input: edt-ft5x06: Correct prefix length in snprintf
[platform/kernel/linux-rpi.git] / drivers / spi / spi.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6
7 #include <linux/acpi.h>
8 #include <linux/cache.h>
9 #include <linux/clk/clk-conf.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/export.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/highmem.h>
17 #include <linux/idr.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/kernel.h>
21 #include <linux/kthread.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mutex.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/percpu.h>
27 #include <linux/platform_data/x86/apple.h>
28 #include <linux/pm_domain.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/property.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/sched/rt.h>
33 #include <linux/slab.h>
34 #include <linux/spi/spi.h>
35 #include <linux/spi/spi-mem.h>
36 #include <uapi/linux/sched/types.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42
43 #include "internals.h"
44
45 static DEFINE_IDR(spi_master_idr);
46
47 static void spidev_release(struct device *dev)
48 {
49         struct spi_device       *spi = to_spi_device(dev);
50
51         spi_controller_put(spi->controller);
52         kfree(spi->driver_override);
53         free_percpu(spi->pcpu_statistics);
54         kfree(spi);
55 }
56
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60         const struct spi_device *spi = to_spi_device(dev);
61         int len;
62
63         len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64         if (len != -ENODEV)
65                 return len;
66
67         return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70
71 static ssize_t driver_override_store(struct device *dev,
72                                      struct device_attribute *a,
73                                      const char *buf, size_t count)
74 {
75         struct spi_device *spi = to_spi_device(dev);
76         int ret;
77
78         ret = driver_set_override(dev, &spi->driver_override, buf, count);
79         if (ret)
80                 return ret;
81
82         return count;
83 }
84
85 static ssize_t driver_override_show(struct device *dev,
86                                     struct device_attribute *a, char *buf)
87 {
88         const struct spi_device *spi = to_spi_device(dev);
89         ssize_t len;
90
91         device_lock(dev);
92         len = sysfs_emit(buf, "%s\n", spi->driver_override ? : "");
93         device_unlock(dev);
94         return len;
95 }
96 static DEVICE_ATTR_RW(driver_override);
97
98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
99 {
100         struct spi_statistics __percpu *pcpu_stats;
101
102         if (dev)
103                 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
104         else
105                 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
106
107         if (pcpu_stats) {
108                 int cpu;
109
110                 for_each_possible_cpu(cpu) {
111                         struct spi_statistics *stat;
112
113                         stat = per_cpu_ptr(pcpu_stats, cpu);
114                         u64_stats_init(&stat->syncp);
115                 }
116         }
117         return pcpu_stats;
118 }
119
120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
121                                    char *buf, size_t offset)
122 {
123         u64 val = 0;
124         int i;
125
126         for_each_possible_cpu(i) {
127                 const struct spi_statistics *pcpu_stats;
128                 u64_stats_t *field;
129                 unsigned int start;
130                 u64 inc;
131
132                 pcpu_stats = per_cpu_ptr(stat, i);
133                 field = (void *)pcpu_stats + offset;
134                 do {
135                         start = u64_stats_fetch_begin(&pcpu_stats->syncp);
136                         inc = u64_stats_read(field);
137                 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
138                 val += inc;
139         }
140         return sysfs_emit(buf, "%llu\n", val);
141 }
142
143 #define SPI_STATISTICS_ATTRS(field, file)                               \
144 static ssize_t spi_controller_##field##_show(struct device *dev,        \
145                                              struct device_attribute *attr, \
146                                              char *buf)                 \
147 {                                                                       \
148         struct spi_controller *ctlr = container_of(dev,                 \
149                                          struct spi_controller, dev);   \
150         return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
151 }                                                                       \
152 static struct device_attribute dev_attr_spi_controller_##field = {      \
153         .attr = { .name = file, .mode = 0444 },                         \
154         .show = spi_controller_##field##_show,                          \
155 };                                                                      \
156 static ssize_t spi_device_##field##_show(struct device *dev,            \
157                                          struct device_attribute *attr, \
158                                         char *buf)                      \
159 {                                                                       \
160         struct spi_device *spi = to_spi_device(dev);                    \
161         return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
162 }                                                                       \
163 static struct device_attribute dev_attr_spi_device_##field = {          \
164         .attr = { .name = file, .mode = 0444 },                         \
165         .show = spi_device_##field##_show,                              \
166 }
167
168 #define SPI_STATISTICS_SHOW_NAME(name, file, field)                     \
169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
170                                             char *buf)                  \
171 {                                                                       \
172         return spi_emit_pcpu_stats(stat, buf,                           \
173                         offsetof(struct spi_statistics, field));        \
174 }                                                                       \
175 SPI_STATISTICS_ATTRS(name, file)
176
177 #define SPI_STATISTICS_SHOW(field)                                      \
178         SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
179                                  field)
180
181 SPI_STATISTICS_SHOW(messages);
182 SPI_STATISTICS_SHOW(transfers);
183 SPI_STATISTICS_SHOW(errors);
184 SPI_STATISTICS_SHOW(timedout);
185
186 SPI_STATISTICS_SHOW(spi_sync);
187 SPI_STATISTICS_SHOW(spi_sync_immediate);
188 SPI_STATISTICS_SHOW(spi_async);
189
190 SPI_STATISTICS_SHOW(bytes);
191 SPI_STATISTICS_SHOW(bytes_rx);
192 SPI_STATISTICS_SHOW(bytes_tx);
193
194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)              \
195         SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,           \
196                                  "transfer_bytes_histo_" number,        \
197                                  transfer_bytes_histo[index])
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
215
216 SPI_STATISTICS_SHOW(transfers_split_maxsize);
217
218 static struct attribute *spi_dev_attrs[] = {
219         &dev_attr_modalias.attr,
220         &dev_attr_driver_override.attr,
221         NULL,
222 };
223
224 static const struct attribute_group spi_dev_group = {
225         .attrs  = spi_dev_attrs,
226 };
227
228 static struct attribute *spi_device_statistics_attrs[] = {
229         &dev_attr_spi_device_messages.attr,
230         &dev_attr_spi_device_transfers.attr,
231         &dev_attr_spi_device_errors.attr,
232         &dev_attr_spi_device_timedout.attr,
233         &dev_attr_spi_device_spi_sync.attr,
234         &dev_attr_spi_device_spi_sync_immediate.attr,
235         &dev_attr_spi_device_spi_async.attr,
236         &dev_attr_spi_device_bytes.attr,
237         &dev_attr_spi_device_bytes_rx.attr,
238         &dev_attr_spi_device_bytes_tx.attr,
239         &dev_attr_spi_device_transfer_bytes_histo0.attr,
240         &dev_attr_spi_device_transfer_bytes_histo1.attr,
241         &dev_attr_spi_device_transfer_bytes_histo2.attr,
242         &dev_attr_spi_device_transfer_bytes_histo3.attr,
243         &dev_attr_spi_device_transfer_bytes_histo4.attr,
244         &dev_attr_spi_device_transfer_bytes_histo5.attr,
245         &dev_attr_spi_device_transfer_bytes_histo6.attr,
246         &dev_attr_spi_device_transfer_bytes_histo7.attr,
247         &dev_attr_spi_device_transfer_bytes_histo8.attr,
248         &dev_attr_spi_device_transfer_bytes_histo9.attr,
249         &dev_attr_spi_device_transfer_bytes_histo10.attr,
250         &dev_attr_spi_device_transfer_bytes_histo11.attr,
251         &dev_attr_spi_device_transfer_bytes_histo12.attr,
252         &dev_attr_spi_device_transfer_bytes_histo13.attr,
253         &dev_attr_spi_device_transfer_bytes_histo14.attr,
254         &dev_attr_spi_device_transfer_bytes_histo15.attr,
255         &dev_attr_spi_device_transfer_bytes_histo16.attr,
256         &dev_attr_spi_device_transfers_split_maxsize.attr,
257         NULL,
258 };
259
260 static const struct attribute_group spi_device_statistics_group = {
261         .name  = "statistics",
262         .attrs  = spi_device_statistics_attrs,
263 };
264
265 static const struct attribute_group *spi_dev_groups[] = {
266         &spi_dev_group,
267         &spi_device_statistics_group,
268         NULL,
269 };
270
271 static struct attribute *spi_controller_statistics_attrs[] = {
272         &dev_attr_spi_controller_messages.attr,
273         &dev_attr_spi_controller_transfers.attr,
274         &dev_attr_spi_controller_errors.attr,
275         &dev_attr_spi_controller_timedout.attr,
276         &dev_attr_spi_controller_spi_sync.attr,
277         &dev_attr_spi_controller_spi_sync_immediate.attr,
278         &dev_attr_spi_controller_spi_async.attr,
279         &dev_attr_spi_controller_bytes.attr,
280         &dev_attr_spi_controller_bytes_rx.attr,
281         &dev_attr_spi_controller_bytes_tx.attr,
282         &dev_attr_spi_controller_transfer_bytes_histo0.attr,
283         &dev_attr_spi_controller_transfer_bytes_histo1.attr,
284         &dev_attr_spi_controller_transfer_bytes_histo2.attr,
285         &dev_attr_spi_controller_transfer_bytes_histo3.attr,
286         &dev_attr_spi_controller_transfer_bytes_histo4.attr,
287         &dev_attr_spi_controller_transfer_bytes_histo5.attr,
288         &dev_attr_spi_controller_transfer_bytes_histo6.attr,
289         &dev_attr_spi_controller_transfer_bytes_histo7.attr,
290         &dev_attr_spi_controller_transfer_bytes_histo8.attr,
291         &dev_attr_spi_controller_transfer_bytes_histo9.attr,
292         &dev_attr_spi_controller_transfer_bytes_histo10.attr,
293         &dev_attr_spi_controller_transfer_bytes_histo11.attr,
294         &dev_attr_spi_controller_transfer_bytes_histo12.attr,
295         &dev_attr_spi_controller_transfer_bytes_histo13.attr,
296         &dev_attr_spi_controller_transfer_bytes_histo14.attr,
297         &dev_attr_spi_controller_transfer_bytes_histo15.attr,
298         &dev_attr_spi_controller_transfer_bytes_histo16.attr,
299         &dev_attr_spi_controller_transfers_split_maxsize.attr,
300         NULL,
301 };
302
303 static const struct attribute_group spi_controller_statistics_group = {
304         .name  = "statistics",
305         .attrs  = spi_controller_statistics_attrs,
306 };
307
308 static const struct attribute_group *spi_master_groups[] = {
309         &spi_controller_statistics_group,
310         NULL,
311 };
312
313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
314                                               struct spi_transfer *xfer,
315                                               struct spi_controller *ctlr)
316 {
317         int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
318         struct spi_statistics *stats;
319
320         if (l2len < 0)
321                 l2len = 0;
322
323         get_cpu();
324         stats = this_cpu_ptr(pcpu_stats);
325         u64_stats_update_begin(&stats->syncp);
326
327         u64_stats_inc(&stats->transfers);
328         u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
329
330         u64_stats_add(&stats->bytes, xfer->len);
331         if ((xfer->tx_buf) &&
332             (xfer->tx_buf != ctlr->dummy_tx))
333                 u64_stats_add(&stats->bytes_tx, xfer->len);
334         if ((xfer->rx_buf) &&
335             (xfer->rx_buf != ctlr->dummy_rx))
336                 u64_stats_add(&stats->bytes_rx, xfer->len);
337
338         u64_stats_update_end(&stats->syncp);
339         put_cpu();
340 }
341
342 /*
343  * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
344  * and the sysfs version makes coldplug work too.
345  */
346 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
347 {
348         while (id->name[0]) {
349                 if (!strcmp(name, id->name))
350                         return id;
351                 id++;
352         }
353         return NULL;
354 }
355
356 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
357 {
358         const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
359
360         return spi_match_id(sdrv->id_table, sdev->modalias);
361 }
362 EXPORT_SYMBOL_GPL(spi_get_device_id);
363
364 const void *spi_get_device_match_data(const struct spi_device *sdev)
365 {
366         const void *match;
367
368         match = device_get_match_data(&sdev->dev);
369         if (match)
370                 return match;
371
372         return (const void *)spi_get_device_id(sdev)->driver_data;
373 }
374 EXPORT_SYMBOL_GPL(spi_get_device_match_data);
375
376 static int spi_match_device(struct device *dev, struct device_driver *drv)
377 {
378         const struct spi_device *spi = to_spi_device(dev);
379         const struct spi_driver *sdrv = to_spi_driver(drv);
380
381         /* Check override first, and if set, only use the named driver */
382         if (spi->driver_override)
383                 return strcmp(spi->driver_override, drv->name) == 0;
384
385         /* Attempt an OF style match */
386         if (of_driver_match_device(dev, drv))
387                 return 1;
388
389         /* Then try ACPI */
390         if (acpi_driver_match_device(dev, drv))
391                 return 1;
392
393         if (sdrv->id_table)
394                 return !!spi_match_id(sdrv->id_table, spi->modalias);
395
396         return strcmp(spi->modalias, drv->name) == 0;
397 }
398
399 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
400 {
401         const struct spi_device         *spi = to_spi_device(dev);
402         int rc;
403
404         rc = acpi_device_uevent_modalias(dev, env);
405         if (rc != -ENODEV)
406                 return rc;
407
408         return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
409 }
410
411 static int spi_probe(struct device *dev)
412 {
413         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
414         struct spi_device               *spi = to_spi_device(dev);
415         int ret;
416
417         ret = of_clk_set_defaults(dev->of_node, false);
418         if (ret)
419                 return ret;
420
421         if (dev->of_node) {
422                 spi->irq = of_irq_get(dev->of_node, 0);
423                 if (spi->irq == -EPROBE_DEFER)
424                         return -EPROBE_DEFER;
425                 if (spi->irq < 0)
426                         spi->irq = 0;
427         }
428
429         ret = dev_pm_domain_attach(dev, true);
430         if (ret)
431                 return ret;
432
433         if (sdrv->probe) {
434                 ret = sdrv->probe(spi);
435                 if (ret)
436                         dev_pm_domain_detach(dev, true);
437         }
438
439         return ret;
440 }
441
442 static void spi_remove(struct device *dev)
443 {
444         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
445
446         if (sdrv->remove)
447                 sdrv->remove(to_spi_device(dev));
448
449         dev_pm_domain_detach(dev, true);
450 }
451
452 static void spi_shutdown(struct device *dev)
453 {
454         if (dev->driver) {
455                 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
456
457                 if (sdrv->shutdown)
458                         sdrv->shutdown(to_spi_device(dev));
459         }
460 }
461
462 struct bus_type spi_bus_type = {
463         .name           = "spi",
464         .dev_groups     = spi_dev_groups,
465         .match          = spi_match_device,
466         .uevent         = spi_uevent,
467         .probe          = spi_probe,
468         .remove         = spi_remove,
469         .shutdown       = spi_shutdown,
470 };
471 EXPORT_SYMBOL_GPL(spi_bus_type);
472
473 /**
474  * __spi_register_driver - register a SPI driver
475  * @owner: owner module of the driver to register
476  * @sdrv: the driver to register
477  * Context: can sleep
478  *
479  * Return: zero on success, else a negative error code.
480  */
481 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
482 {
483         sdrv->driver.owner = owner;
484         sdrv->driver.bus = &spi_bus_type;
485
486         /*
487          * For Really Good Reasons we use spi: modaliases not of:
488          * modaliases for DT so module autoloading won't work if we
489          * don't have a spi_device_id as well as a compatible string.
