Merge tag 'rust-fixes-6.6' of https://github.com/Rust-for-Linux/linux
[platform/kernel/linux-rpi.git] / drivers / spi / spi.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6
7 #include <linux/acpi.h>
8 #include <linux/cache.h>
9 #include <linux/clk/clk-conf.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/export.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/highmem.h>
17 #include <linux/idr.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/kernel.h>
21 #include <linux/kthread.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mutex.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/percpu.h>
27 #include <linux/platform_data/x86/apple.h>
28 #include <linux/pm_domain.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/property.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/sched/rt.h>
33 #include <linux/slab.h>
34 #include <linux/spi/spi.h>
35 #include <linux/spi/spi-mem.h>
36 #include <uapi/linux/sched/types.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42
43 #include "internals.h"
44
45 static DEFINE_IDR(spi_master_idr);
46
47 static void spidev_release(struct device *dev)
48 {
49         struct spi_device       *spi = to_spi_device(dev);
50
51         spi_controller_put(spi->controller);
52         kfree(spi->driver_override);
53         free_percpu(spi->pcpu_statistics);
54         kfree(spi);
55 }
56
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60         const struct spi_device *spi = to_spi_device(dev);
61         int len;
62
63         len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64         if (len != -ENODEV)
65                 return len;
66
67         return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70
71 static ssize_t driver_override_store(struct device *dev,
72                                      struct device_attribute *a,
73                                      const char *buf, size_t count)
74 {
75         struct spi_device *spi = to_spi_device(dev);
76         int ret;
77
78         ret = driver_set_override(dev, &spi->driver_override, buf, count);
79         if (ret)
80                 return ret;
81
82         return count;
83 }
84
85 static ssize_t driver_override_show(struct device *dev,
86                                     struct device_attribute *a, char *buf)
87 {
88         const struct spi_device *spi = to_spi_device(dev);
89         ssize_t len;
90
91         device_lock(dev);
92         len = sysfs_emit(buf, "%s\n", spi->driver_override ? : "");
93         device_unlock(dev);
94         return len;
95 }
96 static DEVICE_ATTR_RW(driver_override);
97
98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
99 {
100         struct spi_statistics __percpu *pcpu_stats;
101
102         if (dev)
103                 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
104         else
105                 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
106
107         if (pcpu_stats) {
108                 int cpu;
109
110                 for_each_possible_cpu(cpu) {
111                         struct spi_statistics *stat;
112
113                         stat = per_cpu_ptr(pcpu_stats, cpu);
114                         u64_stats_init(&stat->syncp);
115                 }
116         }
117         return pcpu_stats;
118 }
119
120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
121                                    char *buf, size_t offset)
122 {
123         u64 val = 0;
124         int i;
125
126         for_each_possible_cpu(i) {
127                 const struct spi_statistics *pcpu_stats;
128                 u64_stats_t *field;
129                 unsigned int start;
130                 u64 inc;
131
132                 pcpu_stats = per_cpu_ptr(stat, i);
133                 field = (void *)pcpu_stats + offset;
134                 do {
135                         start = u64_stats_fetch_begin(&pcpu_stats->syncp);
136                         inc = u64_stats_read(field);
137                 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
138                 val += inc;
139         }
140         return sysfs_emit(buf, "%llu\n", val);
141 }
142
143 #define SPI_STATISTICS_ATTRS(field, file)                               \
144 static ssize_t spi_controller_##field##_show(struct device *dev,        \
145                                              struct device_attribute *attr, \
146                                              char *buf)                 \
147 {                                                                       \
148         struct spi_controller *ctlr = container_of(dev,                 \
149                                          struct spi_controller, dev);   \
150         return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
151 }                                                                       \
152 static struct device_attribute dev_attr_spi_controller_##field = {      \
153         .attr = { .name = file, .mode = 0444 },                         \
154         .show = spi_controller_##field##_show,                          \
155 };                                                                      \
156 static ssize_t spi_device_##field##_show(struct device *dev,            \
157                                          struct device_attribute *attr, \
158                                         char *buf)                      \
159 {                                                                       \
160         struct spi_device *spi = to_spi_device(dev);                    \
161         return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
162 }                                                                       \
163 static struct device_attribute dev_attr_spi_device_##field = {          \
164         .attr = { .name = file, .mode = 0444 },                         \
165         .show = spi_device_##field##_show,                              \
166 }
167
168 #define SPI_STATISTICS_SHOW_NAME(name, file, field)                     \
169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
170                                             char *buf)                  \
171 {                                                                       \
172         return spi_emit_pcpu_stats(stat, buf,                           \
173                         offsetof(struct spi_statistics, field));        \
174 }                                                                       \
175 SPI_STATISTICS_ATTRS(name, file)
176
177 #define SPI_STATISTICS_SHOW(field)                                      \
178         SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
179                                  field)
180
181 SPI_STATISTICS_SHOW(messages);
182 SPI_STATISTICS_SHOW(transfers);
183 SPI_STATISTICS_SHOW(errors);
184 SPI_STATISTICS_SHOW(timedout);
185
186 SPI_STATISTICS_SHOW(spi_sync);
187 SPI_STATISTICS_SHOW(spi_sync_immediate);
188 SPI_STATISTICS_SHOW(spi_async);
189
190 SPI_STATISTICS_SHOW(bytes);
191 SPI_STATISTICS_SHOW(bytes_rx);
192 SPI_STATISTICS_SHOW(bytes_tx);
193
194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)              \
195         SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,           \
196                                  "transfer_bytes_histo_" number,        \
197                                  transfer_bytes_histo[index])
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
215
216 SPI_STATISTICS_SHOW(transfers_split_maxsize);
217
218 static struct attribute *spi_dev_attrs[] = {
219         &dev_attr_modalias.attr,
220         &dev_attr_driver_override.attr,
221         NULL,
222 };
223
224 static const struct attribute_group spi_dev_group = {
225         .attrs  = spi_dev_attrs,
226 };
227
228 static struct attribute *spi_device_statistics_attrs[] = {
229         &dev_attr_spi_device_messages.attr,
230         &dev_attr_spi_device_transfers.attr,
231         &dev_attr_spi_device_errors.attr,
232         &dev_attr_spi_device_timedout.attr,
233         &dev_attr_spi_device_spi_sync.attr,
234         &dev_attr_spi_device_spi_sync_immediate.attr,
235         &dev_attr_spi_device_spi_async.attr,
236         &dev_attr_spi_device_bytes.attr,
237         &dev_attr_spi_device_bytes_rx.attr,
238         &dev_attr_spi_device_bytes_tx.attr,
239         &dev_attr_spi_device_transfer_bytes_histo0.attr,
240         &dev_attr_spi_device_transfer_bytes_histo1.attr,
241         &dev_attr_spi_device_transfer_bytes_histo2.attr,
242         &dev_attr_spi_device_transfer_bytes_histo3.attr,
243         &dev_attr_spi_device_transfer_bytes_histo4.attr,
244         &dev_attr_spi_device_transfer_bytes_histo5.attr,
245         &dev_attr_spi_device_transfer_bytes_histo6.attr,
246         &dev_attr_spi_device_transfer_bytes_histo7.attr,
247         &dev_attr_spi_device_transfer_bytes_histo8.attr,
248         &dev_attr_spi_device_transfer_bytes_histo9.attr,
249         &dev_attr_spi_device_transfer_bytes_histo10.attr,
250         &dev_attr_spi_device_transfer_bytes_histo11.attr,
251         &dev_attr_spi_device_transfer_bytes_histo12.attr,
252         &dev_attr_spi_device_transfer_bytes_histo13.attr,
253         &dev_attr_spi_device_transfer_bytes_histo14.attr,
254         &dev_attr_spi_device_transfer_bytes_histo15.attr,
255         &dev_attr_spi_device_transfer_bytes_histo16.attr,
256         &dev_attr_spi_device_transfers_split_maxsize.attr,
257         NULL,
258 };
259
260 static const struct attribute_group spi_device_statistics_group = {
261         .name  = "statistics",
262         .attrs  = spi_device_statistics_attrs,
263 };
264
265 static const struct attribute_group *spi_dev_groups[] = {
266         &spi_dev_group,
267         &spi_device_statistics_group,
268         NULL,
269 };
270
271 static struct attribute *spi_controller_statistics_attrs[] = {
272         &dev_attr_spi_controller_messages.attr,
273         &dev_attr_spi_controller_transfers.attr,
274         &dev_attr_spi_controller_errors.attr,
275         &dev_attr_spi_controller_timedout.attr,
276         &dev_attr_spi_controller_spi_sync.attr,
277         &dev_attr_spi_controller_spi_sync_immediate.attr,
278         &dev_attr_spi_controller_spi_async.attr,
279         &dev_attr_spi_controller_bytes.attr,
280         &dev_attr_spi_controller_bytes_rx.attr,
281         &dev_attr_spi_controller_bytes_tx.attr,
282         &dev_attr_spi_controller_transfer_bytes_histo0.attr,
283         &dev_attr_spi_controller_transfer_bytes_histo1.attr,
284         &dev_attr_spi_controller_transfer_bytes_histo2.attr,
285         &dev_attr_spi_controller_transfer_bytes_histo3.attr,
286         &dev_attr_spi_controller_transfer_bytes_histo4.attr,
287         &dev_attr_spi_controller_transfer_bytes_histo5.attr,
288         &dev_attr_spi_controller_transfer_bytes_histo6.attr,
289         &dev_attr_spi_controller_transfer_bytes_histo7.attr,
290         &dev_attr_spi_controller_transfer_bytes_histo8.attr,
291         &dev_attr_spi_controller_transfer_bytes_histo9.attr,
292         &dev_attr_spi_controller_transfer_bytes_histo10.attr,
293         &dev_attr_spi_controller_transfer_bytes_histo11.attr,
294         &dev_attr_spi_controller_transfer_bytes_histo12.attr,
295         &dev_attr_spi_controller_transfer_bytes_histo13.attr,
296         &dev_attr_spi_controller_transfer_bytes_histo14.attr,
297         &dev_attr_spi_controller_transfer_bytes_histo15.attr,
298         &dev_attr_spi_controller_transfer_bytes_histo16.attr,
299         &dev_attr_spi_controller_transfers_split_maxsize.attr,
300         NULL,
301 };
302
303 static const struct attribute_group spi_controller_statistics_group = {
304         .name  = "statistics",
305         .attrs  = spi_controller_statistics_attrs,
306 };
307
308 static const struct attribute_group *spi_master_groups[] = {
309         &spi_controller_statistics_group,
310         NULL,
311 };
312
313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
314                                               struct spi_transfer *xfer,
315                                               struct spi_controller *ctlr)
316 {
317         int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
318         struct spi_statistics *stats;
319
320         if (l2len < 0)
321                 l2len = 0;
322
323         get_cpu();
324         stats = this_cpu_ptr(pcpu_stats);
325         u64_stats_update_begin(&stats->syncp);
326
327         u64_stats_inc(&stats->transfers);
328         u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
329
330         u64_stats_add(&stats->bytes, xfer->len);
331         if ((xfer->tx_buf) &&
332             (xfer->tx_buf != ctlr->dummy_tx))
333                 u64_stats_add(&stats->bytes_tx, xfer->len);
334         if ((xfer->rx_buf) &&
335             (xfer->rx_buf != ctlr->dummy_rx))
336                 u64_stats_add(&stats->bytes_rx, xfer->len);
337
338         u64_stats_update_end(&stats->syncp);
339         put_cpu();
340 }
341
342 /*
343  * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
344  * and the sysfs version makes coldplug work too.
345  */
346 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
347 {
348         while (id->name[0]) {
349                 if (!strcmp(name, id->name))
350                         return id;
351                 id++;
352         }
353         return NULL;
354 }
355
356 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
357 {
358         const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
359
360         return spi_match_id(sdrv->id_table, sdev->modalias);
361 }
362 EXPORT_SYMBOL_GPL(spi_get_device_id);
363
364 const void *spi_get_device_match_data(const struct spi_device *sdev)
365 {
366         const void *match;
367
368         match = device_get_match_data(&sdev->dev);
369         if (match)
370                 return match;
371
372         return (const void *)spi_get_device_id(sdev)->driver_data;
373 }
374 EXPORT_SYMBOL_GPL(spi_get_device_match_data);
375
376 static int spi_match_device(struct device *dev, struct device_driver *drv)
377 {
378         const struct spi_device *spi = to_spi_device(dev);
379         const struct spi_driver *sdrv = to_spi_driver(drv);
380
381         /* Check override first, and if set, only use the named driver */
382         if (spi->driver_override)
383                 return strcmp(spi->driver_override, drv->name) == 0;
384
385         /* Attempt an OF style match */
386         if (of_driver_match_device(dev, drv))
387                 return 1;
388
389         /* Then try ACPI */
390         if (acpi_driver_match_device(dev, drv))
391                 return 1;
392
393         if (sdrv->id_table)
394                 return !!spi_match_id(sdrv->id_table, spi->modalias);
395
396         return strcmp(spi->modalias, drv->name) == 0;
397 }
398
399 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
400 {
401         const struct spi_device         *spi = to_spi_device(dev);
402         int rc;
403
404         rc = acpi_device_uevent_modalias(dev, env);
405         if (rc != -ENODEV)
406                 return rc;
407
408         return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
409 }
410
411 static int spi_probe(struct device *dev)
412 {
413         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
414         struct spi_device               *spi = to_spi_device(dev);
415         int ret;
416
417         ret = of_clk_set_defaults(dev->of_node, false);
418         if (ret)
419                 return ret;
420
421         if (dev->of_node) {
422                 spi->irq = of_irq_get(dev->of_node, 0);
423                 if (spi->irq == -EPROBE_DEFER)
424                         return -EPROBE_DEFER;
425                 if (spi->irq < 0)
426                         spi->irq = 0;
427         }
428
429         ret = dev_pm_domain_attach(dev, true);
430         if (ret)
431                 return ret;
432
433         if (sdrv->probe) {
434                 ret = sdrv->probe(spi);
435                 if (ret)
436                         dev_pm_domain_detach(dev, true);
437         }
438
439         return ret;
440 }
441
442 static void spi_remove(struct device *dev)
443 {
444         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
445
446         if (sdrv->remove)
447                 sdrv->remove(to_spi_device(dev));
448
449         dev_pm_domain_detach(dev, true);
450 }
451
452 static void spi_shutdown(struct device *dev)
453 {
454         if (dev->driver) {
455                 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
456
457                 if (sdrv->shutdown)
458                         sdrv->shutdown(to_spi_device(dev));
459         }
460 }
461
462 struct bus_type spi_bus_type = {
463         .name           = "spi",
464         .dev_groups     = spi_dev_groups,
465         .match          = spi_match_device,
466         .uevent         = spi_uevent,
467         .probe          = spi_probe,
468         .remove         = spi_remove,
469         .shutdown       = spi_shutdown,
470 };
471 EXPORT_SYMBOL_GPL(spi_bus_type);
472
473 /**
474  * __spi_register_driver - register a SPI driver
475  * @owner: owner module of the driver to register
476  * @sdrv: the driver to register
477  * Context: can sleep
478  *
479  * Return: zero on success, else a negative error code.
480  */
481 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
482 {
483         sdrv->driver.owner = owner;
484         sdrv->driver.bus = &spi_bus_type;
485
486         /*
487          * For Really Good Reasons we use spi: modaliases not of:
488          * modaliases for DT so module autoloading won't work if we
489          * don't have a spi_device_id as well as a compatible string.
490          */
491         if (sdrv->driver.of_match_table) {
492                 const struct of_device_id *of_id;
493
494                 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
495                      of_id++) {
496                         const char *of_name;
497
498                         /* Strip off any vendor prefix */
499                         of_name = strnchr(of_id->compatible,
500                                           sizeof(of_id->compatible), ',');
501                         if (of_name)
502                                 of_name++;
503                         else
504                                 of_name = of_id->compatible;
505
506                         if (sdrv->id_table) {
507                                 const struct spi_device_id *spi_id;
508
509                                 spi_id = spi_match_id(sdrv->id_table, of_name);
510                                 if (spi_id)
511                                         continue;
512                         } else {
513                                 if (strcmp(sdrv->driver.name, of_name) == 0)
514                                         continue;
515                         }
516
517                         pr_warn("SPI driver %s has no spi_device_id for %s\n",
518                                 sdrv->driver.name, of_id->compatible);
519                 }
520         }
521
522         return driver_register(&sdrv->driver);
523 }
524 EXPORT_SYMBOL_GPL(__spi_register_driver);
525
526 /*-------------------------------------------------------------------------*/
527
528 /*
529  * SPI devices should normally not be created by SPI device drivers; that
530  * would make them board-specific.  Similarly with SPI controller drivers.
531  * Device registration normally goes into like arch/.../mach.../board-YYY.c
532  * with other readonly (flashable) information about mainboard devices.
533  */
534
535 struct boardinfo {
536         struct list_head        list;
537         struct spi_board_info   board_info;
538 };
539
540 static LIST_HEAD(board_list);
541 static LIST_HEAD(spi_controller_list);
542
543 /*
544  * Used to protect add/del operation for board_info list and
545  * spi_controller list, and their matching process also used
546  * to protect object of type struct idr.
547  */
548 static DEFINE_MUTEX(board_lock);
549
550 /**
551  * spi_alloc_device - Allocate a new SPI device
552  * @ctlr: Controller to which device is connected
553  * Context: can sleep
554  *
555  * Allows a driver to allocate and initialize a spi_device without
556  * registering it immediately.  This allows a driver to directly
557  * fill the spi_device with device parameters before calling
558  * spi_add_device() on it.
559  *
560  * Caller is responsible to call spi_add_device() on the returned
561  * spi_device structure to add it to the SPI controller.  If the caller
562  * needs to discard the spi_device without adding it, then it should
563  * call spi_dev_put() on it.
564  *
565  * Return: a pointer to the new device, or NULL.
