EXPORT_SYMBOL_GPL(spi_target_abort);
2792 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2795 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2797 struct device *child;
2799 child = device_find_any_child(&ctlr->dev);
2800 return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL);
2803 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2804 const char *buf, size_t count)
2806 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2808 struct spi_device *spi;
2809 struct device *child;
2813 rc = sscanf(buf, "%31s", name);
2814 if (rc != 1 || !name[0])
2817 child = device_find_any_child(&ctlr->dev);
2819 /* Remove registered slave */
2820 device_unregister(child);
2824 if (strcmp(name, "(null)")) {
2825 /* Register new slave */
2826 spi = spi_alloc_device(ctlr);
2830 strscpy(spi->modalias, name, sizeof(spi->modalias));
2832 rc = spi_add_device(spi);
2842 static DEVICE_ATTR_RW(slave);
2844 static struct attribute *spi_slave_attrs[] = {
2845 &dev_attr_slave.attr,
2849 static const struct attribute_group spi_slave_group = {
2850 .attrs = spi_slave_attrs,
2853 static const struct attribute_group *spi_slave_groups[] = {
2854 &spi_controller_statistics_group,
2859 static struct class spi_slave_class = {
2860 .name = "spi_slave",
2861 .dev_release = spi_controller_release,
2862 .dev_groups = spi_slave_groups,
2865 extern struct class spi_slave_class; /* dummy */
2869 * __spi_alloc_controller - allocate an SPI master or slave controller
2870 * @dev: the controller, possibly using the platform_bus
2871 * @size: how much zeroed driver-private data to allocate; the pointer to this
2872 * memory is in the driver_data field of the returned device, accessible
2873 * with spi_controller_get_devdata(); the memory is cacheline aligned;
2874 * drivers granting DMA access to portions of their private data need to
2875 * round up @size using ALIGN(size, dma_get_cache_alignment()).
2876 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2877 * slave (true) controller
2878 * Context: can sleep
2880 * This call is used only by SPI controller drivers, which are the
2881 * only ones directly touching chip registers. It's how they allocate
2882 * an spi_controller structure, prior to calling spi_register_controller().
2884 * This must be called from context that can sleep.
2886 * The caller is responsible for assigning the bus number and initializing the
2887 * controller's methods before calling spi_register_controller(); and (after
2888 * errors adding the device) calling spi_controller_put() to prevent a memory
2891 * Return: the SPI controller structure on success, else NULL.
2893 struct spi_controller *__spi_alloc_controller(struct device *dev,
2894 unsigned int size, bool slave)
2896 struct spi_controller *ctlr;
2897 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2902 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2906 device_initialize(&ctlr->dev);
2907 INIT_LIST_HEAD(&ctlr->queue);
2908 spin_lock_init(&ctlr->queue_lock);
2909 spin_lock_init(&ctlr->bus_lock_spinlock);
2910 mutex_init(&ctlr->bus_lock_mutex);
2911 mutex_init(&ctlr->io_mutex);
2912 mutex_init(&ctlr->add_lock);
2914 ctlr->num_chipselect = 1;
2915 ctlr->slave = slave;
2916 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2917 ctlr->dev.class = &spi_slave_class;
2919 ctlr->dev.class = &spi_master_class;
2920 ctlr->dev.parent = dev;
2921 pm_suspend_ignore_children(&ctlr->dev, true);
2922 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2926 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2928 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2930 spi_controller_put(*(struct spi_controller **)ctlr);
2934 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2935 * @dev: physical device of SPI controller
2936 * @size: how much zeroed driver-private data to allocate
2937 * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2938 * Context: can sleep
2940 * Allocate an SPI controller and automatically release a reference on it
2941 * when @dev is unbound from its driver. Drivers are thus relieved from
2942 * having to call spi_controller_put().
2944 * The arguments to this function are identical to __spi_alloc_controller().
2946 * Return: the SPI controller structure on success, else NULL.
2948 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2952 struct spi_controller **ptr, *ctlr;
2954 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2959 ctlr = __spi_alloc_controller(dev, size, slave);
2961 ctlr->devm_allocated = true;
2963 devres_add(dev, ptr);
2970 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2973 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2974 * @ctlr: The SPI master to grab GPIO descriptors for
2976 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2979 struct gpio_desc **cs;
2980 struct device *dev = &ctlr->dev;
2981 unsigned long native_cs_mask = 0;
2982 unsigned int num_cs_gpios = 0;
2984 nb = gpiod_count(dev, "cs");
2986 /* No GPIOs at all is fine, else return the error */
2992 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2994 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2998 ctlr->cs_gpiods = cs;
3000 for (i = 0; i < nb; i++) {
3002 * Most chipselects are active low, the inverted
3003 * semantics are handled by special quirks in gpiolib,
3004 * so initializing them GPIOD_OUT_LOW here means
3005 * "unasserted", in most cases this will drive the physical
3008 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3011 return PTR_ERR(cs[i]);
3015 * If we find a CS GPIO, name it after the device and
3020 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3024 gpiod_set_consumer_name(cs[i], gpioname);
3029 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3030 dev_err(dev, "Invalid native chip select %d\n", i);
3033 native_cs_mask |= BIT(i);
3036 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3038 if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios &&
3039 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3040 dev_err(dev, "No unused native chip select available\n");
3047 static int spi_controller_check_ops(struct spi_controller *ctlr)
3050 * The controller may implement only the high-level SPI-memory like
3051 * operations if it does not support regular SPI transfers, and this is
3053 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3054 * one of the ->transfer_xxx() method be implemented.
