1 // SPDX-License-Identifier: GPL-2.0-or-later
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42 #include "internals.h"
44 static DEFINE_IDR(spi_master_idr);
46 static void spidev_release(struct device *dev)
48 struct spi_device *spi = to_spi_device(dev);
50 /* spi controllers may cleanup for released devices */
51 if (spi->controller->cleanup)
52 spi->controller->cleanup(spi);
54 spi_controller_put(spi->controller);
55 kfree(spi->driver_override);
60 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
62 const struct spi_device *spi = to_spi_device(dev);
65 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
69 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
71 static DEVICE_ATTR_RO(modalias);
73 static ssize_t driver_override_store(struct device *dev,
74 struct device_attribute *a,
75 const char *buf, size_t count)
77 struct spi_device *spi = to_spi_device(dev);
78 const char *end = memchr(buf, '\n', count);
79 const size_t len = end ? end - buf : count;
80 const char *driver_override, *old;
82 /* We need to keep extra room for a newline when displaying value */
83 if (len >= (PAGE_SIZE - 1))
86 driver_override = kstrndup(buf, len, GFP_KERNEL);
91 old = spi->driver_override;
93 spi->driver_override = driver_override;
95 /* Emptry string, disable driver override */
96 spi->driver_override = NULL;
97 kfree(driver_override);
105 static ssize_t driver_override_show(struct device *dev,
106 struct device_attribute *a, char *buf)
108 const struct spi_device *spi = to_spi_device(dev);
112 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
116 static DEVICE_ATTR_RW(driver_override);
118 #define SPI_STATISTICS_ATTRS(field, file) \
119 static ssize_t spi_controller_##field##_show(struct device *dev, \
120 struct device_attribute *attr, \
123 struct spi_controller *ctlr = container_of(dev, \
124 struct spi_controller, dev); \
125 return spi_statistics_##field##_show(&ctlr->statistics, buf); \
127 static struct device_attribute dev_attr_spi_controller_##field = { \
128 .attr = { .name = file, .mode = 0444 }, \
129 .show = spi_controller_##field##_show, \
131 static ssize_t spi_device_##field##_show(struct device *dev, \
132 struct device_attribute *attr, \
135 struct spi_device *spi = to_spi_device(dev); \
136 return spi_statistics_##field##_show(&spi->statistics, buf); \
138 static struct device_attribute dev_attr_spi_device_##field = { \
139 .attr = { .name = file, .mode = 0444 }, \
140 .show = spi_device_##field##_show, \
143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
147 unsigned long flags; \
149 spin_lock_irqsave(&stat->lock, flags); \
150 len = sprintf(buf, format_string, stat->field); \
151 spin_unlock_irqrestore(&stat->lock, flags); \
154 SPI_STATISTICS_ATTRS(name, file)
156 #define SPI_STATISTICS_SHOW(field, format_string) \
157 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
158 field, format_string)
160 SPI_STATISTICS_SHOW(messages, "%lu");
161 SPI_STATISTICS_SHOW(transfers, "%lu");
162 SPI_STATISTICS_SHOW(errors, "%lu");
163 SPI_STATISTICS_SHOW(timedout, "%lu");
165 SPI_STATISTICS_SHOW(spi_sync, "%lu");
166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
167 SPI_STATISTICS_SHOW(spi_async, "%lu");
169 SPI_STATISTICS_SHOW(bytes, "%llu");
170 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
171 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
174 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
175 "transfer_bytes_histo_" number, \
176 transfer_bytes_histo[index], "%lu")
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
197 static struct attribute *spi_dev_attrs[] = {
198 &dev_attr_modalias.attr,
199 &dev_attr_driver_override.attr,
203 static const struct attribute_group spi_dev_group = {
204 .attrs = spi_dev_attrs,
207 static struct attribute *spi_device_statistics_attrs[] = {
208 &dev_attr_spi_device_messages.attr,
209 &dev_attr_spi_device_transfers.attr,
210 &dev_attr_spi_device_errors.attr,
211 &dev_attr_spi_device_timedout.attr,
212 &dev_attr_spi_device_spi_sync.attr,
213 &dev_attr_spi_device_spi_sync_immediate.attr,
214 &dev_attr_spi_device_spi_async.attr,
215 &dev_attr_spi_device_bytes.attr,
216 &dev_attr_spi_device_bytes_rx.attr,
217 &dev_attr_spi_device_bytes_tx.attr,
218 &dev_attr_spi_device_transfer_bytes_histo0.attr,
219 &dev_attr_spi_device_transfer_bytes_histo1.attr,
220 &dev_attr_spi_device_transfer_bytes_histo2.attr,
221 &dev_attr_spi_device_transfer_bytes_histo3.attr,
222 &dev_attr_spi_device_transfer_bytes_histo4.attr,
223 &dev_attr_spi_device_transfer_bytes_histo5.attr,
224 &dev_attr_spi_device_transfer_bytes_histo6.attr,
225 &dev_attr_spi_device_transfer_bytes_histo7.attr,
226 &dev_attr_spi_device_transfer_bytes_histo8.attr,
227 &dev_attr_spi_device_transfer_bytes_histo9.attr,
228 &dev_attr_spi_device_transfer_bytes_histo10.attr,
229 &dev_attr_spi_device_transfer_bytes_histo11.attr,
230 &dev_attr_spi_device_transfer_bytes_histo12.attr,
231 &dev_attr_spi_device_transfer_bytes_histo13.attr,
232 &dev_attr_spi_device_transfer_bytes_histo14.attr,
233 &dev_attr_spi_device_transfer_bytes_histo15.attr,
234 &dev_attr_spi_device_transfer_bytes_histo16.attr,
235 &dev_attr_spi_device_transfers_split_maxsize.attr,
239 static const struct attribute_group spi_device_statistics_group = {
240 .name = "statistics",
241 .attrs = spi_device_statistics_attrs,
244 static const struct attribute_group *spi_dev_groups[] = {
246 &spi_device_statistics_group,
250 static struct attribute *spi_controller_statistics_attrs[] = {
251 &dev_attr_spi_controller_messages.attr,
252 &dev_attr_spi_controller_transfers.attr,
253 &dev_attr_spi_controller_errors.attr,
254 &dev_attr_spi_controller_timedout.attr,
255 &dev_attr_spi_controller_spi_sync.attr,
256 &dev_attr_spi_controller_spi_sync_immediate.attr,
257 &dev_attr_spi_controller_spi_async.attr,
258 &dev_attr_spi_controller_bytes.attr,
259 &dev_attr_spi_controller_bytes_rx.attr,
260 &dev_attr_spi_controller_bytes_tx.attr,
261 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
262 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
263 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
264 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
265 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
266 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
267 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
268 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
269 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
270 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
271 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
272 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
273 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
274 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
275 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
276 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
277 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
278 &dev_attr_spi_controller_transfers_split_maxsize.attr,
282 static const struct attribute_group spi_controller_statistics_group = {
283 .name = "statistics",
284 .attrs = spi_controller_statistics_attrs,
287 static const struct attribute_group *spi_master_groups[] = {
288 &spi_controller_statistics_group,
292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
293 struct spi_transfer *xfer,
294 struct spi_controller *ctlr)
297 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
302 spin_lock_irqsave(&stats->lock, flags);
305 stats->transfer_bytes_histo[l2len]++;
307 stats->bytes += xfer->len;
308 if ((xfer->tx_buf) &&
309 (xfer->tx_buf != ctlr->dummy_tx))
310 stats->bytes_tx += xfer->len;
311 if ((xfer->rx_buf) &&
312 (xfer->rx_buf != ctlr->dummy_rx))
313 stats->bytes_rx += xfer->len;
315 spin_unlock_irqrestore(&stats->lock, flags);
317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
320 * and the sysfs version makes coldplug work too.
323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
324 const struct spi_device *sdev)
326 while (id->name[0]) {
327 if (!strcmp(sdev->modalias, id->name))
334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
336 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
338 return spi_match_id(sdrv->id_table, sdev);
340 EXPORT_SYMBOL_GPL(spi_get_device_id);
342 static int spi_match_device(struct device *dev, struct device_driver *drv)
344 const struct spi_device *spi = to_spi_device(dev);
345 const struct spi_driver *sdrv = to_spi_driver(drv);
347 /* Check override first, and if set, only use the named driver */
348 if (spi->driver_override)
349 return strcmp(spi->driver_override, drv->name) == 0;
351 /* Attempt an OF style match */
352 if (of_driver_match_device(dev, drv))
356 if (acpi_driver_match_device(dev, drv))
360 return !!spi_match_id(sdrv->id_table, spi);
362 return strcmp(spi->modalias, drv->name) == 0;
365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
367 const struct spi_device *spi = to_spi_device(dev);
370 rc = acpi_device_uevent_modalias(dev, env);
374 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
377 struct bus_type spi_bus_type = {
379 .dev_groups = spi_dev_groups,
380 .match = spi_match_device,
381 .uevent = spi_uevent,
383 EXPORT_SYMBOL_GPL(spi_bus_type);
386 static int spi_drv_probe(struct device *dev)
388 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
389 struct spi_device *spi = to_spi_device(dev);
392 ret = of_clk_set_defaults(dev->of_node, false);
397 spi->irq = of_irq_get(dev->of_node, 0);
398 if (spi->irq == -EPROBE_DEFER)
399 return -EPROBE_DEFER;
404 ret = dev_pm_domain_attach(dev, true);
408 ret = sdrv->probe(spi);
410 dev_pm_domain_detach(dev, true);
415 static int spi_drv_remove(struct device *dev)
417 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
420 ret = sdrv->remove(to_spi_device(dev));
421 dev_pm_domain_detach(dev, true);
426 static void spi_drv_shutdown(struct device *dev)
428 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
430 sdrv->shutdown(to_spi_device(dev));
434 * __spi_register_driver - register a SPI driver
435 * @owner: owner module of the driver to register
436 * @sdrv: the driver to register
439 * Return: zero on success, else a negative error code.
441 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
443 sdrv->driver.owner = owner;
444 sdrv->driver.bus = &spi_bus_type;
446 sdrv->driver.probe = spi_drv_probe;
448 sdrv->driver.remove = spi_drv_remove;
450 sdrv->driver.shutdown = spi_drv_shutdown;
451 return driver_register(&sdrv->driver);
453 EXPORT_SYMBOL_GPL(__spi_register_driver);
455 /*-------------------------------------------------------------------------*/
457 /* SPI devices should normally not be created by SPI device drivers; that
458 * would make them board-specific. Similarly with SPI controller drivers.
459 * Device registration normally goes into like arch/.../mach.../board-YYY.c
460 * with other readonly (flashable) information about mainboard devices.
464 struct list_head list;
465 struct spi_board_info board_info;
468 static LIST_HEAD(board_list);
469 static LIST_HEAD(spi_controller_list);
472 * Used to protect add/del opertion for board_info list and
473 * spi_controller list, and their matching process
474 * also used to protect object of type struct idr
476 static DEFINE_MUTEX(board_lock);
479 * spi_alloc_device - Allocate a new SPI device
480 * @ctlr: Controller to which device is connected
483 * Allows a driver to allocate and initialize a spi_device without
484 * registering it immediately. This allows a driver to directly
485 * fill the spi_device with device parameters before calling
486 * spi_add_device() on it.