566  */
567 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
568 {
569         struct spi_device       *spi;
570
571         if (!spi_controller_get(ctlr))
572                 return NULL;
573
574         spi = kzalloc(sizeof(*spi), GFP_KERNEL);
575         if (!spi) {
576                 spi_controller_put(ctlr);
577                 return NULL;
578         }
579
580         spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
581         if (!spi->pcpu_statistics) {
582                 kfree(spi);
583                 spi_controller_put(ctlr);
584                 return NULL;
585         }
586
587         spi->master = spi->controller = ctlr;
588         spi->dev.parent = &ctlr->dev;
589         spi->dev.bus = &spi_bus_type;
590         spi->dev.release = spidev_release;
591         spi->mode = ctlr->buswidth_override_bits;
592
593         device_initialize(&spi->dev);
594         return spi;
595 }
596 EXPORT_SYMBOL_GPL(spi_alloc_device);
597
598 static void spi_dev_set_name(struct spi_device *spi)
599 {
600         struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
601
602         if (adev) {
603                 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
604                 return;
605         }
606
607         dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
608                      spi_get_chipselect(spi, 0));
609 }
610
611 static int spi_dev_check(struct device *dev, void *data)
612 {
613         struct spi_device *spi = to_spi_device(dev);
614         struct spi_device *new_spi = data;
615
616         if (spi->controller == new_spi->controller &&
617             spi_get_chipselect(spi, 0) == spi_get_chipselect(new_spi, 0))
618                 return -EBUSY;
619         return 0;
620 }
621
622 static void spi_cleanup(struct spi_device *spi)
623 {
624         if (spi->controller->cleanup)
625                 spi->controller->cleanup(spi);
626 }
627
628 static int __spi_add_device(struct spi_device *spi)
629 {
630         struct spi_controller *ctlr = spi->controller;
631         struct device *dev = ctlr->dev.parent;
632         int status;
633
634         /* Chipselects are numbered 0..max; validate. */
635         if (spi_get_chipselect(spi, 0) >= ctlr->num_chipselect) {
636                 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, 0),
637                         ctlr->num_chipselect);
638                 return -EINVAL;
639         }
640
641         /* Set the bus ID string */
642         spi_dev_set_name(spi);
643
644         /*
645          * We need to make sure there's no other device with this
646          * chipselect **BEFORE** we call setup(), else we'll trash
647          * its configuration.
648          */
649         status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
650         if (status) {
651                 dev_err(dev, "chipselect %d already in use\n",
652                                 spi_get_chipselect(spi, 0));
653                 return status;
654         }
655
656         /* Controller may unregister concurrently */
657         if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
658             !device_is_registered(&ctlr->dev)) {
659                 return -ENODEV;
660         }
661
662         if (ctlr->cs_gpiods)
663                 spi_set_csgpiod(spi, 0, ctlr->cs_gpiods[spi_get_chipselect(spi, 0)]);
664
665         /*
666          * Drivers may modify this initial i/o setup, but will
667          * normally rely on the device being setup.  Devices
668          * using SPI_CS_HIGH can't coexist well otherwise...
669          */
670         status = spi_setup(spi);
671         if (status < 0) {
672                 dev_err(dev, "can't setup %s, status %d\n",
673                                 dev_name(&spi->dev), status);
674                 return status;
675         }
676
677         /* Device may be bound to an active driver when this returns */
678         status = device_add(&spi->dev);
679         if (status < 0) {
680                 dev_err(dev, "can't add %s, status %d\n",
681                                 dev_name(&spi->dev), status);
682                 spi_cleanup(spi);
683         } else {
684                 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
685         }
686
687         return status;
688 }
689
690 /**
691  * spi_add_device - Add spi_device allocated with spi_alloc_device
692  * @spi: spi_device to register
693  *
694  * Companion function to spi_alloc_device.  Devices allocated with
695  * spi_alloc_device can be added onto the SPI bus with this function.
696  *
697  * Return: 0 on success; negative errno on failure
698  */
699 int spi_add_device(struct spi_device *spi)
700 {
701         struct spi_controller *ctlr = spi->controller;
702         int status;
703
704         mutex_lock(&ctlr->add_lock);
705         status = __spi_add_device(spi);
706         mutex_unlock(&ctlr->add_lock);
707         return status;
708 }
709 EXPORT_SYMBOL_GPL(spi_add_device);
710
711 /**
712  * spi_new_device - instantiate one new SPI device
713  * @ctlr: Controller to which device is connected
714  * @chip: Describes the SPI device
715  * Context: can sleep
716  *
717  * On typical mainboards, this is purely internal; and it's not needed
718  * after board init creates the hard-wired devices.  Some development
719  * platforms may not be able to use spi_register_board_info though, and
720  * this is exported so that for example a USB or parport based adapter
721  * driver could add devices (which it would learn about out-of-band).
722  *
723  * Return: the new device, or NULL.
724  */
725 struct spi_device *spi_new_device(struct spi_controller *ctlr,
726                                   struct spi_board_info *chip)
727 {
728         struct spi_device       *proxy;
729         int                     status;
730
731         /*
732          * NOTE:  caller did any chip->bus_num checks necessary.
733          *
734          * Also, unless we change the return value convention to use
735          * error-or-pointer (not NULL-or-pointer), troubleshootability
736          * suggests syslogged diagnostics are best here (ugh).
737          */
738
739         proxy = spi_alloc_device(ctlr);
740         if (!proxy)
741                 return NULL;
742
743         WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
744
745         spi_set_chipselect(proxy, 0, chip->chip_select);
746         proxy->max_speed_hz = chip->max_speed_hz;
747         proxy->mode = chip->mode;
748         proxy->irq = chip->irq;
749         strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
750         proxy->dev.platform_data = (void *) chip->platform_data;
751         proxy->controller_data = chip->controller_data;
752         proxy->controller_state = NULL;
753
754         if (chip->swnode) {
755                 status = device_add_software_node(&proxy->dev, chip->swnode);
756                 if (status) {
757                         dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
758                                 chip->modalias, status);
759                         goto err_dev_put;
760                 }
761         }
762
763         status = spi_add_device(proxy);
764         if (status < 0)
765                 goto err_dev_put;
766
767         return proxy;
768
769 err_dev_put:
770         device_remove_software_node(&proxy->dev);
771         spi_dev_put(proxy);
772         return NULL;
773 }
774 EXPORT_SYMBOL_GPL(spi_new_device);
775
776 /**
777  * spi_unregister_device - unregister a single SPI device
778  * @spi: spi_device to unregister
779  *
780  * Start making the passed SPI device vanish. Normally this would be handled
781  * by spi_unregister_controller().
782  */
783 void spi_unregister_device(struct spi_device *spi)
784 {
785         if (!spi)
786                 return;
787
788         if (spi->dev.of_node) {
789                 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
790                 of_node_put(spi->dev.of_node);
791         }
792         if (ACPI_COMPANION(&spi->dev))
793                 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
794         device_remove_software_node(&spi->dev);
795         device_del(&spi->dev);
796         spi_cleanup(spi);
797         put_device(&spi->dev);
798 }
799 EXPORT_SYMBOL_GPL(spi_unregister_device);
800
801 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
802                                               struct spi_board_info *bi)
803 {
804         struct spi_device *dev;
805
806         if (ctlr->bus_num != bi->bus_num)
807                 return;
808
809         dev = spi_new_device(ctlr, bi);
810         if (!dev)
811                 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
812                         bi->modalias);
813 }
814
815 /**
816  * spi_register_board_info - register SPI devices for a given board
817  * @info: array of chip descriptors
818  * @n: how many descriptors are provided
819  * Context: can sleep
820  *
821  * Board-specific early init code calls this (probably during arch_initcall)
822  * with segments of the SPI device table.  Any device nodes are created later,
823  * after the relevant parent SPI controller (bus_num) is defined.  We keep
824  * this table of devices forever, so that reloading a controller driver will
825  * not make Linux forget about these hard-wired devices.
826  *
827  * Other code can also call this, e.g. a particular add-on board might provide
828  * SPI devices through its expansion connector, so code initializing that board
829  * would naturally declare its SPI devices.
830  *
831  * The board info passed can safely be __initdata ... but be careful of
832  * any embedded pointers (platform_data, etc), they're copied as-is.
833  *
834  * Return: zero on success, else a negative error code.
835  */
836 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
837 {
838         struct boardinfo *bi;
839         int i;
840
841         if (!n)
842                 return 0;
843
844         bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
845         if (!bi)
846                 return -ENOMEM;
847
848         for (i = 0; i < n; i++, bi++, info++) {
849                 struct spi_controller *ctlr;
850
851                 memcpy(&bi->board_info, info, sizeof(*info));
852
853                 mutex_lock(&board_lock);
854                 list_add_tail(&bi->list, &board_list);
855                 list_for_each_entry(ctlr, &spi_controller_list, list)
856                         spi_match_controller_to_boardinfo(ctlr,
857                                                           &bi->board_info);
858                 mutex_unlock(&board_lock);
859         }
860
861         return 0;
862 }
863
864 /*-------------------------------------------------------------------------*/
865
866 /* Core methods for SPI resource management */
867
868 /**
869  * spi_res_alloc - allocate a spi resource that is life-cycle managed
870  *                 during the processing of a spi_message while using
871  *                 spi_transfer_one
872  * @spi:     the SPI device for which we allocate memory
873  * @release: the release code to execute for this resource
874  * @size:    size to alloc and return
875  * @gfp:     GFP allocation flags
876  *
877  * Return: the pointer to the allocated data
878  *
879  * This may get enhanced in the future to allocate from a memory pool
880  * of the @spi_device or @spi_controller to avoid repeated allocations.
881  */
882 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
883                            size_t size, gfp_t gfp)
884 {
885         struct spi_res *sres;
886
887         sres = kzalloc(sizeof(*sres) + size, gfp);
888         if (!sres)
889                 return NULL;
890
891         INIT_LIST_HEAD(&sres->entry);
892         sres->release = release;
893
894         return sres->data;
895 }
896
897 /**
898  * spi_res_free - free an SPI resource
899  * @res: pointer to the custom data of a resource
900  */
901 static void spi_res_free(void *res)
902 {
903         struct spi_res *sres = container_of(res, struct spi_res, data);
904
905         if (!res)
906                 return;
907
908         WARN_ON(!list_empty(&sres->entry));
909         kfree(sres);
910 }
911
912 /**
913  * spi_res_add - add a spi_res to the spi_message
914  * @message: the SPI message
915  * @res:     the spi_resource
916  */
917 static void spi_res_add(struct spi_message *message, void *res)
918 {
919         struct spi_res *sres = container_of(res, struct spi_res, data);
920
921         WARN_ON(!list_empty(&sres->entry));
922         list_add_tail(&sres->entry, &message->resources);
923 }
924
925 /**
926  * spi_res_release - release all SPI resources for this message
927  * @ctlr:  the @spi_controller
928  * @message: the @spi_message
929  */
930 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
931 {
932         struct spi_res *res, *tmp;
933
934         list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
935                 if (res->release)
936                         res->release(ctlr, message, res->data);
937
938                 list_del(&res->entry);
939
940                 kfree(res);
941         }
942 }
943
944 /*-------------------------------------------------------------------------*/
945
946 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
947 {
948         bool activate = enable;
949
950         /*
951          * Avoid calling into the driver (or doing delays) if the chip select
952          * isn't actually changing from the last time this was called.
953          */
954         if (!force && ((enable && spi->controller->last_cs == spi_get_chipselect(spi, 0)) ||
955                        (!enable && spi->controller->last_cs != spi_get_chipselect(spi, 0))) &&
956             (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
957                 return;
958
959         trace_spi_set_cs(spi, activate);
960
961         spi->controller->last_cs = enable ? spi_get_chipselect(spi, 0) : -1;
962         spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
963
964         if ((spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) && !activate)
965                 spi_delay_exec(&spi->cs_hold, NULL);
966
967         if (spi->mode & SPI_CS_HIGH)
968                 enable = !enable;
969
970         if (spi_get_csgpiod(spi, 0)) {
971                 if (!(spi->mode & SPI_NO_CS)) {
972                         /*
973                          * Historically ACPI has no means of the GPIO polarity and
974                          * thus the SPISerialBus() resource defines it on the per-chip
975                          * basis. In order to avoid a chain of negations, the GPIO
976                          * polarity is considered being Active High. Even for the cases
977                          * when _DSD() is involved (in the updated versions of ACPI)
978                          * the GPIO CS polarity must be defined Active High to avoid
979                          * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
980                          * into account.
981                          */
982                         if (has_acpi_companion(&spi->dev))
983                                 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), !enable);
984                         else
985                                 /* Polarity handled by GPIO library */
986                                 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), activate);
987                 }
988                 /* Some SPI masters need both GPIO CS & slave_select */
989                 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) &&
990                     spi->controller->set_cs)
991                         spi->controller->set_cs(spi, !enable);
992         } else if (spi->controller->set_cs) {
993                 spi->controller->set_cs(spi, !enable);
994         }
995
996         if (spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) {
997                 if (activate)
998                         spi_delay_exec(&spi->cs_setup, NULL);
999                 else
1000                         spi_delay_exec(&spi->cs_inactive, NULL);
1001         }
1002 }
1003
1004 #ifdef CONFIG_HAS_DMA
1005 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1006                              struct sg_table *sgt, void *buf, size_t len,
1007                              enum dma_data_direction dir, unsigned long attrs)
1008 {
1009         const bool vmalloced_buf = is_vmalloc_addr(buf);
1010         unsigned int max_seg_size = dma_get_max_seg_size(dev);
1011 #ifdef CONFIG_HIGHMEM
1012         const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1013                                 (unsigned long)buf < (PKMAP_BASE +
1014                                         (LAST_PKMAP * PAGE_SIZE)));
1015 #else
1016         const bool kmap_buf = false;
1017 #endif
1018         int desc_len;
1019         int sgs;
1020         struct page *vm_page;
1021         struct scatterlist *sg;
1022         void *sg_buf;
1023         size_t min;
1024         int i, ret;
1025
1026         if (vmalloced_buf || kmap_buf) {
1027                 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1028                 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1029         } else if (virt_addr_valid(buf)) {
1030                 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1031                 sgs = DIV_ROUND_UP(len, desc_len);
1032         } else {
1033                 return -EINVAL;
1034         }
1035
1036         ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1037         if (ret != 0)
1038                 return ret;
1039
1040         sg = &sgt->sgl[0];
1041         for (i = 0; i < sgs; i++) {
1042
1043                 if (vmalloced_buf || kmap_buf) {
1044                         /*
1045                          * Next scatterlist entry size is the minimum between
1046                          * the desc_len and the remaining buffer length that
1047                          * fits in a page.
1048                          */
1049                         min = min_t(size_t, desc_len,
1050                                     min_t(size_t, len,
1051                                           PAGE_SIZE - offset_in_page(buf)));
1052                         if (vmalloced_buf)
1053                                 vm_page = vmalloc_to_page(buf);
1054                         else
1055                                 vm_page = kmap_to_page(buf);
1056                         if (!vm_page) {
1057                                 sg_free_table(sgt);
1058                                 return -ENOMEM;
1059                         }
1060                         sg_set_page(sg, vm_page,
1061                                     min, offset_in_page(buf));
1062                 } else {
1063                         min = min_t(size_t, len, desc_len);
1064                         sg_buf = buf;
1065                         sg_set_buf(sg, sg_buf, min);
1066                 }
1067
1068                 buf += min;
1069                 len -= min;
1070                 sg = sg_next(sg);
1071         }
1072
1073         ret = dma_map_sgtable(dev, sgt, dir, attrs);
1074         if (ret < 0) {
1075                 sg_free_table(sgt);
1076                 return ret;
1077         }
1078
1079         return 0;
1080 }
1081
1082 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1083                 struct sg_table *sgt, void *buf, size_t len,
1084                 enum dma_data_direction dir)
1085 {
1086         return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1087 }
1088
1089 static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1090                                 struct device *dev, struct sg_table *sgt,
1091                                 enum dma_data_direction dir,
1092                                 unsigned long attrs)
1093 {
1094         if (sgt->orig_nents) {
1095                 dma_unmap_sgtable(dev, sgt, dir, attrs);
1096                 sg_free_table(sgt);
1097                 sgt->orig_nents = 0;
1098                 sgt->nents = 0;
1099         }
1100 }
1101
1102 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1103                    struct sg_table *sgt, enum dma_data_direction dir)
1104 {
1105         spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1106 }
1107
1108 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1109 {
1110         struct device *tx_dev, *rx_dev;
1111         struct spi_transfer *xfer;
1112         int ret;
1113
1114         if (!ctlr->can_dma)
1115                 return 0;
1116
1117         if (ctlr->dma_tx)
1118                 tx_dev = ctlr->dma_tx->device->dev;
1119         else if (ctlr->dma_map_dev)
1120                 tx_dev = ctlr->dma_map_dev;
1121         else
1122                 tx_dev = ctlr->dev.parent;
1123
1124         if (ctlr->dma_rx)
1125                 rx_dev = ctlr->dma_rx->device->dev;
1126         else if (ctlr->dma_map_dev)
1127                 rx_dev = ctlr->dma_map_dev;
1128         else
1129                 rx_dev = ctlr->dev.parent;
1130
1131         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1132                 /* The sync is done before each transfer. */
1133                 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1134
1135                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1136                         continue;
1137
1138                 if (xfer->tx_buf != NULL) {
1139                         ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1140                                                 (void *)xfer->tx_buf,
1141                                                 xfer->len, DMA_TO_DEVICE,
1142                                                 attrs);
1143                         if (ret != 0)
1144                                 return ret;
1145                 }
1146
1147                 if (xfer->rx_buf != NULL) {
1148                         ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1149                                                 xfer->rx_buf, xfer->len,
1150                                                 DMA_FROM_DEVICE, attrs);
1151                         if (ret != 0) {
1152                                 spi_unmap_buf_attrs(ctlr, tx_dev,
1153                                                 &xfer->tx_sg, DMA_TO_DEVICE,
1154                                                 attrs);
1155
1156                                 return ret;
1157                         }
1158                 }
1159         }
1160
1161         ctlr->cur_rx_dma_dev = rx_dev;
1162         ctlr->cur_tx_dma_dev = tx_dev;
1163         ctlr->cur_msg_mapped = true;
1164
1165         return 0;
1166 }
1167
1168 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1169 {
1170         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1171         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1172         struct spi_transfer *xfer;
1173
1174         if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1175                 return 0;
1176
1177         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1178                 /* The sync has already been done after each transfer. */
1179                 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1180
1181                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1182                         continue;
1183
1184                 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1185                                     DMA_FROM_DEVICE, attrs);
1186                 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1187                                     DMA_TO_DEVICE, attrs);
1188         }
1189
1190         ctlr->cur_msg_mapped = false;
1191
1192         return 0;
1193 }
1194
1195 static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1196                                     struct spi_transfer *xfer)
1197 {
1198         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1199         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1200
1201         if (!ctlr->cur_msg_mapped)
1202                 return;
1203
1204         if (xfer->tx_sg.orig_nents)
1205                 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1206         if (xfer->rx_sg.orig_nents)
1207                 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1208 }
1209
1210 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1211                                  struct spi_transfer *xfer)
1212 {
1213         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1214         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1215
1216         if (!ctlr->cur_msg_mapped)
1217                 return;
1218
1219         if (xfer->rx_sg.orig_nents)
1220                 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1221         if (xfer->tx_sg.orig_nents)
1222                 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1223 }
1224 #else /* !CONFIG_HAS_DMA */
1225 static inline int __spi_map_msg(struct spi_controller *ctlr,
1226                                 struct spi_message *msg)
1227 {
1228         return 0;
1229 }
1230
1231 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1232                                   struct spi_message *msg)
1233 {
1234         return 0;
1235 }
1236
1237 static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1238                                     struct spi_transfer *xfer)
1239 {
1240 }
1241
1242 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1243                                  struct spi_transfer *xfer)
1244 {
1245 }
1246 #endif /* !CONFIG_HAS_DMA */
1247
1248 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1249                                 struct spi_message *msg)
1250 {
1251         struct spi_transfer *xfer;
1252
1253         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1254                 /*
1255                  * Restore the original value of tx_buf or rx_buf if they are
1256                  * NULL.