3056 if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3057 if (!ctlr->transfer && !ctlr->transfer_one &&
3058 !ctlr->transfer_one_message) {
3066 /* Allocate dynamic bus number using Linux idr */
3067 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end)
3071 mutex_lock(&board_lock);
3072 id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL);
3073 mutex_unlock(&board_lock);
3074 if (WARN(id < 0, "couldn't get idr"))
3075 return id == -ENOSPC ? -EBUSY : id;
3081 * spi_register_controller - register SPI master or slave controller
3082 * @ctlr: initialized master, originally from spi_alloc_master() or
3084 * Context: can sleep
3086 * SPI controllers connect to their drivers using some non-SPI bus,
3087 * such as the platform bus. The final stage of probe() in that code
3088 * includes calling spi_register_controller() to hook up to this SPI bus glue.
3090 * SPI controllers use board specific (often SOC specific) bus numbers,
3091 * and board-specific addressing for SPI devices combines those numbers
3092 * with chip select numbers. Since SPI does not directly support dynamic
3093 * device identification, boards need configuration tables telling which
3094 * chip is at which address.
3096 * This must be called from context that can sleep. It returns zero on
3097 * success, else a negative error code (dropping the controller's refcount).
3098 * After a successful return, the caller is responsible for calling
3099 * spi_unregister_controller().
3101 * Return: zero on success, else a negative error code.
3103 int spi_register_controller(struct spi_controller *ctlr)
3105 struct device *dev = ctlr->dev.parent;
3106 struct boardinfo *bi;
3114 * Make sure all necessary hooks are implemented before registering
3115 * the SPI controller.
3117 status = spi_controller_check_ops(ctlr);
3121 if (ctlr->bus_num < 0)
3122 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
3123 if (ctlr->bus_num >= 0) {
3124 /* Devices with a fixed bus num must check-in with the num */
3125 status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1);
3129 if (ctlr->bus_num < 0) {
3130 first_dynamic = of_alias_get_highest_id("spi");
3131 if (first_dynamic < 0)
3136 status = spi_controller_id_alloc(ctlr, first_dynamic, 0);
3140 ctlr->bus_lock_flag = 0;
3141 init_completion(&ctlr->xfer_completion);
3142 init_completion(&ctlr->cur_msg_completion);
3143 if (!ctlr->max_dma_len)
3144 ctlr->max_dma_len = INT_MAX;
3147 * Register the device, then userspace will see it.
3148 * Registration fails if the bus ID is in use.
3150 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3152 if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3153 status = spi_get_gpio_descs(ctlr);
3157 * A controller using GPIO descriptors always
3158 * supports SPI_CS_HIGH if need be.
3160 ctlr->mode_bits |= SPI_CS_HIGH;
3164 * Even if it's just one always-selected device, there must
3165 * be at least one chipselect.
3167 if (!ctlr->num_chipselect) {
3172 /* Setting last_cs to -1 means no chip selected */
3175 status = device_add(&ctlr->dev);
3178 dev_dbg(dev, "registered %s %s\n",
3179 spi_controller_is_slave(ctlr) ? "slave" : "master",
3180 dev_name(&ctlr->dev));
3183 * If we're using a queued driver, start the queue. Note that we don't
3184 * need the queueing logic if the driver is only supporting high-level
3185 * memory operations.
3187 if (ctlr->transfer) {
3188 dev_info(dev, "controller is unqueued, this is deprecated\n");
3189 } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3190 status = spi_controller_initialize_queue(ctlr);
3192 device_del(&ctlr->dev);
3196 /* Add statistics */
3197 ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3198 if (!ctlr->pcpu_statistics) {
3199 dev_err(dev, "Error allocating per-cpu statistics\n");
3204 mutex_lock(&board_lock);
3205 list_add_tail(&ctlr->list, &spi_controller_list);
3206 list_for_each_entry(bi, &board_list, list)
3207 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3208 mutex_unlock(&board_lock);
3210 /* Register devices from the device tree and ACPI */
3211 of_register_spi_devices(ctlr);
3212 acpi_register_spi_devices(ctlr);
3216 spi_destroy_queue(ctlr);
3218 mutex_lock(&board_lock);
3219 idr_remove(&spi_master_idr, ctlr->bus_num);
3220 mutex_unlock(&board_lock);
3223 EXPORT_SYMBOL_GPL(spi_register_controller);
3225 static void devm_spi_unregister(struct device *dev, void *res)
3227 spi_unregister_controller(*(struct spi_controller **)res);
3231 * devm_spi_register_controller - register managed SPI master or slave
3233 * @dev: device managing SPI controller
3234 * @ctlr: initialized controller, originally from spi_alloc_master() or
3236 * Context: can sleep
3238 * Register a SPI device as with spi_register_controller() which will
3239 * automatically be unregistered and freed.
3241 * Return: zero on success, else a negative error code.
3243 int devm_spi_register_controller(struct device *dev,
3244 struct spi_controller *ctlr)
3246 struct spi_controller **ptr;
3249 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3253 ret = spi_register_controller(ctlr);
3256 devres_add(dev, ptr);
3263 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3265 static int __unregister(struct device *dev, void *null)
3267 spi_unregister_device(to_spi_device(dev));
3272 * spi_unregister_controller - unregister SPI master or slave controller
3273 * @ctlr: the controller being unregistered
3274 * Context: can sleep
3276 * This call is used only by SPI controller drivers, which are the
3277 * only ones directly touching chip registers.