488 * Caller is responsible to call spi_add_device() on the returned
489 * spi_device structure to add it to the SPI controller. If the caller
490 * needs to discard the spi_device without adding it, then it should
491 * call spi_dev_put() on it.
493 * Return: a pointer to the new device, or NULL.
495 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
497 struct spi_device *spi;
499 if (!spi_controller_get(ctlr))
502 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
504 spi_controller_put(ctlr);
508 spi->master = spi->controller = ctlr;
509 spi->dev.parent = &ctlr->dev;
510 spi->dev.bus = &spi_bus_type;
511 spi->dev.release = spidev_release;
512 spi->cs_gpio = -ENOENT;
514 spin_lock_init(&spi->statistics.lock);
516 device_initialize(&spi->dev);
519 EXPORT_SYMBOL_GPL(spi_alloc_device);
521 static void spi_dev_set_name(struct spi_device *spi)
523 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
526 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
530 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
534 static int spi_dev_check(struct device *dev, void *data)
536 struct spi_device *spi = to_spi_device(dev);
537 struct spi_device *new_spi = data;
539 if (spi->controller == new_spi->controller &&
540 spi->chip_select == new_spi->chip_select)
546 * spi_add_device - Add spi_device allocated with spi_alloc_device
547 * @spi: spi_device to register
549 * Companion function to spi_alloc_device. Devices allocated with
550 * spi_alloc_device can be added onto the spi bus with this function.
552 * Return: 0 on success; negative errno on failure
554 int spi_add_device(struct spi_device *spi)
556 static DEFINE_MUTEX(spi_add_lock);
557 struct spi_controller *ctlr = spi->controller;
558 struct device *dev = ctlr->dev.parent;
561 /* Chipselects are numbered 0..max; validate. */
562 if (spi->chip_select >= ctlr->num_chipselect) {
563 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
564 ctlr->num_chipselect);
568 /* Set the bus ID string */
569 spi_dev_set_name(spi);
571 /* We need to make sure there's no other device with this
572 * chipselect **BEFORE** we call setup(), else we'll trash
573 * its configuration. Lock against concurrent add() calls.
575 mutex_lock(&spi_add_lock);
577 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
579 dev_err(dev, "chipselect %d already in use\n",
584 /* Descriptors take precedence */
586 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
587 else if (ctlr->cs_gpios)
588 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
590 /* Drivers may modify this initial i/o setup, but will
591 * normally rely on the device being setup. Devices
592 * using SPI_CS_HIGH can't coexist well otherwise...
594 status = spi_setup(spi);
596 dev_err(dev, "can't setup %s, status %d\n",
597 dev_name(&spi->dev), status);
601 /* Device may be bound to an active driver when this returns */
602 status = device_add(&spi->dev);
604 dev_err(dev, "can't add %s, status %d\n",
605 dev_name(&spi->dev), status);
607 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
610 mutex_unlock(&spi_add_lock);
613 EXPORT_SYMBOL_GPL(spi_add_device);
616 * spi_new_device - instantiate one new SPI device
617 * @ctlr: Controller to which device is connected
618 * @chip: Describes the SPI device
621 * On typical mainboards, this is purely internal; and it's not needed
622 * after board init creates the hard-wired devices. Some development
623 * platforms may not be able to use spi_register_board_info though, and
624 * this is exported so that for example a USB or parport based adapter
625 * driver could add devices (which it would learn about out-of-band).
627 * Return: the new device, or NULL.
629 struct spi_device *spi_new_device(struct spi_controller *ctlr,
630 struct spi_board_info *chip)
632 struct spi_device *proxy;
635 /* NOTE: caller did any chip->bus_num checks necessary.
637 * Also, unless we change the return value convention to use
638 * error-or-pointer (not NULL-or-pointer), troubleshootability
639 * suggests syslogged diagnostics are best here (ugh).
642 proxy = spi_alloc_device(ctlr);
646 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
648 proxy->chip_select = chip->chip_select;
649 proxy->max_speed_hz = chip->max_speed_hz;
650 proxy->mode = chip->mode;
651 proxy->irq = chip->irq;
652 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
653 proxy->dev.platform_data = (void *) chip->platform_data;
654 proxy->controller_data = chip->controller_data;
655 proxy->controller_state = NULL;
657 if (chip->properties) {
658 status = device_add_properties(&proxy->dev, chip->properties);
661 "failed to add properties to '%s': %d\n",
662 chip->modalias, status);
667 status = spi_add_device(proxy);
669 goto err_remove_props;
674 if (chip->properties)
675 device_remove_properties(&proxy->dev);
680 EXPORT_SYMBOL_GPL(spi_new_device);
683 * spi_unregister_device - unregister a single SPI device
684 * @spi: spi_device to unregister
686 * Start making the passed SPI device vanish. Normally this would be handled
687 * by spi_unregister_controller().
689 void spi_unregister_device(struct spi_device *spi)
694 if (spi->dev.of_node) {
695 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
696 of_node_put(spi->dev.of_node);
698 if (ACPI_COMPANION(&spi->dev))
699 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
700 device_unregister(&spi->dev);
702 EXPORT_SYMBOL_GPL(spi_unregister_device);
704 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
705 struct spi_board_info *bi)
707 struct spi_device *dev;
709 if (ctlr->bus_num != bi->bus_num)
712 dev = spi_new_device(ctlr, bi);
714 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
719 * spi_register_board_info - register SPI devices for a given board
720 * @info: array of chip descriptors
721 * @n: how many descriptors are provided
724 * Board-specific early init code calls this (probably during arch_initcall)
725 * with segments of the SPI device table. Any device nodes are created later,
726 * after the relevant parent SPI controller (bus_num) is defined. We keep
727 * this table of devices forever, so that reloading a controller driver will
728 * not make Linux forget about these hard-wired devices.
730 * Other code can also call this, e.g. a particular add-on board might provide
731 * SPI devices through its expansion connector, so code initializing that board
732 * would naturally declare its SPI devices.
734 * The board info passed can safely be __initdata ... but be careful of
735 * any embedded pointers (platform_data, etc), they're copied as-is.
736 * Device properties are deep-copied though.
738 * Return: zero on success, else a negative error code.
740 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
742 struct boardinfo *bi;
748 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
752 for (i = 0; i < n; i++, bi++, info++) {
753 struct spi_controller *ctlr;
755 memcpy(&bi->board_info, info, sizeof(*info));
756 if (info->properties) {
757 bi->board_info.properties =
758 property_entries_dup(info->properties);
759 if (IS_ERR(bi->board_info.properties))
760 return PTR_ERR(bi->board_info.properties);
763 mutex_lock(&board_lock);
764 list_add_tail(&bi->list, &board_list);
765 list_for_each_entry(ctlr, &spi_controller_list, list)
766 spi_match_controller_to_boardinfo(ctlr,
768 mutex_unlock(&board_lock);
774 /*-------------------------------------------------------------------------*/
776 static void spi_set_cs(struct spi_device *spi, bool enable)
778 if (spi->mode & SPI_CS_HIGH)
781 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
783 * Honour the SPI_NO_CS flag and invert the enable line, as
784 * active low is default for SPI. Execution paths that handle
785 * polarity inversion in gpiolib (such as device tree) will
786 * enforce active high using the SPI_CS_HIGH resulting in a
787 * double inversion through the code above.
789 if (!(spi->mode & SPI_NO_CS)) {
791 gpiod_set_value_cansleep(spi->cs_gpiod,
794 gpio_set_value_cansleep(spi->cs_gpio, !enable);
796 /* Some SPI masters need both GPIO CS & slave_select */
797 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
798 spi->controller->set_cs)
799 spi->controller->set_cs(spi, !enable);
800 } else if (spi->controller->set_cs) {
801 spi->controller->set_cs(spi, !enable);
805 #ifdef CONFIG_HAS_DMA
806 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
807 struct sg_table *sgt, void *buf, size_t len,
808 enum dma_data_direction dir)
810 const bool vmalloced_buf = is_vmalloc_addr(buf);
811 unsigned int max_seg_size = dma_get_max_seg_size(dev);
812 #ifdef CONFIG_HIGHMEM
813 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
814 (unsigned long)buf < (PKMAP_BASE +
815 (LAST_PKMAP * PAGE_SIZE)));
817 const bool kmap_buf = false;
821 struct page *vm_page;
822 struct scatterlist *sg;
827 if (vmalloced_buf || kmap_buf) {
828 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
829 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
830 } else if (virt_addr_valid(buf)) {
831 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
832 sgs = DIV_ROUND_UP(len, desc_len);
837 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
842 for (i = 0; i < sgs; i++) {
844 if (vmalloced_buf || kmap_buf) {
846 * Next scatterlist entry size is the minimum between
847 * the desc_len and the remaining buffer length that
850 min = min_t(size_t, desc_len,
852 PAGE_SIZE - offset_in_page(buf)));
854 vm_page = vmalloc_to_page(buf);
856 vm_page = kmap_to_page(buf);
861 sg_set_page(sg, vm_page,
862 min, offset_in_page(buf));
864 min = min_t(size_t, len, desc_len);
866 sg_set_buf(sg, sg_buf, min);
874 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
887 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
888 struct sg_table *sgt, enum dma_data_direction dir)
890 if (sgt->orig_nents) {
891 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
896 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
898 struct device *tx_dev, *rx_dev;
899 struct spi_transfer *xfer;
906 tx_dev = ctlr->dma_tx->device->dev;
908 tx_dev = ctlr->dev.parent;
911 rx_dev = ctlr->dma_rx->device->dev;
913 rx_dev = ctlr->dev.parent;
915 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
916 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
919 if (xfer->tx_buf != NULL) {
920 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
921 (void *)xfer->tx_buf, xfer->len,
927 if (xfer->rx_buf != NULL) {
928 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
929 xfer->rx_buf, xfer->len,
932 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
939 ctlr->cur_msg_mapped = true;
944 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
946 struct spi_transfer *xfer;
947 struct device *tx_dev, *rx_dev;
949 if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
953 tx_dev = ctlr->dma_tx->device->dev;
955 tx_dev = ctlr->dev.parent;
958 rx_dev = ctlr->dma_rx->device->dev;
960 rx_dev = ctlr->dev.parent;
962 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
963 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
966 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
967 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
972 #else /* !CONFIG_HAS_DMA */
973 static inline int __spi_map_msg(struct spi_controller *ctlr,
974 struct spi_message *msg)
979 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
980 struct spi_message *msg)
984 #endif /* !CONFIG_HAS_DMA */
986 static inline int spi_unmap_msg(struct spi_controller *ctlr,
987 struct spi_message *msg)
989 struct spi_transfer *xfer;
991 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
993 * Restore the original value of tx_buf or rx_buf if they are
996 if (xfer->tx_buf == ctlr->dummy_tx)
998 if (xfer->rx_buf == ctlr->dummy_rx)
1002 return __spi_unmap_msg(ctlr, msg);
1005 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1007 struct spi_transfer *xfer;
1009 unsigned int max_tx, max_rx;
1011 if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
1015 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1016 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1018 max_tx = max(xfer->len, max_tx);
1019 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1021 max_rx = max(xfer->len, max_rx);
1025 tmp = krealloc(ctlr->dummy_tx, max_tx,
1026 GFP_KERNEL | GFP_DMA);
1029 ctlr->dummy_tx = tmp;
1030 memset(tmp, 0, max_tx);
1034 tmp = krealloc(ctlr->dummy_rx, max_rx,
1035 GFP_KERNEL | GFP_DMA);
1038 ctlr->dummy_rx = tmp;
1041 if (max_tx || max_rx) {
1042 list_for_each_entry(xfer, &msg->transfers,
1047 xfer->tx_buf = ctlr->dummy_tx;
1049 xfer->rx_buf = ctlr->dummy_rx;
1054 return __spi_map_msg(ctlr, msg);
1057 static int spi_transfer_wait(struct spi_controller *ctlr,
1058 struct spi_message *msg,
1059 struct spi_transfer *xfer)
1061 struct spi_statistics *statm = &ctlr->statistics;
1062 struct spi_statistics *stats = &msg->spi->statistics;
1063 unsigned long long ms = 1;
1065 if (spi_controller_is_slave(ctlr)) {
1066 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1067 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1071 ms = 8LL * 1000LL * xfer->len;
1072 do_div(ms, xfer->speed_hz);
1073 ms += ms + 200; /* some tolerance */
1078 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1079 msecs_to_jiffies(ms));
1082 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1083 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1084 dev_err(&msg->spi->dev,
1085 "SPI transfer timed out\n");
1093 static void _spi_transfer_delay_ns(u32 ns)
1100 u32 us = DIV_ROUND_UP(ns, 1000);
1105 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1109 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1110 struct spi_transfer *xfer)
1112 u32 delay = xfer->cs_change_delay;
1113 u32 unit = xfer->cs_change_delay_unit;
1116 /* return early on "fast" mode - for everything but USECS */
1117 if (!delay && unit != SPI_DELAY_UNIT_USECS)
1121 case SPI_DELAY_UNIT_USECS:
1122 /* for compatibility use default of 10us */
1128 case SPI_DELAY_UNIT_NSECS: /* nothing to do here */
1130 case SPI_DELAY_UNIT_SCK:
1131 /* if there is no effective speed know, then approximate
1132 * by underestimating with half the requested hz
1134 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1135 delay *= DIV_ROUND_UP(1000000000, hz);
1138 dev_err_once(&msg->spi->dev,
1139 "Use of unsupported delay unit %i, using default of 10us\n",
1140 xfer->cs_change_delay_unit);
1143 /* now sleep for the requested amount of time */
1144 _spi_transfer_delay_ns(delay);
1148 * spi_transfer_one_message - Default implementation of transfer_one_message()
1150 * This is a standard implementation of transfer_one_message() for
1151 * drivers which implement a transfer_one() operation. It provides
1152 * standard handling of delays and chip select management.