490          */
491         if (sdrv->driver.of_match_table) {
492                 const struct of_device_id *of_id;
493
494                 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
495                      of_id++) {
496                         const char *of_name;
497
498                         /* Strip off any vendor prefix */
499                         of_name = strnchr(of_id->compatible,
500                                           sizeof(of_id->compatible), ',');
501                         if (of_name)
502                                 of_name++;
503                         else
504                                 of_name = of_id->compatible;
505
506                         if (sdrv->id_table) {
507                                 const struct spi_device_id *spi_id;
508
509                                 spi_id = spi_match_id(sdrv->id_table, of_name);
510                                 if (spi_id)
511                                         continue;
512                         } else {
513                                 if (strcmp(sdrv->driver.name, of_name) == 0)
514                                         continue;
515                         }
516
517                         pr_warn("SPI driver %s has no spi_device_id for %s\n",
518                                 sdrv->driver.name, of_id->compatible);
519                 }
520         }
521
522         return driver_register(&sdrv->driver);
523 }
524 EXPORT_SYMBOL_GPL(__spi_register_driver);
525
526 /*-------------------------------------------------------------------------*/
527
528 /*
529  * SPI devices should normally not be created by SPI device drivers; that
530  * would make them board-specific.  Similarly with SPI controller drivers.
531  * Device registration normally goes into like arch/.../mach.../board-YYY.c
532  * with other readonly (flashable) information about mainboard devices.
533  */
534
535 struct boardinfo {
536         struct list_head        list;
537         struct spi_board_info   board_info;
538 };
539
540 static LIST_HEAD(board_list);
541 static LIST_HEAD(spi_controller_list);
542
543 /*
544  * Used to protect add/del operation for board_info list and
545  * spi_controller list, and their matching process also used
546  * to protect object of type struct idr.
547  */
548 static DEFINE_MUTEX(board_lock);
549
550 /**
551  * spi_alloc_device - Allocate a new SPI device
552  * @ctlr: Controller to which device is connected
553  * Context: can sleep
554  *
555  * Allows a driver to allocate and initialize a spi_device without
556  * registering it immediately.  This allows a driver to directly
557  * fill the spi_device with device parameters before calling
558  * spi_add_device() on it.
559  *
560  * Caller is responsible to call spi_add_device() on the returned
561  * spi_device structure to add it to the SPI controller.  If the caller
562  * needs to discard the spi_device without adding it, then it should
563  * call spi_dev_put() on it.
564  *
565  * Return: a pointer to the new device, or NULL.
566  */
567 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
568 {
569         struct spi_device       *spi;
570
571         if (!spi_controller_get(ctlr))
572                 return NULL;
573
574         spi = kzalloc(sizeof(*spi), GFP_KERNEL);
575         if (!spi) {
576                 spi_controller_put(ctlr);
577                 return NULL;
578         }
579
580         spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
581         if (!spi->pcpu_statistics) {
582                 kfree(spi);
583                 spi_controller_put(ctlr);
584                 return NULL;
585         }
586
587         spi->master = spi->controller = ctlr;
588         spi->dev.parent = &ctlr->dev;
589         spi->dev.bus = &spi_bus_type;
590         spi->dev.release = spidev_release;
591         spi->mode = ctlr->buswidth_override_bits;
592
593         device_initialize(&spi->dev);
594         return spi;
595 }
596 EXPORT_SYMBOL_GPL(spi_alloc_device);
597
598 static void spi_dev_set_name(struct spi_device *spi)
599 {
600         struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
601
602         if (adev) {
603                 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
604                 return;
605         }
606
607         dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
608                      spi_get_chipselect(spi, 0));
609 }
610
611 static int spi_dev_check(struct device *dev, void *data)
612 {
613         struct spi_device *spi = to_spi_device(dev);
614         struct spi_device *new_spi = data;
615
616         if (spi->controller == new_spi->controller &&
617             spi_get_chipselect(spi, 0) == spi_get_chipselect(new_spi, 0))
618                 return -EBUSY;
619         return 0;
620 }
621
622 static void spi_cleanup(struct spi_device *spi)
623 {
624         if (spi->controller->cleanup)
625                 spi->controller->cleanup(spi);
626 }
627
628 static int __spi_add_device(struct spi_device *spi)
629 {
630         struct spi_controller *ctlr = spi->controller;
631         struct device *dev = ctlr->dev.parent;
632         int status;
633
634         /* Chipselects are numbered 0..max; validate. */
635         if (spi_get_chipselect(spi, 0) >= ctlr->num_chipselect) {
636                 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, 0),
637                         ctlr->num_chipselect);
638                 return -EINVAL;
639         }
640
641         /* Set the bus ID string */
642         spi_dev_set_name(spi);
643
644         /*
645          * We need to make sure there's no other device with this
646          * chipselect **BEFORE** we call setup(), else we'll trash
647          * its configuration.
648          */
649         status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
650         if (status) {
651                 dev_err(dev, "chipselect %d already in use\n",
652                                 spi_get_chipselect(spi, 0));
653                 return status;
654         }
655
656         /* Controller may unregister concurrently */
657         if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
658             !device_is_registered(&ctlr->dev)) {
659                 return -ENODEV;
660         }
661
662         if (ctlr->cs_gpiods)
663                 spi_set_csgpiod(spi, 0, ctlr->cs_gpiods[spi_get_chipselect(spi, 0)]);
664
665         /*
666          * Drivers may modify this initial i/o setup, but will
667          * normally rely on the device being setup.  Devices
668          * using SPI_CS_HIGH can't coexist well otherwise...
669          */
670         status = spi_setup(spi);
671         if (status < 0) {
672                 dev_err(dev, "can't setup %s, status %d\n",
673                                 dev_name(&spi->dev), status);
674                 return status;
675         }
676
677         /* Device may be bound to an active driver when this returns */
678         status = device_add(&spi->dev);
679         if (status < 0) {
680                 dev_err(dev, "can't add %s, status %d\n",
681                                 dev_name(&spi->dev), status);
682                 spi_cleanup(spi);
683         } else {
684                 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
685         }
686
687         return status;
688 }
689
690 /**
691  * spi_add_device - Add spi_device allocated with spi_alloc_device
692  * @spi: spi_device to register
693  *
694  * Companion function to spi_alloc_device.  Devices allocated with
695  * spi_alloc_device can be added onto the SPI bus with this function.
696  *
697  * Return: 0 on success; negative errno on failure
698  */
699 int spi_add_device(struct spi_device *spi)
700 {
701         struct spi_controller *ctlr = spi->controller;
702         int status;
703
704         mutex_lock(&ctlr->add_lock);
705         status = __spi_add_device(spi);
706         mutex_unlock(&ctlr->add_lock);
707         return status;
708 }
709 EXPORT_SYMBOL_GPL(spi_add_device);
710
711 /**
712  * spi_new_device - instantiate one new SPI device
713  * @ctlr: Controller to which device is connected
714  * @chip: Describes the SPI device
715  * Context: can sleep
716  *
717  * On typical mainboards, this is purely internal; and it's not needed
718  * after board init creates the hard-wired devices.  Some development
719  * platforms may not be able to use spi_register_board_info though, and
720  * this is exported so that for example a USB or parport based adapter
721  * driver could add devices (which it would learn about out-of-band).
722  *
723  * Return: the new device, or NULL.
724  */
725 struct spi_device *spi_new_device(struct spi_controller *ctlr,
726                                   struct spi_board_info *chip)
727 {
728         struct spi_device       *proxy;
729         int                     status;
730
731         /*
732          * NOTE:  caller did any chip->bus_num checks necessary.
733          *
734          * Also, unless we change the return value convention to use
735          * error-or-pointer (not NULL-or-pointer), troubleshootability
736          * suggests syslogged diagnostics are best here (ugh).
737          */
738
739         proxy = spi_alloc_device(ctlr);
740         if (!proxy)
741                 return NULL;
742
743         WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
744
745         spi_set_chipselect(proxy, 0, chip->chip_select);
746         proxy->max_speed_hz = chip->max_speed_hz;
747         proxy->mode = chip->mode;
748         proxy->irq = chip->irq;
749         strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
750         proxy->dev.platform_data = (void *) chip->platform_data;
751         proxy->controller_data = chip->controller_data;
752         proxy->controller_state = NULL;
753
754         if (chip->swnode) {
755                 status = device_add_software_node(&proxy->dev, chip->swnode);
756                 if (status) {
757                         dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
758                                 chip->modalias, status);
759                         goto err_dev_put;
760                 }
761         }
762
763         status = spi_add_device(proxy);
764         if (status < 0)
765                 goto err_dev_put;
766
767         return proxy;
768
769 err_dev_put:
770         device_remove_software_node(&proxy->dev);
771         spi_dev_put(proxy);
772         return NULL;
773 }
774 EXPORT_SYMBOL_GPL(spi_new_device);
775
776 /**
777  * spi_unregister_device - unregister a single SPI device
778  * @spi: spi_device to unregister
779  *
780  * Start making the passed SPI device vanish. Normally this would be handled
781  * by spi_unregister_controller().
782  */
783 void spi_unregister_device(struct spi_device *spi)
784 {
785         if (!spi)
786                 return;
787
788         if (spi->dev.of_node) {
789                 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
790                 of_node_put(spi->dev.of_node);
791         }
792         if (ACPI_COMPANION(&spi->dev))
793                 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
794         device_remove_software_node(&spi->dev);
795         device_del(&spi->dev);
796         spi_cleanup(spi);
797         put_device(&spi->dev);
798 }
799 EXPORT_SYMBOL_GPL(spi_unregister_device);
800
801 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
802                                               struct spi_board_info *bi)
803 {
804         struct spi_device *dev;
805
806         if (ctlr->bus_num != bi->bus_num)
807                 return;
808
809         dev = spi_new_device(ctlr, bi);
810         if (!dev)
811                 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
812                         bi->modalias);
813 }
814
815 /**
816  * spi_register_board_info - register SPI devices for a given board
817  * @info: array of chip descriptors
818  * @n: how many descriptors are provided
819  * Context: can sleep
820  *
821  * Board-specific early init code calls this (probably during arch_initcall)
822  * with segments of the SPI device table.  Any device nodes are created later,
823  * after the relevant parent SPI controller (bus_num) is defined.  We keep
824  * this table of devices forever, so that reloading a controller driver will
825  * not make Linux forget about these hard-wired devices.
826  *
827  * Other code can also call this, e.g. a particular add-on board might provide
828  * SPI devices through its expansion connector, so code initializing that board
829  * would naturally declare its SPI devices.
830  *
831  * The board info passed can safely be __initdata ... but be careful of
832  * any embedded pointers (platform_data, etc), they're copied as-is.
833  *
834  * Return: zero on success, else a negative error code.
835  */
836 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
837 {
838         struct boardinfo *bi;
839         int i;
840
841         if (!n)
842                 return 0;
843
844         bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
845         if (!bi)
846                 return -ENOMEM;
847
848         for (i = 0; i < n; i++, bi++, info++) {
849                 struct spi_controller *ctlr;
850
851                 memcpy(&bi->board_info, info, sizeof(*info));
852
853                 mutex_lock(&board_lock);
854                 list_add_tail(&bi->list, &board_list);
855                 list_for_each_entry(ctlr, &spi_controller_list, list)
856                         spi_match_controller_to_boardinfo(ctlr,
857                                                           &bi->board_info);
858                 mutex_unlock(&board_lock);
859         }
860
861         return 0;
862 }
863
864 /*-------------------------------------------------------------------------*/
865
866 /* Core methods for SPI resource management */
867
868 /**
869  * spi_res_alloc - allocate a spi resource that is life-cycle managed
870  *                 during the processing of a spi_message while using
871  *                 spi_transfer_one
872  * @spi:     the SPI device for which we allocate memory
873  * @release: the release code to execute for this resource
874  * @size:    size to alloc and return
875  * @gfp:     GFP allocation flags
876  *
877  * Return: the pointer to the allocated data
878  *
879  * This may get enhanced in the future to allocate from a memory pool
880  * of the @spi_device or @spi_controller to avoid repeated allocations.
881  */
882 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
883                            size_t size, gfp_t gfp)
884 {
885         struct spi_res *sres;
886
887         sres = kzalloc(sizeof(*sres) + size, gfp);
888         if (!sres)
889                 return NULL;
890
891         INIT_LIST_HEAD(&sres->entry);
892         sres->release = release;
893
894         return sres->data;
895 }
896
897 /**
898  * spi_res_free - free an SPI resource
899  * @res: pointer to the custom data of a resource
900  */
901 static void spi_res_free(void *res)
902 {
903         struct spi_res *sres = container_of(res, struct spi_res, data);
904
905         if (!res)
906                 return;
907
908         WARN_ON(!list_empty(&sres->entry));
909         kfree(sres);
910 }
911
912 /**
913  * spi_res_add - add a spi_res to the spi_message
914  * @message: the SPI message
915  * @res:     the spi_resource
916  */
917 static void spi_res_add(struct spi_message *message, void *res)
918 {
919         struct spi_res *sres = container_of(res, struct spi_res, data);
920
921         WARN_ON(!list_empty(&sres->entry));
922         list_add_tail(&sres->entry, &message->resources);
923 }
924
925 /**
926  * spi_res_release - release all SPI resources for this message
927  * @ctlr:  the @spi_controller
928  * @message: the @spi_message
929  */
930 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
931 {
932         struct spi_res *res, *tmp;
933
934         list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
935                 if (res->release)
936                         res->release(ctlr, message, res->data);
937
938                 list_del(&res->entry);
939
940                 kfree(res);
941         }
942 }
943
944 /*-------------------------------------------------------------------------*/
945
946 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
947 {
948         bool activate = enable;
949
950         /*
951          * Avoid calling into the driver (or doing delays) if the chip select
952          * isn't actually changing from the last time this was called.
953          */
954         if (!force && ((enable && spi->controller->last_cs == spi_get_chipselect(spi, 0)) ||
955                        (!enable && spi->controller->last_cs != spi_get_chipselect(spi, 0))) &&
956             (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
957                 return;
958
959         trace_spi_set_cs(spi, activate);
960
961         spi->controller->last_cs = enable ? spi_get_chipselect(spi, 0) : -1;
962         spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
963
964         if ((spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) && !activate)
965                 spi_delay_exec(&spi->cs_hold, NULL);
966
967         if (spi->mode & SPI_CS_HIGH)
968                 enable = !enable;
969
970         if (spi_get_csgpiod(spi, 0)) {
971                 if (!(spi->mode & SPI_NO_CS)) {
972                         /*
973                          * Historically ACPI has no means of the GPIO polarity and
974                          * thus the SPISerialBus() resource defines it on the per-chip
975                          * basis. In order to avoid a chain of negations, the GPIO
976                          * polarity is considered being Active High. Even for the cases
977                          * when _DSD() is involved (in the updated versions of ACPI)
978                          * the GPIO CS polarity must be defined Active High to avoid
979                          * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
980                          * into account.