3279 * This must be called from context that can sleep.
3281 * Note that this function also drops a reference to the controller.
3283 void spi_unregister_controller(struct spi_controller *ctlr)
3285 struct spi_controller *found;
3286 int id = ctlr->bus_num;
3288 /* Prevent addition of new devices, unregister existing ones */
3289 if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3290 mutex_lock(&ctlr->add_lock);
3292 device_for_each_child(&ctlr->dev, NULL, __unregister);
3294 /* First make sure that this controller was ever added */
3295 mutex_lock(&board_lock);
3296 found = idr_find(&spi_master_idr, id);
3297 mutex_unlock(&board_lock);
3299 if (spi_destroy_queue(ctlr))
3300 dev_err(&ctlr->dev, "queue remove failed\n");
3302 mutex_lock(&board_lock);
3303 list_del(&ctlr->list);
3304 mutex_unlock(&board_lock);
3306 device_del(&ctlr->dev);
3309 mutex_lock(&board_lock);
3311 idr_remove(&spi_master_idr, id);
3312 mutex_unlock(&board_lock);
3314 if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3315 mutex_unlock(&ctlr->add_lock);
3318 * Release the last reference on the controller if its driver
3319 * has not yet been converted to devm_spi_alloc_master/slave().
3321 if (!ctlr->devm_allocated)
3322 put_device(&ctlr->dev);
3324 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3326 int spi_controller_suspend(struct spi_controller *ctlr)
3330 /* Basically no-ops for non-queued controllers */
3334 ret = spi_stop_queue(ctlr);
3336 dev_err(&ctlr->dev, "queue stop failed\n");
3340 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3342 int spi_controller_resume(struct spi_controller *ctlr)
3349 ret = spi_start_queue(ctlr);
3351 dev_err(&ctlr->dev, "queue restart failed\n");
3355 EXPORT_SYMBOL_GPL(spi_controller_resume);
3357 /*-------------------------------------------------------------------------*/
3359 /* Core methods for spi_message alterations */
3361 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3362 struct spi_message *msg,
3365 struct spi_replaced_transfers *rxfer = res;
3368 /* Call extra callback if requested */
3370 rxfer->release(ctlr, msg, res);
3372 /* Insert replaced transfers back into the message */
3373 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3375 /* Remove the formerly inserted entries */
3376 for (i = 0; i < rxfer->inserted; i++)
3377 list_del(&rxfer->inserted_transfers[i].transfer_list);
3381 * spi_replace_transfers - replace transfers with several transfers
3382 * and register change with spi_message.resources
3383 * @msg: the spi_message we work upon
3384 * @xfer_first: the first spi_transfer we want to replace
3385 * @remove: number of transfers to remove
3386 * @insert: the number of transfers we want to insert instead
3387 * @release: extra release code necessary in some circumstances
3388 * @extradatasize: extra data to allocate (with alignment guarantees
3389 * of struct @spi_transfer)
3392 * Returns: pointer to @spi_replaced_transfers,
3393 * PTR_ERR(...) in case of errors.
3395 static struct spi_replaced_transfers *spi_replace_transfers(
3396 struct spi_message *msg,
3397 struct spi_transfer *xfer_first,
3400 spi_replaced_release_t release,
3401 size_t extradatasize,
3404 struct spi_replaced_transfers *rxfer;
3405 struct spi_transfer *xfer;
3408 /* Allocate the structure using spi_res */
3409 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3410 struct_size(rxfer, inserted_transfers, insert)
3414 return ERR_PTR(-ENOMEM);
3416 /* The release code to invoke before running the generic release */
3417 rxfer->release = release;
3419 /* Assign extradata */
3422 &rxfer->inserted_transfers[insert];
3424 /* Init the replaced_transfers list */
3425 INIT_LIST_HEAD(&rxfer->replaced_transfers);
3428 * Assign the list_entry after which we should reinsert
3429 * the @replaced_transfers - it may be spi_message.messages!
3431 rxfer->replaced_after = xfer_first->transfer_list.prev;
3433 /* Remove the requested number of transfers */
3434 for (i = 0; i < remove; i++) {
3436 * If the entry after replaced_after it is msg->transfers
3437 * then we have been requested to remove more transfers
3438 * than are in the list.
3440 if (rxfer->replaced_after->next == &msg->transfers) {
3441 dev_err(&msg->spi->dev,
3442 "requested to remove more spi_transfers than are available\n");
3443 /* Insert replaced transfers back into the message */
3444 list_splice(&rxfer->replaced_transfers,
3445 rxfer->replaced_after);
3447 /* Free the spi_replace_transfer structure... */
3448 spi_res_free(rxfer);
3450 /* ...and return with an error */
3451 return ERR_PTR(-EINVAL);
3455 * Remove the entry after replaced_after from list of
3456 * transfers and add it to list of replaced_transfers.
3458 list_move_tail(rxfer->replaced_after->next,
3459 &rxfer->replaced_transfers);
3463 * Create copy of the given xfer with identical settings
3464 * based on the first transfer to get removed.