1154 static int spi_transfer_one_message(struct spi_controller *ctlr,
1155 struct spi_message *msg)
1157 struct spi_transfer *xfer;
1158 bool keep_cs = false;
1160 struct spi_statistics *statm = &ctlr->statistics;
1161 struct spi_statistics *stats = &msg->spi->statistics;
1163 spi_set_cs(msg->spi, true);
1165 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1166 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1168 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1169 trace_spi_transfer_start(msg, xfer);
1171 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1172 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1174 if (xfer->tx_buf || xfer->rx_buf) {
1175 reinit_completion(&ctlr->xfer_completion);
1177 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1179 SPI_STATISTICS_INCREMENT_FIELD(statm,
1181 SPI_STATISTICS_INCREMENT_FIELD(stats,
1183 dev_err(&msg->spi->dev,
1184 "SPI transfer failed: %d\n", ret);
1189 ret = spi_transfer_wait(ctlr, msg, xfer);
1195 dev_err(&msg->spi->dev,
1196 "Bufferless transfer has length %u\n",
1200 trace_spi_transfer_stop(msg, xfer);
1202 if (msg->status != -EINPROGRESS)
1205 if (xfer->delay_usecs)
1206 _spi_transfer_delay_ns(xfer->delay_usecs * 1000);
1208 if (xfer->cs_change) {
1209 if (list_is_last(&xfer->transfer_list,
1213 spi_set_cs(msg->spi, false);
1214 _spi_transfer_cs_change_delay(msg, xfer);
1215 spi_set_cs(msg->spi, true);
1219 msg->actual_length += xfer->len;
1223 if (ret != 0 || !keep_cs)
1224 spi_set_cs(msg->spi, false);
1226 if (msg->status == -EINPROGRESS)
1229 if (msg->status && ctlr->handle_err)
1230 ctlr->handle_err(ctlr, msg);
1232 spi_res_release(ctlr, msg);
1234 spi_finalize_current_message(ctlr);
1240 * spi_finalize_current_transfer - report completion of a transfer
1241 * @ctlr: the controller reporting completion
1243 * Called by SPI drivers using the core transfer_one_message()
1244 * implementation to notify it that the current interrupt driven
1245 * transfer has finished and the next one may be scheduled.
1247 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1249 complete(&ctlr->xfer_completion);
1251 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1254 * __spi_pump_messages - function which processes spi message queue
1255 * @ctlr: controller to process queue for
1256 * @in_kthread: true if we are in the context of the message pump thread
1258 * This function checks if there is any spi message in the queue that
1259 * needs processing and if so call out to the driver to initialize hardware
1260 * and transfer each message.
1262 * Note that it is called both from the kthread itself and also from
1263 * inside spi_sync(); the queue extraction handling at the top of the
1264 * function should deal with this safely.
1266 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1268 unsigned long flags;
1269 bool was_busy = false;
1273 spin_lock_irqsave(&ctlr->queue_lock, flags);
1275 /* Make sure we are not already running a message */
1276 if (ctlr->cur_msg) {
1277 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1281 /* If another context is idling the device then defer */
1283 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1284 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1288 /* Check if the queue is idle */
1289 if (list_empty(&ctlr->queue) || !ctlr->running) {
1291 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1295 /* Only do teardown in the thread */
1297 kthread_queue_work(&ctlr->kworker,
1298 &ctlr->pump_messages);
1299 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1304 ctlr->idling = true;
1305 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1307 kfree(ctlr->dummy_rx);
1308 ctlr->dummy_rx = NULL;
1309 kfree(ctlr->dummy_tx);
1310 ctlr->dummy_tx = NULL;
1311 if (ctlr->unprepare_transfer_hardware &&
1312 ctlr->unprepare_transfer_hardware(ctlr))
1314 "failed to unprepare transfer hardware\n");
1315 if (ctlr->auto_runtime_pm) {
1316 pm_runtime_mark_last_busy(ctlr->dev.parent);
1317 pm_runtime_put_autosuspend(ctlr->dev.parent);
1319 trace_spi_controller_idle(ctlr);
1321 spin_lock_irqsave(&ctlr->queue_lock, flags);
1322 ctlr->idling = false;
1323 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1327 /* Extract head of queue */
1329 list_first_entry(&ctlr->queue, struct spi_message, queue);
1331 list_del_init(&ctlr->cur_msg->queue);
1336 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1338 mutex_lock(&ctlr->io_mutex);
1340 if (!was_busy && ctlr->auto_runtime_pm) {
1341 ret = pm_runtime_get_sync(ctlr->dev.parent);
1343 pm_runtime_put_noidle(ctlr->dev.parent);
1344 dev_err(&ctlr->dev, "Failed to power device: %d\n",
1346 mutex_unlock(&ctlr->io_mutex);
1352 trace_spi_controller_busy(ctlr);
1354 if (!was_busy && ctlr->prepare_transfer_hardware) {
1355 ret = ctlr->prepare_transfer_hardware(ctlr);
1358 "failed to prepare transfer hardware: %d\n",
1361 if (ctlr->auto_runtime_pm)
1362 pm_runtime_put(ctlr->dev.parent);
1364 ctlr->cur_msg->status = ret;
1365 spi_finalize_current_message(ctlr);
1367 mutex_unlock(&ctlr->io_mutex);
1372 trace_spi_message_start(ctlr->cur_msg);
1374 if (ctlr->prepare_message) {
1375 ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
1377 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1379 ctlr->cur_msg->status = ret;
1380 spi_finalize_current_message(ctlr);
1383 ctlr->cur_msg_prepared = true;
1386 ret = spi_map_msg(ctlr, ctlr->cur_msg);
1388 ctlr->cur_msg->status = ret;
1389 spi_finalize_current_message(ctlr);
1393 ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
1396 "failed to transfer one message from queue\n");
1401 mutex_unlock(&ctlr->io_mutex);
1403 /* Prod the scheduler in case transfer_one() was busy waiting */
1409 * spi_pump_messages - kthread work function which processes spi message queue
1410 * @work: pointer to kthread work struct contained in the controller struct
1412 static void spi_pump_messages(struct kthread_work *work)
1414 struct spi_controller *ctlr =
1415 container_of(work, struct spi_controller, pump_messages);
1417 __spi_pump_messages(ctlr, true);
1421 * spi_set_thread_rt - set the controller to pump at realtime priority
1422 * @ctlr: controller to boost priority of
1424 * This can be called because the controller requested realtime priority
1425 * (by setting the ->rt value before calling spi_register_controller()) or
1426 * because a device on the bus said that its transfers needed realtime
1429 * NOTE: at the moment if any device on a bus says it needs realtime then
1430 * the thread will be at realtime priority for all transfers on that
1431 * controller. If this eventually becomes a problem we may see if we can
1432 * find a way to boost the priority only temporarily during relevant
1435 static void spi_set_thread_rt(struct spi_controller *ctlr)
1437 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1439 dev_info(&ctlr->dev,
1440 "will run message pump with realtime priority\n");
1441 sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, ¶m);
1444 static int spi_init_queue(struct spi_controller *ctlr)
1446 ctlr->running = false;
1449 kthread_init_worker(&ctlr->kworker);
1450 ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1451 "%s", dev_name(&ctlr->dev));
1452 if (IS_ERR(ctlr->kworker_task)) {
1453 dev_err(&ctlr->dev, "failed to create message pump task\n");
1454 return PTR_ERR(ctlr->kworker_task);
1456 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1459 * Controller config will indicate if this controller should run the
1460 * message pump with high (realtime) priority to reduce the transfer
1461 * latency on the bus by minimising the delay between a transfer
1462 * request and the scheduling of the message pump thread. Without this
1463 * setting the message pump thread will remain at default priority.
1466 spi_set_thread_rt(ctlr);
1472 * spi_get_next_queued_message() - called by driver to check for queued
1474 * @ctlr: the controller to check for queued messages
1476 * If there are more messages in the queue, the next message is returned from
1479 * Return: the next message in the queue, else NULL if the queue is empty.
1481 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1483 struct spi_message *next;
1484 unsigned long flags;
1486 /* get a pointer to the next message, if any */
1487 spin_lock_irqsave(&ctlr->queue_lock, flags);
1488 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1490 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1494 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1497 * spi_finalize_current_message() - the current message is complete
1498 * @ctlr: the controller to return the message to
1500 * Called by the driver to notify the core that the message in the front of the
1501 * queue is complete and can be removed from the queue.