1257                  */
1258                 if (xfer->tx_buf == ctlr->dummy_tx)
1259                         xfer->tx_buf = NULL;
1260                 if (xfer->rx_buf == ctlr->dummy_rx)
1261                         xfer->rx_buf = NULL;
1262         }
1263
1264         return __spi_unmap_msg(ctlr, msg);
1265 }
1266
1267 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1268 {
1269         struct spi_transfer *xfer;
1270         void *tmp;
1271         unsigned int max_tx, max_rx;
1272
1273         if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1274                 && !(msg->spi->mode & SPI_3WIRE)) {
1275                 max_tx = 0;
1276                 max_rx = 0;
1277
1278                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1279                         if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1280                             !xfer->tx_buf)
1281                                 max_tx = max(xfer->len, max_tx);
1282                         if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1283                             !xfer->rx_buf)
1284                                 max_rx = max(xfer->len, max_rx);
1285                 }
1286
1287                 if (max_tx) {
1288                         tmp = krealloc(ctlr->dummy_tx, max_tx,
1289                                        GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1290                         if (!tmp)
1291                                 return -ENOMEM;
1292                         ctlr->dummy_tx = tmp;
1293                 }
1294
1295                 if (max_rx) {
1296                         tmp = krealloc(ctlr->dummy_rx, max_rx,
1297                                        GFP_KERNEL | GFP_DMA);
1298                         if (!tmp)
1299                                 return -ENOMEM;
1300                         ctlr->dummy_rx = tmp;
1301                 }
1302
1303                 if (max_tx || max_rx) {
1304                         list_for_each_entry(xfer, &msg->transfers,
1305                                             transfer_list) {
1306                                 if (!xfer->len)
1307                                         continue;
1308                                 if (!xfer->tx_buf)
1309                                         xfer->tx_buf = ctlr->dummy_tx;
1310                                 if (!xfer->rx_buf)
1311                                         xfer->rx_buf = ctlr->dummy_rx;
1312                         }
1313                 }
1314         }
1315
1316         return __spi_map_msg(ctlr, msg);
1317 }
1318
1319 static int spi_transfer_wait(struct spi_controller *ctlr,
1320                              struct spi_message *msg,
1321                              struct spi_transfer *xfer)
1322 {
1323         struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1324         struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1325         u32 speed_hz = xfer->speed_hz;
1326         unsigned long long ms;
1327
1328         if (spi_controller_is_slave(ctlr)) {
1329                 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1330                         dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1331                         return -EINTR;
1332                 }
1333         } else {
1334                 if (!speed_hz)
1335                         speed_hz = 100000;
1336
1337                 /*
1338                  * For each byte we wait for 8 cycles of the SPI clock.
1339                  * Since speed is defined in Hz and we want milliseconds,
1340                  * use respective multiplier, but before the division,
1341                  * otherwise we may get 0 for short transfers.
1342                  */
1343                 ms = 8LL * MSEC_PER_SEC * xfer->len;
1344                 do_div(ms, speed_hz);
1345
1346                 /*
1347                  * Increase it twice and add 200 ms tolerance, use
1348                  * predefined maximum in case of overflow.
1349                  */
1350                 ms += ms + 200;
1351                 if (ms > UINT_MAX)
1352                         ms = UINT_MAX;
1353
1354                 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1355                                                  msecs_to_jiffies(ms));
1356
1357                 if (ms == 0) {
1358                         SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1359                         SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1360                         dev_err(&msg->spi->dev,
1361                                 "SPI transfer timed out\n");
1362                         return -ETIMEDOUT;
1363                 }
1364         }
1365
1366         return 0;
1367 }
1368
1369 static void _spi_transfer_delay_ns(u32 ns)
1370 {
1371         if (!ns)
1372                 return;
1373         if (ns <= NSEC_PER_USEC) {
1374                 ndelay(ns);
1375         } else {
1376                 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1377
1378                 if (us <= 10)
1379                         udelay(us);
1380                 else
1381                         usleep_range(us, us + DIV_ROUND_UP(us, 10));
1382         }
1383 }
1384
1385 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1386 {
1387         u32 delay = _delay->value;
1388         u32 unit = _delay->unit;
1389         u32 hz;
1390
1391         if (!delay)
1392                 return 0;
1393
1394         switch (unit) {
1395         case SPI_DELAY_UNIT_USECS:
1396                 delay *= NSEC_PER_USEC;
1397                 break;
1398         case SPI_DELAY_UNIT_NSECS:
1399                 /* Nothing to do here */
1400                 break;
1401         case SPI_DELAY_UNIT_SCK:
1402                 /* Clock cycles need to be obtained from spi_transfer */
1403                 if (!xfer)
1404                         return -EINVAL;
1405                 /*
1406                  * If there is unknown effective speed, approximate it
1407                  * by underestimating with half of the requested Hz.
1408                  */
1409                 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1410                 if (!hz)
1411                         return -EINVAL;
1412
1413                 /* Convert delay to nanoseconds */
1414                 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1415                 break;
1416         default:
1417                 return -EINVAL;
1418         }
1419
1420         return delay;
1421 }
1422 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1423
1424 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1425 {
1426         int delay;
1427
1428         might_sleep();
1429
1430         if (!_delay)
1431                 return -EINVAL;
1432
1433         delay = spi_delay_to_ns(_delay, xfer);
1434         if (delay < 0)
1435                 return delay;
1436
1437         _spi_transfer_delay_ns(delay);
1438
1439         return 0;
1440 }
1441 EXPORT_SYMBOL_GPL(spi_delay_exec);
1442
1443 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1444                                           struct spi_transfer *xfer)
1445 {
1446         u32 default_delay_ns = 10 * NSEC_PER_USEC;
1447         u32 delay = xfer->cs_change_delay.value;
1448         u32 unit = xfer->cs_change_delay.unit;
1449         int ret;
1450
1451         /* Return early on "fast" mode - for everything but USECS */
1452         if (!delay) {
1453                 if (unit == SPI_DELAY_UNIT_USECS)
1454                         _spi_transfer_delay_ns(default_delay_ns);
1455                 return;
1456         }
1457
1458         ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1459         if (ret) {
1460                 dev_err_once(&msg->spi->dev,
1461                              "Use of unsupported delay unit %i, using default of %luus\n",
1462                              unit, default_delay_ns / NSEC_PER_USEC);
1463                 _spi_transfer_delay_ns(default_delay_ns);
1464         }
1465 }
1466
1467 void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1468                                                   struct spi_transfer *xfer)
1469 {
1470         _spi_transfer_cs_change_delay(msg, xfer);
1471 }
1472 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1473
1474 /*
1475  * spi_transfer_one_message - Default implementation of transfer_one_message()
1476  *
1477  * This is a standard implementation of transfer_one_message() for
1478  * drivers which implement a transfer_one() operation.  It provides
1479  * standard handling of delays and chip select management.
1480  */
1481 static int spi_transfer_one_message(struct spi_controller *ctlr,
1482                                     struct spi_message *msg)
1483 {
1484         struct spi_transfer *xfer;
1485         bool keep_cs = false;
1486         int ret = 0;
1487         struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1488         struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1489
1490         xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1491         spi_set_cs(msg->spi, !xfer->cs_off, false);
1492
1493         SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1494         SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1495
1496         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1497                 trace_spi_transfer_start(msg, xfer);
1498
1499                 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1500                 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1501
1502                 if (!ctlr->ptp_sts_supported) {
1503                         xfer->ptp_sts_word_pre = 0;
1504                         ptp_read_system_prets(xfer->ptp_sts);
1505                 }
1506
1507                 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1508                         reinit_completion(&ctlr->xfer_completion);
1509
1510 fallback_pio:
1511                         spi_dma_sync_for_device(ctlr, xfer);
1512                         ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1513                         if (ret < 0) {
1514                                 spi_dma_sync_for_cpu(ctlr, xfer);
1515
1516                                 if (ctlr->cur_msg_mapped &&
1517                                    (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1518                                         __spi_unmap_msg(ctlr, msg);
1519                                         ctlr->fallback = true;
1520                                         xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1521                                         goto fallback_pio;
1522                                 }
1523
1524                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
1525                                                                errors);
1526                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
1527                                                                errors);
1528                                 dev_err(&msg->spi->dev,
1529                                         "SPI transfer failed: %d\n", ret);
1530                                 goto out;
1531                         }
1532
1533                         if (ret > 0) {
1534                                 ret = spi_transfer_wait(ctlr, msg, xfer);
1535                                 if (ret < 0)
1536                                         msg->status = ret;
1537                         }
1538
1539                         spi_dma_sync_for_cpu(ctlr, xfer);
1540                 } else {
1541                         if (xfer->len)
1542                                 dev_err(&msg->spi->dev,
1543                                         "Bufferless transfer has length %u\n",
1544                                         xfer->len);
1545                 }
1546
1547                 if (!ctlr->ptp_sts_supported) {
1548                         ptp_read_system_postts(xfer->ptp_sts);
1549                         xfer->ptp_sts_word_post = xfer->len;
1550                 }
1551
1552                 trace_spi_transfer_stop(msg, xfer);
1553
1554                 if (msg->status != -EINPROGRESS)
1555                         goto out;
1556
1557                 spi_transfer_delay_exec(xfer);
1558
1559                 if (xfer->cs_change) {
1560                         if (list_is_last(&xfer->transfer_list,
1561                                          &msg->transfers)) {
1562                                 keep_cs = true;
1563                         } else {
1564                                 if (!xfer->cs_off)
1565                                         spi_set_cs(msg->spi, false, false);
1566                                 _spi_transfer_cs_change_delay(msg, xfer);
1567                                 if (!list_next_entry(xfer, transfer_list)->cs_off)
1568                                         spi_set_cs(msg->spi, true, false);
1569                         }
1570                 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1571                            xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1572                         spi_set_cs(msg->spi, xfer->cs_off, false);
1573                 }
1574
1575                 msg->actual_length += xfer->len;
1576         }
1577
1578 out:
1579         if (ret != 0 || !keep_cs)
1580                 spi_set_cs(msg->spi, false, false);
1581
1582         if (msg->status == -EINPROGRESS)
1583                 msg->status = ret;
1584
1585         if (msg->status && ctlr->handle_err)
1586                 ctlr->handle_err(ctlr, msg);
1587
1588         spi_finalize_current_message(ctlr);
1589
1590         return ret;
1591 }
1592
1593 /**
1594  * spi_finalize_current_transfer - report completion of a transfer
1595  * @ctlr: the controller reporting completion
1596  *
1597  * Called by SPI drivers using the core transfer_one_message()
1598  * implementation to notify it that the current interrupt driven
1599  * transfer has finished and the next one may be scheduled.
1600  */
1601 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1602 {
1603         complete(&ctlr->xfer_completion);
1604 }
1605 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1606
1607 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1608 {
1609         if (ctlr->auto_runtime_pm) {
1610                 pm_runtime_mark_last_busy(ctlr->dev.parent);
1611                 pm_runtime_put_autosuspend(ctlr->dev.parent);
1612         }
1613 }
1614
1615 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1616                 struct spi_message *msg, bool was_busy)
1617 {
1618         struct spi_transfer *xfer;
1619         int ret;
1620
1621         if (!was_busy && ctlr->auto_runtime_pm) {
1622                 ret = pm_runtime_get_sync(ctlr->dev.parent);
1623                 if (ret < 0) {
1624                         pm_runtime_put_noidle(ctlr->dev.parent);
1625                         dev_err(&ctlr->dev, "Failed to power device: %d\n",
1626                                 ret);
1627                         return ret;
1628                 }
1629         }
1630
1631         if (!was_busy)
1632                 trace_spi_controller_busy(ctlr);
1633
1634         if (!was_busy && ctlr->prepare_transfer_hardware) {
1635                 ret = ctlr->prepare_transfer_hardware(ctlr);
1636                 if (ret) {
1637                         dev_err(&ctlr->dev,
1638                                 "failed to prepare transfer hardware: %d\n",
1639                                 ret);
1640
1641                         if (ctlr->auto_runtime_pm)
1642                                 pm_runtime_put(ctlr->dev.parent);
1643
1644                         msg->status = ret;
1645                         spi_finalize_current_message(ctlr);
1646
1647                         return ret;
1648                 }
1649         }
1650
1651         trace_spi_message_start(msg);
1652
1653         ret = spi_split_transfers_maxsize(ctlr, msg,
1654                                           spi_max_transfer_size(msg->spi),
1655                                           GFP_KERNEL | GFP_DMA);
1656         if (ret) {
1657                 msg->status = ret;
1658                 spi_finalize_current_message(ctlr);
1659                 return ret;
1660         }
1661
1662         if (ctlr->prepare_message) {
1663                 ret = ctlr->prepare_message(ctlr, msg);
1664                 if (ret) {
1665                         dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1666                                 ret);
1667                         msg->status = ret;
1668                         spi_finalize_current_message(ctlr);
1669                         return ret;
1670                 }
1671                 msg->prepared = true;
1672         }
1673
1674         ret = spi_map_msg(ctlr, msg);
1675         if (ret) {
1676                 msg->status = ret;
1677                 spi_finalize_current_message(ctlr);
1678                 return ret;
1679         }
1680
1681         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1682                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1683                         xfer->ptp_sts_word_pre = 0;
1684                         ptp_read_system_prets(xfer->ptp_sts);
1685                 }
1686         }
1687
1688         /*
1689          * Drivers implementation of transfer_one_message() must arrange for
1690          * spi_finalize_current_message() to get called. Most drivers will do
1691          * this in the calling context, but some don't. For those cases, a
1692          * completion is used to guarantee that this function does not return
1693          * until spi_finalize_current_message() is done accessing
1694          * ctlr->cur_msg.
1695          * Use of the following two flags enable to opportunistically skip the
1696          * use of the completion since its use involves expensive spin locks.
1697          * In case of a race with the context that calls
1698          * spi_finalize_current_message() the completion will always be used,
1699          * due to strict ordering of these flags using barriers.
1700          */
1701         WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1702         WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1703         reinit_completion(&ctlr->cur_msg_completion);
1704         smp_wmb(); /* Make these available to spi_finalize_current_message() */
1705
1706         ret = ctlr->transfer_one_message(ctlr, msg);
1707         if (ret) {
1708                 dev_err(&ctlr->dev,
1709                         "failed to transfer one message from queue\n");
1710                 return ret;
1711         }
1712
1713         WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1714         smp_mb(); /* See spi_finalize_current_message()... */
1715         if (READ_ONCE(ctlr->cur_msg_incomplete))
1716                 wait_for_completion(&ctlr->cur_msg_completion);
1717
1718         return 0;
1719 }
1720
1721 /**
1722  * __spi_pump_messages - function which processes SPI message queue
1723  * @ctlr: controller to process queue for
1724  * @in_kthread: true if we are in the context of the message pump thread
1725  *
1726  * This function checks if there is any SPI message in the queue that
1727  * needs processing and if so call out to the driver to initialize hardware
1728  * and transfer each message.
1729  *
1730  * Note that it is called both from the kthread itself and also from
1731  * inside spi_sync(); the queue extraction handling at the top of the
1732  * function should deal with this safely.