3466 for (i = 0; i < insert; i++) {
3467 /* We need to run in reverse order */
3468 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3470 /* Copy all spi_transfer data */
3471 memcpy(xfer, xfer_first, sizeof(*xfer));
3474 list_add(&xfer->transfer_list, rxfer->replaced_after);
3476 /* Clear cs_change and delay for all but the last */
3478 xfer->cs_change = false;
3479 xfer->delay.value = 0;
3483 /* Set up inserted... */
3484 rxfer->inserted = insert;
3486 /* ...and register it with spi_res/spi_message */
3487 spi_res_add(msg, rxfer);
3492 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3493 struct spi_message *msg,
3494 struct spi_transfer **xferp,
3498 struct spi_transfer *xfer = *xferp, *xfers;
3499 struct spi_replaced_transfers *srt;
3503 /* Calculate how many we have to replace */
3504 count = DIV_ROUND_UP(xfer->len, maxsize);
3506 /* Create replacement */
3507 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3509 return PTR_ERR(srt);
3510 xfers = srt->inserted_transfers;
3513 * Now handle each of those newly inserted spi_transfers.
3514 * Note that the replacements spi_transfers all are preset
3515 * to the same values as *xferp, so tx_buf, rx_buf and len
3516 * are all identical (as well as most others)
3517 * so we just have to fix up len and the pointers.
3519 * This also includes support for the depreciated
3520 * spi_message.is_dma_mapped interface.
3524 * The first transfer just needs the length modified, so we
3525 * run it outside the loop.
3527 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3529 /* All the others need rx_buf/tx_buf also set */
3530 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3531 /* Update rx_buf, tx_buf and DMA */
3532 if (xfers[i].rx_buf)
3533 xfers[i].rx_buf += offset;
3534 if (xfers[i].rx_dma)
3535 xfers[i].rx_dma += offset;
3536 if (xfers[i].tx_buf)
3537 xfers[i].tx_buf += offset;
3538 if (xfers[i].tx_dma)
3539 xfers[i].tx_dma += offset;
3542 xfers[i].len = min(maxsize, xfers[i].len - offset);
3546 * We set up xferp to the last entry we have inserted,
3547 * so that we skip those already split transfers.
3549 *xferp = &xfers[count - 1];
3551 /* Increment statistics counters */
3552 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3553 transfers_split_maxsize);
3554 SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3555 transfers_split_maxsize);
3561 * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3562 * when an individual transfer exceeds a
3564 * @ctlr: the @spi_controller for this transfer
3565 * @msg: the @spi_message to transform
3566 * @maxsize: the maximum when to apply this
3567 * @gfp: GFP allocation flags
3569 * Return: status of transformation
3571 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3572 struct spi_message *msg,
3576 struct spi_transfer *xfer;
3580 * Iterate over the transfer_list,
3581 * but note that xfer is advanced to the last transfer inserted
3582 * to avoid checking sizes again unnecessarily (also xfer does
3583 * potentially belong to a different list by the time the
3584 * replacement has happened).
3586 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3587 if (xfer->len > maxsize) {
3588 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3597 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3601 * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3602 * when an individual transfer exceeds a
3603 * certain number of SPI words
3604 * @ctlr: the @spi_controller for this transfer
3605 * @msg: the @spi_message to transform
3606 * @maxwords: the number of words to limit each transfer to
3607 * @gfp: GFP allocation flags
3609 * Return: status of transformation
3611 int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3612 struct spi_message *msg,
3616 struct spi_transfer *xfer;
3619 * Iterate over the transfer_list,
3620 * but note that xfer is advanced to the last transfer inserted
3621 * to avoid checking sizes again unnecessarily (also xfer does
3622 * potentially belong to a different list by the time the
3623 * replacement has happened).
3625 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3629 maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
3630 if (xfer->len > maxsize) {
3631 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3640 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3642 /*-------------------------------------------------------------------------*/
3645 * Core methods for SPI controller protocol drivers. Some of the
3646 * other core methods are currently defined as inline functions.
3649 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3652 if (ctlr->bits_per_word_mask) {
3653 /* Only 32 bits fit in the mask */
3654 if (bits_per_word > 32)
3656 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3664 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3665 * @spi: the device that requires specific CS timing configuration
3667 * Return: zero on success, else a negative error code.
3669 static int spi_set_cs_timing(struct spi_device *spi)
3671 struct device *parent = spi->controller->dev.parent;
3674 if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3675 if (spi->controller->auto_runtime_pm) {
3676 status = pm_runtime_get_sync(parent);
3678 pm_runtime_put_noidle(parent);
3679 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3684 status = spi->controller->set_cs_timing(spi);
3685 pm_runtime_mark_last_busy(parent);
3686 pm_runtime_put_autosuspend(parent);
3688 status = spi->controller->set_cs_timing(spi);
3695 * spi_setup - setup SPI mode and clock rate
3696 * @spi: the device whose settings are being modified
3697 * Context: can sleep, and no requests are queued to the device
3699 * SPI protocol drivers may need to update the transfer mode if the
3700 * device doesn't work with its default. They may likewise need
3701 * to update clock rates or word sizes from initial values. This function
3702 * changes those settings, and must be called from a context that can sleep.
3703 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3704 * effect the next time the device is selected and data is transferred to
3705 * or from it. When this function returns, the SPI device is deselected.
3707 * Note that this call will fail if the protocol driver specifies an option
3708 * that the underlying controller or its driver does not support. For
3709 * example, not all hardware supports wire transfers using nine bit words,
3710 * LSB-first wire encoding, or active-high chipselects.
3712 * Return: zero on success, else a negative error code.
3714 int spi_setup(struct spi_device *spi)
3716 unsigned bad_bits, ugly_bits;
3720 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3721 * are set at the same time.