1503 void spi_finalize_current_message(struct spi_controller *ctlr)
1505 struct spi_message *mesg;
1506 unsigned long flags;
1509 spin_lock_irqsave(&ctlr->queue_lock, flags);
1510 mesg = ctlr->cur_msg;
1511 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1513 spi_unmap_msg(ctlr, mesg);
1515 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1516 ret = ctlr->unprepare_message(ctlr, mesg);
1518 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1523 spin_lock_irqsave(&ctlr->queue_lock, flags);
1524 ctlr->cur_msg = NULL;
1525 ctlr->cur_msg_prepared = false;
1526 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1527 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1529 trace_spi_message_done(mesg);
1533 mesg->complete(mesg->context);
1535 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1537 static int spi_start_queue(struct spi_controller *ctlr)
1539 unsigned long flags;
1541 spin_lock_irqsave(&ctlr->queue_lock, flags);
1543 if (ctlr->running || ctlr->busy) {
1544 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1548 ctlr->running = true;
1549 ctlr->cur_msg = NULL;
1550 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1552 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1557 static int spi_stop_queue(struct spi_controller *ctlr)
1559 unsigned long flags;
1560 unsigned limit = 500;
1563 spin_lock_irqsave(&ctlr->queue_lock, flags);
1566 * This is a bit lame, but is optimized for the common execution path.
1567 * A wait_queue on the ctlr->busy could be used, but then the common
1568 * execution path (pump_messages) would be required to call wake_up or
1569 * friends on every SPI message. Do this instead.
1571 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1572 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1573 usleep_range(10000, 11000);
1574 spin_lock_irqsave(&ctlr->queue_lock, flags);
1577 if (!list_empty(&ctlr->queue) || ctlr->busy)
1580 ctlr->running = false;
1582 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1585 dev_warn(&ctlr->dev, "could not stop message queue\n");
1591 static int spi_destroy_queue(struct spi_controller *ctlr)
1595 ret = spi_stop_queue(ctlr);
1598 * kthread_flush_worker will block until all work is done.
1599 * If the reason that stop_queue timed out is that the work will never
1600 * finish, then it does no good to call flush/stop thread, so
1604 dev_err(&ctlr->dev, "problem destroying queue\n");
1608 kthread_flush_worker(&ctlr->kworker);
1609 kthread_stop(ctlr->kworker_task);
1614 static int __spi_queued_transfer(struct spi_device *spi,
1615 struct spi_message *msg,
1618 struct spi_controller *ctlr = spi->controller;
1619 unsigned long flags;
1621 spin_lock_irqsave(&ctlr->queue_lock, flags);
1623 if (!ctlr->running) {
1624 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1627 msg->actual_length = 0;
1628 msg->status = -EINPROGRESS;
1630 list_add_tail(&msg->queue, &ctlr->queue);
1631 if (!ctlr->busy && need_pump)
1632 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1634 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1639 * spi_queued_transfer - transfer function for queued transfers
1640 * @spi: spi device which is requesting transfer
1641 * @msg: spi message which is to handled is queued to driver queue
1643 * Return: zero on success, else a negative error code.
1645 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1647 return __spi_queued_transfer(spi, msg, true);
1650 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1654 ctlr->transfer = spi_queued_transfer;
1655 if (!ctlr->transfer_one_message)
1656 ctlr->transfer_one_message = spi_transfer_one_message;
1658 /* Initialize and start queue */
1659 ret = spi_init_queue(ctlr);
1661 dev_err(&ctlr->dev, "problem initializing queue\n");
1662 goto err_init_queue;
1664 ctlr->queued = true;
1665 ret = spi_start_queue(ctlr);
1667 dev_err(&ctlr->dev, "problem starting queue\n");
1668 goto err_start_queue;
1674 spi_destroy_queue(ctlr);
1680 * spi_flush_queue - Send all pending messages in the queue from the callers'
1682 * @ctlr: controller to process queue for
1684 * This should be used when one wants to ensure all pending messages have been
1685 * sent before doing something. Is used by the spi-mem code to make sure SPI
1686 * memory operations do not preempt regular SPI transfers that have been queued
1687 * before the spi-mem operation.
1689 void spi_flush_queue(struct spi_controller *ctlr)
1691 if (ctlr->transfer == spi_queued_transfer)
1692 __spi_pump_messages(ctlr, false);
1695 /*-------------------------------------------------------------------------*/
1697 #if defined(CONFIG_OF)
1698 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1699 struct device_node *nc)
1704 /* Mode (clock phase/polarity/etc.) */
1705 if (of_property_read_bool(nc, "spi-cpha"))
1706 spi->mode |= SPI_CPHA;
1707 if (of_property_read_bool(nc, "spi-cpol"))
1708 spi->mode |= SPI_CPOL;
1709 if (of_property_read_bool(nc, "spi-3wire"))
1710 spi->mode |= SPI_3WIRE;
1711 if (of_property_read_bool(nc, "spi-lsb-first"))
1712 spi->mode |= SPI_LSB_FIRST;
1715 * For descriptors associated with the device, polarity inversion is
1716 * handled in the gpiolib, so all chip selects are "active high" in
1717 * the logical sense, the gpiolib will invert the line if need be.
1719 if (ctlr->use_gpio_descriptors)
1720 spi->mode |= SPI_CS_HIGH;
1721 else if (of_property_read_bool(nc, "spi-cs-high"))
1722 spi->mode |= SPI_CS_HIGH;
1724 /* Device DUAL/QUAD mode */
1725 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1730 spi->mode |= SPI_TX_DUAL;
1733 spi->mode |= SPI_TX_QUAD;
1736 spi->mode |= SPI_TX_OCTAL;
1739 dev_warn(&ctlr->dev,
1740 "spi-tx-bus-width %d not supported\n",
1746 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1751 spi->mode |= SPI_RX_DUAL;
1754 spi->mode |= SPI_RX_QUAD;
1757 spi->mode |= SPI_RX_OCTAL;
1760 dev_warn(&ctlr->dev,
1761 "spi-rx-bus-width %d not supported\n",
1767 if (spi_controller_is_slave(ctlr)) {
1768 if (!of_node_name_eq(nc, "slave")) {
1769 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1776 /* Device address */
1777 rc = of_property_read_u32(nc, "reg", &value);
1779 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1783 spi->chip_select = value;
1786 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1789 "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1792 spi->max_speed_hz = value;
1797 static struct spi_device *
1798 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1800 struct spi_device *spi;
1803 /* Alloc an spi_device */
1804 spi = spi_alloc_device(ctlr);
1806 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1811 /* Select device driver */
1812 rc = of_modalias_node(nc, spi->modalias,
1813 sizeof(spi->modalias));
1815 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1819 rc = of_spi_parse_dt(ctlr, spi, nc);
1823 /* Store a pointer to the node in the device structure */
1825 spi->dev.of_node = nc;
1827 /* Register the new device */
1828 rc = spi_add_device(spi);
1830 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1831 goto err_of_node_put;
1844 * of_register_spi_devices() - Register child devices onto the SPI bus
1845 * @ctlr: Pointer to spi_controller device
1847 * Registers an spi_device for each child node of controller node which
1848 * represents a valid SPI slave.
1850 static void of_register_spi_devices(struct spi_controller *ctlr)
1852 struct spi_device *spi;
1853 struct device_node *nc;
1855 if (!ctlr->dev.of_node)
1858 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1859 if (of_node_test_and_set_flag(nc, OF_POPULATED))
1861 spi = of_register_spi_device(ctlr, nc);
1863 dev_warn(&ctlr->dev,
1864 "Failed to create SPI device for %pOF\n", nc);
1865 of_node_clear_flag(nc, OF_POPULATED);
1870 static void of_register_spi_devices(struct spi_controller *ctlr) { }
1874 struct acpi_spi_lookup {
1875 struct spi_controller *ctlr;
1883 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
1884 struct acpi_spi_lookup *lookup)
1886 const union acpi_object *obj;
1888 if (!x86_apple_machine)
1891 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1892 && obj->buffer.length >= 4)
1893 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
1895 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1896 && obj->buffer.length == 8)
1897 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
1899 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1900 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
1901 lookup->mode |= SPI_LSB_FIRST;
1903 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1904 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
1905 lookup->mode |= SPI_CPOL;
1907 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1908 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
1909 lookup->mode |= SPI_CPHA;
1912 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1914 struct acpi_spi_lookup *lookup = data;
1915 struct spi_controller *ctlr = lookup->ctlr;
1917 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1918 struct acpi_resource_spi_serialbus *sb;
1919 acpi_handle parent_handle;
1922 sb = &ares->data.spi_serial_bus;
1923 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1925 status = acpi_get_handle(NULL,
1926 sb->resource_source.string_ptr,
1929 if (ACPI_FAILURE(status) ||
1930 ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
1934 * ACPI DeviceSelection numbering is handled by the
1935 * host controller driver in Windows and can vary
1936 * from driver to driver. In Linux we always expect
1937 * 0 .. max - 1 so we need to ask the driver to
1938 * translate between the two schemes.