1733  */
1734 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1735 {
1736         struct spi_message *msg;
1737         bool was_busy = false;
1738         unsigned long flags;
1739         int ret;
1740
1741         /* Take the I/O mutex */
1742         mutex_lock(&ctlr->io_mutex);
1743
1744         /* Lock queue */
1745         spin_lock_irqsave(&ctlr->queue_lock, flags);
1746
1747         /* Make sure we are not already running a message */
1748         if (ctlr->cur_msg)
1749                 goto out_unlock;
1750
1751         /* Check if the queue is idle */
1752         if (list_empty(&ctlr->queue) || !ctlr->running) {
1753                 if (!ctlr->busy)
1754                         goto out_unlock;
1755
1756                 /* Defer any non-atomic teardown to the thread */
1757                 if (!in_kthread) {
1758                         if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1759                             !ctlr->unprepare_transfer_hardware) {
1760                                 spi_idle_runtime_pm(ctlr);
1761                                 ctlr->busy = false;
1762                                 ctlr->queue_empty = true;
1763                                 trace_spi_controller_idle(ctlr);
1764                         } else {
1765                                 kthread_queue_work(ctlr->kworker,
1766                                                    &ctlr->pump_messages);
1767                         }
1768                         goto out_unlock;
1769                 }
1770
1771                 ctlr->busy = false;
1772                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1773
1774                 kfree(ctlr->dummy_rx);
1775                 ctlr->dummy_rx = NULL;
1776                 kfree(ctlr->dummy_tx);
1777                 ctlr->dummy_tx = NULL;
1778                 if (ctlr->unprepare_transfer_hardware &&
1779                     ctlr->unprepare_transfer_hardware(ctlr))
1780                         dev_err(&ctlr->dev,
1781                                 "failed to unprepare transfer hardware\n");
1782                 spi_idle_runtime_pm(ctlr);
1783                 trace_spi_controller_idle(ctlr);
1784
1785                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1786                 ctlr->queue_empty = true;
1787                 goto out_unlock;
1788         }
1789
1790         /* Extract head of queue */
1791         msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1792         ctlr->cur_msg = msg;
1793
1794         list_del_init(&msg->queue);
1795         if (ctlr->busy)
1796                 was_busy = true;
1797         else
1798                 ctlr->busy = true;
1799         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1800
1801         ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1802         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1803
1804         ctlr->cur_msg = NULL;
1805         ctlr->fallback = false;
1806
1807         mutex_unlock(&ctlr->io_mutex);
1808
1809         /* Prod the scheduler in case transfer_one() was busy waiting */
1810         if (!ret)
1811                 cond_resched();
1812         return;
1813
1814 out_unlock:
1815         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1816         mutex_unlock(&ctlr->io_mutex);
1817 }
1818
1819 /**
1820  * spi_pump_messages - kthread work function which processes spi message queue
1821  * @work: pointer to kthread work struct contained in the controller struct
1822  */
1823 static void spi_pump_messages(struct kthread_work *work)
1824 {
1825         struct spi_controller *ctlr =
1826                 container_of(work, struct spi_controller, pump_messages);
1827
1828         __spi_pump_messages(ctlr, true);
1829 }
1830
1831 /**
1832  * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1833  * @ctlr: Pointer to the spi_controller structure of the driver
1834  * @xfer: Pointer to the transfer being timestamped
1835  * @progress: How many words (not bytes) have been transferred so far
1836  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1837  *            transfer, for less jitter in time measurement. Only compatible
1838  *            with PIO drivers. If true, must follow up with
1839  *            spi_take_timestamp_post or otherwise system will crash.
1840  *            WARNING: for fully predictable results, the CPU frequency must
1841  *            also be under control (governor).
1842  *
1843  * This is a helper for drivers to collect the beginning of the TX timestamp
1844  * for the requested byte from the SPI transfer. The frequency with which this
1845  * function must be called (once per word, once for the whole transfer, once
1846  * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1847  * greater than or equal to the requested byte at the time of the call. The
1848  * timestamp is only taken once, at the first such call. It is assumed that
1849  * the driver advances its @tx buffer pointer monotonically.
1850  */
1851 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1852                             struct spi_transfer *xfer,
1853                             size_t progress, bool irqs_off)
1854 {
1855         if (!xfer->ptp_sts)
1856                 return;
1857
1858         if (xfer->timestamped)
1859                 return;
1860
1861         if (progress > xfer->ptp_sts_word_pre)
1862                 return;
1863
1864         /* Capture the resolution of the timestamp */
1865         xfer->ptp_sts_word_pre = progress;
1866
1867         if (irqs_off) {
1868                 local_irq_save(ctlr->irq_flags);
1869                 preempt_disable();
1870         }
1871
1872         ptp_read_system_prets(xfer->ptp_sts);
1873 }
1874 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1875
1876 /**
1877  * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1878  * @ctlr: Pointer to the spi_controller structure of the driver
1879  * @xfer: Pointer to the transfer being timestamped
1880  * @progress: How many words (not bytes) have been transferred so far
1881  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1882  *
1883  * This is a helper for drivers to collect the end of the TX timestamp for
1884  * the requested byte from the SPI transfer. Can be called with an arbitrary
1885  * frequency: only the first call where @tx exceeds or is equal to the
1886  * requested word will be timestamped.
1887  */
1888 void spi_take_timestamp_post(struct spi_controller *ctlr,
1889                              struct spi_transfer *xfer,
1890                              size_t progress, bool irqs_off)
1891 {
1892         if (!xfer->ptp_sts)
1893                 return;
1894
1895         if (xfer->timestamped)
1896                 return;
1897
1898         if (progress < xfer->ptp_sts_word_post)
1899                 return;
1900
1901         ptp_read_system_postts(xfer->ptp_sts);
1902
1903         if (irqs_off) {
1904                 local_irq_restore(ctlr->irq_flags);
1905                 preempt_enable();
1906         }
1907
1908         /* Capture the resolution of the timestamp */
1909         xfer->ptp_sts_word_post = progress;
1910
1911         xfer->timestamped = 1;
1912 }
1913 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1914
1915 /**
1916  * spi_set_thread_rt - set the controller to pump at realtime priority
1917  * @ctlr: controller to boost priority of
1918  *
1919  * This can be called because the controller requested realtime priority
1920  * (by setting the ->rt value before calling spi_register_controller()) or
1921  * because a device on the bus said that its transfers needed realtime
1922  * priority.
1923  *
1924  * NOTE: at the moment if any device on a bus says it needs realtime then
1925  * the thread will be at realtime priority for all transfers on that
1926  * controller.  If this eventually becomes a problem we may see if we can
1927  * find a way to boost the priority only temporarily during relevant
1928  * transfers.
1929  */
1930 static void spi_set_thread_rt(struct spi_controller *ctlr)
1931 {
1932         dev_info(&ctlr->dev,
1933                 "will run message pump with realtime priority\n");
1934         sched_set_fifo(ctlr->kworker->task);
1935 }
1936
1937 static int spi_init_queue(struct spi_controller *ctlr)
1938 {
1939         ctlr->running = false;
1940         ctlr->busy = false;
1941         ctlr->queue_empty = true;
1942
1943         ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1944         if (IS_ERR(ctlr->kworker)) {
1945                 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1946                 return PTR_ERR(ctlr->kworker);
1947         }
1948
1949         kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1950
1951         /*
1952          * Controller config will indicate if this controller should run the
1953          * message pump with high (realtime) priority to reduce the transfer
1954          * latency on the bus by minimising the delay between a transfer
1955          * request and the scheduling of the message pump thread. Without this
1956          * setting the message pump thread will remain at default priority.
1957          */
1958         if (ctlr->rt)
1959                 spi_set_thread_rt(ctlr);
1960
1961         return 0;
1962 }
1963
1964 /**
1965  * spi_get_next_queued_message() - called by driver to check for queued
1966  * messages
1967  * @ctlr: the controller to check for queued messages
1968  *
1969  * If there are more messages in the queue, the next message is returned from
1970  * this call.
1971  *
1972  * Return: the next message in the queue, else NULL if the queue is empty.
1973  */
1974 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1975 {
1976         struct spi_message *next;
1977         unsigned long flags;
1978
1979         /* Get a pointer to the next message, if any */
1980         spin_lock_irqsave(&ctlr->queue_lock, flags);
1981         next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1982                                         queue);
1983         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1984
1985         return next;
1986 }
1987 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1988
1989 /**
1990  * spi_finalize_current_message() - the current message is complete
1991  * @ctlr: the controller to return the message to
1992  *
1993  * Called by the driver to notify the core that the message in the front of the
1994  * queue is complete and can be removed from the queue.
1995  */
1996 void spi_finalize_current_message(struct spi_controller *ctlr)
1997 {
1998         struct spi_transfer *xfer;
1999         struct spi_message *mesg;
2000         int ret;
2001
2002         mesg = ctlr->cur_msg;
2003
2004         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2005                 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2006                         ptp_read_system_postts(xfer->ptp_sts);
2007                         xfer->ptp_sts_word_post = xfer->len;
2008                 }
2009         }
2010
2011         if (unlikely(ctlr->ptp_sts_supported))
2012                 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2013                         WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2014
2015         spi_unmap_msg(ctlr, mesg);
2016
2017         /*
2018          * In the prepare_messages callback the SPI bus has the opportunity
2019          * to split a transfer to smaller chunks.
2020          *
2021          * Release the split transfers here since spi_map_msg() is done on
2022          * the split transfers.
2023          */
2024         spi_res_release(ctlr, mesg);
2025
2026         if (mesg->prepared && ctlr->unprepare_message) {
2027                 ret = ctlr->unprepare_message(ctlr, mesg);
2028                 if (ret) {
2029                         dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2030                                 ret);
2031                 }
2032         }
2033
2034         mesg->prepared = false;
2035
2036         WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2037         smp_mb(); /* See __spi_pump_transfer_message()... */
2038         if (READ_ONCE(ctlr->cur_msg_need_completion))
2039                 complete(&ctlr->cur_msg_completion);
2040
2041         trace_spi_message_done(mesg);
2042
2043         mesg->state = NULL;
2044         if (mesg->complete)
2045                 mesg->complete(mesg->context);
2046 }
2047 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2048
2049 static int spi_start_queue(struct spi_controller *ctlr)
2050 {
2051         unsigned long flags;
2052
2053         spin_lock_irqsave(&ctlr->queue_lock, flags);
2054
2055         if (ctlr->running || ctlr->busy) {
2056                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2057                 return -EBUSY;
2058         }
2059
2060         ctlr->running = true;
2061         ctlr->cur_msg = NULL;
2062         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2063
2064         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2065
2066         return 0;
2067 }
2068
2069 static int spi_stop_queue(struct spi_controller *ctlr)
2070 {
2071         unsigned long flags;
2072         unsigned limit = 500;
2073         int ret = 0;
2074
2075         spin_lock_irqsave(&ctlr->queue_lock, flags);
2076
2077         /*
2078          * This is a bit lame, but is optimized for the common execution path.
2079          * A wait_queue on the ctlr->busy could be used, but then the common
2080          * execution path (pump_messages) would be required to call wake_up or
2081          * friends on every SPI message. Do this instead.
2082          */
2083         while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2084                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2085                 usleep_range(10000, 11000);
2086                 spin_lock_irqsave(&ctlr->queue_lock, flags);
2087         }
2088
2089         if (!list_empty(&ctlr->queue) || ctlr->busy)
2090                 ret = -EBUSY;
2091         else
2092                 ctlr->running = false;
2093
2094         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2095
2096         if (ret) {
2097                 dev_warn(&ctlr->dev, "could not stop message queue\n");
2098                 return ret;
2099         }
2100         return ret;
2101 }
2102
2103 static int spi_destroy_queue(struct spi_controller *ctlr)
2104 {
2105         int ret;
2106
2107         ret = spi_stop_queue(ctlr);
2108
2109         /*
2110          * kthread_flush_worker will block until all work is done.
2111          * If the reason that stop_queue timed out is that the work will never
2112          * finish, then it does no good to call flush/stop thread, so
2113          * return anyway.
2114          */
2115         if (ret) {
2116                 dev_err(&ctlr->dev, "problem destroying queue\n");
2117                 return ret;
2118         }
2119
2120         kthread_destroy_worker(ctlr->kworker);
2121
2122         return 0;
2123 }
2124
2125 static int __spi_queued_transfer(struct spi_device *spi,
2126                                  struct spi_message *msg,
2127                                  bool need_pump)
2128 {
2129         struct spi_controller *ctlr = spi->controller;
2130         unsigned long flags;
2131
2132         spin_lock_irqsave(&ctlr->queue_lock, flags);
2133
2134         if (!ctlr->running) {
2135                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2136                 return -ESHUTDOWN;
2137         }
2138         msg->actual_length = 0;
2139         msg->status = -EINPROGRESS;
2140
2141         list_add_tail(&msg->queue, &ctlr->queue);
2142         ctlr->queue_empty = false;
2143         if (!ctlr->busy && need_pump)
2144                 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2145
2146         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2147         return 0;
2148 }
2149
2150 /**
2151  * spi_queued_transfer - transfer function for queued transfers
2152  * @spi: SPI device which is requesting transfer
2153  * @msg: SPI message which is to handled is queued to driver queue
2154  *
2155  * Return: zero on success, else a negative error code.
2156  */
2157 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2158 {
2159         return __spi_queued_transfer(spi, msg, true);
2160 }
2161
2162 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2163 {
2164         int ret;
2165
2166         ctlr->transfer = spi_queued_transfer;
2167         if (!ctlr->transfer_one_message)
2168                 ctlr->transfer_one_message = spi_transfer_one_message;
2169
2170         /* Initialize and start queue */
2171         ret = spi_init_queue(ctlr);
2172         if (ret) {
2173                 dev_err(&ctlr->dev, "problem initializing queue\n");
2174                 goto err_init_queue;
2175         }
2176         ctlr->queued = true;
2177         ret = spi_start_queue(ctlr);
2178         if (ret) {
2179                 dev_err(&ctlr->dev, "problem starting queue\n");
2180                 goto err_start_queue;
2181         }
2182
2183         return 0;
2184
2185 err_start_queue:
2186         spi_destroy_queue(ctlr);
2187 err_init_queue:
2188         return ret;
2189 }
2190
2191 /**
2192  * spi_flush_queue - Send all pending messages in the queue from the callers'
2193  *                   context
2194  * @ctlr: controller to process queue for
2195  *
2196  * This should be used when one wants to ensure all pending messages have been
2197  * sent before doing something. Is used by the spi-mem code to make sure SPI
2198  * memory operations do not preempt regular SPI transfers that have been queued
2199  * before the spi-mem operation.
2200  */
2201 void spi_flush_queue(struct spi_controller *ctlr)
2202 {
2203         if (ctlr->transfer == spi_queued_transfer)
2204                 __spi_pump_messages(ctlr, false);
2205 }
2206
2207 /*-------------------------------------------------------------------------*/
2208
2209 #if defined(CONFIG_OF)
2210 static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2211                                      struct spi_delay *delay, const char *prop)
2212 {
2213         u32 value;
2214
2215         if (!of_property_read_u32(nc, prop, &value)) {
2216                 if (value > U16_MAX) {
2217                         delay->value = DIV_ROUND_UP(value, 1000);
2218                         delay->unit = SPI_DELAY_UNIT_USECS;
2219                 } else {
2220                         delay->value = value;
2221                         delay->unit = SPI_DELAY_UNIT_NSECS;
2222                 }
2223         }
2224 }
2225
2226 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2227                            struct device_node *nc)
2228 {
2229         u32 value;
2230         int rc;
2231
2232         /* Mode (clock phase/polarity/etc.) */
2233         if (of_property_read_bool(nc, "spi-cpha"))
2234                 spi->mode |= SPI_CPHA;
2235         if (of_property_read_bool(nc, "spi-cpol"))
2236                 spi->mode |= SPI_CPOL;
2237         if (of_property_read_bool(nc, "spi-3wire"))
2238                 spi->mode |= SPI_3WIRE;
2239         if (of_property_read_bool(nc, "spi-lsb-first"))
2240                 spi->mode |= SPI_LSB_FIRST;
2241         if (of_property_read_bool(nc, "spi-cs-high"))
2242                 spi->mode |= SPI_CS_HIGH;
2243
2244         /* Device DUAL/QUAD mode */
2245         if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2246                 switch (value) {
2247                 case 0:
2248                         spi->mode |= SPI_NO_TX;
2249                         break;
2250                 case 1:
2251                         break;
2252                 case 2:
2253                         spi->mode |= SPI_TX_DUAL;
2254                         break;
2255                 case 4:
2256                         spi->mode |= SPI_TX_QUAD;
2257                         break;
2258                 case 8:
2259                         spi->mode |= SPI_TX_OCTAL;
2260                         break;
2261                 default:
2262                         dev_warn(&ctlr->dev,
2263                                 "spi-tx-bus-width %d not supported\n",
2264                                 value);
2265                         break;
2266                 }
2267         }
2268
2269         if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2270                 switch (value) {
2271                 case 0:
2272                         spi->mode |= SPI_NO_RX;
2273                         break;
2274                 case 1:
2275                         break;
2276                 case 2:
2277                         spi->mode |= SPI_RX_DUAL;
2278                         break;
2279                 case 4:
2280                         spi->mode |= SPI_RX_QUAD;
2281                         break;
2282                 case 8:
2283                         spi->mode |= SPI_RX_OCTAL;
2284                         break;
2285                 default:
2286                         dev_warn(&ctlr->dev,
2287                                 "spi-rx-bus-width %d not supported\n",
2288                                 value);
2289                         break;
2290                 }
2291         }
2292
2293         if (spi_controller_is_slave(ctlr)) {
2294                 if (!of_node_name_eq(nc, "slave")) {
2295                         dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2296                                 nc);
2297                         return -EINVAL;
2298                 }
2299                 return 0;
2300         }
2301
2302         /* Device address */
2303         rc = of_property_read_u32(nc, "reg", &value);
2304         if (rc) {
2305                 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2306                         nc, rc);
2307                 return rc;
2308         }
2309         spi_set_chipselect(spi, 0, value);
2310
2311         /* Device speed */
2312         if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2313                 spi->max_speed_hz = value;
2314
2315         /* Device CS delays */
2316         of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2317         of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2318         of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2319
2320         return 0;
2321 }
2322
2323 static struct spi_device *
2324 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2325 {
2326         struct spi_device *spi;
2327         int rc;
2328
2329         /* Alloc an spi_device */
2330         spi = spi_alloc_device(ctlr);
2331         if (!spi) {
2332                 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2333                 rc = -ENOMEM;
2334                 goto err_out;
2335         }
2336
2337         /* Select device driver */
2338         rc = of_alias_from_compatible(nc, spi->modalias,
2339                                       sizeof(spi->modalias));
2340         if (rc < 0) {
2341                 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2342                 goto err_out;
2343         }
2344
2345         rc = of_spi_parse_dt(ctlr, spi, nc);
2346         if (rc)
2347                 goto err_out;
2348
2349         /* Store a pointer to the node in the device structure */
2350         of_node_get(nc);
2351
2352         device_set_node(&spi->dev, of_fwnode_handle(nc));
2353
2354         /* Register the new device */
2355         rc = spi_add_device(spi);
2356         if (rc) {
2357                 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2358                 goto err_of_node_put;
2359         }
2360
2361         return spi;
2362
2363 err_of_node_put:
2364         of_node_put(nc);
2365 err_out:
2366         spi_dev_put(spi);
2367         return ERR_PTR(rc);
2368 }
2369
2370 /**
2371  * of_register_spi_devices() - Register child devices onto the SPI bus
2372  * @ctlr:       Pointer to spi_controller device
2373  *
2374  * Registers an spi_device for each child node of controller node which
2375  * represents a valid SPI slave.