981                          */
982                         if (has_acpi_companion(&spi->dev))
983                                 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), !enable);
984                         else
985                                 /* Polarity handled by GPIO library */
986                                 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), activate);
987                 }
988                 /* Some SPI masters need both GPIO CS & slave_select */
989                 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) &&
990                     spi->controller->set_cs)
991                         spi->controller->set_cs(spi, !enable);
992         } else if (spi->controller->set_cs) {
993                 spi->controller->set_cs(spi, !enable);
994         }
995
996         if (spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) {
997                 if (activate)
998                         spi_delay_exec(&spi->cs_setup, NULL);
999                 else
1000                         spi_delay_exec(&spi->cs_inactive, NULL);
1001         }
1002 }
1003
1004 #ifdef CONFIG_HAS_DMA
1005 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1006                              struct sg_table *sgt, void *buf, size_t len,
1007                              enum dma_data_direction dir, unsigned long attrs)
1008 {
1009         const bool vmalloced_buf = is_vmalloc_addr(buf);
1010         unsigned int max_seg_size = dma_get_max_seg_size(dev);
1011 #ifdef CONFIG_HIGHMEM
1012         const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1013                                 (unsigned long)buf < (PKMAP_BASE +
1014                                         (LAST_PKMAP * PAGE_SIZE)));
1015 #else
1016         const bool kmap_buf = false;
1017 #endif
1018         int desc_len;
1019         int sgs;
1020         struct page *vm_page;
1021         struct scatterlist *sg;
1022         void *sg_buf;
1023         size_t min;
1024         int i, ret;
1025
1026         if (vmalloced_buf || kmap_buf) {
1027                 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1028                 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1029         } else if (virt_addr_valid(buf)) {
1030                 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1031                 sgs = DIV_ROUND_UP(len, desc_len);
1032         } else {
1033                 return -EINVAL;
1034         }
1035
1036         ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1037         if (ret != 0)
1038                 return ret;
1039
1040         sg = &sgt->sgl[0];
1041         for (i = 0; i < sgs; i++) {
1042
1043                 if (vmalloced_buf || kmap_buf) {
1044                         /*
1045                          * Next scatterlist entry size is the minimum between
1046                          * the desc_len and the remaining buffer length that
1047                          * fits in a page.
1048                          */
1049                         min = min_t(size_t, desc_len,
1050                                     min_t(size_t, len,
1051                                           PAGE_SIZE - offset_in_page(buf)));
1052                         if (vmalloced_buf)
1053                                 vm_page = vmalloc_to_page(buf);
1054                         else
1055                                 vm_page = kmap_to_page(buf);
1056                         if (!vm_page) {
1057                                 sg_free_table(sgt);
1058                                 return -ENOMEM;
1059                         }
1060                         sg_set_page(sg, vm_page,
1061                                     min, offset_in_page(buf));
1062                 } else {
1063                         min = min_t(size_t, len, desc_len);
1064                         sg_buf = buf;
1065                         sg_set_buf(sg, sg_buf, min);
1066                 }
1067
1068                 buf += min;
1069                 len -= min;
1070                 sg = sg_next(sg);
1071         }
1072
1073         ret = dma_map_sgtable(dev, sgt, dir, attrs);
1074         if (ret < 0) {
1075                 sg_free_table(sgt);
1076                 return ret;
1077         }
1078
1079         return 0;
1080 }
1081
1082 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1083                 struct sg_table *sgt, void *buf, size_t len,
1084                 enum dma_data_direction dir)
1085 {
1086         return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1087 }
1088
1089 static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1090                                 struct device *dev, struct sg_table *sgt,
1091                                 enum dma_data_direction dir,
1092                                 unsigned long attrs)
1093 {
1094         if (sgt->orig_nents) {
1095                 dma_unmap_sgtable(dev, sgt, dir, attrs);
1096                 sg_free_table(sgt);
1097                 sgt->orig_nents = 0;
1098                 sgt->nents = 0;
1099         }
1100 }
1101
1102 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1103                    struct sg_table *sgt, enum dma_data_direction dir)
1104 {
1105         spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1106 }
1107
1108 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1109 {
1110         struct device *tx_dev, *rx_dev;
1111         struct spi_transfer *xfer;
1112         int ret;
1113
1114         if (!ctlr->can_dma)
1115                 return 0;
1116
1117         if (ctlr->dma_tx)
1118                 tx_dev = ctlr->dma_tx->device->dev;
1119         else if (ctlr->dma_map_dev)
1120                 tx_dev = ctlr->dma_map_dev;
1121         else
1122                 tx_dev = ctlr->dev.parent;
1123
1124         if (ctlr->dma_rx)
1125                 rx_dev = ctlr->dma_rx->device->dev;
1126         else if (ctlr->dma_map_dev)
1127                 rx_dev = ctlr->dma_map_dev;
1128         else
1129                 rx_dev = ctlr->dev.parent;
1130
1131         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1132                 /* The sync is done before each transfer. */
1133                 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1134
1135                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1136                         continue;
1137
1138                 if (xfer->tx_buf != NULL) {
1139                         ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1140                                                 (void *)xfer->tx_buf,
1141                                                 xfer->len, DMA_TO_DEVICE,
1142                                                 attrs);
1143                         if (ret != 0)
1144                                 return ret;
1145                 }
1146
1147                 if (xfer->rx_buf != NULL) {
1148                         ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1149                                                 xfer->rx_buf, xfer->len,
1150                                                 DMA_FROM_DEVICE, attrs);
1151                         if (ret != 0) {
1152                                 spi_unmap_buf_attrs(ctlr, tx_dev,
1153                                                 &xfer->tx_sg, DMA_TO_DEVICE,
1154                                                 attrs);
1155
1156                                 return ret;
1157                         }
1158                 }
1159         }
1160
1161         ctlr->cur_rx_dma_dev = rx_dev;
1162         ctlr->cur_tx_dma_dev = tx_dev;
1163         ctlr->cur_msg_mapped = true;
1164
1165         return 0;
1166 }
1167
1168 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1169 {
1170         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1171         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1172         struct spi_transfer *xfer;
1173
1174         if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1175                 return 0;
1176
1177         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1178                 /* The sync has already been done after each transfer. */
1179                 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1180
1181                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1182                         continue;
1183
1184                 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1185                                     DMA_FROM_DEVICE, attrs);
1186                 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1187                                     DMA_TO_DEVICE, attrs);
1188         }
1189
1190         ctlr->cur_msg_mapped = false;
1191
1192         return 0;
1193 }
1194
1195 static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1196                                     struct spi_transfer *xfer)
1197 {
1198         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1199         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1200
1201         if (!ctlr->cur_msg_mapped)
1202                 return;
1203
1204         if (xfer->tx_sg.orig_nents)
1205                 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1206         if (xfer->rx_sg.orig_nents)
1207                 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1208 }
1209
1210 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1211                                  struct spi_transfer *xfer)
1212 {
1213         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1214         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1215
1216         if (!ctlr->cur_msg_mapped)
1217                 return;
1218
1219         if (xfer->rx_sg.orig_nents)
1220                 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1221         if (xfer->tx_sg.orig_nents)
1222                 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1223 }
1224 #else /* !CONFIG_HAS_DMA */
1225 static inline int __spi_map_msg(struct spi_controller *ctlr,
1226                                 struct spi_message *msg)
1227 {
1228         return 0;
1229 }
1230
1231 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1232                                   struct spi_message *msg)
1233 {
1234         return 0;
1235 }
1236
1237 static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1238                                     struct spi_transfer *xfer)
1239 {
1240 }
1241
1242 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1243                                  struct spi_transfer *xfer)
1244 {
1245 }
1246 #endif /* !CONFIG_HAS_DMA */
1247
1248 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1249                                 struct spi_message *msg)
1250 {
1251         struct spi_transfer *xfer;
1252
1253         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1254                 /*
1255                  * Restore the original value of tx_buf or rx_buf if they are
1256                  * NULL.
1257                  */
1258                 if (xfer->tx_buf == ctlr->dummy_tx)
1259                         xfer->tx_buf = NULL;
1260                 if (xfer->rx_buf == ctlr->dummy_rx)
1261                         xfer->rx_buf = NULL;
1262         }
1263
1264         return __spi_unmap_msg(ctlr, msg);
1265 }
1266
1267 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1268 {
1269         struct spi_transfer *xfer;
1270         void *tmp;
1271         unsigned int max_tx, max_rx;
1272
1273         if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1274                 && !(msg->spi->mode & SPI_3WIRE)) {
1275                 max_tx = 0;
1276                 max_rx = 0;
1277
1278                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1279                         if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1280                             !xfer->tx_buf)
1281                                 max_tx = max(xfer->len, max_tx);
1282                         if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1283                             !xfer->rx_buf)
1284                                 max_rx = max(xfer->len, max_rx);
1285                 }
1286
1287                 if (max_tx) {
1288                         tmp = krealloc(ctlr->dummy_tx, max_tx,
1289                                        GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1290                         if (!tmp)
1291                                 return -ENOMEM;
1292                         ctlr->dummy_tx = tmp;
1293                 }
1294
1295                 if (max_rx) {
1296                         tmp = krealloc(ctlr->dummy_rx, max_rx,
1297                                        GFP_KERNEL | GFP_DMA);
1298                         if (!tmp)
1299                                 return -ENOMEM;
1300                         ctlr->dummy_rx = tmp;
1301                 }
1302
1303                 if (max_tx || max_rx) {
1304                         list_for_each_entry(xfer, &msg->transfers,
1305                                             transfer_list) {
1306                                 if (!xfer->len)
1307                                         continue;
1308                                 if (!xfer->tx_buf)
1309                                         xfer->tx_buf = ctlr->dummy_tx;
1310                                 if (!xfer->rx_buf)
1311                                         xfer->rx_buf = ctlr->dummy_rx;
1312                         }
1313                 }
1314         }
1315
1316         return __spi_map_msg(ctlr, msg);
1317 }
1318
1319 static int spi_transfer_wait(struct spi_controller *ctlr,
1320                              struct spi_message *msg,
1321                              struct spi_transfer *xfer)
1322 {
1323         struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1324         struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1325         u32 speed_hz = xfer->speed_hz;
1326         unsigned long long ms;
1327
1328         if (spi_controller_is_slave(ctlr)) {
1329                 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1330                         dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1331                         return -EINTR;
1332                 }
1333         } else {
1334                 if (!speed_hz)
1335                         speed_hz = 100000;
1336
1337                 /*
1338                  * For each byte we wait for 8 cycles of the SPI clock.
1339                  * Since speed is defined in Hz and we want milliseconds,
1340                  * use respective multiplier, but before the division,
1341                  * otherwise we may get 0 for short transfers.
1342                  */
1343                 ms = 8LL * MSEC_PER_SEC * xfer->len;
1344                 do_div(ms, speed_hz);
1345
1346                 /*
1347                  * Increase it twice and add 200 ms tolerance, use
1348                  * predefined maximum in case of overflow.
1349                  */
1350                 ms += ms + 200;
1351                 if (ms > UINT_MAX)
1352                         ms = UINT_MAX;
1353
1354                 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1355                                                  msecs_to_jiffies(ms));
1356
1357                 if (ms == 0) {
1358                         SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1359                         SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1360                         dev_err(&msg->spi->dev,
1361                                 "SPI transfer timed out\n");
1362                         return -ETIMEDOUT;
1363                 }
1364         }
1365
1366         return 0;
1367 }
1368
1369 static void _spi_transfer_delay_ns(u32 ns)
1370 {
1371         if (!ns)
1372                 return;
1373         if (ns <= NSEC_PER_USEC) {
1374                 ndelay(ns);
1375         } else {
1376                 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1377
1378                 if (us <= 10)
1379                         udelay(us);
1380                 else
1381                         usleep_range(us, us + DIV_ROUND_UP(us, 10));
1382         }
1383 }
1384
1385 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1386 {
1387         u32 delay = _delay->value;
1388         u32 unit = _delay->unit;
1389         u32 hz;
1390
1391         if (!delay)
1392                 return 0;
1393
1394         switch (unit) {
1395         case SPI_DELAY_UNIT_USECS:
1396                 delay *= NSEC_PER_USEC;
1397                 break;
1398         case SPI_DELAY_UNIT_NSECS:
1399                 /* Nothing to do here */
1400                 break;
1401         case SPI_DELAY_UNIT_SCK:
1402                 /* Clock cycles need to be obtained from spi_transfer */
1403                 if (!xfer)
1404                         return -EINVAL;
1405                 /*
1406                  * If there is unknown effective speed, approximate it
1407                  * by underestimating with half of the requested Hz.
1408                  */
1409                 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1410                 if (!hz)
1411                         return -EINVAL;
1412
1413                 /* Convert delay to nanoseconds */
1414                 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1415                 break;
1416         default:
1417                 return -EINVAL;
1418         }
1419
1420         return delay;
1421 }
1422 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1423
1424 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1425 {
1426         int delay;
1427
1428         might_sleep();
1429
1430         if (!_delay)
1431                 return -EINVAL;
1432
1433         delay = spi_delay_to_ns(_delay, xfer);
1434         if (delay < 0)
1435                 return delay;
1436
1437         _spi_transfer_delay_ns(delay);
1438
1439         return 0;
1440 }
1441 EXPORT_SYMBOL_GPL(spi_delay_exec);
1442
1443 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1444                                           struct spi_transfer *xfer)
1445 {
1446         u32 default_delay_ns = 10 * NSEC_PER_USEC;
1447         u32 delay = xfer->cs_change_delay.value;
1448         u32 unit = xfer->cs_change_delay.unit;
1449         int ret;
1450
1451         /* Return early on "fast" mode - for everything but USECS */
1452         if (!delay) {
1453                 if (unit == SPI_DELAY_UNIT_USECS)
1454                         _spi_transfer_delay_ns(default_delay_ns);
1455                 return;
1456         }
1457
1458         ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1459         if (ret) {
1460                 dev_err_once(&msg->spi->dev,
1461                              "Use of unsupported delay unit %i, using default of %luus\n",
1462                              unit, default_delay_ns / NSEC_PER_USEC);
1463                 _spi_transfer_delay_ns(default_delay_ns);
1464         }
1465 }
1466
1467 void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1468                                                   struct spi_transfer *xfer)
1469 {
1470         _spi_transfer_cs_change_delay(msg, xfer);
1471 }
1472 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1473
1474 /*
1475  * spi_transfer_one_message - Default implementation of transfer_one_message()
1476  *
1477  * This is a standard implementation of transfer_one_message() for
1478  * drivers which implement a transfer_one() operation.  It provides
1479  * standard handling of delays and chip select management.