1940 if (ctlr->fw_translate_cs) {
1941 int cs = ctlr->fw_translate_cs(ctlr,
1942 sb->device_selection);
1945 lookup->chip_select = cs;
1947 lookup->chip_select = sb->device_selection;
1950 lookup->max_speed_hz = sb->connection_speed;
1952 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1953 lookup->mode |= SPI_CPHA;
1954 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1955 lookup->mode |= SPI_CPOL;
1956 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1957 lookup->mode |= SPI_CS_HIGH;
1959 } else if (lookup->irq < 0) {
1962 if (acpi_dev_resource_interrupt(ares, 0, &r))
1963 lookup->irq = r.start;
1966 /* Always tell the ACPI core to skip this resource */
1970 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1971 struct acpi_device *adev)
1973 acpi_handle parent_handle = NULL;
1974 struct list_head resource_list;
1975 struct acpi_spi_lookup lookup = {};
1976 struct spi_device *spi;
1979 if (acpi_bus_get_status(adev) || !adev->status.present ||
1980 acpi_device_enumerated(adev))
1986 INIT_LIST_HEAD(&resource_list);
1987 ret = acpi_dev_get_resources(adev, &resource_list,
1988 acpi_spi_add_resource, &lookup);
1989 acpi_dev_free_resource_list(&resource_list);
1992 /* found SPI in _CRS but it points to another controller */
1995 if (!lookup.max_speed_hz &&
1996 !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) &&
1997 ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
1998 /* Apple does not use _CRS but nested devices for SPI slaves */
1999 acpi_spi_parse_apple_properties(adev, &lookup);
2002 if (!lookup.max_speed_hz)
2005 spi = spi_alloc_device(ctlr);
2007 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2008 dev_name(&adev->dev));
2009 return AE_NO_MEMORY;
2012 ACPI_COMPANION_SET(&spi->dev, adev);
2013 spi->max_speed_hz = lookup.max_speed_hz;
2014 spi->mode = lookup.mode;
2015 spi->irq = lookup.irq;
2016 spi->bits_per_word = lookup.bits_per_word;
2017 spi->chip_select = lookup.chip_select;
2019 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2020 sizeof(spi->modalias));
2023 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2025 acpi_device_set_enumerated(adev);
2027 adev->power.flags.ignore_parent = true;
2028 if (spi_add_device(spi)) {
2029 adev->power.flags.ignore_parent = false;
2030 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2031 dev_name(&adev->dev));
2038 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2039 void *data, void **return_value)
2041 struct spi_controller *ctlr = data;
2042 struct acpi_device *adev;
2044 if (acpi_bus_get_device(handle, &adev))
2047 return acpi_register_spi_device(ctlr, adev);
2050 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32
2052 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2057 handle = ACPI_HANDLE(ctlr->dev.parent);
2061 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2062 SPI_ACPI_ENUMERATE_MAX_DEPTH,
2063 acpi_spi_add_device, NULL, ctlr, NULL);
2064 if (ACPI_FAILURE(status))
2065 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2068 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2069 #endif /* CONFIG_ACPI */
2071 static void spi_controller_release(struct device *dev)
2073 struct spi_controller *ctlr;
2075 ctlr = container_of(dev, struct spi_controller, dev);
2079 static struct class spi_master_class = {
2080 .name = "spi_master",
2081 .owner = THIS_MODULE,
2082 .dev_release = spi_controller_release,
2083 .dev_groups = spi_master_groups,
2086 #ifdef CONFIG_SPI_SLAVE
2088 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2090 * @spi: device used for the current transfer
2092 int spi_slave_abort(struct spi_device *spi)
2094 struct spi_controller *ctlr = spi->controller;
2096 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2097 return ctlr->slave_abort(ctlr);
2101 EXPORT_SYMBOL_GPL(spi_slave_abort);
2103 static int match_true(struct device *dev, void *data)
2108 static ssize_t spi_slave_show(struct device *dev,
2109 struct device_attribute *attr, char *buf)
2111 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2113 struct device *child;
2115 child = device_find_child(&ctlr->dev, NULL, match_true);
2116 return sprintf(buf, "%s\n",
2117 child ? to_spi_device(child)->modalias : NULL);
2120 static ssize_t spi_slave_store(struct device *dev,
2121 struct device_attribute *attr, const char *buf,
2124 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2126 struct spi_device *spi;
2127 struct device *child;
2131 rc = sscanf(buf, "%31s", name);
2132 if (rc != 1 || !name[0])
2135 child = device_find_child(&ctlr->dev, NULL, match_true);
2137 /* Remove registered slave */
2138 device_unregister(child);
2142 if (strcmp(name, "(null)")) {
2143 /* Register new slave */
2144 spi = spi_alloc_device(ctlr);
2148 strlcpy(spi->modalias, name, sizeof(spi->modalias));
2150 rc = spi_add_device(spi);
2160 static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store);
2162 static struct attribute *spi_slave_attrs[] = {
2163 &dev_attr_slave.attr,
2167 static const struct attribute_group spi_slave_group = {
2168 .attrs = spi_slave_attrs,
2171 static const struct attribute_group *spi_slave_groups[] = {
2172 &spi_controller_statistics_group,
2177 static struct class spi_slave_class = {
2178 .name = "spi_slave",
2179 .owner = THIS_MODULE,
2180 .dev_release = spi_controller_release,
2181 .dev_groups = spi_slave_groups,
2184 extern struct class spi_slave_class; /* dummy */
2188 * __spi_alloc_controller - allocate an SPI master or slave controller
2189 * @dev: the controller, possibly using the platform_bus
2190 * @size: how much zeroed driver-private data to allocate; the pointer to this
2191 * memory is in the driver_data field of the returned device,
2192 * accessible with spi_controller_get_devdata().
2193 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2194 * slave (true) controller
2195 * Context: can sleep
2197 * This call is used only by SPI controller drivers, which are the
2198 * only ones directly touching chip registers. It's how they allocate
2199 * an spi_controller structure, prior to calling spi_register_controller().
2201 * This must be called from context that can sleep.
2203 * The caller is responsible for assigning the bus number and initializing the
2204 * controller's methods before calling spi_register_controller(); and (after
2205 * errors adding the device) calling spi_controller_put() to prevent a memory
2208 * Return: the SPI controller structure on success, else NULL.
2210 struct spi_controller *__spi_alloc_controller(struct device *dev,
2211 unsigned int size, bool slave)
2213 struct spi_controller *ctlr;
2218 ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
2222 device_initialize(&ctlr->dev);
2224 ctlr->num_chipselect = 1;
2225 ctlr->slave = slave;
2226 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2227 ctlr->dev.class = &spi_slave_class;
2229 ctlr->dev.class = &spi_master_class;
2230 ctlr->dev.parent = dev;
2231 pm_suspend_ignore_children(&ctlr->dev, true);
2232 spi_controller_set_devdata(ctlr, &ctlr[1]);
2236 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2239 static int of_spi_register_master(struct spi_controller *ctlr)
2242 struct device_node *np = ctlr->dev.of_node;
2247 nb = of_gpio_named_count(np, "cs-gpios");
2248 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2250 /* Return error only for an incorrectly formed cs-gpios property */
2251 if (nb == 0 || nb == -ENOENT)
2256 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2258 ctlr->cs_gpios = cs;
2260 if (!ctlr->cs_gpios)
2263 for (i = 0; i < ctlr->num_chipselect; i++)
2266 for (i = 0; i < nb; i++)
2267 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2272 static int of_spi_register_master(struct spi_controller *ctlr)
2279 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2280 * @ctlr: The SPI master to grab GPIO descriptors for
2282 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2285 struct gpio_desc **cs;
2286 struct device *dev = &ctlr->dev;
2288 nb = gpiod_count(dev, "cs");
2289 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2291 /* No GPIOs at all is fine, else return the error */
2292 if (nb == 0 || nb == -ENOENT)
2297 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2301 ctlr->cs_gpiods = cs;
2303 for (i = 0; i < nb; i++) {
2305 * Most chipselects are active low, the inverted
2306 * semantics are handled by special quirks in gpiolib,
2307 * so initializing them GPIOD_OUT_LOW here means
2308 * "unasserted", in most cases this will drive the physical
2311 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2314 return PTR_ERR(cs[i]);
2318 * If we find a CS GPIO, name it after the device and
2323 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2327 gpiod_set_consumer_name(cs[i], gpioname);
2334 static int spi_controller_check_ops(struct spi_controller *ctlr)
2337 * The controller may implement only the high-level SPI-memory like
2338 * operations if it does not support regular SPI transfers, and this is
2340 * If ->mem_ops is NULL, we request that at least one of the
2341 * ->transfer_xxx() method be implemented.
2343 if (ctlr->mem_ops) {
2344 if (!ctlr->mem_ops->exec_op)
2346 } else if (!ctlr->transfer && !ctlr->transfer_one &&
2347 !ctlr->transfer_one_message) {
2355 * spi_register_controller - register SPI master or slave controller
2356 * @ctlr: initialized master, originally from spi_alloc_master() or
2358 * Context: can sleep
2360 * SPI controllers connect to their drivers using some non-SPI bus,
2361 * such as the platform bus. The final stage of probe() in that code
2362 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2364 * SPI controllers use board specific (often SOC specific) bus numbers,
2365 * and board-specific addressing for SPI devices combines those numbers
2366 * with chip select numbers. Since SPI does not directly support dynamic
2367 * device identification, boards need configuration tables telling which
2368 * chip is at which address.
2370 * This must be called from context that can sleep. It returns zero on
2371 * success, else a negative error code (dropping the controller's refcount).
2372 * After a successful return, the caller is responsible for calling
2373 * spi_unregister_controller().
2375 * Return: zero on success, else a negative error code.
2377 int spi_register_controller(struct spi_controller *ctlr)
2379 struct device *dev = ctlr->dev.parent;
2380 struct boardinfo *bi;
2382 int id, first_dynamic;
2388 * Make sure all necessary hooks are implemented before registering
2389 * the SPI controller.
2391 status = spi_controller_check_ops(ctlr);
2395 if (ctlr->bus_num >= 0) {
2396 /* devices with a fixed bus num must check-in with the num */
2397 mutex_lock(&board_lock);
2398 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2399 ctlr->bus_num + 1, GFP_KERNEL);
2400 mutex_unlock(&board_lock);
2401 if (WARN(id < 0, "couldn't get idr"))
2402 return id == -ENOSPC ? -EBUSY : id;
2404 } else if (ctlr->dev.of_node) {
2405 /* allocate dynamic bus number using Linux idr */
2406 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2409 mutex_lock(&board_lock);
2410 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2411 ctlr->bus_num + 1, GFP_KERNEL);
2412 mutex_unlock(&board_lock);
2413 if (WARN(id < 0, "couldn't get idr"))
2414 return id == -ENOSPC ? -EBUSY : id;
2417 if (ctlr->bus_num < 0) {
2418 first_dynamic = of_alias_get_highest_id("spi");
2419 if (first_dynamic < 0)
2424 mutex_lock(&board_lock);
2425 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2427 mutex_unlock(&board_lock);
2428 if (WARN(id < 0, "couldn't get idr"))
2432 INIT_LIST_HEAD(&ctlr->queue);
2433 spin_lock_init(&ctlr->queue_lock);
2434 spin_lock_init(&ctlr->bus_lock_spinlock);
2435 mutex_init(&ctlr->bus_lock_mutex);
2436 mutex_init(&ctlr->io_mutex);
2437 ctlr->bus_lock_flag = 0;
2438 init_completion(&ctlr->xfer_completion);
2439 if (!ctlr->max_dma_len)
2440 ctlr->max_dma_len = INT_MAX;
2442 /* register the device, then userspace will see it.
2443 * registration fails if the bus ID is in use.
2445 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2447 if (!spi_controller_is_slave(ctlr)) {
2448 if (ctlr->use_gpio_descriptors) {
2449 status = spi_get_gpio_descs(ctlr);
2453 * A controller using GPIO descriptors always
2454 * supports SPI_CS_HIGH if need be.
2456 ctlr->mode_bits |= SPI_CS_HIGH;
2458 /* Legacy code path for GPIOs from DT */
2459 status = of_spi_register_master(ctlr);
2466 * Even if it's just one always-selected device, there must
2467 * be at least one chipselect.
2469 if (!ctlr->num_chipselect)
2472 status = device_add(&ctlr->dev);
2475 mutex_lock(&board_lock);
2476 idr_remove(&spi_master_idr, ctlr->bus_num);
2477 mutex_unlock(&board_lock);
2480 dev_dbg(dev, "registered %s %s\n",
2481 spi_controller_is_slave(ctlr) ? "slave" : "master",
2482 dev_name(&ctlr->dev));
2485 * If we're using a queued driver, start the queue. Note that we don't
2486 * need the queueing logic if the driver is only supporting high-level
2487 * memory operations.