2376  */
2377 static void of_register_spi_devices(struct spi_controller *ctlr)
2378 {
2379         struct spi_device *spi;
2380         struct device_node *nc;
2381
2382         for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2383                 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2384                         continue;
2385                 spi = of_register_spi_device(ctlr, nc);
2386                 if (IS_ERR(spi)) {
2387                         dev_warn(&ctlr->dev,
2388                                  "Failed to create SPI device for %pOF\n", nc);
2389                         of_node_clear_flag(nc, OF_POPULATED);
2390                 }
2391         }
2392 }
2393 #else
2394 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2395 #endif
2396
2397 /**
2398  * spi_new_ancillary_device() - Register ancillary SPI device
2399  * @spi:         Pointer to the main SPI device registering the ancillary device
2400  * @chip_select: Chip Select of the ancillary device
2401  *
2402  * Register an ancillary SPI device; for example some chips have a chip-select
2403  * for normal device usage and another one for setup/firmware upload.
2404  *
2405  * This may only be called from main SPI device's probe routine.
2406  *
2407  * Return: 0 on success; negative errno on failure
2408  */
2409 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2410                                              u8 chip_select)
2411 {
2412         struct spi_controller *ctlr = spi->controller;
2413         struct spi_device *ancillary;
2414         int rc = 0;
2415
2416         /* Alloc an spi_device */
2417         ancillary = spi_alloc_device(ctlr);
2418         if (!ancillary) {
2419                 rc = -ENOMEM;
2420                 goto err_out;
2421         }
2422
2423         strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2424
2425         /* Use provided chip-select for ancillary device */
2426         spi_set_chipselect(ancillary, 0, chip_select);
2427
2428         /* Take over SPI mode/speed from SPI main device */
2429         ancillary->max_speed_hz = spi->max_speed_hz;
2430         ancillary->mode = spi->mode;
2431
2432         WARN_ON(!mutex_is_locked(&ctlr->add_lock));
2433
2434         /* Register the new device */
2435         rc = __spi_add_device(ancillary);
2436         if (rc) {
2437                 dev_err(&spi->dev, "failed to register ancillary device\n");
2438                 goto err_out;
2439         }
2440
2441         return ancillary;
2442
2443 err_out:
2444         spi_dev_put(ancillary);
2445         return ERR_PTR(rc);
2446 }
2447 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2448
2449 #ifdef CONFIG_ACPI
2450 struct acpi_spi_lookup {
2451         struct spi_controller   *ctlr;
2452         u32                     max_speed_hz;
2453         u32                     mode;
2454         int                     irq;
2455         u8                      bits_per_word;
2456         u8                      chip_select;
2457         int                     n;
2458         int                     index;
2459 };
2460
2461 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2462 {
2463         struct acpi_resource_spi_serialbus *sb;
2464         int *count = data;
2465
2466         if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2467                 return 1;
2468
2469         sb = &ares->data.spi_serial_bus;
2470         if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2471                 return 1;
2472
2473         *count = *count + 1;
2474
2475         return 1;
2476 }
2477
2478 /**
2479  * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2480  * @adev:       ACPI device
2481  *
2482  * Return: the number of SpiSerialBus resources in the ACPI-device's
2483  * resource-list; or a negative error code.
2484  */
2485 int acpi_spi_count_resources(struct acpi_device *adev)
2486 {
2487         LIST_HEAD(r);
2488         int count = 0;
2489         int ret;
2490
2491         ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2492         if (ret < 0)
2493                 return ret;
2494
2495         acpi_dev_free_resource_list(&r);
2496
2497         return count;
2498 }
2499 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2500
2501 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2502                                             struct acpi_spi_lookup *lookup)
2503 {
2504         const union acpi_object *obj;
2505
2506         if (!x86_apple_machine)
2507                 return;
2508
2509         if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2510             && obj->buffer.length >= 4)
2511                 lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2512
2513         if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2514             && obj->buffer.length == 8)
2515                 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2516
2517         if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2518             && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2519                 lookup->mode |= SPI_LSB_FIRST;
2520
2521         if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2522             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2523                 lookup->mode |= SPI_CPOL;
2524
2525         if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2526             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2527                 lookup->mode |= SPI_CPHA;
2528 }
2529
2530 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev);
2531
2532 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2533 {
2534         struct acpi_spi_lookup *lookup = data;
2535         struct spi_controller *ctlr = lookup->ctlr;
2536
2537         if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2538                 struct acpi_resource_spi_serialbus *sb;
2539                 acpi_handle parent_handle;
2540                 acpi_status status;
2541
2542                 sb = &ares->data.spi_serial_bus;
2543                 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2544
2545                         if (lookup->index != -1 && lookup->n++ != lookup->index)
2546                                 return 1;
2547
2548                         status = acpi_get_handle(NULL,
2549                                                  sb->resource_source.string_ptr,
2550                                                  &parent_handle);
2551
2552                         if (ACPI_FAILURE(status))
2553                                 return -ENODEV;
2554
2555                         if (ctlr) {
2556                                 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2557                                         return -ENODEV;
2558                         } else {
2559                                 struct acpi_device *adev;
2560
2561                                 adev = acpi_fetch_acpi_dev(parent_handle);
2562                                 if (!adev)
2563                                         return -ENODEV;
2564
2565                                 ctlr = acpi_spi_find_controller_by_adev(adev);
2566                                 if (!ctlr)
2567                                         return -EPROBE_DEFER;
2568
2569                                 lookup->ctlr = ctlr;
2570                         }
2571
2572                         /*
2573                          * ACPI DeviceSelection numbering is handled by the
2574                          * host controller driver in Windows and can vary
2575                          * from driver to driver. In Linux we always expect
2576                          * 0 .. max - 1 so we need to ask the driver to
2577                          * translate between the two schemes.
2578                          */
2579                         if (ctlr->fw_translate_cs) {
2580                                 int cs = ctlr->fw_translate_cs(ctlr,
2581                                                 sb->device_selection);
2582                                 if (cs < 0)
2583                                         return cs;
2584                                 lookup->chip_select = cs;
2585                         } else {
2586                                 lookup->chip_select = sb->device_selection;
2587                         }
2588
2589                         lookup->max_speed_hz = sb->connection_speed;
2590                         lookup->bits_per_word = sb->data_bit_length;
2591
2592                         if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2593                                 lookup->mode |= SPI_CPHA;
2594                         if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2595                                 lookup->mode |= SPI_CPOL;
2596                         if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2597                                 lookup->mode |= SPI_CS_HIGH;
2598                 }
2599         } else if (lookup->irq < 0) {
2600                 struct resource r;
2601
2602                 if (acpi_dev_resource_interrupt(ares, 0, &r))
2603                         lookup->irq = r.start;
2604         }
2605
2606         /* Always tell the ACPI core to skip this resource */
2607         return 1;
2608 }
2609
2610 /**
2611  * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2612  * @ctlr: controller to which the spi device belongs
2613  * @adev: ACPI Device for the spi device
2614  * @index: Index of the spi resource inside the ACPI Node
2615  *
2616  * This should be used to allocate a new SPI device from and ACPI Device node.
2617  * The caller is responsible for calling spi_add_device to register the SPI device.
2618  *
2619  * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2620  * using the resource.
2621  * If index is set to -1, index is not used.
2622  * Note: If index is -1, ctlr must be set.
2623  *
2624  * Return: a pointer to the new device, or ERR_PTR on error.
2625  */
2626 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2627                                          struct acpi_device *adev,
2628                                          int index)
2629 {
2630         acpi_handle parent_handle = NULL;
2631         struct list_head resource_list;
2632         struct acpi_spi_lookup lookup = {};
2633         struct spi_device *spi;
2634         int ret;
2635
2636         if (!ctlr && index == -1)
2637                 return ERR_PTR(-EINVAL);
2638
2639         lookup.ctlr             = ctlr;
2640         lookup.irq              = -1;
2641         lookup.index            = index;
2642         lookup.n                = 0;
2643
2644         INIT_LIST_HEAD(&resource_list);
2645         ret = acpi_dev_get_resources(adev, &resource_list,
2646                                      acpi_spi_add_resource, &lookup);
2647         acpi_dev_free_resource_list(&resource_list);
2648
2649         if (ret < 0)
2650                 /* Found SPI in _CRS but it points to another controller */
2651                 return ERR_PTR(ret);
2652
2653         if (!lookup.max_speed_hz &&
2654             ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2655             ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2656                 /* Apple does not use _CRS but nested devices for SPI slaves */
2657                 acpi_spi_parse_apple_properties(adev, &lookup);
2658         }
2659
2660         if (!lookup.max_speed_hz)
2661                 return ERR_PTR(-ENODEV);
2662
2663         spi = spi_alloc_device(lookup.ctlr);
2664         if (!spi) {
2665                 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2666                         dev_name(&adev->dev));
2667                 return ERR_PTR(-ENOMEM);
2668         }
2669
2670         ACPI_COMPANION_SET(&spi->dev, adev);
2671         spi->max_speed_hz       = lookup.max_speed_hz;
2672         spi->mode               |= lookup.mode;
2673         spi->irq                = lookup.irq;
2674         spi->bits_per_word      = lookup.bits_per_word;
2675         spi_set_chipselect(spi, 0, lookup.chip_select);
2676
2677         return spi;
2678 }
2679 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2680
2681 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2682                                             struct acpi_device *adev)
2683 {
2684         struct spi_device *spi;
2685
2686         if (acpi_bus_get_status(adev) || !adev->status.present ||
2687             acpi_device_enumerated(adev))
2688                 return AE_OK;
2689
2690         spi = acpi_spi_device_alloc(ctlr, adev, -1);
2691         if (IS_ERR(spi)) {
2692                 if (PTR_ERR(spi) == -ENOMEM)
2693                         return AE_NO_MEMORY;
2694                 else
2695                         return AE_OK;
2696         }
2697
2698         acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2699                           sizeof(spi->modalias));
2700
2701         if (spi->irq < 0)
2702                 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2703
2704         acpi_device_set_enumerated(adev);
2705
2706         adev->power.flags.ignore_parent = true;
2707         if (spi_add_device(spi)) {
2708                 adev->power.flags.ignore_parent = false;
2709                 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2710                         dev_name(&adev->dev));
2711                 spi_dev_put(spi);
2712         }
2713
2714         return AE_OK;
2715 }
2716
2717 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2718                                        void *data, void **return_value)
2719 {
2720         struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2721         struct spi_controller *ctlr = data;
2722
2723         if (!adev)
2724                 return AE_OK;
2725
2726         return acpi_register_spi_device(ctlr, adev);
2727 }
2728
2729 #define SPI_ACPI_ENUMERATE_MAX_DEPTH            32
2730
2731 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2732 {
2733         acpi_status status;
2734         acpi_handle handle;
2735
2736         handle = ACPI_HANDLE(ctlr->dev.parent);
2737         if (!handle)
2738                 return;
2739
2740         status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2741                                      SPI_ACPI_ENUMERATE_MAX_DEPTH,
2742                                      acpi_spi_add_device, NULL, ctlr, NULL);
2743         if (ACPI_FAILURE(status))
2744                 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2745 }
2746 #else
2747 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2748 #endif /* CONFIG_ACPI */
2749
2750 static void spi_controller_release(struct device *dev)
2751 {
2752         struct spi_controller *ctlr;
2753
2754         ctlr = container_of(dev, struct spi_controller, dev);
2755         kfree(ctlr);
2756 }
2757
2758 static struct class spi_master_class = {
2759         .name           = "spi_master",
2760         .dev_release    = spi_controller_release,
2761         .dev_groups     = spi_master_groups,
2762 };
2763
2764 #ifdef CONFIG_SPI_SLAVE
2765 /**
2766  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2767  *                   controller
2768  * @spi: device used for the current transfer
2769  */
2770 int spi_slave_abort(struct spi_device *spi)
2771 {
2772         struct spi_controller *ctlr = spi->controller;
2773
2774         if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2775                 return ctlr->slave_abort(ctlr);
2776
2777         return -ENOTSUPP;
2778 }
2779 EXPORT_SYMBOL_GPL(spi_slave_abort);
2780
2781 int spi_target_abort(struct spi_device *spi)
2782 {
2783         struct spi_controller *ctlr = spi->controller;
2784
2785         if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2786                 return ctlr->target_abort(ctlr);
2787
2788         return -ENOTSUPP;
2789 }
2790 EXPORT_SYMBOL_GPL(spi_target_abort);
2791
2792 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2793                           char *buf)
2794 {
2795         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2796                                                    dev);
2797         struct device *child;
2798
2799         child = device_find_any_child(&ctlr->dev);
2800         return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL);
2801 }
2802
2803 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2804                            const char *buf, size_t count)
2805 {
2806         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2807                                                    dev);
2808         struct spi_device *spi;
2809         struct device *child;
2810         char name[32];
2811         int rc;
2812
2813         rc = sscanf(buf, "%31s", name);
2814         if (rc != 1 || !name[0])
2815                 return -EINVAL;
2816
2817         child = device_find_any_child(&ctlr->dev);
2818         if (child) {
2819                 /* Remove registered slave */
2820                 device_unregister(child);
2821                 put_device(child);
2822         }
2823
2824         if (strcmp(name, "(null)")) {
2825                 /* Register new slave */
2826                 spi = spi_alloc_device(ctlr);
2827                 if (!spi)
2828                         return -ENOMEM;
2829
2830                 strscpy(spi->modalias, name, sizeof(spi->modalias));
2831
2832                 rc = spi_add_device(spi);
2833                 if (rc) {
2834                         spi_dev_put(spi);
2835                         return rc;
2836                 }
2837         }
2838
2839         return count;
2840 }
2841
2842 static DEVICE_ATTR_RW(slave);
2843
2844 static struct attribute *spi_slave_attrs[] = {
2845         &dev_attr_slave.attr,
2846         NULL,
2847 };
2848
2849 static const struct attribute_group spi_slave_group = {
2850         .attrs = spi_slave_attrs,
2851 };
2852
2853 static const struct attribute_group *spi_slave_groups[] = {
2854         &spi_controller_statistics_group,
2855         &spi_slave_group,
2856         NULL,
2857 };
2858
2859 static struct class spi_slave_class = {
2860         .name           = "spi_slave",
2861         .dev_release    = spi_controller_release,
2862         .dev_groups     = spi_slave_groups,
2863 };
2864 #else
2865 extern struct class spi_slave_class;    /* dummy */
2866 #endif
2867
2868 /**
2869  * __spi_alloc_controller - allocate an SPI master or slave controller
2870  * @dev: the controller, possibly using the platform_bus
2871  * @size: how much zeroed driver-private data to allocate; the pointer to this
2872  *      memory is in the driver_data field of the returned device, accessible
2873  *      with spi_controller_get_devdata(); the memory is cacheline aligned;
2874  *      drivers granting DMA access to portions of their private data need to
2875  *      round up @size using ALIGN(size, dma_get_cache_alignment()).
2876  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2877  *      slave (true) controller
2878  * Context: can sleep
2879  *
2880  * This call is used only by SPI controller drivers, which are the
2881  * only ones directly touching chip registers.  It's how they allocate
2882  * an spi_controller structure, prior to calling spi_register_controller().
2883  *
2884  * This must be called from context that can sleep.
2885  *
2886  * The caller is responsible for assigning the bus number and initializing the
2887  * controller's methods before calling spi_register_controller(); and (after
2888  * errors adding the device) calling spi_controller_put() to prevent a memory
2889  * leak.
2890  *
2891  * Return: the SPI controller structure on success, else NULL.
2892  */
2893 struct spi_controller *__spi_alloc_controller(struct device *dev,
2894                                               unsigned int size, bool slave)
2895 {
2896         struct spi_controller   *ctlr;
2897         size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2898
2899         if (!dev)
2900                 return NULL;
2901
2902         ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2903         if (!ctlr)
2904                 return NULL;
2905
2906         device_initialize(&ctlr->dev);
2907         INIT_LIST_HEAD(&ctlr->queue);
2908         spin_lock_init(&ctlr->queue_lock);
2909         spin_lock_init(&ctlr->bus_lock_spinlock);
2910         mutex_init(&ctlr->bus_lock_mutex);
2911         mutex_init(&ctlr->io_mutex);
2912         mutex_init(&ctlr->add_lock);
2913         ctlr->bus_num = -1;
2914         ctlr->num_chipselect = 1;
2915         ctlr->slave = slave;
2916         if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2917                 ctlr->dev.class = &spi_slave_class;
2918         else
2919                 ctlr->dev.class = &spi_master_class;
2920         ctlr->dev.parent = dev;
2921         pm_suspend_ignore_children(&ctlr->dev, true);
2922         spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2923
2924         return ctlr;
2925 }
2926 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2927
2928 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2929 {
2930         spi_controller_put(*(struct spi_controller **)ctlr);
2931 }
2932
2933 /**
2934  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2935  * @dev: physical device of SPI controller
2936  * @size: how much zeroed driver-private data to allocate
2937  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2938  * Context: can sleep
2939  *
2940  * Allocate an SPI controller and automatically release a reference on it
2941  * when @dev is unbound from its driver.  Drivers are thus relieved from
2942  * having to call spi_controller_put().