1480  */
1481 static int spi_transfer_one_message(struct spi_controller *ctlr,
1482                                     struct spi_message *msg)
1483 {
1484         struct spi_transfer *xfer;
1485         bool keep_cs = false;
1486         int ret = 0;
1487         struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1488         struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1489
1490         xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1491         spi_set_cs(msg->spi, !xfer->cs_off, false);
1492
1493         SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1494         SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1495
1496         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1497                 trace_spi_transfer_start(msg, xfer);
1498
1499                 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1500                 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1501
1502                 if (!ctlr->ptp_sts_supported) {
1503                         xfer->ptp_sts_word_pre = 0;
1504                         ptp_read_system_prets(xfer->ptp_sts);
1505                 }
1506
1507                 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1508                         reinit_completion(&ctlr->xfer_completion);
1509
1510 fallback_pio:
1511                         spi_dma_sync_for_device(ctlr, xfer);
1512                         ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1513                         if (ret < 0) {
1514                                 spi_dma_sync_for_cpu(ctlr, xfer);
1515
1516                                 if (ctlr->cur_msg_mapped &&
1517                                    (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1518                                         __spi_unmap_msg(ctlr, msg);
1519                                         ctlr->fallback = true;
1520                                         xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1521                                         goto fallback_pio;
1522                                 }
1523
1524                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
1525                                                                errors);
1526                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
1527                                                                errors);
1528                                 dev_err(&msg->spi->dev,
1529                                         "SPI transfer failed: %d\n", ret);
1530                                 goto out;
1531                         }
1532
1533                         if (ret > 0) {
1534                                 ret = spi_transfer_wait(ctlr, msg, xfer);
1535                                 if (ret < 0)
1536                                         msg->status = ret;
1537                         }
1538
1539                         spi_dma_sync_for_cpu(ctlr, xfer);
1540                 } else {
1541                         if (xfer->len)
1542                                 dev_err(&msg->spi->dev,
1543                                         "Bufferless transfer has length %u\n",
1544                                         xfer->len);
1545                 }
1546
1547                 if (!ctlr->ptp_sts_supported) {
1548                         ptp_read_system_postts(xfer->ptp_sts);
1549                         xfer->ptp_sts_word_post = xfer->len;
1550                 }
1551
1552                 trace_spi_transfer_stop(msg, xfer);
1553
1554                 if (msg->status != -EINPROGRESS)
1555                         goto out;
1556
1557                 spi_transfer_delay_exec(xfer);
1558
1559                 if (xfer->cs_change) {
1560                         if (list_is_last(&xfer->transfer_list,
1561                                          &msg->transfers)) {
1562                                 keep_cs = true;
1563                         } else {
1564                                 if (!xfer->cs_off)
1565                                         spi_set_cs(msg->spi, false, false);
1566                                 _spi_transfer_cs_change_delay(msg, xfer);
1567                                 if (!list_next_entry(xfer, transfer_list)->cs_off)
1568                                         spi_set_cs(msg->spi, true, false);
1569                         }
1570                 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1571                            xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1572                         spi_set_cs(msg->spi, xfer->cs_off, false);
1573                 }
1574
1575                 msg->actual_length += xfer->len;
1576         }
1577
1578 out:
1579         if (ret != 0 || !keep_cs)
1580                 spi_set_cs(msg->spi, false, false);
1581
1582         if (msg->status == -EINPROGRESS)
1583                 msg->status = ret;
1584
1585         if (msg->status && ctlr->handle_err)
1586                 ctlr->handle_err(ctlr, msg);
1587
1588         spi_finalize_current_message(ctlr);
1589
1590         return ret;
1591 }
1592
1593 /**
1594  * spi_finalize_current_transfer - report completion of a transfer
1595  * @ctlr: the controller reporting completion
1596  *
1597  * Called by SPI drivers using the core transfer_one_message()
1598  * implementation to notify it that the current interrupt driven
1599  * transfer has finished and the next one may be scheduled.
1600  */
1601 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1602 {
1603         complete(&ctlr->xfer_completion);
1604 }
1605 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1606
1607 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1608 {
1609         if (ctlr->auto_runtime_pm) {
1610                 pm_runtime_mark_last_busy(ctlr->dev.parent);
1611                 pm_runtime_put_autosuspend(ctlr->dev.parent);
1612         }
1613 }
1614
1615 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1616                 struct spi_message *msg, bool was_busy)
1617 {
1618         struct spi_transfer *xfer;
1619         int ret;
1620
1621         if (!was_busy && ctlr->auto_runtime_pm) {
1622                 ret = pm_runtime_get_sync(ctlr->dev.parent);
1623                 if (ret < 0) {
1624                         pm_runtime_put_noidle(ctlr->dev.parent);
1625                         dev_err(&ctlr->dev, "Failed to power device: %d\n",
1626                                 ret);
1627
1628                         msg->status = ret;
1629                         spi_finalize_current_message(ctlr);
1630
1631                         return ret;
1632                 }
1633         }
1634
1635         if (!was_busy)
1636                 trace_spi_controller_busy(ctlr);
1637
1638         if (!was_busy && ctlr->prepare_transfer_hardware) {
1639                 ret = ctlr->prepare_transfer_hardware(ctlr);
1640                 if (ret) {
1641                         dev_err(&ctlr->dev,
1642                                 "failed to prepare transfer hardware: %d\n",
1643                                 ret);
1644
1645                         if (ctlr->auto_runtime_pm)
1646                                 pm_runtime_put(ctlr->dev.parent);
1647
1648                         msg->status = ret;
1649                         spi_finalize_current_message(ctlr);
1650
1651                         return ret;
1652                 }
1653         }
1654
1655         trace_spi_message_start(msg);
1656
1657         ret = spi_split_transfers_maxsize(ctlr, msg,
1658                                           spi_max_transfer_size(msg->spi),
1659                                           GFP_KERNEL | GFP_DMA);
1660         if (ret) {
1661                 msg->status = ret;
1662                 spi_finalize_current_message(ctlr);
1663                 return ret;
1664         }
1665
1666         if (ctlr->prepare_message) {
1667                 ret = ctlr->prepare_message(ctlr, msg);
1668                 if (ret) {
1669                         dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1670                                 ret);
1671                         msg->status = ret;
1672                         spi_finalize_current_message(ctlr);
1673                         return ret;
1674                 }
1675                 msg->prepared = true;
1676         }
1677
1678         ret = spi_map_msg(ctlr, msg);
1679         if (ret) {
1680                 msg->status = ret;
1681                 spi_finalize_current_message(ctlr);
1682                 return ret;
1683         }
1684
1685         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1686                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1687                         xfer->ptp_sts_word_pre = 0;
1688                         ptp_read_system_prets(xfer->ptp_sts);
1689                 }
1690         }
1691
1692         /*
1693          * Drivers implementation of transfer_one_message() must arrange for
1694          * spi_finalize_current_message() to get called. Most drivers will do
1695          * this in the calling context, but some don't. For those cases, a
1696          * completion is used to guarantee that this function does not return
1697          * until spi_finalize_current_message() is done accessing
1698          * ctlr->cur_msg.
1699          * Use of the following two flags enable to opportunistically skip the
1700          * use of the completion since its use involves expensive spin locks.
1701          * In case of a race with the context that calls
1702          * spi_finalize_current_message() the completion will always be used,
1703          * due to strict ordering of these flags using barriers.
1704          */
1705         WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1706         WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1707         reinit_completion(&ctlr->cur_msg_completion);
1708         smp_wmb(); /* Make these available to spi_finalize_current_message() */
1709
1710         ret = ctlr->transfer_one_message(ctlr, msg);
1711         if (ret) {
1712                 dev_err(&ctlr->dev,
1713                         "failed to transfer one message from queue\n");
1714                 return ret;
1715         }
1716
1717         WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1718         smp_mb(); /* See spi_finalize_current_message()... */
1719         if (READ_ONCE(ctlr->cur_msg_incomplete))
1720                 wait_for_completion(&ctlr->cur_msg_completion);
1721
1722         return 0;
1723 }
1724
1725 /**
1726  * __spi_pump_messages - function which processes SPI message queue
1727  * @ctlr: controller to process queue for
1728  * @in_kthread: true if we are in the context of the message pump thread
1729  *
1730  * This function checks if there is any SPI message in the queue that
1731  * needs processing and if so call out to the driver to initialize hardware
1732  * and transfer each message.
1733  *
1734  * Note that it is called both from the kthread itself and also from
1735  * inside spi_sync(); the queue extraction handling at the top of the
1736  * function should deal with this safely.
1737  */
1738 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1739 {
1740         struct spi_message *msg;
1741         bool was_busy = false;
1742         unsigned long flags;
1743         int ret;
1744
1745         /* Take the I/O mutex */
1746         mutex_lock(&ctlr->io_mutex);
1747
1748         /* Lock queue */
1749         spin_lock_irqsave(&ctlr->queue_lock, flags);
1750
1751         /* Make sure we are not already running a message */
1752         if (ctlr->cur_msg)
1753                 goto out_unlock;
1754
1755         /* Check if the queue is idle */
1756         if (list_empty(&ctlr->queue) || !ctlr->running) {
1757                 if (!ctlr->busy)
1758                         goto out_unlock;
1759
1760                 /* Defer any non-atomic teardown to the thread */
1761                 if (!in_kthread) {
1762                         if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1763                             !ctlr->unprepare_transfer_hardware) {
1764                                 spi_idle_runtime_pm(ctlr);
1765                                 ctlr->busy = false;
1766                                 ctlr->queue_empty = true;
1767                                 trace_spi_controller_idle(ctlr);
1768                         } else {
1769                                 kthread_queue_work(ctlr->kworker,
1770                                                    &ctlr->pump_messages);
1771                         }
1772                         goto out_unlock;
1773                 }
1774
1775                 ctlr->busy = false;
1776                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1777
1778                 kfree(ctlr->dummy_rx);
1779                 ctlr->dummy_rx = NULL;
1780                 kfree(ctlr->dummy_tx);
1781                 ctlr->dummy_tx = NULL;
1782                 if (ctlr->unprepare_transfer_hardware &&
1783                     ctlr->unprepare_transfer_hardware(ctlr))
1784                         dev_err(&ctlr->dev,
1785                                 "failed to unprepare transfer hardware\n");
1786                 spi_idle_runtime_pm(ctlr);
1787                 trace_spi_controller_idle(ctlr);
1788
1789                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1790                 ctlr->queue_empty = true;
1791                 goto out_unlock;
1792         }
1793
1794         /* Extract head of queue */
1795         msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1796         ctlr->cur_msg = msg;
1797
1798         list_del_init(&msg->queue);
1799         if (ctlr->busy)
1800                 was_busy = true;
1801         else
1802                 ctlr->busy = true;
1803         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1804
1805         ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1806         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1807
1808         ctlr->cur_msg = NULL;
1809         ctlr->fallback = false;
1810
1811         mutex_unlock(&ctlr->io_mutex);
1812
1813         /* Prod the scheduler in case transfer_one() was busy waiting */
1814         if (!ret)
1815                 cond_resched();
1816         return;
1817
1818 out_unlock:
1819         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1820         mutex_unlock(&ctlr->io_mutex);
1821 }
1822
1823 /**
1824  * spi_pump_messages - kthread work function which processes spi message queue
1825  * @work: pointer to kthread work struct contained in the controller struct
1826  */
1827 static void spi_pump_messages(struct kthread_work *work)
1828 {
1829         struct spi_controller *ctlr =
1830                 container_of(work, struct spi_controller, pump_messages);
1831
1832         __spi_pump_messages(ctlr, true);
1833 }
1834
1835 /**
1836  * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1837  * @ctlr: Pointer to the spi_controller structure of the driver
1838  * @xfer: Pointer to the transfer being timestamped
1839  * @progress: How many words (not bytes) have been transferred so far
1840  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1841  *            transfer, for less jitter in time measurement. Only compatible
1842  *            with PIO drivers. If true, must follow up with
1843  *            spi_take_timestamp_post or otherwise system will crash.
1844  *            WARNING: for fully predictable results, the CPU frequency must
1845  *            also be under control (governor).
1846  *
1847  * This is a helper for drivers to collect the beginning of the TX timestamp
1848  * for the requested byte from the SPI transfer. The frequency with which this
1849  * function must be called (once per word, once for the whole transfer, once
1850  * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1851  * greater than or equal to the requested byte at the time of the call. The
1852  * timestamp is only taken once, at the first such call. It is assumed that
1853  * the driver advances its @tx buffer pointer monotonically.
1854  */
1855 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1856                             struct spi_transfer *xfer,
1857                             size_t progress, bool irqs_off)
1858 {
1859         if (!xfer->ptp_sts)
1860                 return;
1861
1862         if (xfer->timestamped)
1863                 return;
1864
1865         if (progress > xfer->ptp_sts_word_pre)
1866                 return;
1867
1868         /* Capture the resolution of the timestamp */
1869         xfer->ptp_sts_word_pre = progress;
1870
1871         if (irqs_off) {
1872                 local_irq_save(ctlr->irq_flags);
1873                 preempt_disable();
1874         }
1875
1876         ptp_read_system_prets(xfer->ptp_sts);
1877 }
1878 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1879
1880 /**
1881  * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1882  * @ctlr: Pointer to the spi_controller structure of the driver
1883  * @xfer: Pointer to the transfer being timestamped
1884  * @progress: How many words (not bytes) have been transferred so far
1885  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1886  *
1887  * This is a helper for drivers to collect the end of the TX timestamp for
1888  * the requested byte from the SPI transfer. Can be called with an arbitrary
1889  * frequency: only the first call where @tx exceeds or is equal to the
1890  * requested word will be timestamped.
1891  */
1892 void spi_take_timestamp_post(struct spi_controller *ctlr,
1893                              struct spi_transfer *xfer,
1894                              size_t progress, bool irqs_off)
1895 {
1896         if (!xfer->ptp_sts)
1897                 return;
1898
1899         if (xfer->timestamped)
1900                 return;
1901
1902         if (progress < xfer->ptp_sts_word_post)
1903                 return;
1904
1905         ptp_read_system_postts(xfer->ptp_sts);
1906
1907         if (irqs_off) {
1908                 local_irq_restore(ctlr->irq_flags);
1909                 preempt_enable();
1910         }
1911
1912         /* Capture the resolution of the timestamp */
1913         xfer->ptp_sts_word_post = progress;
1914
1915         xfer->timestamped = 1;
1916 }
1917 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1918
1919 /**
1920  * spi_set_thread_rt - set the controller to pump at realtime priority
1921  * @ctlr: controller to boost priority of
1922  *
1923  * This can be called because the controller requested realtime priority
1924  * (by setting the ->rt value before calling spi_register_controller()) or
1925  * because a device on the bus said that its transfers needed realtime
1926  * priority.
1927  *
1928  * NOTE: at the moment if any device on a bus says it needs realtime then
1929  * the thread will be at realtime priority for all transfers on that
1930  * controller.  If this eventually becomes a problem we may see if we can
1931  * find a way to boost the priority only temporarily during relevant
1932  * transfers.
1933  */
1934 static void spi_set_thread_rt(struct spi_controller *ctlr)
1935 {
1936         dev_info(&ctlr->dev,
1937                 "will run message pump with realtime priority\n");
1938         sched_set_fifo(ctlr->kworker->task);
1939 }
1940
1941 static int spi_init_queue(struct spi_controller *ctlr)
1942 {
1943         ctlr->running = false;
1944         ctlr->busy = false;
1945         ctlr->queue_empty = true;
1946
1947         ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1948         if (IS_ERR(ctlr->kworker)) {
1949                 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1950                 return PTR_ERR(ctlr->kworker);
1951         }
1952
1953         kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1954
1955         /*
1956          * Controller config will indicate if this controller should run the
1957          * message pump with high (realtime) priority to reduce the transfer
1958          * latency on the bus by minimising the delay between a transfer
1959          * request and the scheduling of the message pump thread. Without this
1960          * setting the message pump thread will remain at default priority.
1961          */
1962         if (ctlr->rt)
1963                 spi_set_thread_rt(ctlr);
1964
1965         return 0;
1966 }
1967
1968 /**
1969  * spi_get_next_queued_message() - called by driver to check for queued
1970  * messages
1971  * @ctlr: the controller to check for queued messages
1972  *
1973  * If there are more messages in the queue, the next message is returned from
1974  * this call.
1975  *
1976  * Return: the next message in the queue, else NULL if the queue is empty.
1977  */
1978 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1979 {
1980         struct spi_message *next;
1981         unsigned long flags;
1982
1983         /* Get a pointer to the next message, if any */
1984         spin_lock_irqsave(&ctlr->queue_lock, flags);
1985         next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1986                                         queue);
1987         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1988
1989         return next;
1990 }
1991 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1992
1993 /**
1994  * spi_finalize_current_message() - the current message is complete
1995  * @ctlr: the controller to return the message to
1996  *
1997  * Called by the driver to notify the core that the message in the front of the
1998  * queue is complete and can be removed from the queue.
1999  */
2000 void spi_finalize_current_message(struct spi_controller *ctlr)
2001 {
2002         struct spi_transfer *xfer;
2003         struct spi_message *mesg;
2004         int ret;
2005
2006         mesg = ctlr->cur_msg;
2007
2008         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2009                 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2010                         ptp_read_system_postts(xfer->ptp_sts);
2011                         xfer->ptp_sts_word_post = xfer->len;
2012                 }
2013         }
2014
2015         if (unlikely(ctlr->ptp_sts_supported))
2016                 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2017                         WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2018
2019         spi_unmap_msg(ctlr, mesg);
2020
2021         /*
2022          * In the prepare_messages callback the SPI bus has the opportunity
2023          * to split a transfer to smaller chunks.