3723 if ((hweight_long(spi->mode &
3724 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3725 (hweight_long(spi->mode &
3726 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3728 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3731 /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3732 if ((spi->mode & SPI_3WIRE) && (spi->mode &
3733 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3734 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3737 * Help drivers fail *cleanly* when they need options
3738 * that aren't supported with their current controller.
3739 * SPI_CS_WORD has a fallback software implementation,
3740 * so it is ignored here.
3742 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3743 SPI_NO_TX | SPI_NO_RX);
3744 ugly_bits = bad_bits &
3745 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3746 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3749 "setup: ignoring unsupported mode bits %x\n",
3751 spi->mode &= ~ugly_bits;
3752 bad_bits &= ~ugly_bits;
3755 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3760 if (!spi->bits_per_word) {
3761 spi->bits_per_word = 8;
3764 * Some controllers may not support the default 8 bits-per-word
3765 * so only perform the check when this is explicitly provided.
3767 status = __spi_validate_bits_per_word(spi->controller,
3768 spi->bits_per_word);
3773 if (spi->controller->max_speed_hz &&
3774 (!spi->max_speed_hz ||
3775 spi->max_speed_hz > spi->controller->max_speed_hz))
3776 spi->max_speed_hz = spi->controller->max_speed_hz;
3778 mutex_lock(&spi->controller->io_mutex);
3780 if (spi->controller->setup) {
3781 status = spi->controller->setup(spi);
3783 mutex_unlock(&spi->controller->io_mutex);
3784 dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3790 status = spi_set_cs_timing(spi);
3792 mutex_unlock(&spi->controller->io_mutex);
3796 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3797 status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3799 mutex_unlock(&spi->controller->io_mutex);
3800 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3806 * We do not want to return positive value from pm_runtime_get,
3807 * there are many instances of devices calling spi_setup() and
3808 * checking for a non-zero return value instead of a negative
3813 spi_set_cs(spi, false, true);
3814 pm_runtime_mark_last_busy(spi->controller->dev.parent);
3815 pm_runtime_put_autosuspend(spi->controller->dev.parent);
3817 spi_set_cs(spi, false, true);
3820 mutex_unlock(&spi->controller->io_mutex);
3822 if (spi->rt && !spi->controller->rt) {
3823 spi->controller->rt = true;
3824 spi_set_thread_rt(spi->controller);
3827 trace_spi_setup(spi, status);
3829 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3830 spi->mode & SPI_MODE_X_MASK,
3831 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3832 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3833 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
3834 (spi->mode & SPI_LOOP) ? "loopback, " : "",
3835 spi->bits_per_word, spi->max_speed_hz,
3840 EXPORT_SYMBOL_GPL(spi_setup);
3842 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3843 struct spi_device *spi)
3847 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3851 delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3855 if (delay1 < delay2)
3856 memcpy(&xfer->word_delay, &spi->word_delay,
3857 sizeof(xfer->word_delay));
3862 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3864 struct spi_controller *ctlr = spi->controller;
3865 struct spi_transfer *xfer;
3868 if (list_empty(&message->transfers))
3872 * If an SPI controller does not support toggling the CS line on each
3873 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3874 * for the CS line, we can emulate the CS-per-word hardware function by
3875 * splitting transfers into one-word transfers and ensuring that
3876 * cs_change is set for each transfer.
3878 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3879 spi_get_csgpiod(spi, 0))) {
3880 size_t maxsize = BITS_TO_BYTES(spi->bits_per_word);
3883 /* spi_split_transfers_maxsize() requires message->spi */
3886 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3891 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3892 /* Don't change cs_change on the last entry in the list */
3893 if (list_is_last(&xfer->transfer_list, &message->transfers))
3895 xfer->cs_change = 1;
3900 * Half-duplex links include original MicroWire, and ones with
3901 * only one data pin like SPI_3WIRE (switches direction) or where
3902 * either MOSI or MISO is missing. They can also be caused by
3903 * software limitations.
3905 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3906 (spi->mode & SPI_3WIRE)) {
3907 unsigned flags = ctlr->flags;
3909 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3910 if (xfer->rx_buf && xfer->tx_buf)
3912 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3914 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3920 * Set transfer bits_per_word and max speed as spi device default if
3921 * it is not set for this transfer.
3922 * Set transfer tx_nbits and rx_nbits as single transfer default
3923 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3924 * Ensure transfer word_delay is at least as long as that required by
3927 message->frame_length = 0;
3928 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3929 xfer->effective_speed_hz = 0;
3930 message->frame_length += xfer->len;
3931 if (!xfer->bits_per_word)
3932 xfer->bits_per_word = spi->bits_per_word;
3934 if (!xfer->speed_hz)
3935 xfer->speed_hz = spi->max_speed_hz;
3937 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3938 xfer->speed_hz = ctlr->max_speed_hz;
3940 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3944 * SPI transfer length should be multiple of SPI word size
3945 * where SPI word size should be power-of-two multiple.