2943  *
2944  * The arguments to this function are identical to __spi_alloc_controller().
2945  *
2946  * Return: the SPI controller structure on success, else NULL.
2947  */
2948 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2949                                                    unsigned int size,
2950                                                    bool slave)
2951 {
2952         struct spi_controller **ptr, *ctlr;
2953
2954         ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2955                            GFP_KERNEL);
2956         if (!ptr)
2957                 return NULL;
2958
2959         ctlr = __spi_alloc_controller(dev, size, slave);
2960         if (ctlr) {
2961                 ctlr->devm_allocated = true;
2962                 *ptr = ctlr;
2963                 devres_add(dev, ptr);
2964         } else {
2965                 devres_free(ptr);
2966         }
2967
2968         return ctlr;
2969 }
2970 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2971
2972 /**
2973  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2974  * @ctlr: The SPI master to grab GPIO descriptors for
2975  */
2976 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2977 {
2978         int nb, i;
2979         struct gpio_desc **cs;
2980         struct device *dev = &ctlr->dev;
2981         unsigned long native_cs_mask = 0;
2982         unsigned int num_cs_gpios = 0;
2983
2984         nb = gpiod_count(dev, "cs");
2985         if (nb < 0) {
2986                 /* No GPIOs at all is fine, else return the error */
2987                 if (nb == -ENOENT)
2988                         return 0;
2989                 return nb;
2990         }
2991
2992         ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2993
2994         cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2995                           GFP_KERNEL);
2996         if (!cs)
2997                 return -ENOMEM;
2998         ctlr->cs_gpiods = cs;
2999
3000         for (i = 0; i < nb; i++) {
3001                 /*
3002                  * Most chipselects are active low, the inverted
3003                  * semantics are handled by special quirks in gpiolib,
3004                  * so initializing them GPIOD_OUT_LOW here means
3005                  * "unasserted", in most cases this will drive the physical
3006                  * line high.
3007                  */
3008                 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3009                                                       GPIOD_OUT_LOW);
3010                 if (IS_ERR(cs[i]))
3011                         return PTR_ERR(cs[i]);
3012
3013                 if (cs[i]) {
3014                         /*
3015                          * If we find a CS GPIO, name it after the device and
3016                          * chip select line.
3017                          */
3018                         char *gpioname;
3019
3020                         gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3021                                                   dev_name(dev), i);
3022                         if (!gpioname)
3023                                 return -ENOMEM;
3024                         gpiod_set_consumer_name(cs[i], gpioname);
3025                         num_cs_gpios++;
3026                         continue;
3027                 }
3028
3029                 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3030                         dev_err(dev, "Invalid native chip select %d\n", i);
3031                         return -EINVAL;
3032                 }
3033                 native_cs_mask |= BIT(i);
3034         }
3035
3036         ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3037
3038         if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios &&
3039             ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3040                 dev_err(dev, "No unused native chip select available\n");
3041                 return -EINVAL;
3042         }
3043
3044         return 0;
3045 }
3046
3047 static int spi_controller_check_ops(struct spi_controller *ctlr)
3048 {
3049         /*
3050          * The controller may implement only the high-level SPI-memory like
3051          * operations if it does not support regular SPI transfers, and this is
3052          * valid use case.
3053          * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3054          * one of the ->transfer_xxx() method be implemented.
3055          */
3056         if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3057                 if (!ctlr->transfer && !ctlr->transfer_one &&
3058                    !ctlr->transfer_one_message) {
3059                         return -EINVAL;
3060                 }
3061         }
3062
3063         return 0;
3064 }
3065
3066 /* Allocate dynamic bus number using Linux idr */
3067 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end)
3068 {
3069         int id;
3070
3071         mutex_lock(&board_lock);
3072         id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL);
3073         mutex_unlock(&board_lock);
3074         if (WARN(id < 0, "couldn't get idr"))
3075                 return id == -ENOSPC ? -EBUSY : id;
3076         ctlr->bus_num = id;
3077         return 0;
3078 }
3079
3080 /**
3081  * spi_register_controller - register SPI master or slave controller
3082  * @ctlr: initialized master, originally from spi_alloc_master() or
3083  *      spi_alloc_slave()
3084  * Context: can sleep
3085  *
3086  * SPI controllers connect to their drivers using some non-SPI bus,
3087  * such as the platform bus.  The final stage of probe() in that code
3088  * includes calling spi_register_controller() to hook up to this SPI bus glue.
3089  *
3090  * SPI controllers use board specific (often SOC specific) bus numbers,
3091  * and board-specific addressing for SPI devices combines those numbers
3092  * with chip select numbers.  Since SPI does not directly support dynamic
3093  * device identification, boards need configuration tables telling which
3094  * chip is at which address.
3095  *
3096  * This must be called from context that can sleep.  It returns zero on
3097  * success, else a negative error code (dropping the controller's refcount).
3098  * After a successful return, the caller is responsible for calling
3099  * spi_unregister_controller().
3100  *
3101  * Return: zero on success, else a negative error code.
3102  */
3103 int spi_register_controller(struct spi_controller *ctlr)
3104 {
3105         struct device           *dev = ctlr->dev.parent;
3106         struct boardinfo        *bi;
3107         int                     first_dynamic;
3108         int                     status;
3109
3110         if (!dev)
3111                 return -ENODEV;
3112
3113         /*
3114          * Make sure all necessary hooks are implemented before registering
3115          * the SPI controller.
3116          */
3117         status = spi_controller_check_ops(ctlr);
3118         if (status)
3119                 return status;
3120
3121         if (ctlr->bus_num < 0)
3122                 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
3123         if (ctlr->bus_num >= 0) {
3124                 /* Devices with a fixed bus num must check-in with the num */
3125                 status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1);
3126                 if (status)
3127                         return status;
3128         }
3129         if (ctlr->bus_num < 0) {
3130                 first_dynamic = of_alias_get_highest_id("spi");
3131                 if (first_dynamic < 0)
3132                         first_dynamic = 0;
3133                 else
3134                         first_dynamic++;
3135
3136                 status = spi_controller_id_alloc(ctlr, first_dynamic, 0);
3137                 if (status)
3138                         return status;
3139         }
3140         ctlr->bus_lock_flag = 0;
3141         init_completion(&ctlr->xfer_completion);
3142         init_completion(&ctlr->cur_msg_completion);
3143         if (!ctlr->max_dma_len)
3144                 ctlr->max_dma_len = INT_MAX;
3145
3146         /*
3147          * Register the device, then userspace will see it.
3148          * Registration fails if the bus ID is in use.
3149          */
3150         dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3151
3152         if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3153                 status = spi_get_gpio_descs(ctlr);
3154                 if (status)
3155                         goto free_bus_id;
3156                 /*
3157                  * A controller using GPIO descriptors always
3158                  * supports SPI_CS_HIGH if need be.
3159                  */
3160                 ctlr->mode_bits |= SPI_CS_HIGH;
3161         }
3162
3163         /*
3164          * Even if it's just one always-selected device, there must
3165          * be at least one chipselect.
3166          */
3167         if (!ctlr->num_chipselect) {
3168                 status = -EINVAL;
3169                 goto free_bus_id;
3170         }
3171
3172         /* Setting last_cs to -1 means no chip selected */
3173         ctlr->last_cs = -1;
3174
3175         status = device_add(&ctlr->dev);
3176         if (status < 0)
3177                 goto free_bus_id;
3178         dev_dbg(dev, "registered %s %s\n",
3179                         spi_controller_is_slave(ctlr) ? "slave" : "master",
3180                         dev_name(&ctlr->dev));
3181
3182         /*
3183          * If we're using a queued driver, start the queue. Note that we don't
3184          * need the queueing logic if the driver is only supporting high-level
3185          * memory operations.
3186          */
3187         if (ctlr->transfer) {
3188                 dev_info(dev, "controller is unqueued, this is deprecated\n");
3189         } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3190                 status = spi_controller_initialize_queue(ctlr);
3191                 if (status) {
3192                         device_del(&ctlr->dev);
3193                         goto free_bus_id;
3194                 }
3195         }
3196         /* Add statistics */
3197         ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3198         if (!ctlr->pcpu_statistics) {
3199                 dev_err(dev, "Error allocating per-cpu statistics\n");
3200                 status = -ENOMEM;
3201                 goto destroy_queue;
3202         }
3203
3204         mutex_lock(&board_lock);
3205         list_add_tail(&ctlr->list, &spi_controller_list);
3206         list_for_each_entry(bi, &board_list, list)
3207                 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3208         mutex_unlock(&board_lock);
3209
3210         /* Register devices from the device tree and ACPI */
3211         of_register_spi_devices(ctlr);
3212         acpi_register_spi_devices(ctlr);
3213         return status;
3214
3215 destroy_queue:
3216         spi_destroy_queue(ctlr);
3217 free_bus_id:
3218         mutex_lock(&board_lock);
3219         idr_remove(&spi_master_idr, ctlr->bus_num);
3220         mutex_unlock(&board_lock);
3221         return status;
3222 }
3223 EXPORT_SYMBOL_GPL(spi_register_controller);
3224
3225 static void devm_spi_unregister(struct device *dev, void *res)
3226 {
3227         spi_unregister_controller(*(struct spi_controller **)res);
3228 }
3229
3230 /**
3231  * devm_spi_register_controller - register managed SPI master or slave
3232  *      controller
3233  * @dev:    device managing SPI controller
3234  * @ctlr: initialized controller, originally from spi_alloc_master() or
3235  *      spi_alloc_slave()
3236  * Context: can sleep
3237  *
3238  * Register a SPI device as with spi_register_controller() which will
3239  * automatically be unregistered and freed.
3240  *
3241  * Return: zero on success, else a negative error code.
3242  */
3243 int devm_spi_register_controller(struct device *dev,
3244                                  struct spi_controller *ctlr)
3245 {
3246         struct spi_controller **ptr;
3247         int ret;
3248
3249         ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3250         if (!ptr)
3251                 return -ENOMEM;
3252
3253         ret = spi_register_controller(ctlr);
3254         if (!ret) {
3255                 *ptr = ctlr;
3256                 devres_add(dev, ptr);
3257         } else {
3258                 devres_free(ptr);
3259         }
3260
3261         return ret;
3262 }
3263 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3264
3265 static int __unregister(struct device *dev, void *null)
3266 {
3267         spi_unregister_device(to_spi_device(dev));
3268         return 0;
3269 }
3270
3271 /**
3272  * spi_unregister_controller - unregister SPI master or slave controller
3273  * @ctlr: the controller being unregistered
3274  * Context: can sleep
3275  *
3276  * This call is used only by SPI controller drivers, which are the
3277  * only ones directly touching chip registers.
3278  *
3279  * This must be called from context that can sleep.
3280  *
3281  * Note that this function also drops a reference to the controller.
3282  */
3283 void spi_unregister_controller(struct spi_controller *ctlr)
3284 {
3285         struct spi_controller *found;
3286         int id = ctlr->bus_num;
3287
3288         /* Prevent addition of new devices, unregister existing ones */
3289         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3290                 mutex_lock(&ctlr->add_lock);
3291
3292         device_for_each_child(&ctlr->dev, NULL, __unregister);
3293
3294         /* First make sure that this controller was ever added */
3295         mutex_lock(&board_lock);
3296         found = idr_find(&spi_master_idr, id);
3297         mutex_unlock(&board_lock);
3298         if (ctlr->queued) {
3299                 if (spi_destroy_queue(ctlr))
3300                         dev_err(&ctlr->dev, "queue remove failed\n");
3301         }
3302         mutex_lock(&board_lock);
3303         list_del(&ctlr->list);
3304         mutex_unlock(&board_lock);
3305
3306         device_del(&ctlr->dev);
3307
3308         /* Free bus id */
3309         mutex_lock(&board_lock);
3310         if (found == ctlr)
3311                 idr_remove(&spi_master_idr, id);
3312         mutex_unlock(&board_lock);
3313
3314         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3315                 mutex_unlock(&ctlr->add_lock);
3316
3317         /*
3318          * Release the last reference on the controller if its driver
3319          * has not yet been converted to devm_spi_alloc_master/slave().
3320          */
3321         if (!ctlr->devm_allocated)
3322                 put_device(&ctlr->dev);
3323 }
3324 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3325
3326 int spi_controller_suspend(struct spi_controller *ctlr)
3327 {
3328         int ret;
3329
3330         /* Basically no-ops for non-queued controllers */
3331         if (!ctlr->queued)
3332                 return 0;
3333
3334         ret = spi_stop_queue(ctlr);
3335         if (ret)
3336                 dev_err(&ctlr->dev, "queue stop failed\n");
3337
3338         return ret;
3339 }
3340 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3341
3342 int spi_controller_resume(struct spi_controller *ctlr)
3343 {
3344         int ret;
3345
3346         if (!ctlr->queued)
3347                 return 0;
3348
3349         ret = spi_start_queue(ctlr);
3350         if (ret)
3351                 dev_err(&ctlr->dev, "queue restart failed\n");
3352
3353         return ret;
3354 }
3355 EXPORT_SYMBOL_GPL(spi_controller_resume);
3356
3357 /*-------------------------------------------------------------------------*/
3358
3359 /* Core methods for spi_message alterations */
3360
3361 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3362                                             struct spi_message *msg,
3363                                             void *res)
3364 {
3365         struct spi_replaced_transfers *rxfer = res;
3366         size_t i;
3367
3368         /* Call extra callback if requested */
3369         if (rxfer->release)
3370                 rxfer->release(ctlr, msg, res);
3371
3372         /* Insert replaced transfers back into the message */
3373         list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3374
3375         /* Remove the formerly inserted entries */
3376         for (i = 0; i < rxfer->inserted; i++)
3377                 list_del(&rxfer->inserted_transfers[i].transfer_list);
3378 }
3379
3380 /**
3381  * spi_replace_transfers - replace transfers with several transfers
3382  *                         and register change with spi_message.resources
3383  * @msg:           the spi_message we work upon
3384  * @xfer_first:    the first spi_transfer we want to replace
3385  * @remove:        number of transfers to remove
3386  * @insert:        the number of transfers we want to insert instead
3387  * @release:       extra release code necessary in some circumstances
3388  * @extradatasize: extra data to allocate (with alignment guarantees
3389  *                 of struct @spi_transfer)
3390  * @gfp:           gfp flags
3391  *
3392  * Returns: pointer to @spi_replaced_transfers,
3393  *          PTR_ERR(...) in case of errors.
3394  */
3395 static struct spi_replaced_transfers *spi_replace_transfers(
3396         struct spi_message *msg,
3397         struct spi_transfer *xfer_first,
3398         size_t remove,
3399         size_t insert,
3400         spi_replaced_release_t release,
3401         size_t extradatasize,
3402         gfp_t gfp)
3403 {
3404         struct spi_replaced_transfers *rxfer;
3405         struct spi_transfer *xfer;
3406         size_t i;
3407
3408         /* Allocate the structure using spi_res */
3409         rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3410                               struct_size(rxfer, inserted_transfers, insert)
3411                               + extradatasize,
3412                               gfp);
3413         if (!rxfer)
3414                 return ERR_PTR(-ENOMEM);
3415
3416         /* The release code to invoke before running the generic release */
3417         rxfer->release = release;
3418
3419         /* Assign extradata */
3420         if (extradatasize)
3421                 rxfer->extradata =
3422                         &rxfer->inserted_transfers[insert];
3423
3424         /* Init the replaced_transfers list */
3425         INIT_LIST_HEAD(&rxfer->replaced_transfers);
3426
3427         /*
3428          * Assign the list_entry after which we should reinsert
3429          * the @replaced_transfers - it may be spi_message.messages!
3430          */
3431         rxfer->replaced_after = xfer_first->transfer_list.prev;
3432
3433         /* Remove the requested number of transfers */
3434         for (i = 0; i < remove; i++) {
3435                 /*
3436                  * If the entry after replaced_after it is msg->transfers
3437                  * then we have been requested to remove more transfers
3438                  * than are in the list.
3439                  */
3440                 if (rxfer->replaced_after->next == &msg->transfers) {
3441                         dev_err(&msg->spi->dev,
3442                                 "requested to remove more spi_transfers than are available\n");
3443                         /* Insert replaced transfers back into the message */
3444                         list_splice(&rxfer->replaced_transfers,
3445                                     rxfer->replaced_after);
3446
3447                         /* Free the spi_replace_transfer structure... */
3448                         spi_res_free(rxfer);
3449
3450                         /* ...and return with an error */
3451                         return ERR_PTR(-EINVAL);
3452                 }
3453
3454                 /*
3455                  * Remove the entry after replaced_after from list of
3456                  * transfers and add it to list of replaced_transfers.
3457                  */
3458                 list_move_tail(rxfer->replaced_after->next,
3459                                &rxfer->replaced_transfers);
3460         }
3461
3462         /*
3463          * Create copy of the given xfer with identical settings
3464          * based on the first transfer to get removed.
3465          */
3466         for (i = 0; i < insert; i++) {
3467                 /* We need to run in reverse order */
3468                 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3469
3470                 /* Copy all spi_transfer data */
3471                 memcpy(xfer, xfer_first, sizeof(*xfer));
3472
3473                 /* Add to list */
3474                 list_add(&xfer->transfer_list, rxfer->replaced_after);
3475
3476                 /* Clear cs_change and delay for all but the last */
3477                 if (i) {
3478                         xfer->cs_change = false;
3479                         xfer->delay.value = 0;
3480                 }
3481         }
3482
3483         /* Set up inserted... */
3484         rxfer->inserted = insert;
3485
3486         /* ...and register it with spi_res/spi_message */
3487         spi_res_add(msg, rxfer);
3488
3489         return rxfer;
3490 }
3491
3492 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3493                                         struct spi_message *msg,
3494                                         struct spi_transfer **xferp,
3495                                         size_t maxsize,
3496                                         gfp_t gfp)
3497 {
3498         struct spi_transfer *xfer = *xferp, *xfers;
3499         struct spi_replaced_transfers *srt;
3500         size_t offset;
3501         size_t count, i;
3502
3503         /* Calculate how many we have to replace */
3504         count = DIV_ROUND_UP(xfer->len, maxsize);
3505
3506         /* Create replacement */
3507         srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3508         if (IS_ERR(srt))
3509                 return PTR_ERR(srt);
3510         xfers = srt->inserted_transfers;
3511
3512         /*
3513          * Now handle each of those newly inserted spi_transfers.