2489 if (ctlr->transfer) {
2490 dev_info(dev, "controller is unqueued, this is deprecated\n");
2491 } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2492 status = spi_controller_initialize_queue(ctlr);
2494 device_del(&ctlr->dev);
2496 mutex_lock(&board_lock);
2497 idr_remove(&spi_master_idr, ctlr->bus_num);
2498 mutex_unlock(&board_lock);
2502 /* add statistics */
2503 spin_lock_init(&ctlr->statistics.lock);
2505 mutex_lock(&board_lock);
2506 list_add_tail(&ctlr->list, &spi_controller_list);
2507 list_for_each_entry(bi, &board_list, list)
2508 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2509 mutex_unlock(&board_lock);
2511 /* Register devices from the device tree and ACPI */
2512 of_register_spi_devices(ctlr);
2513 acpi_register_spi_devices(ctlr);
2517 EXPORT_SYMBOL_GPL(spi_register_controller);
2519 static void devm_spi_unregister(struct device *dev, void *res)
2521 spi_unregister_controller(*(struct spi_controller **)res);
2525 * devm_spi_register_controller - register managed SPI master or slave
2527 * @dev: device managing SPI controller
2528 * @ctlr: initialized controller, originally from spi_alloc_master() or
2530 * Context: can sleep
2532 * Register a SPI device as with spi_register_controller() which will
2533 * automatically be unregistered and freed.
2535 * Return: zero on success, else a negative error code.
2537 int devm_spi_register_controller(struct device *dev,
2538 struct spi_controller *ctlr)
2540 struct spi_controller **ptr;
2543 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2547 ret = spi_register_controller(ctlr);
2550 devres_add(dev, ptr);
2557 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2559 static int __unregister(struct device *dev, void *null)
2561 spi_unregister_device(to_spi_device(dev));
2566 * spi_unregister_controller - unregister SPI master or slave controller
2567 * @ctlr: the controller being unregistered
2568 * Context: can sleep
2570 * This call is used only by SPI controller drivers, which are the
2571 * only ones directly touching chip registers.
2573 * This must be called from context that can sleep.
2575 * Note that this function also drops a reference to the controller.
2577 void spi_unregister_controller(struct spi_controller *ctlr)
2579 struct spi_controller *found;
2580 int id = ctlr->bus_num;
2582 /* First make sure that this controller was ever added */
2583 mutex_lock(&board_lock);
2584 found = idr_find(&spi_master_idr, id);
2585 mutex_unlock(&board_lock);
2587 if (spi_destroy_queue(ctlr))
2588 dev_err(&ctlr->dev, "queue remove failed\n");
2590 mutex_lock(&board_lock);
2591 list_del(&ctlr->list);
2592 mutex_unlock(&board_lock);
2594 device_for_each_child(&ctlr->dev, NULL, __unregister);
2595 device_unregister(&ctlr->dev);
2597 mutex_lock(&board_lock);
2599 idr_remove(&spi_master_idr, id);
2600 mutex_unlock(&board_lock);
2602 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2604 int spi_controller_suspend(struct spi_controller *ctlr)
2608 /* Basically no-ops for non-queued controllers */
2612 ret = spi_stop_queue(ctlr);
2614 dev_err(&ctlr->dev, "queue stop failed\n");
2618 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2620 int spi_controller_resume(struct spi_controller *ctlr)
2627 ret = spi_start_queue(ctlr);
2629 dev_err(&ctlr->dev, "queue restart failed\n");
2633 EXPORT_SYMBOL_GPL(spi_controller_resume);
2635 static int __spi_controller_match(struct device *dev, const void *data)
2637 struct spi_controller *ctlr;
2638 const u16 *bus_num = data;
2640 ctlr = container_of(dev, struct spi_controller, dev);
2641 return ctlr->bus_num == *bus_num;
2645 * spi_busnum_to_master - look up master associated with bus_num
2646 * @bus_num: the master's bus number
2647 * Context: can sleep
2649 * This call may be used with devices that are registered after
2650 * arch init time. It returns a refcounted pointer to the relevant
2651 * spi_controller (which the caller must release), or NULL if there is
2652 * no such master registered.
2654 * Return: the SPI master structure on success, else NULL.
2656 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2659 struct spi_controller *ctlr = NULL;
2661 dev = class_find_device(&spi_master_class, NULL, &bus_num,
2662 __spi_controller_match);
2664 ctlr = container_of(dev, struct spi_controller, dev);
2665 /* reference got in class_find_device */
2668 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2670 /*-------------------------------------------------------------------------*/
2672 /* Core methods for SPI resource management */
2675 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2676 * during the processing of a spi_message while using
2678 * @spi: the spi device for which we allocate memory
2679 * @release: the release code to execute for this resource
2680 * @size: size to alloc and return
2681 * @gfp: GFP allocation flags
2683 * Return: the pointer to the allocated data
2685 * This may get enhanced in the future to allocate from a memory pool
2686 * of the @spi_device or @spi_controller to avoid repeated allocations.
2688 void *spi_res_alloc(struct spi_device *spi,
2689 spi_res_release_t release,
2690 size_t size, gfp_t gfp)
2692 struct spi_res *sres;
2694 sres = kzalloc(sizeof(*sres) + size, gfp);
2698 INIT_LIST_HEAD(&sres->entry);
2699 sres->release = release;
2703 EXPORT_SYMBOL_GPL(spi_res_alloc);
2706 * spi_res_free - free an spi resource
2707 * @res: pointer to the custom data of a resource
2710 void spi_res_free(void *res)
2712 struct spi_res *sres = container_of(res, struct spi_res, data);
2717 WARN_ON(!list_empty(&sres->entry));
2720 EXPORT_SYMBOL_GPL(spi_res_free);
2723 * spi_res_add - add a spi_res to the spi_message
2724 * @message: the spi message
2725 * @res: the spi_resource
2727 void spi_res_add(struct spi_message *message, void *res)
2729 struct spi_res *sres = container_of(res, struct spi_res, data);
2731 WARN_ON(!list_empty(&sres->entry));
2732 list_add_tail(&sres->entry, &message->resources);
2734 EXPORT_SYMBOL_GPL(spi_res_add);
2737 * spi_res_release - release all spi resources for this message
2738 * @ctlr: the @spi_controller
2739 * @message: the @spi_message
2741 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2743 struct spi_res *res, *tmp;
2745 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
2747 res->release(ctlr, message, res->data);
2749 list_del(&res->entry);
2754 EXPORT_SYMBOL_GPL(spi_res_release);
2756 /*-------------------------------------------------------------------------*/
2758 /* Core methods for spi_message alterations */
2760 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2761 struct spi_message *msg,
2764 struct spi_replaced_transfers *rxfer = res;
2767 /* call extra callback if requested */
2769 rxfer->release(ctlr, msg, res);
2771 /* insert replaced transfers back into the message */
2772 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2774 /* remove the formerly inserted entries */
2775 for (i = 0; i < rxfer->inserted; i++)
2776 list_del(&rxfer->inserted_transfers[i].transfer_list);
2780 * spi_replace_transfers - replace transfers with several transfers
2781 * and register change with spi_message.resources
2782 * @msg: the spi_message we work upon
2783 * @xfer_first: the first spi_transfer we want to replace
2784 * @remove: number of transfers to remove
2785 * @insert: the number of transfers we want to insert instead
2786 * @release: extra release code necessary in some circumstances
2787 * @extradatasize: extra data to allocate (with alignment guarantees
2788 * of struct @spi_transfer)
2791 * Returns: pointer to @spi_replaced_transfers,
2792 * PTR_ERR(...) in case of errors.
2794 struct spi_replaced_transfers *spi_replace_transfers(
2795 struct spi_message *msg,
2796 struct spi_transfer *xfer_first,
2799 spi_replaced_release_t release,
2800 size_t extradatasize,
2803 struct spi_replaced_transfers *rxfer;
2804 struct spi_transfer *xfer;
2807 /* allocate the structure using spi_res */
2808 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2809 struct_size(rxfer, inserted_transfers, insert)
2813 return ERR_PTR(-ENOMEM);
2815 /* the release code to invoke before running the generic release */
2816 rxfer->release = release;
2818 /* assign extradata */
2821 &rxfer->inserted_transfers[insert];
2823 /* init the replaced_transfers list */
2824 INIT_LIST_HEAD(&rxfer->replaced_transfers);
2826 /* assign the list_entry after which we should reinsert
2827 * the @replaced_transfers - it may be spi_message.messages!
2829 rxfer->replaced_after = xfer_first->transfer_list.prev;
2831 /* remove the requested number of transfers */
2832 for (i = 0; i < remove; i++) {
2833 /* if the entry after replaced_after it is msg->transfers
2834 * then we have been requested to remove more transfers
2835 * than are in the list
2837 if (rxfer->replaced_after->next == &msg->transfers) {
2838 dev_err(&msg->spi->dev,
2839 "requested to remove more spi_transfers than are available\n");
2840 /* insert replaced transfers back into the message */
2841 list_splice(&rxfer->replaced_transfers,
2842 rxfer->replaced_after);
2844 /* free the spi_replace_transfer structure */
2845 spi_res_free(rxfer);
2847 /* and return with an error */
2848 return ERR_PTR(-EINVAL);
2851 /* remove the entry after replaced_after from list of
2852 * transfers and add it to list of replaced_transfers
2854 list_move_tail(rxfer->replaced_after->next,
2855 &rxfer->replaced_transfers);
2858 /* create copy of the given xfer with identical settings
2859 * based on the first transfer to get removed
2861 for (i = 0; i < insert; i++) {
2862 /* we need to run in reverse order */
2863 xfer = &rxfer->inserted_transfers[insert - 1 - i];
2865 /* copy all spi_transfer data */
2866 memcpy(xfer, xfer_first, sizeof(*xfer));
2869 list_add(&xfer->transfer_list, rxfer->replaced_after);
2871 /* clear cs_change and delay_usecs for all but the last */
2873 xfer->cs_change = false;
2874 xfer->delay_usecs = 0;
2878 /* set up inserted */
2879 rxfer->inserted = insert;
2881 /* and register it with spi_res/spi_message */
2882 spi_res_add(msg, rxfer);
2886 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2888 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2889 struct spi_message *msg,
2890 struct spi_transfer **xferp,
2894 struct spi_transfer *xfer = *xferp, *xfers;
2895 struct spi_replaced_transfers *srt;
2899 /* calculate how many we have to replace */
2900 count = DIV_ROUND_UP(xfer->len, maxsize);
2902 /* create replacement */
2903 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2905 return PTR_ERR(srt);
2906 xfers = srt->inserted_transfers;
2908 /* now handle each of those newly inserted spi_transfers
2909 * note that the replacements spi_transfers all are preset
2910 * to the same values as *xferp, so tx_buf, rx_buf and len
2911 * are all identical (as well as most others)
2912 * so we just have to fix up len and the pointers.