2024          *
2025          * Release the split transfers here since spi_map_msg() is done on
2026          * the split transfers.
2027          */
2028         spi_res_release(ctlr, mesg);
2029
2030         if (mesg->prepared && ctlr->unprepare_message) {
2031                 ret = ctlr->unprepare_message(ctlr, mesg);
2032                 if (ret) {
2033                         dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2034                                 ret);
2035                 }
2036         }
2037
2038         mesg->prepared = false;
2039
2040         WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2041         smp_mb(); /* See __spi_pump_transfer_message()... */
2042         if (READ_ONCE(ctlr->cur_msg_need_completion))
2043                 complete(&ctlr->cur_msg_completion);
2044
2045         trace_spi_message_done(mesg);
2046
2047         mesg->state = NULL;
2048         if (mesg->complete)
2049                 mesg->complete(mesg->context);
2050 }
2051 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2052
2053 static int spi_start_queue(struct spi_controller *ctlr)
2054 {
2055         unsigned long flags;
2056
2057         spin_lock_irqsave(&ctlr->queue_lock, flags);
2058
2059         if (ctlr->running || ctlr->busy) {
2060                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2061                 return -EBUSY;
2062         }
2063
2064         ctlr->running = true;
2065         ctlr->cur_msg = NULL;
2066         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2067
2068         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2069
2070         return 0;
2071 }
2072
2073 static int spi_stop_queue(struct spi_controller *ctlr)
2074 {
2075         unsigned long flags;
2076         unsigned limit = 500;
2077         int ret = 0;
2078
2079         spin_lock_irqsave(&ctlr->queue_lock, flags);
2080
2081         /*
2082          * This is a bit lame, but is optimized for the common execution path.
2083          * A wait_queue on the ctlr->busy could be used, but then the common
2084          * execution path (pump_messages) would be required to call wake_up or
2085          * friends on every SPI message. Do this instead.
2086          */
2087         while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2088                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2089                 usleep_range(10000, 11000);
2090                 spin_lock_irqsave(&ctlr->queue_lock, flags);
2091         }
2092
2093         if (!list_empty(&ctlr->queue) || ctlr->busy)
2094                 ret = -EBUSY;
2095         else
2096                 ctlr->running = false;
2097
2098         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2099
2100         if (ret) {
2101                 dev_warn(&ctlr->dev, "could not stop message queue\n");
2102                 return ret;
2103         }
2104         return ret;
2105 }
2106
2107 static int spi_destroy_queue(struct spi_controller *ctlr)
2108 {
2109         int ret;
2110
2111         ret = spi_stop_queue(ctlr);
2112
2113         /*
2114          * kthread_flush_worker will block until all work is done.
2115          * If the reason that stop_queue timed out is that the work will never
2116          * finish, then it does no good to call flush/stop thread, so
2117          * return anyway.
2118          */
2119         if (ret) {
2120                 dev_err(&ctlr->dev, "problem destroying queue\n");
2121                 return ret;
2122         }
2123
2124         kthread_destroy_worker(ctlr->kworker);
2125
2126         return 0;
2127 }
2128
2129 static int __spi_queued_transfer(struct spi_device *spi,
2130                                  struct spi_message *msg,
2131                                  bool need_pump)
2132 {
2133         struct spi_controller *ctlr = spi->controller;
2134         unsigned long flags;
2135
2136         spin_lock_irqsave(&ctlr->queue_lock, flags);
2137
2138         if (!ctlr->running) {
2139                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2140                 return -ESHUTDOWN;
2141         }
2142         msg->actual_length = 0;
2143         msg->status = -EINPROGRESS;
2144
2145         list_add_tail(&msg->queue, &ctlr->queue);
2146         ctlr->queue_empty = false;
2147         if (!ctlr->busy && need_pump)
2148                 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2149
2150         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2151         return 0;
2152 }
2153
2154 /**
2155  * spi_queued_transfer - transfer function for queued transfers
2156  * @spi: SPI device which is requesting transfer
2157  * @msg: SPI message which is to handled is queued to driver queue
2158  *
2159  * Return: zero on success, else a negative error code.
2160  */
2161 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2162 {
2163         return __spi_queued_transfer(spi, msg, true);
2164 }
2165
2166 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2167 {
2168         int ret;
2169
2170         ctlr->transfer = spi_queued_transfer;
2171         if (!ctlr->transfer_one_message)
2172                 ctlr->transfer_one_message = spi_transfer_one_message;
2173
2174         /* Initialize and start queue */
2175         ret = spi_init_queue(ctlr);
2176         if (ret) {
2177                 dev_err(&ctlr->dev, "problem initializing queue\n");
2178                 goto err_init_queue;
2179         }
2180         ctlr->queued = true;
2181         ret = spi_start_queue(ctlr);
2182         if (ret) {
2183                 dev_err(&ctlr->dev, "problem starting queue\n");
2184                 goto err_start_queue;
2185         }
2186
2187         return 0;
2188
2189 err_start_queue:
2190         spi_destroy_queue(ctlr);
2191 err_init_queue:
2192         return ret;
2193 }
2194
2195 /**
2196  * spi_flush_queue - Send all pending messages in the queue from the callers'
2197  *                   context
2198  * @ctlr: controller to process queue for
2199  *
2200  * This should be used when one wants to ensure all pending messages have been
2201  * sent before doing something. Is used by the spi-mem code to make sure SPI
2202  * memory operations do not preempt regular SPI transfers that have been queued
2203  * before the spi-mem operation.
2204  */
2205 void spi_flush_queue(struct spi_controller *ctlr)
2206 {
2207         if (ctlr->transfer == spi_queued_transfer)
2208                 __spi_pump_messages(ctlr, false);
2209 }
2210
2211 /*-------------------------------------------------------------------------*/
2212
2213 #if defined(CONFIG_OF)
2214 static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2215                                      struct spi_delay *delay, const char *prop)
2216 {
2217         u32 value;
2218
2219         if (!of_property_read_u32(nc, prop, &value)) {
2220                 if (value > U16_MAX) {
2221                         delay->value = DIV_ROUND_UP(value, 1000);
2222                         delay->unit = SPI_DELAY_UNIT_USECS;
2223                 } else {
2224                         delay->value = value;
2225                         delay->unit = SPI_DELAY_UNIT_NSECS;
2226                 }
2227         }
2228 }
2229
2230 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2231                            struct device_node *nc)
2232 {
2233         u32 value;
2234         int rc;
2235
2236         /* Mode (clock phase/polarity/etc.) */
2237         if (of_property_read_bool(nc, "spi-cpha"))
2238                 spi->mode |= SPI_CPHA;
2239         if (of_property_read_bool(nc, "spi-cpol"))
2240                 spi->mode |= SPI_CPOL;
2241         if (of_property_read_bool(nc, "spi-3wire"))
2242                 spi->mode |= SPI_3WIRE;
2243         if (of_property_read_bool(nc, "spi-lsb-first"))
2244                 spi->mode |= SPI_LSB_FIRST;
2245         if (of_property_read_bool(nc, "spi-cs-high"))
2246                 spi->mode |= SPI_CS_HIGH;
2247
2248         /* Device DUAL/QUAD mode */
2249         if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2250                 switch (value) {
2251                 case 0:
2252                         spi->mode |= SPI_NO_TX;
2253                         break;
2254                 case 1:
2255                         break;
2256                 case 2:
2257                         spi->mode |= SPI_TX_DUAL;
2258                         break;
2259                 case 4:
2260                         spi->mode |= SPI_TX_QUAD;
2261                         break;
2262                 case 8:
2263                         spi->mode |= SPI_TX_OCTAL;
2264                         break;
2265                 default:
2266                         dev_warn(&ctlr->dev,
2267                                 "spi-tx-bus-width %d not supported\n",
2268                                 value);
2269                         break;
2270                 }
2271         }
2272
2273         if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2274                 switch (value) {
2275                 case 0:
2276                         spi->mode |= SPI_NO_RX;
2277                         break;
2278                 case 1:
2279                         break;
2280                 case 2:
2281                         spi->mode |= SPI_RX_DUAL;
2282                         break;
2283                 case 4:
2284                         spi->mode |= SPI_RX_QUAD;
2285                         break;
2286                 case 8:
2287                         spi->mode |= SPI_RX_OCTAL;
2288                         break;
2289                 default:
2290                         dev_warn(&ctlr->dev,
2291                                 "spi-rx-bus-width %d not supported\n",
2292                                 value);
2293                         break;
2294                 }
2295         }
2296
2297         if (spi_controller_is_slave(ctlr)) {
2298                 if (!of_node_name_eq(nc, "slave")) {
2299                         dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2300                                 nc);
2301                         return -EINVAL;
2302                 }
2303                 return 0;
2304         }
2305
2306         /* Device address */
2307         rc = of_property_read_u32(nc, "reg", &value);
2308         if (rc) {
2309                 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2310                         nc, rc);
2311                 return rc;
2312         }
2313         spi_set_chipselect(spi, 0, value);
2314
2315         /* Device speed */
2316         if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2317                 spi->max_speed_hz = value;
2318
2319         /* Device CS delays */
2320         of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2321         of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2322         of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2323
2324         return 0;
2325 }
2326
2327 static struct spi_device *
2328 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2329 {
2330         struct spi_device *spi;
2331         int rc;
2332
2333         /* Alloc an spi_device */
2334         spi = spi_alloc_device(ctlr);
2335         if (!spi) {
2336                 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2337                 rc = -ENOMEM;
2338                 goto err_out;
2339         }
2340
2341         /* Select device driver */
2342         rc = of_alias_from_compatible(nc, spi->modalias,
2343                                       sizeof(spi->modalias));
2344         if (rc < 0) {
2345                 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2346                 goto err_out;
2347         }
2348
2349         rc = of_spi_parse_dt(ctlr, spi, nc);
2350         if (rc)
2351                 goto err_out;
2352
2353         /* Store a pointer to the node in the device structure */
2354         of_node_get(nc);
2355
2356         device_set_node(&spi->dev, of_fwnode_handle(nc));
2357
2358         /* Register the new device */
2359         rc = spi_add_device(spi);
2360         if (rc) {
2361                 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2362                 goto err_of_node_put;
2363         }
2364
2365         return spi;
2366
2367 err_of_node_put:
2368         of_node_put(nc);
2369 err_out:
2370         spi_dev_put(spi);
2371         return ERR_PTR(rc);
2372 }
2373
2374 /**
2375  * of_register_spi_devices() - Register child devices onto the SPI bus
2376  * @ctlr:       Pointer to spi_controller device
2377  *
2378  * Registers an spi_device for each child node of controller node which
2379  * represents a valid SPI slave.
2380  */
2381 static void of_register_spi_devices(struct spi_controller *ctlr)
2382 {
2383         struct spi_device *spi;
2384         struct device_node *nc;
2385
2386         for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2387                 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2388                         continue;
2389                 spi = of_register_spi_device(ctlr, nc);
2390                 if (IS_ERR(spi)) {
2391                         dev_warn(&ctlr->dev,
2392                                  "Failed to create SPI device for %pOF\n", nc);
2393                         of_node_clear_flag(nc, OF_POPULATED);
2394                 }
2395         }
2396 }
2397 #else
2398 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2399 #endif
2400
2401 /**
2402  * spi_new_ancillary_device() - Register ancillary SPI device
2403  * @spi:         Pointer to the main SPI device registering the ancillary device
2404  * @chip_select: Chip Select of the ancillary device
2405  *
2406  * Register an ancillary SPI device; for example some chips have a chip-select
2407  * for normal device usage and another one for setup/firmware upload.
2408  *
2409  * This may only be called from main SPI device's probe routine.
2410  *
2411  * Return: 0 on success; negative errno on failure
2412  */
2413 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2414                                              u8 chip_select)
2415 {
2416         struct spi_controller *ctlr = spi->controller;
2417         struct spi_device *ancillary;
2418         int rc = 0;
2419
2420         /* Alloc an spi_device */
2421         ancillary = spi_alloc_device(ctlr);
2422         if (!ancillary) {
2423                 rc = -ENOMEM;
2424                 goto err_out;
2425         }
2426
2427         strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2428
2429         /* Use provided chip-select for ancillary device */
2430         spi_set_chipselect(ancillary, 0, chip_select);
2431
2432         /* Take over SPI mode/speed from SPI main device */
2433         ancillary->max_speed_hz = spi->max_speed_hz;
2434         ancillary->mode = spi->mode;
2435
2436         WARN_ON(!mutex_is_locked(&ctlr->add_lock));
2437
2438         /* Register the new device */
2439         rc = __spi_add_device(ancillary);
2440         if (rc) {
2441                 dev_err(&spi->dev, "failed to register ancillary device\n");
2442                 goto err_out;
2443         }
2444
2445         return ancillary;
2446
2447 err_out:
2448         spi_dev_put(ancillary);
2449         return ERR_PTR(rc);
2450 }
2451 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2452
2453 #ifdef CONFIG_ACPI
2454 struct acpi_spi_lookup {
2455         struct spi_controller   *ctlr;
2456         u32                     max_speed_hz;
2457         u32                     mode;
2458         int                     irq;
2459         u8                      bits_per_word;
2460         u8                      chip_select;
2461         int                     n;
2462         int                     index;
2463 };
2464
2465 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2466 {
2467         struct acpi_resource_spi_serialbus *sb;
2468         int *count = data;
2469
2470         if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2471                 return 1;
2472
2473         sb = &ares->data.spi_serial_bus;
2474         if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2475                 return 1;
2476
2477         *count = *count + 1;
2478
2479         return 1;
2480 }
2481
2482 /**
2483  * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2484  * @adev:       ACPI device
2485  *
2486  * Return: the number of SpiSerialBus resources in the ACPI-device's
2487  * resource-list; or a negative error code.
2488  */
2489 int acpi_spi_count_resources(struct acpi_device *adev)
2490 {
2491         LIST_HEAD(r);
2492         int count = 0;
2493         int ret;
2494
2495         ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2496         if (ret < 0)
2497                 return ret;
2498
2499         acpi_dev_free_resource_list(&r);
2500
2501         return count;
2502 }
2503 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2504
2505 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2506                                             struct acpi_spi_lookup *lookup)
2507 {
2508         const union acpi_object *obj;
2509
2510         if (!x86_apple_machine)
2511                 return;
2512
2513         if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2514             && obj->buffer.length >= 4)
2515                 lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2516
2517         if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2518             && obj->buffer.length == 8)
2519                 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2520
2521         if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2522             && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2523                 lookup->mode |= SPI_LSB_FIRST;
2524
2525         if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2526             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2527                 lookup->mode |= SPI_CPOL;
2528
2529         if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2530             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2531                 lookup->mode |= SPI_CPHA;
2532 }
2533
2534 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev);
2535
2536 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2537 {
2538         struct acpi_spi_lookup *lookup = data;
2539         struct spi_controller *ctlr = lookup->ctlr;
2540
2541         if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2542                 struct acpi_resource_spi_serialbus *sb;
2543                 acpi_handle parent_handle;
2544                 acpi_status status;
2545
2546                 sb = &ares->data.spi_serial_bus;
2547                 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2548
2549                         if (lookup->index != -1 && lookup->n++ != lookup->index)
2550                                 return 1;
2551
2552                         status = acpi_get_handle(NULL,
2553                                                  sb->resource_source.string_ptr,
2554                                                  &parent_handle);
2555
2556                         if (ACPI_FAILURE(status))
2557                                 return -ENODEV;
2558
2559                         if (ctlr) {
2560                                 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2561                                         return -ENODEV;
2562                         } else {
2563                                 struct acpi_device *adev;
2564
2565                                 adev = acpi_fetch_acpi_dev(parent_handle);
2566                                 if (!adev)
2567                                         return -ENODEV;
2568
2569                                 ctlr = acpi_spi_find_controller_by_adev(adev);
2570                                 if (!ctlr)
2571                                         return -EPROBE_DEFER;
2572
2573                                 lookup->ctlr = ctlr;
2574                         }
2575
2576                         /*
2577                          * ACPI DeviceSelection numbering is handled by the
2578                          * host controller driver in Windows and can vary
2579                          * from driver to driver. In Linux we always expect
2580                          * 0 .. max - 1 so we need to ask the driver to
2581                          * translate between the two schemes.