3514          * Note that the replacements spi_transfers all are preset
3515          * to the same values as *xferp, so tx_buf, rx_buf and len
3516          * are all identical (as well as most others)
3517          * so we just have to fix up len and the pointers.
3518          *
3519          * This also includes support for the depreciated
3520          * spi_message.is_dma_mapped interface.
3521          */
3522
3523         /*
3524          * The first transfer just needs the length modified, so we
3525          * run it outside the loop.
3526          */
3527         xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3528
3529         /* All the others need rx_buf/tx_buf also set */
3530         for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3531                 /* Update rx_buf, tx_buf and DMA */
3532                 if (xfers[i].rx_buf)
3533                         xfers[i].rx_buf += offset;
3534                 if (xfers[i].rx_dma)
3535                         xfers[i].rx_dma += offset;
3536                 if (xfers[i].tx_buf)
3537                         xfers[i].tx_buf += offset;
3538                 if (xfers[i].tx_dma)
3539                         xfers[i].tx_dma += offset;
3540
3541                 /* Update length */
3542                 xfers[i].len = min(maxsize, xfers[i].len - offset);
3543         }
3544
3545         /*
3546          * We set up xferp to the last entry we have inserted,
3547          * so that we skip those already split transfers.
3548          */
3549         *xferp = &xfers[count - 1];
3550
3551         /* Increment statistics counters */
3552         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3553                                        transfers_split_maxsize);
3554         SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3555                                        transfers_split_maxsize);
3556
3557         return 0;
3558 }
3559
3560 /**
3561  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3562  *                               when an individual transfer exceeds a
3563  *                               certain size
3564  * @ctlr:    the @spi_controller for this transfer
3565  * @msg:   the @spi_message to transform
3566  * @maxsize:  the maximum when to apply this
3567  * @gfp: GFP allocation flags
3568  *
3569  * Return: status of transformation
3570  */
3571 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3572                                 struct spi_message *msg,
3573                                 size_t maxsize,
3574                                 gfp_t gfp)
3575 {
3576         struct spi_transfer *xfer;
3577         int ret;
3578
3579         /*
3580          * Iterate over the transfer_list,
3581          * but note that xfer is advanced to the last transfer inserted
3582          * to avoid checking sizes again unnecessarily (also xfer does
3583          * potentially belong to a different list by the time the
3584          * replacement has happened).
3585          */
3586         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3587                 if (xfer->len > maxsize) {
3588                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3589                                                            maxsize, gfp);
3590                         if (ret)
3591                                 return ret;
3592                 }
3593         }
3594
3595         return 0;
3596 }
3597 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3598
3599
3600 /**
3601  * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3602  *                                when an individual transfer exceeds a
3603  *                                certain number of SPI words
3604  * @ctlr:     the @spi_controller for this transfer
3605  * @msg:      the @spi_message to transform
3606  * @maxwords: the number of words to limit each transfer to
3607  * @gfp:      GFP allocation flags
3608  *
3609  * Return: status of transformation
3610  */
3611 int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3612                                  struct spi_message *msg,
3613                                  size_t maxwords,
3614                                  gfp_t gfp)
3615 {
3616         struct spi_transfer *xfer;
3617
3618         /*
3619          * Iterate over the transfer_list,
3620          * but note that xfer is advanced to the last transfer inserted
3621          * to avoid checking sizes again unnecessarily (also xfer does
3622          * potentially belong to a different list by the time the
3623          * replacement has happened).
3624          */
3625         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3626                 size_t maxsize;
3627                 int ret;
3628
3629                 maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
3630                 if (xfer->len > maxsize) {
3631                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3632                                                            maxsize, gfp);
3633                         if (ret)
3634                                 return ret;
3635                 }
3636         }
3637
3638         return 0;
3639 }
3640 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3641
3642 /*-------------------------------------------------------------------------*/
3643
3644 /*
3645  * Core methods for SPI controller protocol drivers. Some of the
3646  * other core methods are currently defined as inline functions.
3647  */
3648
3649 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3650                                         u8 bits_per_word)
3651 {
3652         if (ctlr->bits_per_word_mask) {
3653                 /* Only 32 bits fit in the mask */
3654                 if (bits_per_word > 32)
3655                         return -EINVAL;
3656                 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3657                         return -EINVAL;
3658         }
3659
3660         return 0;
3661 }
3662
3663 /**
3664  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3665  * @spi: the device that requires specific CS timing configuration
3666  *
3667  * Return: zero on success, else a negative error code.
3668  */
3669 static int spi_set_cs_timing(struct spi_device *spi)
3670 {
3671         struct device *parent = spi->controller->dev.parent;
3672         int status = 0;
3673
3674         if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3675                 if (spi->controller->auto_runtime_pm) {
3676                         status = pm_runtime_get_sync(parent);
3677                         if (status < 0) {
3678                                 pm_runtime_put_noidle(parent);
3679                                 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3680                                         status);
3681                                 return status;
3682                         }
3683
3684                         status = spi->controller->set_cs_timing(spi);
3685                         pm_runtime_mark_last_busy(parent);
3686                         pm_runtime_put_autosuspend(parent);
3687                 } else {
3688                         status = spi->controller->set_cs_timing(spi);
3689                 }
3690         }
3691         return status;
3692 }
3693
3694 /**
3695  * spi_setup - setup SPI mode and clock rate
3696  * @spi: the device whose settings are being modified
3697  * Context: can sleep, and no requests are queued to the device
3698  *
3699  * SPI protocol drivers may need to update the transfer mode if the
3700  * device doesn't work with its default.  They may likewise need
3701  * to update clock rates or word sizes from initial values.  This function
3702  * changes those settings, and must be called from a context that can sleep.
3703  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3704  * effect the next time the device is selected and data is transferred to
3705  * or from it.  When this function returns, the SPI device is deselected.
3706  *
3707  * Note that this call will fail if the protocol driver specifies an option
3708  * that the underlying controller or its driver does not support.  For
3709  * example, not all hardware supports wire transfers using nine bit words,
3710  * LSB-first wire encoding, or active-high chipselects.
3711  *
3712  * Return: zero on success, else a negative error code.
3713  */
3714 int spi_setup(struct spi_device *spi)
3715 {
3716         unsigned        bad_bits, ugly_bits;
3717         int             status = 0;
3718
3719         /*
3720          * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3721          * are set at the same time.
3722          */
3723         if ((hweight_long(spi->mode &
3724                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3725             (hweight_long(spi->mode &
3726                 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3727                 dev_err(&spi->dev,
3728                 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3729                 return -EINVAL;
3730         }
3731         /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3732         if ((spi->mode & SPI_3WIRE) && (spi->mode &
3733                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3734                  SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3735                 return -EINVAL;
3736         /*
3737          * Help drivers fail *cleanly* when they need options
3738          * that aren't supported with their current controller.
3739          * SPI_CS_WORD has a fallback software implementation,
3740          * so it is ignored here.
3741          */
3742         bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3743                                  SPI_NO_TX | SPI_NO_RX);
3744         ugly_bits = bad_bits &
3745                     (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3746                      SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3747         if (ugly_bits) {
3748                 dev_warn(&spi->dev,
3749                          "setup: ignoring unsupported mode bits %x\n",
3750                          ugly_bits);
3751                 spi->mode &= ~ugly_bits;
3752                 bad_bits &= ~ugly_bits;
3753         }
3754         if (bad_bits) {
3755                 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3756                         bad_bits);
3757                 return -EINVAL;
3758         }
3759
3760         if (!spi->bits_per_word) {
3761                 spi->bits_per_word = 8;
3762         } else {
3763                 /*
3764                  * Some controllers may not support the default 8 bits-per-word
3765                  * so only perform the check when this is explicitly provided.
3766                  */
3767                 status = __spi_validate_bits_per_word(spi->controller,
3768                                                       spi->bits_per_word);
3769                 if (status)
3770                         return status;
3771         }
3772
3773         if (spi->controller->max_speed_hz &&
3774             (!spi->max_speed_hz ||
3775              spi->max_speed_hz > spi->controller->max_speed_hz))
3776                 spi->max_speed_hz = spi->controller->max_speed_hz;
3777
3778         mutex_lock(&spi->controller->io_mutex);
3779
3780         if (spi->controller->setup) {
3781                 status = spi->controller->setup(spi);
3782                 if (status) {
3783                         mutex_unlock(&spi->controller->io_mutex);
3784                         dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3785                                 status);
3786                         return status;
3787                 }
3788         }
3789
3790         status = spi_set_cs_timing(spi);
3791         if (status) {
3792                 mutex_unlock(&spi->controller->io_mutex);
3793                 return status;
3794         }
3795
3796         if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3797                 status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3798                 if (status < 0) {
3799                         mutex_unlock(&spi->controller->io_mutex);
3800                         dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3801                                 status);
3802                         return status;
3803                 }
3804
3805                 /*
3806                  * We do not want to return positive value from pm_runtime_get,
3807                  * there are many instances of devices calling spi_setup() and
3808                  * checking for a non-zero return value instead of a negative
3809                  * return value.
3810                  */
3811                 status = 0;
3812
3813                 spi_set_cs(spi, false, true);
3814                 pm_runtime_mark_last_busy(spi->controller->dev.parent);
3815                 pm_runtime_put_autosuspend(spi->controller->dev.parent);
3816         } else {
3817                 spi_set_cs(spi, false, true);
3818         }
3819
3820         mutex_unlock(&spi->controller->io_mutex);
3821
3822         if (spi->rt && !spi->controller->rt) {
3823                 spi->controller->rt = true;
3824                 spi_set_thread_rt(spi->controller);
3825         }
3826
3827         trace_spi_setup(spi, status);
3828
3829         dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3830                         spi->mode & SPI_MODE_X_MASK,
3831                         (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3832                         (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3833                         (spi->mode & SPI_3WIRE) ? "3wire, " : "",
3834                         (spi->mode & SPI_LOOP) ? "loopback, " : "",
3835                         spi->bits_per_word, spi->max_speed_hz,
3836                         status);
3837
3838         return status;
3839 }
3840 EXPORT_SYMBOL_GPL(spi_setup);
3841
3842 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3843                                        struct spi_device *spi)
3844 {
3845         int delay1, delay2;
3846
3847         delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3848         if (delay1 < 0)
3849                 return delay1;
3850
3851         delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3852         if (delay2 < 0)
3853                 return delay2;
3854
3855         if (delay1 < delay2)
3856                 memcpy(&xfer->word_delay, &spi->word_delay,
3857                        sizeof(xfer->word_delay));
3858
3859         return 0;
3860 }
3861
3862 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3863 {
3864         struct spi_controller *ctlr = spi->controller;
3865         struct spi_transfer *xfer;
3866         int w_size;
3867
3868         if (list_empty(&message->transfers))
3869                 return -EINVAL;
3870
3871         /*
3872          * If an SPI controller does not support toggling the CS line on each
3873          * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3874          * for the CS line, we can emulate the CS-per-word hardware function by
3875          * splitting transfers into one-word transfers and ensuring that
3876          * cs_change is set for each transfer.
3877          */
3878         if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3879                                           spi_get_csgpiod(spi, 0))) {
3880                 size_t maxsize = BITS_TO_BYTES(spi->bits_per_word);
3881                 int ret;
3882
3883                 /* spi_split_transfers_maxsize() requires message->spi */
3884                 message->spi = spi;
3885
3886                 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3887                                                   GFP_KERNEL);
3888                 if (ret)
3889                         return ret;
3890
3891                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3892                         /* Don't change cs_change on the last entry in the list */
3893                         if (list_is_last(&xfer->transfer_list, &message->transfers))
3894                                 break;
3895                         xfer->cs_change = 1;
3896                 }
3897         }
3898
3899         /*
3900          * Half-duplex links include original MicroWire, and ones with
3901          * only one data pin like SPI_3WIRE (switches direction) or where
3902          * either MOSI or MISO is missing.  They can also be caused by
3903          * software limitations.
3904          */
3905         if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3906             (spi->mode & SPI_3WIRE)) {
3907                 unsigned flags = ctlr->flags;
3908
3909                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3910                         if (xfer->rx_buf && xfer->tx_buf)
3911                                 return -EINVAL;
3912                         if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3913                                 return -EINVAL;
3914                         if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3915                                 return -EINVAL;
3916                 }
3917         }
3918
3919         /*
3920          * Set transfer bits_per_word and max speed as spi device default if
3921          * it is not set for this transfer.
3922          * Set transfer tx_nbits and rx_nbits as single transfer default
3923          * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3924          * Ensure transfer word_delay is at least as long as that required by
3925          * device itself.
3926          */
3927         message->frame_length = 0;
3928         list_for_each_entry(xfer, &message->transfers, transfer_list) {
3929                 xfer->effective_speed_hz = 0;
3930                 message->frame_length += xfer->len;
3931                 if (!xfer->bits_per_word)
3932                         xfer->bits_per_word = spi->bits_per_word;
3933
3934                 if (!xfer->speed_hz)
3935                         xfer->speed_hz = spi->max_speed_hz;
3936
3937                 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3938                         xfer->speed_hz = ctlr->max_speed_hz;
3939
3940                 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3941                         return -EINVAL;
3942
3943                 /*
3944                  * SPI transfer length should be multiple of SPI word size
3945                  * where SPI word size should be power-of-two multiple.
3946                  */
3947                 if (xfer->bits_per_word <= 8)
3948                         w_size = 1;
3949                 else if (xfer->bits_per_word <= 16)
3950                         w_size = 2;
3951                 else
3952                         w_size = 4;
3953
3954                 /* No partial transfers accepted */
3955                 if (xfer->len % w_size)
3956                         return -EINVAL;
3957
3958                 if (xfer->speed_hz && ctlr->min_speed_hz &&
3959                     xfer->speed_hz < ctlr->min_speed_hz)
3960                         return -EINVAL;
3961
3962                 if (xfer->tx_buf && !xfer->tx_nbits)
3963                         xfer->tx_nbits = SPI_NBITS_SINGLE;
3964                 if (xfer->rx_buf && !xfer->rx_nbits)
3965                         xfer->rx_nbits = SPI_NBITS_SINGLE;
3966                 /*
3967                  * Check transfer tx/rx_nbits:
3968                  * 1. check the value matches one of single, dual and quad
3969                  * 2. check tx/rx_nbits match the mode in spi_device
3970                  */
3971                 if (xfer->tx_buf) {
3972                         if (spi->mode & SPI_NO_TX)
3973                                 return -EINVAL;
3974                         if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3975                                 xfer->tx_nbits != SPI_NBITS_DUAL &&
3976                                 xfer->tx_nbits != SPI_NBITS_QUAD)
3977                                 return -EINVAL;
3978                         if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3979                                 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3980                                 return -EINVAL;
3981                         if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3982                                 !(spi->mode & SPI_TX_QUAD))
3983                                 return -EINVAL;
3984                 }
3985                 /* Check transfer rx_nbits */
3986                 if (xfer->rx_buf) {
3987                         if (spi->mode & SPI_NO_RX)
3988                                 return -EINVAL;
3989                         if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3990                                 xfer->rx_nbits != SPI_NBITS_DUAL &&
3991                                 xfer->rx_nbits != SPI_NBITS_QUAD)
3992                                 return -EINVAL;
3993                         if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3994                                 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3995                                 return -EINVAL;
3996                         if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3997                                 !(spi->mode & SPI_RX_QUAD))
3998                                 return -EINVAL;
3999                 }
4000
4001                 if (_spi_xfer_word_delay_update(xfer, spi))
4002                         return -EINVAL;
4003         }
4004
4005         message->status = -EINPROGRESS;
4006
4007         return 0;
4008 }
4009
4010 static int __spi_async(struct spi_device *spi, struct spi_message *message)
4011 {
4012         struct spi_controller *ctlr = spi->controller;
4013         struct spi_transfer *xfer;
4014
4015         /*
4016          * Some controllers do not support doing regular SPI transfers. Return
4017          * ENOTSUPP when this is the case.
4018          */
4019         if (!ctlr->transfer)
4020                 return -ENOTSUPP;
4021
4022         message->spi = spi;
4023
4024         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4025         SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4026
4027         trace_spi_message_submit(message);
4028
4029         if (!ctlr->ptp_sts_supported) {
4030                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4031                         xfer->ptp_sts_word_pre = 0;
4032                         ptp_read_system_prets(xfer->ptp_sts);
4033                 }
4034         }
4035
4036         return ctlr->transfer(spi, message);
4037 }
4038
4039 /**
4040  * spi_async - asynchronous SPI transfer
4041  * @spi: device with which data will be exchanged
4042  * @message: describes the data transfers, including completion callback
4043  * Context: any (IRQs may be blocked, etc)
4044  *
4045  * This call may be used in_irq and other contexts which can't sleep,
4046  * as well as from task contexts which can sleep.
4047  *
4048  * The completion callback is invoked in a context which can't sleep.
4049  * Before that invocation, the value of message->status is undefined.
4050  * When the callback is issued, message->status holds either zero (to
4051  * indicate complete success) or a negative error code.  After that
4052  * callback returns, the driver which issued the transfer request may
4053  * deallocate the associated memory; it's no longer in use by any SPI
4054  * core or controller driver code.
4055  *
4056  * Note that although all messages to a spi_device are handled in
4057  * FIFO order, messages may go to different devices in other orders.