3947 if (xfer->bits_per_word <= 8)
3949 else if (xfer->bits_per_word <= 16)
3954 /* No partial transfers accepted */
3955 if (xfer->len % w_size)
3958 if (xfer->speed_hz && ctlr->min_speed_hz &&
3959 xfer->speed_hz < ctlr->min_speed_hz)
3962 if (xfer->tx_buf && !xfer->tx_nbits)
3963 xfer->tx_nbits = SPI_NBITS_SINGLE;
3964 if (xfer->rx_buf && !xfer->rx_nbits)
3965 xfer->rx_nbits = SPI_NBITS_SINGLE;
3967 * Check transfer tx/rx_nbits:
3968 * 1. check the value matches one of single, dual and quad
3969 * 2. check tx/rx_nbits match the mode in spi_device
3972 if (spi->mode & SPI_NO_TX)
3974 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3975 xfer->tx_nbits != SPI_NBITS_DUAL &&
3976 xfer->tx_nbits != SPI_NBITS_QUAD)
3978 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3979 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3981 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3982 !(spi->mode & SPI_TX_QUAD))
3985 /* Check transfer rx_nbits */
3987 if (spi->mode & SPI_NO_RX)
3989 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3990 xfer->rx_nbits != SPI_NBITS_DUAL &&
3991 xfer->rx_nbits != SPI_NBITS_QUAD)
3993 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3994 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3996 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3997 !(spi->mode & SPI_RX_QUAD))
4001 if (_spi_xfer_word_delay_update(xfer, spi))
4005 message->status = -EINPROGRESS;
4010 static int __spi_async(struct spi_device *spi, struct spi_message *message)
4012 struct spi_controller *ctlr = spi->controller;
4013 struct spi_transfer *xfer;
4016 * Some controllers do not support doing regular SPI transfers. Return
4017 * ENOTSUPP when this is the case.
4019 if (!ctlr->transfer)
4024 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4025 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4027 trace_spi_message_submit(message);
4029 if (!ctlr->ptp_sts_supported) {
4030 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4031 xfer->ptp_sts_word_pre = 0;
4032 ptp_read_system_prets(xfer->ptp_sts);
4036 return ctlr->transfer(spi, message);
4040 * spi_async - asynchronous SPI transfer
4041 * @spi: device with which data will be exchanged
4042 * @message: describes the data transfers, including completion callback
4043 * Context: any (IRQs may be blocked, etc)
4045 * This call may be used in_irq and other contexts which can't sleep,
4046 * as well as from task contexts which can sleep.
4048 * The completion callback is invoked in a context which can't sleep.
4049 * Before that invocation, the value of message->status is undefined.
4050 * When the callback is issued, message->status holds either zero (to
4051 * indicate complete success) or a negative error code. After that
4052 * callback returns, the driver which issued the transfer request may
4053 * deallocate the associated memory; it's no longer in use by any SPI
4054 * core or controller driver code.
4056 * Note that although all messages to a spi_device are handled in
4057 * FIFO order, messages may go to different devices in other orders.
4058 * Some device might be higher priority, or have various "hard" access
4059 * time requirements, for example.
4061 * On detection of any fault during the transfer, processing of
4062 * the entire message is aborted, and the device is deselected.
4063 * Until returning from the associated message completion callback,
4064 * no other spi_message queued to that device will be processed.
4065 * (This rule applies equally to all the synchronous transfer calls,
4066 * which are wrappers around this core asynchronous primitive.)
4068 * Return: zero on success, else a negative error code.
4070 int spi_async(struct spi_device *spi, struct spi_message *message)
4072 struct spi_controller *ctlr = spi->controller;
4074 unsigned long flags;
4076 ret = __spi_validate(spi, message);
4080 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4082 if (ctlr->bus_lock_flag)
4085 ret = __spi_async(spi, message);
4087 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4091 EXPORT_SYMBOL_GPL(spi_async);
4094 * spi_async_locked - version of spi_async with exclusive bus usage
4095 * @spi: device with which data will be exchanged
4096 * @message: describes the data transfers, including completion callback
4097 * Context: any (IRQs may be blocked, etc)
4099 * This call may be used in_irq and other contexts which can't sleep,
4100 * as well as from task contexts which can sleep.
4102 * The completion callback is invoked in a context which can't sleep.
4103 * Before that invocation, the value of message->status is undefined.
4104 * When the callback is issued, message->status holds either zero (to
4105 * indicate complete success) or a negative error code. After that
4106 * callback returns, the driver which issued the transfer request may
4107 * deallocate the associated memory; it's no longer in use by any SPI
4108 * core or controller driver code.
4110 * Note that although all messages to a spi_device are handled in
4111 * FIFO order, messages may go to different devices in other orders.
4112 * Some device might be higher priority, or have various "hard" access
4113 * time requirements, for example.
4115 * On detection of any fault during the transfer, processing of
4116 * the entire message is aborted, and the device is deselected.
4117 * Until returning from the associated message completion callback,
4118 * no other spi_message queued to that device will be processed.
4119 * (This rule applies equally to all the synchronous transfer calls,
4120 * which are wrappers around this core asynchronous primitive.)
4122 * Return: zero on success, else a negative error code.