2582                          */
2583                         if (ctlr->fw_translate_cs) {
2584                                 int cs = ctlr->fw_translate_cs(ctlr,
2585                                                 sb->device_selection);
2586                                 if (cs < 0)
2587                                         return cs;
2588                                 lookup->chip_select = cs;
2589                         } else {
2590                                 lookup->chip_select = sb->device_selection;
2591                         }
2592
2593                         lookup->max_speed_hz = sb->connection_speed;
2594                         lookup->bits_per_word = sb->data_bit_length;
2595
2596                         if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2597                                 lookup->mode |= SPI_CPHA;
2598                         if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2599                                 lookup->mode |= SPI_CPOL;
2600                         if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2601                                 lookup->mode |= SPI_CS_HIGH;
2602                 }
2603         } else if (lookup->irq < 0) {
2604                 struct resource r;
2605
2606                 if (acpi_dev_resource_interrupt(ares, 0, &r))
2607                         lookup->irq = r.start;
2608         }
2609
2610         /* Always tell the ACPI core to skip this resource */
2611         return 1;
2612 }
2613
2614 /**
2615  * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2616  * @ctlr: controller to which the spi device belongs
2617  * @adev: ACPI Device for the spi device
2618  * @index: Index of the spi resource inside the ACPI Node
2619  *
2620  * This should be used to allocate a new SPI device from and ACPI Device node.
2621  * The caller is responsible for calling spi_add_device to register the SPI device.
2622  *
2623  * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2624  * using the resource.
2625  * If index is set to -1, index is not used.
2626  * Note: If index is -1, ctlr must be set.
2627  *
2628  * Return: a pointer to the new device, or ERR_PTR on error.
2629  */
2630 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2631                                          struct acpi_device *adev,
2632                                          int index)
2633 {
2634         acpi_handle parent_handle = NULL;
2635         struct list_head resource_list;
2636         struct acpi_spi_lookup lookup = {};
2637         struct spi_device *spi;
2638         int ret;
2639
2640         if (!ctlr && index == -1)
2641                 return ERR_PTR(-EINVAL);
2642
2643         lookup.ctlr             = ctlr;
2644         lookup.irq              = -1;
2645         lookup.index            = index;
2646         lookup.n                = 0;
2647
2648         INIT_LIST_HEAD(&resource_list);
2649         ret = acpi_dev_get_resources(adev, &resource_list,
2650                                      acpi_spi_add_resource, &lookup);
2651         acpi_dev_free_resource_list(&resource_list);
2652
2653         if (ret < 0)
2654                 /* Found SPI in _CRS but it points to another controller */
2655                 return ERR_PTR(ret);
2656
2657         if (!lookup.max_speed_hz &&
2658             ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2659             ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2660                 /* Apple does not use _CRS but nested devices for SPI slaves */
2661                 acpi_spi_parse_apple_properties(adev, &lookup);
2662         }
2663
2664         if (!lookup.max_speed_hz)
2665                 return ERR_PTR(-ENODEV);
2666
2667         spi = spi_alloc_device(lookup.ctlr);
2668         if (!spi) {
2669                 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2670                         dev_name(&adev->dev));
2671                 return ERR_PTR(-ENOMEM);
2672         }
2673
2674         ACPI_COMPANION_SET(&spi->dev, adev);
2675         spi->max_speed_hz       = lookup.max_speed_hz;
2676         spi->mode               |= lookup.mode;
2677         spi->irq                = lookup.irq;
2678         spi->bits_per_word      = lookup.bits_per_word;
2679         spi_set_chipselect(spi, 0, lookup.chip_select);
2680
2681         return spi;
2682 }
2683 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2684
2685 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2686                                             struct acpi_device *adev)
2687 {
2688         struct spi_device *spi;
2689
2690         if (acpi_bus_get_status(adev) || !adev->status.present ||
2691             acpi_device_enumerated(adev))
2692                 return AE_OK;
2693
2694         spi = acpi_spi_device_alloc(ctlr, adev, -1);
2695         if (IS_ERR(spi)) {
2696                 if (PTR_ERR(spi) == -ENOMEM)
2697                         return AE_NO_MEMORY;
2698                 else
2699                         return AE_OK;
2700         }
2701
2702         acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2703                           sizeof(spi->modalias));
2704
2705         if (spi->irq < 0)
2706                 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2707
2708         acpi_device_set_enumerated(adev);
2709
2710         adev->power.flags.ignore_parent = true;
2711         if (spi_add_device(spi)) {
2712                 adev->power.flags.ignore_parent = false;
2713                 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2714                         dev_name(&adev->dev));
2715                 spi_dev_put(spi);
2716         }
2717
2718         return AE_OK;
2719 }
2720
2721 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2722                                        void *data, void **return_value)
2723 {
2724         struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2725         struct spi_controller *ctlr = data;
2726
2727         if (!adev)
2728                 return AE_OK;
2729
2730         return acpi_register_spi_device(ctlr, adev);
2731 }
2732
2733 #define SPI_ACPI_ENUMERATE_MAX_DEPTH            32
2734
2735 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2736 {
2737         acpi_status status;
2738         acpi_handle handle;
2739
2740         handle = ACPI_HANDLE(ctlr->dev.parent);
2741         if (!handle)
2742                 return;
2743
2744         status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2745                                      SPI_ACPI_ENUMERATE_MAX_DEPTH,
2746                                      acpi_spi_add_device, NULL, ctlr, NULL);
2747         if (ACPI_FAILURE(status))
2748                 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2749 }
2750 #else
2751 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2752 #endif /* CONFIG_ACPI */
2753
2754 static void spi_controller_release(struct device *dev)
2755 {
2756         struct spi_controller *ctlr;
2757
2758         ctlr = container_of(dev, struct spi_controller, dev);
2759         kfree(ctlr);
2760 }
2761
2762 static struct class spi_master_class = {
2763         .name           = "spi_master",
2764         .dev_release    = spi_controller_release,
2765         .dev_groups     = spi_master_groups,
2766 };
2767
2768 #ifdef CONFIG_SPI_SLAVE
2769 /**
2770  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2771  *                   controller
2772  * @spi: device used for the current transfer
2773  */
2774 int spi_slave_abort(struct spi_device *spi)
2775 {
2776         struct spi_controller *ctlr = spi->controller;
2777
2778         if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2779                 return ctlr->slave_abort(ctlr);
2780
2781         return -ENOTSUPP;
2782 }
2783 EXPORT_SYMBOL_GPL(spi_slave_abort);
2784
2785 int spi_target_abort(struct spi_device *spi)
2786 {
2787         struct spi_controller *ctlr = spi->controller;
2788
2789         if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2790                 return ctlr->target_abort(ctlr);
2791
2792         return -ENOTSUPP;
2793 }
2794 EXPORT_SYMBOL_GPL(spi_target_abort);
2795
2796 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2797                           char *buf)
2798 {
2799         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2800                                                    dev);
2801         struct device *child;
2802
2803         child = device_find_any_child(&ctlr->dev);
2804         return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL);
2805 }
2806
2807 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2808                            const char *buf, size_t count)
2809 {
2810         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2811                                                    dev);
2812         struct spi_device *spi;
2813         struct device *child;
2814         char name[32];
2815         int rc;
2816
2817         rc = sscanf(buf, "%31s", name);
2818         if (rc != 1 || !name[0])
2819                 return -EINVAL;
2820
2821         child = device_find_any_child(&ctlr->dev);
2822         if (child) {
2823                 /* Remove registered slave */
2824                 device_unregister(child);
2825                 put_device(child);
2826         }
2827
2828         if (strcmp(name, "(null)")) {
2829                 /* Register new slave */
2830                 spi = spi_alloc_device(ctlr);
2831                 if (!spi)
2832                         return -ENOMEM;
2833
2834                 strscpy(spi->modalias, name, sizeof(spi->modalias));
2835
2836                 rc = spi_add_device(spi);
2837                 if (rc) {
2838                         spi_dev_put(spi);
2839                         return rc;
2840                 }
2841         }
2842
2843         return count;
2844 }
2845
2846 static DEVICE_ATTR_RW(slave);
2847
2848 static struct attribute *spi_slave_attrs[] = {
2849         &dev_attr_slave.attr,
2850         NULL,
2851 };
2852
2853 static const struct attribute_group spi_slave_group = {
2854         .attrs = spi_slave_attrs,
2855 };
2856
2857 static const struct attribute_group *spi_slave_groups[] = {
2858         &spi_controller_statistics_group,
2859         &spi_slave_group,
2860         NULL,
2861 };
2862
2863 static struct class spi_slave_class = {
2864         .name           = "spi_slave",
2865         .dev_release    = spi_controller_release,
2866         .dev_groups     = spi_slave_groups,
2867 };
2868 #else
2869 extern struct class spi_slave_class;    /* dummy */
2870 #endif
2871
2872 /**
2873  * __spi_alloc_controller - allocate an SPI master or slave controller
2874  * @dev: the controller, possibly using the platform_bus
2875  * @size: how much zeroed driver-private data to allocate; the pointer to this
2876  *      memory is in the driver_data field of the returned device, accessible
2877  *      with spi_controller_get_devdata(); the memory is cacheline aligned;
2878  *      drivers granting DMA access to portions of their private data need to
2879  *      round up @size using ALIGN(size, dma_get_cache_alignment()).
2880  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2881  *      slave (true) controller
2882  * Context: can sleep
2883  *
2884  * This call is used only by SPI controller drivers, which are the
2885  * only ones directly touching chip registers.  It's how they allocate
2886  * an spi_controller structure, prior to calling spi_register_controller().
2887  *
2888  * This must be called from context that can sleep.
2889  *
2890  * The caller is responsible for assigning the bus number and initializing the
2891  * controller's methods before calling spi_register_controller(); and (after
2892  * errors adding the device) calling spi_controller_put() to prevent a memory
2893  * leak.
2894  *
2895  * Return: the SPI controller structure on success, else NULL.
2896  */
2897 struct spi_controller *__spi_alloc_controller(struct device *dev,
2898                                               unsigned int size, bool slave)
2899 {
2900         struct spi_controller   *ctlr;
2901         size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2902
2903         if (!dev)
2904                 return NULL;
2905
2906         ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2907         if (!ctlr)
2908                 return NULL;
2909
2910         device_initialize(&ctlr->dev);
2911         INIT_LIST_HEAD(&ctlr->queue);
2912         spin_lock_init(&ctlr->queue_lock);
2913         spin_lock_init(&ctlr->bus_lock_spinlock);
2914         mutex_init(&ctlr->bus_lock_mutex);
2915         mutex_init(&ctlr->io_mutex);
2916         mutex_init(&ctlr->add_lock);
2917         ctlr->bus_num = -1;
2918         ctlr->num_chipselect = 1;
2919         ctlr->slave = slave;
2920         if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2921                 ctlr->dev.class = &spi_slave_class;
2922         else
2923                 ctlr->dev.class = &spi_master_class;
2924         ctlr->dev.parent = dev;
2925         pm_suspend_ignore_children(&ctlr->dev, true);
2926         spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2927
2928         return ctlr;
2929 }
2930 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2931
2932 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2933 {
2934         spi_controller_put(*(struct spi_controller **)ctlr);
2935 }
2936
2937 /**
2938  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2939  * @dev: physical device of SPI controller
2940  * @size: how much zeroed driver-private data to allocate
2941  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2942  * Context: can sleep
2943  *
2944  * Allocate an SPI controller and automatically release a reference on it
2945  * when @dev is unbound from its driver.  Drivers are thus relieved from
2946  * having to call spi_controller_put().
2947  *
2948  * The arguments to this function are identical to __spi_alloc_controller().
2949  *
2950  * Return: the SPI controller structure on success, else NULL.
2951  */
2952 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2953                                                    unsigned int size,
2954                                                    bool slave)
2955 {
2956         struct spi_controller **ptr, *ctlr;
2957
2958         ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2959                            GFP_KERNEL);
2960         if (!ptr)
2961                 return NULL;
2962
2963         ctlr = __spi_alloc_controller(dev, size, slave);
2964         if (ctlr) {
2965                 ctlr->devm_allocated = true;
2966                 *ptr = ctlr;
2967                 devres_add(dev, ptr);
2968         } else {
2969                 devres_free(ptr);
2970         }
2971
2972         return ctlr;
2973 }
2974 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2975
2976 /**
2977  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2978  * @ctlr: The SPI master to grab GPIO descriptors for
2979  */
2980 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2981 {
2982         int nb, i;
2983         struct gpio_desc **cs;
2984         struct device *dev = &ctlr->dev;
2985         unsigned long native_cs_mask = 0;
2986         unsigned int num_cs_gpios = 0;
2987
2988         nb = gpiod_count(dev, "cs");
2989         if (nb < 0) {
2990                 /* No GPIOs at all is fine, else return the error */
2991                 if (nb == -ENOENT)
2992                         return 0;
2993                 return nb;
2994         }
2995
2996         ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2997
2998         cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2999                           GFP_KERNEL);
3000         if (!cs)
3001                 return -ENOMEM;
3002         ctlr->cs_gpiods = cs;
3003
3004         for (i = 0; i < nb; i++) {
3005                 /*
3006                  * Most chipselects are active low, the inverted
3007                  * semantics are handled by special quirks in gpiolib,
3008                  * so initializing them GPIOD_OUT_LOW here means
3009                  * "unasserted", in most cases this will drive the physical
3010                  * line high.
3011                  */
3012                 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3013                                                       GPIOD_OUT_LOW);
3014                 if (IS_ERR(cs[i]))
3015                         return PTR_ERR(cs[i]);
3016
3017                 if (cs[i]) {
3018                         /*
3019                          * If we find a CS GPIO, name it after the device and
3020                          * chip select line.
3021                          */
3022                         char *gpioname;
3023
3024                         gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3025                                                   dev_name(dev), i);
3026                         if (!gpioname)
3027                                 return -ENOMEM;
3028                         gpiod_set_consumer_name(cs[i], gpioname);
3029                         num_cs_gpios++;
3030                         continue;
3031                 }
3032
3033                 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3034                         dev_err(dev, "Invalid native chip select %d\n", i);
3035                         return -EINVAL;
3036                 }
3037                 native_cs_mask |= BIT(i);
3038         }
3039
3040         ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3041
3042         if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios &&
3043             ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3044                 dev_err(dev, "No unused native chip select available\n");
3045                 return -EINVAL;
3046         }
3047
3048         return 0;
3049 }
3050
3051 static int spi_controller_check_ops(struct spi_controller *ctlr)
3052 {
3053         /*
3054          * The controller may implement only the high-level SPI-memory like
3055          * operations if it does not support regular SPI transfers, and this is
3056          * valid use case.
3057          * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3058          * one of the ->transfer_xxx() method be implemented.