2914 * this also includes support for the depreciated
2915 * spi_message.is_dma_mapped interface
2918 /* the first transfer just needs the length modified, so we
2919 * run it outside the loop
2921 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2923 /* all the others need rx_buf/tx_buf also set */
2924 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2925 /* update rx_buf, tx_buf and dma */
2926 if (xfers[i].rx_buf)
2927 xfers[i].rx_buf += offset;
2928 if (xfers[i].rx_dma)
2929 xfers[i].rx_dma += offset;
2930 if (xfers[i].tx_buf)
2931 xfers[i].tx_buf += offset;
2932 if (xfers[i].tx_dma)
2933 xfers[i].tx_dma += offset;
2936 xfers[i].len = min(maxsize, xfers[i].len - offset);
2939 /* we set up xferp to the last entry we have inserted,
2940 * so that we skip those already split transfers
2942 *xferp = &xfers[count - 1];
2944 /* increment statistics counters */
2945 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2946 transfers_split_maxsize);
2947 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2948 transfers_split_maxsize);
2954 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2955 * when an individual transfer exceeds a
2957 * @ctlr: the @spi_controller for this transfer
2958 * @msg: the @spi_message to transform
2959 * @maxsize: the maximum when to apply this
2960 * @gfp: GFP allocation flags
2962 * Return: status of transformation
2964 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2965 struct spi_message *msg,
2969 struct spi_transfer *xfer;
2972 /* iterate over the transfer_list,
2973 * but note that xfer is advanced to the last transfer inserted
2974 * to avoid checking sizes again unnecessarily (also xfer does
2975 * potentiall belong to a different list by the time the
2976 * replacement has happened
2978 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2979 if (xfer->len > maxsize) {
2980 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2989 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2991 /*-------------------------------------------------------------------------*/
2993 /* Core methods for SPI controller protocol drivers. Some of the
2994 * other core methods are currently defined as inline functions.
2997 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3000 if (ctlr->bits_per_word_mask) {
3001 /* Only 32 bits fit in the mask */
3002 if (bits_per_word > 32)
3004 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3012 * spi_setup - setup SPI mode and clock rate
3013 * @spi: the device whose settings are being modified
3014 * Context: can sleep, and no requests are queued to the device
3016 * SPI protocol drivers may need to update the transfer mode if the
3017 * device doesn't work with its default. They may likewise need
3018 * to update clock rates or word sizes from initial values. This function
3019 * changes those settings, and must be called from a context that can sleep.
3020 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3021 * effect the next time the device is selected and data is transferred to
3022 * or from it. When this function returns, the spi device is deselected.
3024 * Note that this call will fail if the protocol driver specifies an option
3025 * that the underlying controller or its driver does not support. For
3026 * example, not all hardware supports wire transfers using nine bit words,
3027 * LSB-first wire encoding, or active-high chipselects.
3029 * Return: zero on success, else a negative error code.
3031 int spi_setup(struct spi_device *spi)
3033 unsigned bad_bits, ugly_bits;
3036 /* check mode to prevent that DUAL and QUAD set at the same time
3038 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
3039 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
3041 "setup: can not select dual and quad at the same time\n");
3044 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3046 if ((spi->mode & SPI_3WIRE) && (spi->mode &
3047 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3048 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3050 /* help drivers fail *cleanly* when they need options
3051 * that aren't supported with their current controller
3052 * SPI_CS_WORD has a fallback software implementation,
3053 * so it is ignored here.
3055 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
3056 /* nothing prevents from working with active-high CS in case if it
3057 * is driven by GPIO.
3059 if (gpio_is_valid(spi->cs_gpio))
3060 bad_bits &= ~SPI_CS_HIGH;
3061 ugly_bits = bad_bits &
3062 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3063 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3066 "setup: ignoring unsupported mode bits %x\n",
3068 spi->mode &= ~ugly_bits;
3069 bad_bits &= ~ugly_bits;
3072 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3077 if (!spi->bits_per_word)
3078 spi->bits_per_word = 8;
3080 status = __spi_validate_bits_per_word(spi->controller,
3081 spi->bits_per_word);
3085 if (!spi->max_speed_hz)
3086 spi->max_speed_hz = spi->controller->max_speed_hz;
3088 if (spi->controller->setup)
3089 status = spi->controller->setup(spi);
3091 spi_set_cs(spi, false);
3093 if (spi->rt && !spi->controller->rt) {
3094 spi->controller->rt = true;
3095 spi_set_thread_rt(spi->controller);
3098 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3099 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
3100 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3101 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3102 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
3103 (spi->mode & SPI_LOOP) ? "loopback, " : "",
3104 spi->bits_per_word, spi->max_speed_hz,
3109 EXPORT_SYMBOL_GPL(spi_setup);
3112 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3113 * @spi: the device that requires specific CS timing configuration
3114 * @setup: CS setup time in terms of clock count
3115 * @hold: CS hold time in terms of clock count
3116 * @inactive_dly: CS inactive delay between transfers in terms of clock count
3118 void spi_set_cs_timing(struct spi_device *spi, u8 setup, u8 hold,
3121 if (spi->controller->set_cs_timing)
3122 spi->controller->set_cs_timing(spi, setup, hold, inactive_dly);
3124 EXPORT_SYMBOL_GPL(spi_set_cs_timing);
3126 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3128 struct spi_controller *ctlr = spi->controller;
3129 struct spi_transfer *xfer;
3132 if (list_empty(&message->transfers))
3135 /* If an SPI controller does not support toggling the CS line on each
3136 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3137 * for the CS line, we can emulate the CS-per-word hardware function by
3138 * splitting transfers into one-word transfers and ensuring that
3139 * cs_change is set for each transfer.
3141 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3143 gpio_is_valid(spi->cs_gpio))) {
3147 maxsize = (spi->bits_per_word + 7) / 8;
3149 /* spi_split_transfers_maxsize() requires message->spi */
3152 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3157 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3158 /* don't change cs_change on the last entry in the list */
3159 if (list_is_last(&xfer->transfer_list, &message->transfers))
3161 xfer->cs_change = 1;
3165 /* Half-duplex links include original MicroWire, and ones with
3166 * only one data pin like SPI_3WIRE (switches direction) or where
3167 * either MOSI or MISO is missing. They can also be caused by
3168 * software limitations.
3170 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3171 (spi->mode & SPI_3WIRE)) {
3172 unsigned flags = ctlr->flags;
3174 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3175 if (xfer->rx_buf && xfer->tx_buf)
3177 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3179 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3185 * Set transfer bits_per_word and max speed as spi device default if
3186 * it is not set for this transfer.
3187 * Set transfer tx_nbits and rx_nbits as single transfer default
3188 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3189 * Ensure transfer word_delay is at least as long as that required by
3192 message->frame_length = 0;
3193 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3194 xfer->effective_speed_hz = 0;
3195 message->frame_length += xfer->len;
3196 if (!xfer->bits_per_word)
3197 xfer->bits_per_word = spi->bits_per_word;
3199 if (!xfer->speed_hz)
3200 xfer->speed_hz = spi->max_speed_hz;
3202 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3203 xfer->speed_hz = ctlr->max_speed_hz;
3205 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3209 * SPI transfer length should be multiple of SPI word size
3210 * where SPI word size should be power-of-two multiple
3212 if (xfer->bits_per_word <= 8)
3214 else if (xfer->bits_per_word <= 16)
3219 /* No partial transfers accepted */
3220 if (xfer->len % w_size)
3223 if (xfer->speed_hz && ctlr->min_speed_hz &&
3224 xfer->speed_hz < ctlr->min_speed_hz)
3227 if (xfer->tx_buf && !xfer->tx_nbits)
3228 xfer->tx_nbits = SPI_NBITS_SINGLE;
3229 if (xfer->rx_buf && !xfer->rx_nbits)
3230 xfer->rx_nbits = SPI_NBITS_SINGLE;
3231 /* check transfer tx/rx_nbits:
3232 * 1. check the value matches one of single, dual and quad
3233 * 2. check tx/rx_nbits match the mode in spi_device
3236 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3237 xfer->tx_nbits != SPI_NBITS_DUAL &&
3238 xfer->tx_nbits != SPI_NBITS_QUAD)
3240 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3241 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3243 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3244 !(spi->mode & SPI_TX_QUAD))
3247 /* check transfer rx_nbits */
3249 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3250 xfer->rx_nbits != SPI_NBITS_DUAL &&
3251 xfer->rx_nbits != SPI_NBITS_QUAD)
3253 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3254 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3256 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3257 !(spi->mode & SPI_RX_QUAD))
3261 if (xfer->word_delay_usecs < spi->word_delay_usecs)
3262 xfer->word_delay_usecs = spi->word_delay_usecs;
3265 message->status = -EINPROGRESS;
3270 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3272 struct spi_controller *ctlr = spi->controller;
3275 * Some controllers do not support doing regular SPI transfers. Return
3276 * ENOTSUPP when this is the case.
3278 if (!ctlr->transfer)
3283 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3284 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3286 trace_spi_message_submit(message);
3288 return ctlr->transfer(spi, message);
3292 * spi_async - asynchronous SPI transfer
3293 * @spi: device with which data will be exchanged
3294 * @message: describes the data transfers, including completion callback
3295 * Context: any (irqs may be blocked, etc)
3297 * This call may be used in_irq and other contexts which can't sleep,
3298 * as well as from task contexts which can sleep.
3300 * The completion callback is invoked in a context which can't sleep.
3301 * Before that invocation, the value of message->status is undefined.
3302 * When the callback is issued, message->status holds either zero (to
3303 * indicate complete success) or a negative error code. After that
3304 * callback returns, the driver which issued the transfer request may
3305 * deallocate the associated memory; it's no longer in use by any SPI
3306 * core or controller driver code.
3308 * Note that although all messages to a spi_device are handled in
3309 * FIFO order, messages may go to different devices in other orders.
3310 * Some device might be higher priority, or have various "hard" access
3311 * time requirements, for example.
3313 * On detection of any fault during the transfer, processing of
3314 * the entire message is aborted, and the device is deselected.
3315 * Until returning from the associated message completion callback,
3316 * no other spi_message queued to that device will be processed.
3317 * (This rule applies equally to all the synchronous transfer calls,
3318 * which are wrappers around this core asynchronous primitive.)
3320 * Return: zero on success, else a negative error code.
3322 int spi_async(struct spi_device *spi, struct spi_message *message)
3324 struct spi_controller *ctlr = spi->controller;
3326 unsigned long flags;
3328 ret = __spi_validate(spi, message);
3332 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3334 if (ctlr->bus_lock_flag)
3337 ret = __spi_async(spi, message);
3339 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3343 EXPORT_SYMBOL_GPL(spi_async);
3346 * spi_async_locked - version of spi_async with exclusive bus usage
3347 * @spi: device with which data will be exchanged
3348 * @message: describes the data transfers, including completion callback
3349 * Context: any (irqs may be blocked, etc)
3351 * This call may be used in_irq and other contexts which can't sleep,
3352 * as well as from task contexts which can sleep.
3354 * The completion callback is invoked in a context which can't sleep.
3355 * Before that invocation, the value of message->status is undefined.
3356 * When the callback is issued, message->status holds either zero (to
3357 * indicate complete success) or a negative error code. After that
3358 * callback returns, the driver which issued the transfer request may
3359 * deallocate the associated memory; it's no longer in use by any SPI
3360 * core or controller driver code.
3362 * Note that although all messages to a spi_device are handled in
3363 * FIFO order, messages may go to different devices in other orders.
3364 * Some device might be higher priority, or have various "hard" access
3365 * time requirements, for example.
3367 * On detection of any fault during the transfer, processing of
3368 * the entire message is aborted, and the device is deselected.
3369 * Until returning from the associated message completion callback,
3370 * no other spi_message queued to that device will be processed.
3371 * (This rule applies equally to all the synchronous transfer calls,
3372 * which are wrappers around this core asynchronous primitive.)
3374 * Return: zero on success, else a negative error code.