4058  * Some device might be higher priority, or have various "hard" access
4059  * time requirements, for example.
4060  *
4061  * On detection of any fault during the transfer, processing of
4062  * the entire message is aborted, and the device is deselected.
4063  * Until returning from the associated message completion callback,
4064  * no other spi_message queued to that device will be processed.
4065  * (This rule applies equally to all the synchronous transfer calls,
4066  * which are wrappers around this core asynchronous primitive.)
4067  *
4068  * Return: zero on success, else a negative error code.
4069  */
4070 int spi_async(struct spi_device *spi, struct spi_message *message)
4071 {
4072         struct spi_controller *ctlr = spi->controller;
4073         int ret;
4074         unsigned long flags;
4075
4076         ret = __spi_validate(spi, message);
4077         if (ret != 0)
4078                 return ret;
4079
4080         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4081
4082         if (ctlr->bus_lock_flag)
4083                 ret = -EBUSY;
4084         else
4085                 ret = __spi_async(spi, message);
4086
4087         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4088
4089         return ret;
4090 }
4091 EXPORT_SYMBOL_GPL(spi_async);
4092
4093 /**
4094  * spi_async_locked - version of spi_async with exclusive bus usage
4095  * @spi: device with which data will be exchanged
4096  * @message: describes the data transfers, including completion callback
4097  * Context: any (IRQs may be blocked, etc)
4098  *
4099  * This call may be used in_irq and other contexts which can't sleep,
4100  * as well as from task contexts which can sleep.
4101  *
4102  * The completion callback is invoked in a context which can't sleep.
4103  * Before that invocation, the value of message->status is undefined.
4104  * When the callback is issued, message->status holds either zero (to
4105  * indicate complete success) or a negative error code.  After that
4106  * callback returns, the driver which issued the transfer request may
4107  * deallocate the associated memory; it's no longer in use by any SPI
4108  * core or controller driver code.
4109  *
4110  * Note that although all messages to a spi_device are handled in
4111  * FIFO order, messages may go to different devices in other orders.
4112  * Some device might be higher priority, or have various "hard" access
4113  * time requirements, for example.
4114  *
4115  * On detection of any fault during the transfer, processing of
4116  * the entire message is aborted, and the device is deselected.
4117  * Until returning from the associated message completion callback,
4118  * no other spi_message queued to that device will be processed.
4119  * (This rule applies equally to all the synchronous transfer calls,
4120  * which are wrappers around this core asynchronous primitive.)
4121  *
4122  * Return: zero on success, else a negative error code.
4123  */
4124 static int spi_async_locked(struct spi_device *spi, struct spi_message *message)
4125 {
4126         struct spi_controller *ctlr = spi->controller;
4127         int ret;
4128         unsigned long flags;
4129
4130         ret = __spi_validate(spi, message);
4131         if (ret != 0)
4132                 return ret;
4133
4134         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4135
4136         ret = __spi_async(spi, message);
4137
4138         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4139
4140         return ret;
4141
4142 }
4143
4144 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4145 {
4146         bool was_busy;
4147         int ret;
4148
4149         mutex_lock(&ctlr->io_mutex);
4150
4151         was_busy = ctlr->busy;
4152
4153         ctlr->cur_msg = msg;
4154         ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4155         if (ret)
4156                 goto out;
4157
4158         ctlr->cur_msg = NULL;
4159         ctlr->fallback = false;
4160
4161         if (!was_busy) {
4162                 kfree(ctlr->dummy_rx);
4163                 ctlr->dummy_rx = NULL;
4164                 kfree(ctlr->dummy_tx);
4165                 ctlr->dummy_tx = NULL;
4166                 if (ctlr->unprepare_transfer_hardware &&
4167                     ctlr->unprepare_transfer_hardware(ctlr))
4168                         dev_err(&ctlr->dev,
4169                                 "failed to unprepare transfer hardware\n");
4170                 spi_idle_runtime_pm(ctlr);
4171         }
4172
4173 out:
4174         mutex_unlock(&ctlr->io_mutex);
4175 }
4176
4177 /*-------------------------------------------------------------------------*/
4178
4179 /*
4180  * Utility methods for SPI protocol drivers, layered on
4181  * top of the core.  Some other utility methods are defined as
4182  * inline functions.
4183  */
4184
4185 static void spi_complete(void *arg)
4186 {
4187         complete(arg);
4188 }
4189
4190 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4191 {
4192         DECLARE_COMPLETION_ONSTACK(done);
4193         int status;
4194         struct spi_controller *ctlr = spi->controller;
4195
4196         status = __spi_validate(spi, message);
4197         if (status != 0)
4198                 return status;
4199
4200         message->spi = spi;
4201
4202         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4203         SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4204
4205         /*
4206          * Checking queue_empty here only guarantees async/sync message
4207          * ordering when coming from the same context. It does not need to
4208          * guard against reentrancy from a different context. The io_mutex
4209          * will catch those cases.
4210          */
4211         if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4212                 message->actual_length = 0;
4213                 message->status = -EINPROGRESS;
4214
4215                 trace_spi_message_submit(message);
4216
4217                 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4218                 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4219
4220                 __spi_transfer_message_noqueue(ctlr, message);
4221
4222                 return message->status;
4223         }
4224
4225         /*
4226          * There are messages in the async queue that could have originated
4227          * from the same context, so we need to preserve ordering.
4228          * Therefor we send the message to the async queue and wait until they
4229          * are completed.
4230          */
4231         message->complete = spi_complete;
4232         message->context = &done;
4233         status = spi_async_locked(spi, message);
4234         if (status == 0) {
4235                 wait_for_completion(&done);
4236                 status = message->status;
4237         }
4238         message->context = NULL;
4239
4240         return status;
4241 }
4242
4243 /**
4244  * spi_sync - blocking/synchronous SPI data transfers
4245  * @spi: device with which data will be exchanged
4246  * @message: describes the data transfers
4247  * Context: can sleep
4248  *
4249  * This call may only be used from a context that may sleep.  The sleep
4250  * is non-interruptible, and has no timeout.  Low-overhead controller
4251  * drivers may DMA directly into and out of the message buffers.
4252  *
4253  * Note that the SPI device's chip select is active during the message,
4254  * and then is normally disabled between messages.  Drivers for some
4255  * frequently-used devices may want to minimize costs of selecting a chip,
4256  * by leaving it selected in anticipation that the next message will go
4257  * to the same chip.  (That may increase power usage.)
4258  *
4259  * Also, the caller is guaranteeing that the memory associated with the
4260  * message will not be freed before this call returns.
4261  *
4262  * Return: zero on success, else a negative error code.
4263  */
4264 int spi_sync(struct spi_device *spi, struct spi_message *message)
4265 {
4266         int ret;
4267
4268         mutex_lock(&spi->controller->bus_lock_mutex);
4269         ret = __spi_sync(spi, message);
4270         mutex_unlock(&spi->controller->bus_lock_mutex);
4271
4272         return ret;
4273 }
4274 EXPORT_SYMBOL_GPL(spi_sync);
4275
4276 /**
4277  * spi_sync_locked - version of spi_sync with exclusive bus usage
4278  * @spi: device with which data will be exchanged
4279  * @message: describes the data transfers
4280  * Context: can sleep
4281  *
4282  * This call may only be used from a context that may sleep.  The sleep
4283  * is non-interruptible, and has no timeout.  Low-overhead controller
4284  * drivers may DMA directly into and out of the message buffers.
4285  *
4286  * This call should be used by drivers that require exclusive access to the
4287  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4288  * be released by a spi_bus_unlock call when the exclusive access is over.
4289  *
4290  * Return: zero on success, else a negative error code.
4291  */
4292 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4293 {
4294         return __spi_sync(spi, message);
4295 }
4296 EXPORT_SYMBOL_GPL(spi_sync_locked);
4297
4298 /**
4299  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4300  * @ctlr: SPI bus master that should be locked for exclusive bus access
4301  * Context: can sleep
4302  *
4303  * This call may only be used from a context that may sleep.  The sleep
4304  * is non-interruptible, and has no timeout.
4305  *
4306  * This call should be used by drivers that require exclusive access to the
4307  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4308  * exclusive access is over. Data transfer must be done by spi_sync_locked
4309  * and spi_async_locked calls when the SPI bus lock is held.
4310  *
4311  * Return: always zero.
4312  */
4313 int spi_bus_lock(struct spi_controller *ctlr)
4314 {
4315         unsigned long flags;
4316
4317         mutex_lock(&ctlr->bus_lock_mutex);
4318
4319         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4320         ctlr->bus_lock_flag = 1;
4321         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4322
4323         /* Mutex remains locked until spi_bus_unlock() is called */
4324
4325         return 0;
4326 }
4327 EXPORT_SYMBOL_GPL(spi_bus_lock);
4328
4329 /**
4330  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4331  * @ctlr: SPI bus master that was locked for exclusive bus access
4332  * Context: can sleep
4333  *
4334  * This call may only be used from a context that may sleep.  The sleep
4335  * is non-interruptible, and has no timeout.
4336  *
4337  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4338  * call.
4339  *
4340  * Return: always zero.
4341  */
4342 int spi_bus_unlock(struct spi_controller *ctlr)
4343 {
4344         ctlr->bus_lock_flag = 0;
4345
4346         mutex_unlock(&ctlr->bus_lock_mutex);
4347
4348         return 0;
4349 }
4350 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4351
4352 /* Portable code must never pass more than 32 bytes */
4353 #define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
4354
4355 static u8       *buf;
4356
4357 /**
4358  * spi_write_then_read - SPI synchronous write followed by read
4359  * @spi: device with which data will be exchanged
4360  * @txbuf: data to be written (need not be DMA-safe)
4361  * @n_tx: size of txbuf, in bytes
4362  * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4363  * @n_rx: size of rxbuf, in bytes
4364  * Context: can sleep
4365  *
4366  * This performs a half duplex MicroWire style transaction with the
4367  * device, sending txbuf and then reading rxbuf.  The return value
4368  * is zero for success, else a negative errno status code.
4369  * This call may only be used from a context that may sleep.
4370  *
4371  * Parameters to this routine are always copied using a small buffer.
4372  * Performance-sensitive or bulk transfer code should instead use
4373  * spi_{async,sync}() calls with DMA-safe buffers.
4374  *
4375  * Return: zero on success, else a negative error code.
4376  */
4377 int spi_write_then_read(struct spi_device *spi,
4378                 const void *txbuf, unsigned n_tx,
4379                 void *rxbuf, unsigned n_rx)
4380 {
4381         static DEFINE_MUTEX(lock);
4382
4383         int                     status;
4384         struct spi_message      message;
4385         struct spi_transfer     x[2];
4386         u8                      *local_buf;
4387
4388         /*
4389          * Use preallocated DMA-safe buffer if we can. We can't avoid
4390          * copying here, (as a pure convenience thing), but we can
4391          * keep heap costs out of the hot path unless someone else is
4392          * using the pre-allocated buffer or the transfer is too large.
4393          */
4394         if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4395                 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4396                                     GFP_KERNEL | GFP_DMA);
4397                 if (!local_buf)
4398                         return -ENOMEM;
4399         } else {
4400                 local_buf = buf;
4401         }
4402
4403         spi_message_init(&message);
4404         memset(x, 0, sizeof(x));
4405         if (n_tx) {
4406                 x[0].len = n_tx;
4407                 spi_message_add_tail(&x[0], &message);
4408         }
4409         if (n_rx) {
4410                 x[1].len = n_rx;
4411                 spi_message_add_tail(&x[1], &message);
4412         }
4413
4414         memcpy(local_buf, txbuf, n_tx);
4415         x[0].tx_buf = local_buf;
4416         x[1].rx_buf = local_buf + n_tx;
4417
4418         /* Do the I/O */
4419         status = spi_sync(spi, &message);
4420         if (status == 0)
4421                 memcpy(rxbuf, x[1].rx_buf, n_rx);
4422
4423         if (x[0].tx_buf == buf)
4424                 mutex_unlock(&lock);
4425         else
4426                 kfree(local_buf);
4427
4428         return status;
4429 }
4430 EXPORT_SYMBOL_GPL(spi_write_then_read);
4431
4432 /*-------------------------------------------------------------------------*/
4433
4434 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4435 /* Must call put_device() when done with returned spi_device device */
4436 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4437 {
4438         struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4439
4440         return dev ? to_spi_device(dev) : NULL;
4441 }
4442
4443 /* The spi controllers are not using spi_bus, so we find it with another way */
4444 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4445 {
4446         struct device *dev;
4447
4448         dev = class_find_device_by_of_node(&spi_master_class, node);
4449         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4450                 dev = class_find_device_by_of_node(&spi_slave_class, node);
4451         if (!dev)
4452                 return NULL;
4453
4454         /* Reference got in class_find_device */
4455         return container_of(dev, struct spi_controller, dev);
4456 }
4457
4458 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4459                          void *arg)
4460 {
4461         struct of_reconfig_data *rd = arg;
4462         struct spi_controller *ctlr;
4463         struct spi_device *spi;
4464
4465         switch (of_reconfig_get_state_change(action, arg)) {
4466         case OF_RECONFIG_CHANGE_ADD:
4467                 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4468                 if (ctlr == NULL)
4469                         return NOTIFY_OK;       /* Not for us */
4470
4471                 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4472                         put_device(&ctlr->dev);
4473                         return NOTIFY_OK;
4474                 }
4475
4476                 /*
4477                  * Clear the flag before adding the device so that fw_devlink
4478                  * doesn't skip adding consumers to this device.
4479                  */
4480                 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4481                 spi = of_register_spi_device(ctlr, rd->dn);
4482                 put_device(&ctlr->dev);
4483
4484                 if (IS_ERR(spi)) {
4485                         pr_err("%s: failed to create for '%pOF'\n",
4486                                         __func__, rd->dn);
4487                         of_node_clear_flag(rd->dn, OF_POPULATED);
4488                         return notifier_from_errno(PTR_ERR(spi));
4489                 }
4490                 break;
4491
4492         case OF_RECONFIG_CHANGE_REMOVE:
4493                 /* Already depopulated? */
4494                 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4495                         return NOTIFY_OK;
4496
4497                 /* Find our device by node */
4498                 spi = of_find_spi_device_by_node(rd->dn);
4499                 if (spi == NULL)
4500                         return NOTIFY_OK;       /* No? not meant for us */
4501
4502                 /* Unregister takes one ref away */
4503                 spi_unregister_device(spi);
4504
4505                 /* And put the reference of the find */
4506                 put_device(&spi->dev);
4507                 break;
4508         }
4509
4510         return NOTIFY_OK;
4511 }
4512
4513 static struct notifier_block spi_of_notifier = {
4514         .notifier_call = of_spi_notify,
4515 };
4516 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4517 extern struct notifier_block spi_of_notifier;
4518 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4519
4520 #if IS_ENABLED(CONFIG_ACPI)
4521 static int spi_acpi_controller_match(struct device *dev, const void *data)
4522 {
4523         return ACPI_COMPANION(dev->parent) == data;
4524 }
4525
4526 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4527 {
4528         struct device *dev;
4529
4530         dev = class_find_device(&spi_master_class, NULL, adev,
4531                                 spi_acpi_controller_match);
4532         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4533                 dev = class_find_device(&spi_slave_class, NULL, adev,
4534                                         spi_acpi_controller_match);
4535         if (!dev)
4536                 return NULL;
4537
4538         return container_of(dev, struct spi_controller, dev);
4539 }
4540
4541 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4542 {
4543         struct device *dev;
4544
4545         dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4546         return to_spi_device(dev);
4547 }
4548
4549 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4550                            void *arg)
4551 {
4552         struct acpi_device *adev = arg;
4553         struct spi_controller *ctlr;
4554         struct spi_device *spi;
4555
4556         switch (value) {
4557         case ACPI_RECONFIG_DEVICE_ADD:
4558                 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4559                 if (!ctlr)
4560                         break;
4561
4562                 acpi_register_spi_device(ctlr, adev);
4563                 put_device(&ctlr->dev);
4564                 break;
4565         case ACPI_RECONFIG_DEVICE_REMOVE:
4566                 if (!acpi_device_enumerated(adev))
4567                         break;
4568
4569                 spi = acpi_spi_find_device_by_adev(adev);
4570                 if (!spi)
4571                         break;
4572
4573                 spi_unregister_device(spi);
4574                 put_device(&spi->dev);
4575                 break;
4576         }
4577
4578         return NOTIFY_OK;
4579 }
4580
4581 static struct notifier_block spi_acpi_notifier = {
4582         .notifier_call = acpi_spi_notify,
4583 };
4584 #else
4585 extern struct notifier_block spi_acpi_notifier;
4586 #endif
4587
4588 static int __init spi_init(void)
4589 {
4590         int     status;
4591
4592         buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4593         if (!buf) {
4594                 status = -ENOMEM;
4595                 goto err0;
4596         }
4597
4598         status = bus_register(&spi_bus_type);
4599         if (status < 0)
4600                 goto err1;
4601
4602         status = class_register(&spi_master_class);
4603         if (status < 0)
4604                 goto err2;
4605
4606         if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4607                 status = class_register(&spi_slave_class);
4608                 if (status < 0)
4609                         goto err3;
4610         }
4611
4612         if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4613                 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4614         if (IS_ENABLED(CONFIG_ACPI))
4615                 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4616
4617         return 0;
4618
4619 err3:
4620         class_unregister(&spi_master_class);
4621 err2:
4622         bus_unregister(&spi_bus_type);
4623 err1:
4624         kfree(buf);
4625         buf = NULL;
4626 err0:
4627         return status;
4628 }
4629
4630 /*
4631  * A board_info is normally registered in arch_initcall(),
4632  * but even essential drivers wait till later.
4633  *
4634  * REVISIT only boardinfo really needs static linking. The rest (device and
4635  * driver registration) _could_ be dynamically linked (modular) ... Costs
4636  * include needing to have boardinfo data structures be much more public.
4637  */
4638 postcore_initcall(spi_init);