3059          */
3060         if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3061                 if (!ctlr->transfer && !ctlr->transfer_one &&
3062                    !ctlr->transfer_one_message) {
3063                         return -EINVAL;
3064                 }
3065         }
3066
3067         return 0;
3068 }
3069
3070 /* Allocate dynamic bus number using Linux idr */
3071 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end)
3072 {
3073         int id;
3074
3075         mutex_lock(&board_lock);
3076         id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL);
3077         mutex_unlock(&board_lock);
3078         if (WARN(id < 0, "couldn't get idr"))
3079                 return id == -ENOSPC ? -EBUSY : id;
3080         ctlr->bus_num = id;
3081         return 0;
3082 }
3083
3084 /**
3085  * spi_register_controller - register SPI master or slave controller
3086  * @ctlr: initialized master, originally from spi_alloc_master() or
3087  *      spi_alloc_slave()
3088  * Context: can sleep
3089  *
3090  * SPI controllers connect to their drivers using some non-SPI bus,
3091  * such as the platform bus.  The final stage of probe() in that code
3092  * includes calling spi_register_controller() to hook up to this SPI bus glue.
3093  *
3094  * SPI controllers use board specific (often SOC specific) bus numbers,
3095  * and board-specific addressing for SPI devices combines those numbers
3096  * with chip select numbers.  Since SPI does not directly support dynamic
3097  * device identification, boards need configuration tables telling which
3098  * chip is at which address.
3099  *
3100  * This must be called from context that can sleep.  It returns zero on
3101  * success, else a negative error code (dropping the controller's refcount).
3102  * After a successful return, the caller is responsible for calling
3103  * spi_unregister_controller().
3104  *
3105  * Return: zero on success, else a negative error code.
3106  */
3107 int spi_register_controller(struct spi_controller *ctlr)
3108 {
3109         struct device           *dev = ctlr->dev.parent;
3110         struct boardinfo        *bi;
3111         int                     first_dynamic;
3112         int                     status;
3113
3114         if (!dev)
3115                 return -ENODEV;
3116
3117         /*
3118          * Make sure all necessary hooks are implemented before registering
3119          * the SPI controller.
3120          */
3121         status = spi_controller_check_ops(ctlr);
3122         if (status)
3123                 return status;
3124
3125         if (ctlr->bus_num < 0)
3126                 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
3127         if (ctlr->bus_num >= 0) {
3128                 /* Devices with a fixed bus num must check-in with the num */
3129                 status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1);
3130                 if (status)
3131                         return status;
3132         }
3133         if (ctlr->bus_num < 0) {
3134                 first_dynamic = of_alias_get_highest_id("spi");
3135                 if (first_dynamic < 0)
3136                         first_dynamic = 0;
3137                 else
3138                         first_dynamic++;
3139
3140                 status = spi_controller_id_alloc(ctlr, first_dynamic, 0);
3141                 if (status)
3142                         return status;
3143         }
3144         ctlr->bus_lock_flag = 0;
3145         init_completion(&ctlr->xfer_completion);
3146         init_completion(&ctlr->cur_msg_completion);
3147         if (!ctlr->max_dma_len)
3148                 ctlr->max_dma_len = INT_MAX;
3149
3150         /*
3151          * Register the device, then userspace will see it.
3152          * Registration fails if the bus ID is in use.
3153          */
3154         dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3155
3156         if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3157                 status = spi_get_gpio_descs(ctlr);
3158                 if (status)
3159                         goto free_bus_id;
3160                 /*
3161                  * A controller using GPIO descriptors always
3162                  * supports SPI_CS_HIGH if need be.
3163                  */
3164                 ctlr->mode_bits |= SPI_CS_HIGH;
3165         }
3166
3167         /*
3168          * Even if it's just one always-selected device, there must
3169          * be at least one chipselect.
3170          */
3171         if (!ctlr->num_chipselect) {
3172                 status = -EINVAL;
3173                 goto free_bus_id;
3174         }
3175
3176         /* Setting last_cs to -1 means no chip selected */
3177         ctlr->last_cs = -1;
3178
3179         status = device_add(&ctlr->dev);
3180         if (status < 0)
3181                 goto free_bus_id;
3182         dev_dbg(dev, "registered %s %s\n",
3183                         spi_controller_is_slave(ctlr) ? "slave" : "master",
3184                         dev_name(&ctlr->dev));
3185
3186         /*
3187          * If we're using a queued driver, start the queue. Note that we don't
3188          * need the queueing logic if the driver is only supporting high-level
3189          * memory operations.
3190          */
3191         if (ctlr->transfer) {
3192                 dev_info(dev, "controller is unqueued, this is deprecated\n");
3193         } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3194                 status = spi_controller_initialize_queue(ctlr);
3195                 if (status) {
3196                         device_del(&ctlr->dev);
3197                         goto free_bus_id;
3198                 }
3199         }
3200         /* Add statistics */
3201         ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3202         if (!ctlr->pcpu_statistics) {
3203                 dev_err(dev, "Error allocating per-cpu statistics\n");
3204                 status = -ENOMEM;
3205                 goto destroy_queue;
3206         }
3207
3208         mutex_lock(&board_lock);
3209         list_add_tail(&ctlr->list, &spi_controller_list);
3210         list_for_each_entry(bi, &board_list, list)
3211                 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3212         mutex_unlock(&board_lock);
3213
3214         /* Register devices from the device tree and ACPI */
3215         of_register_spi_devices(ctlr);
3216         acpi_register_spi_devices(ctlr);
3217         return status;
3218
3219 destroy_queue:
3220         spi_destroy_queue(ctlr);
3221 free_bus_id:
3222         mutex_lock(&board_lock);
3223         idr_remove(&spi_master_idr, ctlr->bus_num);
3224         mutex_unlock(&board_lock);
3225         return status;
3226 }
3227 EXPORT_SYMBOL_GPL(spi_register_controller);
3228
3229 static void devm_spi_unregister(struct device *dev, void *res)
3230 {
3231         spi_unregister_controller(*(struct spi_controller **)res);
3232 }
3233
3234 /**
3235  * devm_spi_register_controller - register managed SPI master or slave
3236  *      controller
3237  * @dev:    device managing SPI controller
3238  * @ctlr: initialized controller, originally from spi_alloc_master() or
3239  *      spi_alloc_slave()
3240  * Context: can sleep
3241  *
3242  * Register a SPI device as with spi_register_controller() which will
3243  * automatically be unregistered and freed.
3244  *
3245  * Return: zero on success, else a negative error code.
3246  */
3247 int devm_spi_register_controller(struct device *dev,
3248                                  struct spi_controller *ctlr)
3249 {
3250         struct spi_controller **ptr;
3251         int ret;
3252
3253         ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3254         if (!ptr)
3255                 return -ENOMEM;
3256
3257         ret = spi_register_controller(ctlr);
3258         if (!ret) {
3259                 *ptr = ctlr;
3260                 devres_add(dev, ptr);
3261         } else {
3262                 devres_free(ptr);
3263         }
3264
3265         return ret;
3266 }
3267 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3268
3269 static int __unregister(struct device *dev, void *null)
3270 {
3271         spi_unregister_device(to_spi_device(dev));
3272         return 0;
3273 }
3274
3275 /**
3276  * spi_unregister_controller - unregister SPI master or slave controller
3277  * @ctlr: the controller being unregistered
3278  * Context: can sleep
3279  *
3280  * This call is used only by SPI controller drivers, which are the
3281  * only ones directly touching chip registers.
3282  *
3283  * This must be called from context that can sleep.
3284  *
3285  * Note that this function also drops a reference to the controller.
3286  */
3287 void spi_unregister_controller(struct spi_controller *ctlr)
3288 {
3289         struct spi_controller *found;
3290         int id = ctlr->bus_num;
3291
3292         /* Prevent addition of new devices, unregister existing ones */
3293         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3294                 mutex_lock(&ctlr->add_lock);
3295
3296         device_for_each_child(&ctlr->dev, NULL, __unregister);
3297
3298         /* First make sure that this controller was ever added */
3299         mutex_lock(&board_lock);
3300         found = idr_find(&spi_master_idr, id);
3301         mutex_unlock(&board_lock);
3302         if (ctlr->queued) {
3303                 if (spi_destroy_queue(ctlr))
3304                         dev_err(&ctlr->dev, "queue remove failed\n");
3305         }
3306         mutex_lock(&board_lock);
3307         list_del(&ctlr->list);
3308         mutex_unlock(&board_lock);
3309
3310         device_del(&ctlr->dev);
3311
3312         /* Free bus id */
3313         mutex_lock(&board_lock);
3314         if (found == ctlr)
3315                 idr_remove(&spi_master_idr, id);
3316         mutex_unlock(&board_lock);
3317
3318         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3319                 mutex_unlock(&ctlr->add_lock);
3320
3321         /*
3322          * Release the last reference on the controller if its driver
3323          * has not yet been converted to devm_spi_alloc_master/slave().
3324          */
3325         if (!ctlr->devm_allocated)
3326                 put_device(&ctlr->dev);
3327 }
3328 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3329
3330 static inline int __spi_check_suspended(const struct spi_controller *ctlr)
3331 {
3332         return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0;
3333 }
3334
3335 static inline void __spi_mark_suspended(struct spi_controller *ctlr)
3336 {
3337         mutex_lock(&ctlr->bus_lock_mutex);
3338         ctlr->flags |= SPI_CONTROLLER_SUSPENDED;
3339         mutex_unlock(&ctlr->bus_lock_mutex);
3340 }
3341
3342 static inline void __spi_mark_resumed(struct spi_controller *ctlr)
3343 {
3344         mutex_lock(&ctlr->bus_lock_mutex);
3345         ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED;
3346         mutex_unlock(&ctlr->bus_lock_mutex);
3347 }
3348
3349 int spi_controller_suspend(struct spi_controller *ctlr)
3350 {
3351         int ret = 0;
3352
3353         /* Basically no-ops for non-queued controllers */
3354         if (ctlr->queued) {
3355                 ret = spi_stop_queue(ctlr);
3356                 if (ret)
3357                         dev_err(&ctlr->dev, "queue stop failed\n");
3358         }
3359
3360         __spi_mark_suspended(ctlr);
3361         return ret;
3362 }
3363 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3364
3365 int spi_controller_resume(struct spi_controller *ctlr)
3366 {
3367         int ret = 0;
3368
3369         __spi_mark_resumed(ctlr);
3370
3371         if (ctlr->queued) {
3372                 ret = spi_start_queue(ctlr);
3373                 if (ret)
3374                         dev_err(&ctlr->dev, "queue restart failed\n");
3375         }
3376         return ret;
3377 }
3378 EXPORT_SYMBOL_GPL(spi_controller_resume);
3379
3380 /*-------------------------------------------------------------------------*/
3381
3382 /* Core methods for spi_message alterations */
3383
3384 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3385                                             struct spi_message *msg,
3386                                             void *res)
3387 {
3388         struct spi_replaced_transfers *rxfer = res;
3389         size_t i;
3390
3391         /* Call extra callback if requested */
3392         if (rxfer->release)
3393                 rxfer->release(ctlr, msg, res);
3394
3395         /* Insert replaced transfers back into the message */
3396         list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3397
3398         /* Remove the formerly inserted entries */
3399         for (i = 0; i < rxfer->inserted; i++)
3400                 list_del(&rxfer->inserted_transfers[i].transfer_list);
3401 }
3402
3403 /**
3404  * spi_replace_transfers - replace transfers with several transfers
3405  *                         and register change with spi_message.resources
3406  * @msg:           the spi_message we work upon
3407  * @xfer_first:    the first spi_transfer we want to replace
3408  * @remove:        number of transfers to remove
3409  * @insert:        the number of transfers we want to insert instead
3410  * @release:       extra release code necessary in some circumstances
3411  * @extradatasize: extra data to allocate (with alignment guarantees
3412  *                 of struct @spi_transfer)
3413  * @gfp:           gfp flags
3414  *
3415  * Returns: pointer to @spi_replaced_transfers,
3416  *          PTR_ERR(...) in case of errors.
3417  */
3418 static struct spi_replaced_transfers *spi_replace_transfers(
3419         struct spi_message *msg,
3420         struct spi_transfer *xfer_first,
3421         size_t remove,
3422         size_t insert,
3423         spi_replaced_release_t release,
3424         size_t extradatasize,
3425         gfp_t gfp)
3426 {
3427         struct spi_replaced_transfers *rxfer;
3428         struct spi_transfer *xfer;
3429         size_t i;
3430
3431         /* Allocate the structure using spi_res */
3432         rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3433                               struct_size(rxfer, inserted_transfers, insert)
3434                               + extradatasize,
3435                               gfp);
3436         if (!rxfer)
3437                 return ERR_PTR(-ENOMEM);
3438
3439         /* The release code to invoke before running the generic release */
3440         rxfer->release = release;
3441
3442         /* Assign extradata */
3443         if (extradatasize)
3444                 rxfer->extradata =
3445                         &rxfer->inserted_transfers[insert];
3446
3447         /* Init the replaced_transfers list */
3448         INIT_LIST_HEAD(&rxfer->replaced_transfers);
3449
3450         /*
3451          * Assign the list_entry after which we should reinsert
3452          * the @replaced_transfers - it may be spi_message.messages!
3453          */
3454         rxfer->replaced_after = xfer_first->transfer_list.prev;
3455
3456         /* Remove the requested number of transfers */
3457         for (i = 0; i < remove; i++) {
3458                 /*
3459                  * If the entry after replaced_after it is msg->transfers
3460                  * then we have been requested to remove more transfers
3461                  * than are in the list.
3462                  */
3463                 if (rxfer->replaced_after->next == &msg->transfers) {
3464                         dev_err(&msg->spi->dev,
3465                                 "requested to remove more spi_transfers than are available\n");
3466                         /* Insert replaced transfers back into the message */
3467                         list_splice(&rxfer->replaced_transfers,
3468                                     rxfer->replaced_after);
3469
3470                         /* Free the spi_replace_transfer structure... */
3471                         spi_res_free(rxfer);
3472
3473                         /* ...and return with an error */
3474                         return ERR_PTR(-EINVAL);
3475                 }
3476
3477                 /*
3478                  * Remove the entry after replaced_after from list of
3479                  * transfers and add it to list of replaced_transfers.
3480                  */
3481                 list_move_tail(rxfer->replaced_after->next,
3482                                &rxfer->replaced_transfers);
3483         }
3484
3485         /*
3486          * Create copy of the given xfer with identical settings
3487          * based on the first transfer to get removed.
3488          */
3489         for (i = 0; i < insert; i++) {
3490                 /* We need to run in reverse order */
3491                 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3492
3493                 /* Copy all spi_transfer data */
3494                 memcpy(xfer, xfer_first, sizeof(*xfer));
3495
3496                 /* Add to list */
3497                 list_add(&xfer->transfer_list, rxfer->replaced_after);
3498
3499                 /* Clear cs_change and delay for all but the last */
3500                 if (i) {
3501                         xfer->cs_change = false;
3502                         xfer->delay.value = 0;
3503                 }
3504         }
3505
3506         /* Set up inserted... */
3507         rxfer->inserted = insert;
3508
3509         /* ...and register it with spi_res/spi_message */
3510         spi_res_add(msg, rxfer);
3511
3512         return rxfer;
3513 }
3514
3515 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3516                                         struct spi_message *msg,
3517                                         struct spi_transfer **xferp,
3518                                         size_t maxsize,
3519                                         gfp_t gfp)
3520 {
3521         struct spi_transfer *xfer = *xferp, *xfers;
3522         struct spi_replaced_transfers *srt;
3523         size_t offset;
3524         size_t count, i;
3525
3526         /* Calculate how many we have to replace */
3527         count = DIV_ROUND_UP(xfer->len, maxsize);
3528
3529         /* Create replacement */
3530         srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3531         if (IS_ERR(srt))
3532                 return PTR_ERR(srt);
3533         xfers = srt->inserted_transfers;
3534
3535         /*
3536          * Now handle each of those newly inserted spi_transfers.