3376 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3378 struct spi_controller *ctlr = spi->controller;
3380 unsigned long flags;
3382 ret = __spi_validate(spi, message);
3386 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3388 ret = __spi_async(spi, message);
3390 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3395 EXPORT_SYMBOL_GPL(spi_async_locked);
3397 /*-------------------------------------------------------------------------*/
3399 /* Utility methods for SPI protocol drivers, layered on
3400 * top of the core. Some other utility methods are defined as
3404 static void spi_complete(void *arg)
3409 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3411 DECLARE_COMPLETION_ONSTACK(done);
3413 struct spi_controller *ctlr = spi->controller;
3414 unsigned long flags;
3416 status = __spi_validate(spi, message);
3420 message->complete = spi_complete;
3421 message->context = &done;
3424 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3425 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3427 /* If we're not using the legacy transfer method then we will
3428 * try to transfer in the calling context so special case.
3429 * This code would be less tricky if we could remove the
3430 * support for driver implemented message queues.
3432 if (ctlr->transfer == spi_queued_transfer) {
3433 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3435 trace_spi_message_submit(message);
3437 status = __spi_queued_transfer(spi, message, false);
3439 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3441 status = spi_async_locked(spi, message);
3445 /* Push out the messages in the calling context if we
3448 if (ctlr->transfer == spi_queued_transfer) {
3449 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3450 spi_sync_immediate);
3451 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3452 spi_sync_immediate);
3453 __spi_pump_messages(ctlr, false);
3456 wait_for_completion(&done);
3457 status = message->status;
3459 message->context = NULL;
3464 * spi_sync - blocking/synchronous SPI data transfers
3465 * @spi: device with which data will be exchanged
3466 * @message: describes the data transfers
3467 * Context: can sleep
3469 * This call may only be used from a context that may sleep. The sleep
3470 * is non-interruptible, and has no timeout. Low-overhead controller
3471 * drivers may DMA directly into and out of the message buffers.
3473 * Note that the SPI device's chip select is active during the message,
3474 * and then is normally disabled between messages. Drivers for some
3475 * frequently-used devices may want to minimize costs of selecting a chip,
3476 * by leaving it selected in anticipation that the next message will go
3477 * to the same chip. (That may increase power usage.)
3479 * Also, the caller is guaranteeing that the memory associated with the
3480 * message will not be freed before this call returns.
3482 * Return: zero on success, else a negative error code.
3484 int spi_sync(struct spi_device *spi, struct spi_message *message)
3488 mutex_lock(&spi->controller->bus_lock_mutex);
3489 ret = __spi_sync(spi, message);
3490 mutex_unlock(&spi->controller->bus_lock_mutex);
3494 EXPORT_SYMBOL_GPL(spi_sync);
3497 * spi_sync_locked - version of spi_sync with exclusive bus usage
3498 * @spi: device with which data will be exchanged
3499 * @message: describes the data transfers
3500 * Context: can sleep
3502 * This call may only be used from a context that may sleep. The sleep
3503 * is non-interruptible, and has no timeout. Low-overhead controller
3504 * drivers may DMA directly into and out of the message buffers.
3506 * This call should be used by drivers that require exclusive access to the
3507 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3508 * be released by a spi_bus_unlock call when the exclusive access is over.
3510 * Return: zero on success, else a negative error code.
3512 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3514 return __spi_sync(spi, message);
3516 EXPORT_SYMBOL_GPL(spi_sync_locked);
3519 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3520 * @ctlr: SPI bus master that should be locked for exclusive bus access
3521 * Context: can sleep
3523 * This call may only be used from a context that may sleep. The sleep
3524 * is non-interruptible, and has no timeout.
3526 * This call should be used by drivers that require exclusive access to the
3527 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3528 * exclusive access is over. Data transfer must be done by spi_sync_locked
3529 * and spi_async_locked calls when the SPI bus lock is held.
3531 * Return: always zero.
3533 int spi_bus_lock(struct spi_controller *ctlr)
3535 unsigned long flags;
3537 mutex_lock(&ctlr->bus_lock_mutex);
3539 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3540 ctlr->bus_lock_flag = 1;
3541 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3543 /* mutex remains locked until spi_bus_unlock is called */
3547 EXPORT_SYMBOL_GPL(spi_bus_lock);
3550 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3551 * @ctlr: SPI bus master that was locked for exclusive bus access
3552 * Context: can sleep
3554 * This call may only be used from a context that may sleep. The sleep
3555 * is non-interruptible, and has no timeout.
3557 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3560 * Return: always zero.
3562 int spi_bus_unlock(struct spi_controller *ctlr)
3564 ctlr->bus_lock_flag = 0;
3566 mutex_unlock(&ctlr->bus_lock_mutex);
3570 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3572 /* portable code must never pass more than 32 bytes */
3573 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
3578 * spi_write_then_read - SPI synchronous write followed by read
3579 * @spi: device with which data will be exchanged
3580 * @txbuf: data to be written (need not be dma-safe)
3581 * @n_tx: size of txbuf, in bytes
3582 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3583 * @n_rx: size of rxbuf, in bytes
3584 * Context: can sleep
3586 * This performs a half duplex MicroWire style transaction with the
3587 * device, sending txbuf and then reading rxbuf. The return value
3588 * is zero for success, else a negative errno status code.
3589 * This call may only be used from a context that may sleep.
3591 * Parameters to this routine are always copied using a small buffer;
3592 * portable code should never use this for more than 32 bytes.
3593 * Performance-sensitive or bulk transfer code should instead use
3594 * spi_{async,sync}() calls with dma-safe buffers.
3596 * Return: zero on success, else a negative error code.
3598 int spi_write_then_read(struct spi_device *spi,
3599 const void *txbuf, unsigned n_tx,
3600 void *rxbuf, unsigned n_rx)
3602 static DEFINE_MUTEX(lock);
3605 struct spi_message message;
3606 struct spi_transfer x[2];
3609 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3610 * copying here, (as a pure convenience thing), but we can
3611 * keep heap costs out of the hot path unless someone else is
3612 * using the pre-allocated buffer or the transfer is too large.
3614 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3615 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3616 GFP_KERNEL | GFP_DMA);
3623 spi_message_init(&message);
3624 memset(x, 0, sizeof(x));
3627 spi_message_add_tail(&x[0], &message);
3631 spi_message_add_tail(&x[1], &message);
3634 memcpy(local_buf, txbuf, n_tx);
3635 x[0].tx_buf = local_buf;
3636 x[1].rx_buf = local_buf + n_tx;
3639 status = spi_sync(spi, &message);
3641 memcpy(rxbuf, x[1].rx_buf, n_rx);
3643 if (x[0].tx_buf == buf)
3644 mutex_unlock(&lock);
3650 EXPORT_SYMBOL_GPL(spi_write_then_read);
3652 /*-------------------------------------------------------------------------*/
3654 #if IS_ENABLED(CONFIG_OF)
3655 static int __spi_of_device_match(struct device *dev, const void *data)
3657 return dev->of_node == data;
3660 /* must call put_device() when done with returned spi_device device */
3661 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3663 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3664 __spi_of_device_match);
3665 return dev ? to_spi_device(dev) : NULL;
3667 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
3668 #endif /* IS_ENABLED(CONFIG_OF) */
3670 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3671 static int __spi_of_controller_match(struct device *dev, const void *data)
3673 return dev->of_node == data;
3676 /* the spi controllers are not using spi_bus, so we find it with another way */
3677 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3681 dev = class_find_device(&spi_master_class, NULL, node,
3682 __spi_of_controller_match);
3683 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3684 dev = class_find_device(&spi_slave_class, NULL, node,
3685 __spi_of_controller_match);
3689 /* reference got in class_find_device */
3690 return container_of(dev, struct spi_controller, dev);
3693 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3696 struct of_reconfig_data *rd = arg;
3697 struct spi_controller *ctlr;
3698 struct spi_device *spi;
3700 switch (of_reconfig_get_state_change(action, arg)) {
3701 case OF_RECONFIG_CHANGE_ADD:
3702 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3704 return NOTIFY_OK; /* not for us */
3706 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3707 put_device(&ctlr->dev);
3711 spi = of_register_spi_device(ctlr, rd->dn);
3712 put_device(&ctlr->dev);
3715 pr_err("%s: failed to create for '%pOF'\n",
3717 of_node_clear_flag(rd->dn, OF_POPULATED);
3718 return notifier_from_errno(PTR_ERR(spi));
3722 case OF_RECONFIG_CHANGE_REMOVE:
3723 /* already depopulated? */
3724 if (!of_node_check_flag(rd->dn, OF_POPULATED))
3727 /* find our device by node */
3728 spi = of_find_spi_device_by_node(rd->dn);
3730 return NOTIFY_OK; /* no? not meant for us */
3732 /* unregister takes one ref away */
3733 spi_unregister_device(spi);
3735 /* and put the reference of the find */
3736 put_device(&spi->dev);
3743 static struct notifier_block spi_of_notifier = {
3744 .notifier_call = of_spi_notify,
3746 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3747 extern struct notifier_block spi_of_notifier;
3748 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3750 #if IS_ENABLED(CONFIG_ACPI)
3751 static int spi_acpi_controller_match(struct device *dev, const void *data)
3753 return ACPI_COMPANION(dev->parent) == data;
3756 static int spi_acpi_device_match(struct device *dev, const void *data)
3758 return ACPI_COMPANION(dev) == data;
3761 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3765 dev = class_find_device(&spi_master_class, NULL, adev,
3766 spi_acpi_controller_match);
3767 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3768 dev = class_find_device(&spi_slave_class, NULL, adev,
3769 spi_acpi_controller_match);
3773 return container_of(dev, struct spi_controller, dev);
3776 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3780 dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3782 return dev ? to_spi_device(dev) : NULL;
3785 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3788 struct acpi_device *adev = arg;
3789 struct spi_controller *ctlr;
3790 struct spi_device *spi;
3793 case ACPI_RECONFIG_DEVICE_ADD:
3794 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3798 acpi_register_spi_device(ctlr, adev);
3799 put_device(&ctlr->dev);
3801 case ACPI_RECONFIG_DEVICE_REMOVE:
3802 if (!acpi_device_enumerated(adev))
3805 spi = acpi_spi_find_device_by_adev(adev);
3809 spi_unregister_device(spi);
3810 put_device(&spi->dev);
3817 static struct notifier_block spi_acpi_notifier = {
3818 .notifier_call = acpi_spi_notify,
3821 extern struct notifier_block spi_acpi_notifier;
3824 static int __init spi_init(void)
3828 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3834 status = bus_register(&spi_bus_type);
3838 status = class_register(&spi_master_class);
3842 if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3843 status = class_register(&spi_slave_class);
3848 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3849 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3850 if (IS_ENABLED(CONFIG_ACPI))
3851 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3856 class_unregister(&spi_master_class);
3858 bus_unregister(&spi_bus_type);
3866 /* board_info is normally registered in arch_initcall(),
3867 * but even essential drivers wait till later
3869 * REVISIT only boardinfo really needs static linking. the rest (device and
3870 * driver registration) _could_ be dynamically linked (modular) ... costs
3871 * include needing to have boardinfo data structures be much more public.
3873 postcore_initcall(spi_init);