4124 static int spi_async_locked(struct spi_device *spi, struct spi_message *message)
4126 struct spi_controller *ctlr = spi->controller;
4128 unsigned long flags;
4130 ret = __spi_validate(spi, message);
4134 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4136 ret = __spi_async(spi, message);
4138 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4144 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4149 mutex_lock(&ctlr->io_mutex);
4151 was_busy = ctlr->busy;
4153 ctlr->cur_msg = msg;
4154 ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4158 ctlr->cur_msg = NULL;
4159 ctlr->fallback = false;
4162 kfree(ctlr->dummy_rx);
4163 ctlr->dummy_rx = NULL;
4164 kfree(ctlr->dummy_tx);
4165 ctlr->dummy_tx = NULL;
4166 if (ctlr->unprepare_transfer_hardware &&
4167 ctlr->unprepare_transfer_hardware(ctlr))
4169 "failed to unprepare transfer hardware\n");
4170 spi_idle_runtime_pm(ctlr);
4174 mutex_unlock(&ctlr->io_mutex);
4177 /*-------------------------------------------------------------------------*/
4180 * Utility methods for SPI protocol drivers, layered on
4181 * top of the core. Some other utility methods are defined as
4185 static void spi_complete(void *arg)
4190 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4192 DECLARE_COMPLETION_ONSTACK(done);
4194 struct spi_controller *ctlr = spi->controller;
4196 status = __spi_validate(spi, message);
4202 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4203 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4206 * Checking queue_empty here only guarantees async/sync message
4207 * ordering when coming from the same context. It does not need to
4208 * guard against reentrancy from a different context. The io_mutex
4209 * will catch those cases.
4211 if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4212 message->actual_length = 0;
4213 message->status = -EINPROGRESS;
4215 trace_spi_message_submit(message);
4217 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4218 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4220 __spi_transfer_message_noqueue(ctlr, message);
4222 return message->status;
4226 * There are messages in the async queue that could have originated
4227 * from the same context, so we need to preserve ordering.
4228 * Therefor we send the message to the async queue and wait until they
4231 message->complete = spi_complete;
4232 message->context = &done;
4233 status = spi_async_locked(spi, message);
4235 wait_for_completion(&done);
4236 status = message->status;
4238 message->context = NULL;
4244 * spi_sync - blocking/synchronous SPI data transfers
4245 * @spi: device with which data will be exchanged
4246 * @message: describes the data transfers
4247 * Context: can sleep
4249 * This call may only be used from a context that may sleep. The sleep
4250 * is non-interruptible, and has no timeout. Low-overhead controller
4251 * drivers may DMA directly into and out of the message buffers.
4253 * Note that the SPI device's chip select is active during the message,
4254 * and then is normally disabled between messages. Drivers for some
4255 * frequently-used devices may want to minimize costs of selecting a chip,
4256 * by leaving it selected in anticipation that the next message will go
4257 * to the same chip. (That may increase power usage.)
4259 * Also, the caller is guaranteeing that the memory associated with the
4260 * message will not be freed before this call returns.
4262 * Return: zero on success, else a negative error code.
4264 int spi_sync(struct spi_device *spi, struct spi_message *message)
4268 mutex_lock(&spi->controller->bus_lock_mutex);
4269 ret = __spi_sync(spi, message);
4270 mutex_unlock(&spi->controller->bus_lock_mutex);
4274 EXPORT_SYMBOL_GPL(spi_sync);
4277 * spi_sync_locked - version of spi_sync with exclusive bus usage
4278 * @spi: device with which data will be exchanged
4279 * @message: describes the data transfers
4280 * Context: can sleep
4282 * This call may only be used from a context that may sleep. The sleep
4283 * is non-interruptible, and has no timeout. Low-overhead controller
4284 * drivers may DMA directly into and out of the message buffers.
4286 * This call should be used by drivers that require exclusive access to the
4287 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4288 * be released by a spi_bus_unlock call when the exclusive access is over.
4290 * Return: zero on success, else a negative error code.
4292 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4294 return __spi_sync(spi, message);
4296 EXPORT_SYMBOL_GPL(spi_sync_locked);
4299 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4300 * @ctlr: SPI bus master that should be locked for exclusive bus access
4301 * Context: can sleep
4303 * This call may only be used from a context that may sleep. The sleep
4304 * is non-interruptible, and has no timeout.
4306 * This call should be used by drivers that require exclusive access to the
4307 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4308 * exclusive access is over. Data transfer must be done by spi_sync_locked
4309 * and spi_async_locked calls when the SPI bus lock is held.
4311 * Return: always zero.
4313 int spi_bus_lock(struct spi_controller *ctlr)
4315 unsigned long flags;
4317 mutex_lock(&ctlr->bus_lock_mutex);
4319 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4320 ctlr->bus_lock_flag = 1;
4321 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4323 /* Mutex remains locked until spi_bus_unlock() is called */
4327 EXPORT_SYMBOL_GPL(spi_bus_lock);
4330 * spi_bus_unlock - release the lock for exclusive SPI bus usage
4331 * @ctlr: SPI bus master that was locked for exclusive bus access
4332 * Context: can sleep
4334 * This call may only be used from a context that may sleep. The sleep
4335 * is non-interruptible, and has no timeout.
4337 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4340 * Return: always zero.
4342 int spi_bus_unlock(struct spi_controller *ctlr)
4344 ctlr->bus_lock_flag = 0;
4346 mutex_unlock(&ctlr->bus_lock_mutex);
4350 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4352 /* Portable code must never pass more than 32 bytes */
4353 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
4358 * spi_write_then_read - SPI synchronous write followed by read
4359 * @spi: device with which data will be exchanged
4360 * @txbuf: data to be written (need not be DMA-safe)
4361 * @n_tx: size of txbuf, in bytes
4362 * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4363 * @n_rx: size of rxbuf, in bytes
4364 * Context: can sleep
4366 * This performs a half duplex MicroWire style transaction with the
4367 * device, sending txbuf and then reading rxbuf. The return value
4368 * is zero for success, else a negative errno status code.
4369 * This call may only be used from a context that may sleep.
4371 * Parameters to this routine are always copied using a small buffer.
4372 * Performance-sensitive or bulk transfer code should instead use
4373 * spi_{async,sync}() calls with DMA-safe buffers.
4375 * Return: zero on success, else a negative error code.
4377 int spi_write_then_read(struct spi_device *spi,
4378 const void *txbuf, unsigned n_tx,
4379 void *rxbuf, unsigned n_rx)
4381 static DEFINE_MUTEX(lock);
4384 struct spi_message message;
4385 struct spi_transfer x[2];
4389 * Use preallocated DMA-safe buffer if we can. We can't avoid
4390 * copying here, (as a pure convenience thing), but we can
4391 * keep heap costs out of the hot path unless someone else is
4392 * using the pre-allocated buffer or the transfer is too large.
4394 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4395 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4396 GFP_KERNEL | GFP_DMA);
4403 spi_message_init(&message);
4404 memset(x, 0, sizeof(x));
4407 spi_message_add_tail(&x[0], &message);
4411 spi_message_add_tail(&x[1], &message);
4414 memcpy(local_buf, txbuf, n_tx);
4415 x[0].tx_buf = local_buf;
4416 x[1].rx_buf = local_buf + n_tx;
4419 status = spi_sync(spi, &message);
4421 memcpy(rxbuf, x[1].rx_buf, n_rx);
4423 if (x[0].tx_buf == buf)
4424 mutex_unlock(&lock);
4430 EXPORT_SYMBOL_GPL(spi_write_then_read);
4432 /*-------------------------------------------------------------------------*/
4434 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4435 /* Must call put_device() when done with returned spi_device device */
4436 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4438 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4440 return dev ? to_spi_device(dev) : NULL;
4443 /* The spi controllers are not using spi_bus, so we find it with another way */
4444 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4448 dev = class_find_device_by_of_node(&spi_master_class, node);
4449 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4450 dev = class_find_device_by_of_node(&spi_slave_class, node);
4454 /* Reference got in class_find_device */
4455 return container_of(dev, struct spi_controller, dev);
4458 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4461 struct of_reconfig_data *rd = arg;
4462 struct spi_controller *ctlr;
4463 struct spi_device *spi;
4465 switch (of_reconfig_get_state_change(action, arg)) {
4466 case OF_RECONFIG_CHANGE_ADD:
4467 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4469 return NOTIFY_OK; /* Not for us */
4471 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4472 put_device(&ctlr->dev);
4477 * Clear the flag before adding the device so that fw_devlink
4478 * doesn't skip adding consumers to this device.
4480 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4481 spi = of_register_spi_device(ctlr, rd->dn);
4482 put_device(&ctlr->dev);
4485 pr_err("%s: failed to create for '%pOF'\n",
4487 of_node_clear_flag(rd->dn, OF_POPULATED);
4488 return notifier_from_errno(PTR_ERR(spi));
4492 case OF_RECONFIG_CHANGE_REMOVE:
4493 /* Already depopulated? */
4494 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4497 /* Find our device by node */
4498 spi = of_find_spi_device_by_node(rd->dn);
4500 return NOTIFY_OK; /* No? not meant for us */
4502 /* Unregister takes one ref away */
4503 spi_unregister_device(spi);
4505 /* And put the reference of the find */
4506 put_device(&spi->dev);
4513 static struct notifier_block spi_of_notifier = {
4514 .notifier_call = of_spi_notify,
4516 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4517 extern struct notifier_block spi_of_notifier;
4518 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4520 #if IS_ENABLED(CONFIG_ACPI)
4521 static int spi_acpi_controller_match(struct device *dev, const void *data)
4523 return ACPI_COMPANION(dev->parent) == data;
4526 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4530 dev = class_find_device(&spi_master_class, NULL, adev,
4531 spi_acpi_controller_match);
4532 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4533 dev = class_find_device(&spi_slave_class, NULL, adev,
4534 spi_acpi_controller_match);
4538 return container_of(dev, struct spi_controller, dev);
4541 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4545 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4546 return to_spi_device(dev);
4549 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4552 struct acpi_device *adev = arg;
4553 struct spi_controller *ctlr;
4554 struct spi_device *spi;
4557 case ACPI_RECONFIG_DEVICE_ADD:
4558 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4562 acpi_register_spi_device(ctlr, adev);
4563 put_device(&ctlr->dev);
4565 case ACPI_RECONFIG_DEVICE_REMOVE:
4566 if (!acpi_device_enumerated(adev))
4569 spi = acpi_spi_find_device_by_adev(adev);
4573 spi_unregister_device(spi);
4574 put_device(&spi->dev);
4581 static struct notifier_block spi_acpi_notifier = {
4582 .notifier_call = acpi_spi_notify,
4585 extern struct notifier_block spi_acpi_notifier;
4588 static int __init spi_init(void)
4592 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4598 status = bus_register(&spi_bus_type);
4602 status = class_register(&spi_master_class);
4606 if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4607 status = class_register(&spi_slave_class);
4612 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4613 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4614 if (IS_ENABLED(CONFIG_ACPI))
4615 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4620 class_unregister(&spi_master_class);
4622 bus_unregister(&spi_bus_type);
4631 * A board_info is normally registered in arch_initcall(),
4632 * but even essential drivers wait till later.
4634 * REVISIT only boardinfo really needs static linking. The rest (device and
4635 * driver registration) _could_ be dynamically linked (modular) ... Costs
4636 * include needing to have boardinfo data structures be much more public.
4638 postcore_initcall(spi_init);