3537          * Note that the replacements spi_transfers all are preset
3538          * to the same values as *xferp, so tx_buf, rx_buf and len
3539          * are all identical (as well as most others)
3540          * so we just have to fix up len and the pointers.
3541          *
3542          * This also includes support for the depreciated
3543          * spi_message.is_dma_mapped interface.
3544          */
3545
3546         /*
3547          * The first transfer just needs the length modified, so we
3548          * run it outside the loop.
3549          */
3550         xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3551
3552         /* All the others need rx_buf/tx_buf also set */
3553         for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3554                 /* Update rx_buf, tx_buf and DMA */
3555                 if (xfers[i].rx_buf)
3556                         xfers[i].rx_buf += offset;
3557                 if (xfers[i].rx_dma)
3558                         xfers[i].rx_dma += offset;
3559                 if (xfers[i].tx_buf)
3560                         xfers[i].tx_buf += offset;
3561                 if (xfers[i].tx_dma)
3562                         xfers[i].tx_dma += offset;
3563
3564                 /* Update length */
3565                 xfers[i].len = min(maxsize, xfers[i].len - offset);
3566         }
3567
3568         /*
3569          * We set up xferp to the last entry we have inserted,
3570          * so that we skip those already split transfers.
3571          */
3572         *xferp = &xfers[count - 1];
3573
3574         /* Increment statistics counters */
3575         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3576                                        transfers_split_maxsize);
3577         SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3578                                        transfers_split_maxsize);
3579
3580         return 0;
3581 }
3582
3583 /**
3584  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3585  *                               when an individual transfer exceeds a
3586  *                               certain size
3587  * @ctlr:    the @spi_controller for this transfer
3588  * @msg:   the @spi_message to transform
3589  * @maxsize:  the maximum when to apply this
3590  * @gfp: GFP allocation flags
3591  *
3592  * Return: status of transformation
3593  */
3594 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3595                                 struct spi_message *msg,
3596                                 size_t maxsize,
3597                                 gfp_t gfp)
3598 {
3599         struct spi_transfer *xfer;
3600         int ret;
3601
3602         /*
3603          * Iterate over the transfer_list,
3604          * but note that xfer is advanced to the last transfer inserted
3605          * to avoid checking sizes again unnecessarily (also xfer does
3606          * potentially belong to a different list by the time the
3607          * replacement has happened).
3608          */
3609         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3610                 if (xfer->len > maxsize) {
3611                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3612                                                            maxsize, gfp);
3613                         if (ret)
3614                                 return ret;
3615                 }
3616         }
3617
3618         return 0;
3619 }
3620 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3621
3622
3623 /**
3624  * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3625  *                                when an individual transfer exceeds a
3626  *                                certain number of SPI words
3627  * @ctlr:     the @spi_controller for this transfer
3628  * @msg:      the @spi_message to transform
3629  * @maxwords: the number of words to limit each transfer to
3630  * @gfp:      GFP allocation flags
3631  *
3632  * Return: status of transformation
3633  */
3634 int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3635                                  struct spi_message *msg,
3636                                  size_t maxwords,
3637                                  gfp_t gfp)
3638 {
3639         struct spi_transfer *xfer;
3640
3641         /*
3642          * Iterate over the transfer_list,
3643          * but note that xfer is advanced to the last transfer inserted
3644          * to avoid checking sizes again unnecessarily (also xfer does
3645          * potentially belong to a different list by the time the
3646          * replacement has happened).
3647          */
3648         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3649                 size_t maxsize;
3650                 int ret;
3651
3652                 maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
3653                 if (xfer->len > maxsize) {
3654                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3655                                                            maxsize, gfp);
3656                         if (ret)
3657                                 return ret;
3658                 }
3659         }
3660
3661         return 0;
3662 }
3663 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3664
3665 /*-------------------------------------------------------------------------*/
3666
3667 /*
3668  * Core methods for SPI controller protocol drivers. Some of the
3669  * other core methods are currently defined as inline functions.
3670  */
3671
3672 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3673                                         u8 bits_per_word)
3674 {
3675         if (ctlr->bits_per_word_mask) {
3676                 /* Only 32 bits fit in the mask */
3677                 if (bits_per_word > 32)
3678                         return -EINVAL;
3679                 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3680                         return -EINVAL;
3681         }
3682
3683         return 0;
3684 }
3685
3686 /**
3687  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3688  * @spi: the device that requires specific CS timing configuration
3689  *
3690  * Return: zero on success, else a negative error code.
3691  */
3692 static int spi_set_cs_timing(struct spi_device *spi)
3693 {
3694         struct device *parent = spi->controller->dev.parent;
3695         int status = 0;
3696
3697         if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3698                 if (spi->controller->auto_runtime_pm) {
3699                         status = pm_runtime_get_sync(parent);
3700                         if (status < 0) {
3701                                 pm_runtime_put_noidle(parent);
3702                                 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3703                                         status);
3704                                 return status;
3705                         }
3706
3707                         status = spi->controller->set_cs_timing(spi);
3708                         pm_runtime_mark_last_busy(parent);
3709                         pm_runtime_put_autosuspend(parent);
3710                 } else {
3711                         status = spi->controller->set_cs_timing(spi);
3712                 }
3713         }
3714         return status;
3715 }
3716
3717 /**
3718  * spi_setup - setup SPI mode and clock rate
3719  * @spi: the device whose settings are being modified
3720  * Context: can sleep, and no requests are queued to the device
3721  *
3722  * SPI protocol drivers may need to update the transfer mode if the
3723  * device doesn't work with its default.  They may likewise need
3724  * to update clock rates or word sizes from initial values.  This function
3725  * changes those settings, and must be called from a context that can sleep.
3726  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3727  * effect the next time the device is selected and data is transferred to
3728  * or from it.  When this function returns, the SPI device is deselected.
3729  *
3730  * Note that this call will fail if the protocol driver specifies an option
3731  * that the underlying controller or its driver does not support.  For
3732  * example, not all hardware supports wire transfers using nine bit words,
3733  * LSB-first wire encoding, or active-high chipselects.
3734  *
3735  * Return: zero on success, else a negative error code.
3736  */
3737 int spi_setup(struct spi_device *spi)
3738 {
3739         struct spi_controller *ctlr = spi->controller;
3740         unsigned        bad_bits, ugly_bits;
3741         int             status = 0;
3742
3743         /*
3744          * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3745          * are set at the same time.
3746          */
3747         if ((hweight_long(spi->mode &
3748                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3749             (hweight_long(spi->mode &
3750                 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3751                 dev_err(&spi->dev,
3752                 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3753                 return -EINVAL;
3754         }
3755         /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3756         if ((spi->mode & SPI_3WIRE) && (spi->mode &
3757                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3758                  SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3759                 return -EINVAL;
3760
3761         if (ctlr->use_gpio_descriptors && ctlr->cs_gpiods &&
3762             ctlr->cs_gpiods[spi->chip_select] && !(spi->mode & SPI_CS_HIGH)) {
3763                 dev_dbg(&spi->dev,
3764                         "setup: forcing CS_HIGH (use_gpio_descriptors)\n");
3765                 spi->mode |= SPI_CS_HIGH;
3766         }
3767
3768         /*
3769          * Help drivers fail *cleanly* when they need options
3770          * that aren't supported with their current controller.
3771          * SPI_CS_WORD has a fallback software implementation,
3772          * so it is ignored here.
3773          */
3774         bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3775                                  SPI_NO_TX | SPI_NO_RX);
3776         ugly_bits = bad_bits &
3777                     (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3778                      SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3779         if (ugly_bits) {
3780                 dev_warn(&spi->dev,
3781                          "setup: ignoring unsupported mode bits %x\n",
3782                          ugly_bits);
3783                 spi->mode &= ~ugly_bits;
3784                 bad_bits &= ~ugly_bits;
3785         }
3786         if (bad_bits) {
3787                 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3788                         bad_bits);
3789                 return -EINVAL;
3790         }
3791
3792         if (!spi->bits_per_word) {
3793                 spi->bits_per_word = 8;
3794         } else {
3795                 /*
3796                  * Some controllers may not support the default 8 bits-per-word
3797                  * so only perform the check when this is explicitly provided.
3798                  */
3799                 status = __spi_validate_bits_per_word(spi->controller,
3800                                                       spi->bits_per_word);
3801                 if (status)
3802                         return status;
3803         }
3804
3805         if (spi->controller->max_speed_hz &&
3806             (!spi->max_speed_hz ||
3807              spi->max_speed_hz > spi->controller->max_speed_hz))
3808                 spi->max_speed_hz = spi->controller->max_speed_hz;
3809
3810         mutex_lock(&spi->controller->io_mutex);
3811
3812         if (spi->controller->setup) {
3813                 status = spi->controller->setup(spi);
3814                 if (status) {
3815                         mutex_unlock(&spi->controller->io_mutex);
3816                         dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3817                                 status);
3818                         return status;
3819                 }
3820         }
3821
3822         status = spi_set_cs_timing(spi);
3823         if (status) {
3824                 mutex_unlock(&spi->controller->io_mutex);
3825                 return status;
3826         }
3827
3828         if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3829                 status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3830                 if (status < 0) {
3831                         mutex_unlock(&spi->controller->io_mutex);
3832                         dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3833                                 status);
3834                         return status;
3835                 }
3836
3837                 /*
3838                  * We do not want to return positive value from pm_runtime_get,
3839                  * there are many instances of devices calling spi_setup() and
3840                  * checking for a non-zero return value instead of a negative
3841                  * return value.
3842                  */
3843                 status = 0;
3844
3845                 spi_set_cs(spi, false, true);
3846                 pm_runtime_mark_last_busy(spi->controller->dev.parent);
3847                 pm_runtime_put_autosuspend(spi->controller->dev.parent);
3848         } else {
3849                 spi_set_cs(spi, false, true);
3850         }
3851
3852         mutex_unlock(&spi->controller->io_mutex);
3853
3854         if (spi->rt && !spi->controller->rt) {
3855                 spi->controller->rt = true;
3856                 spi_set_thread_rt(spi->controller);
3857         }
3858
3859         trace_spi_setup(spi, status);
3860
3861         dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3862                         spi->mode & SPI_MODE_X_MASK,
3863                         (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3864                         (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3865                         (spi->mode & SPI_3WIRE) ? "3wire, " : "",
3866                         (spi->mode & SPI_LOOP) ? "loopback, " : "",
3867                         spi->bits_per_word, spi->max_speed_hz,
3868                         status);
3869
3870         return status;
3871 }
3872 EXPORT_SYMBOL_GPL(spi_setup);
3873
3874 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3875                                        struct spi_device *spi)
3876 {
3877         int delay1, delay2;
3878
3879         delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3880         if (delay1 < 0)
3881                 return delay1;
3882
3883         delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3884         if (delay2 < 0)
3885                 return delay2;
3886
3887         if (delay1 < delay2)
3888                 memcpy(&xfer->word_delay, &spi->word_delay,
3889                        sizeof(xfer->word_delay));
3890
3891         return 0;
3892 }
3893
3894 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3895 {
3896         struct spi_controller *ctlr = spi->controller;
3897         struct spi_transfer *xfer;
3898         int w_size;
3899
3900         if (list_empty(&message->transfers))
3901                 return -EINVAL;
3902
3903         /*
3904          * If an SPI controller does not support toggling the CS line on each
3905          * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3906          * for the CS line, we can emulate the CS-per-word hardware function by
3907          * splitting transfers into one-word transfers and ensuring that
3908          * cs_change is set for each transfer.
3909          */
3910         if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3911                                           spi_get_csgpiod(spi, 0))) {
3912                 size_t maxsize = BITS_TO_BYTES(spi->bits_per_word);
3913                 int ret;
3914
3915                 /* spi_split_transfers_maxsize() requires message->spi */
3916                 message->spi = spi;
3917
3918                 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3919                                                   GFP_KERNEL);
3920                 if (ret)
3921                         return ret;
3922
3923                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3924                         /* Don't change cs_change on the last entry in the list */
3925                         if (list_is_last(&xfer->transfer_list, &message->transfers))
3926                                 break;
3927                         xfer->cs_change = 1;
3928                 }
3929         }
3930
3931         /*
3932          * Half-duplex links include original MicroWire, and ones with
3933          * only one data pin like SPI_3WIRE (switches direction) or where
3934          * either MOSI or MISO is missing.  They can also be caused by
3935          * software limitations.
3936          */
3937         if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3938             (spi->mode & SPI_3WIRE)) {
3939                 unsigned flags = ctlr->flags;
3940
3941                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3942                         if (xfer->rx_buf && xfer->tx_buf)
3943                                 return -EINVAL;
3944                         if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3945                                 return -EINVAL;
3946                         if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3947                                 return -EINVAL;
3948                 }
3949         }
3950
3951         /*
3952          * Set transfer bits_per_word and max speed as spi device default if
3953          * it is not set for this transfer.
3954          * Set transfer tx_nbits and rx_nbits as single transfer default
3955          * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3956          * Ensure transfer word_delay is at least as long as that required by
3957          * device itself.
3958          */
3959         message->frame_length = 0;
3960         list_for_each_entry(xfer, &message->transfers, transfer_list) {
3961                 xfer->effective_speed_hz = 0;
3962                 message->frame_length += xfer->len;
3963                 if (!xfer->bits_per_word)
3964                         xfer->bits_per_word = spi->bits_per_word;
3965
3966                 if (!xfer->speed_hz)
3967                         xfer->speed_hz = spi->max_speed_hz;
3968
3969                 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3970                         xfer->speed_hz = ctlr->max_speed_hz;
3971
3972                 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3973                         return -EINVAL;
3974
3975                 /*
3976                  * SPI transfer length should be multiple of SPI word size
3977                  * where SPI word size should be power-of-two multiple.
3978                  */
3979                 if (xfer->bits_per_word <= 8)
3980                         w_size = 1;
3981                 else if (xfer->bits_per_word <= 16)
3982                         w_size = 2;
3983                 else
3984                         w_size = 4;
3985
3986                 /* No partial transfers accepted */
3987                 if (xfer->len % w_size)
3988                         return -EINVAL;
3989
3990                 if (xfer->speed_hz && ctlr->min_speed_hz &&
3991                     xfer->speed_hz < ctlr->min_speed_hz)
3992                         return -EINVAL;
3993
3994                 if (xfer->tx_buf && !xfer->tx_nbits)
3995                         xfer->tx_nbits = SPI_NBITS_SINGLE;
3996                 if (xfer->rx_buf && !xfer->rx_nbits)
3997                         xfer->rx_nbits = SPI_NBITS_SINGLE;
3998                 /*
3999                  * Check transfer tx/rx_nbits:
4000                  * 1. check the value matches one of single, dual and quad
4001                  * 2. check tx/rx_nbits match the mode in spi_device
4002                  */
4003                 if (xfer->tx_buf) {
4004                         if (spi->mode & SPI_NO_TX)
4005                                 return -EINVAL;
4006                         if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
4007                                 xfer->tx_nbits != SPI_NBITS_DUAL &&
4008                                 xfer->tx_nbits != SPI_NBITS_QUAD)
4009                                 return -EINVAL;
4010                         if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
4011                                 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
4012                                 return -EINVAL;
4013                         if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
4014                                 !(spi->mode & SPI_TX_QUAD))
4015                                 return -EINVAL;
4016                 }
4017                 /* Check transfer rx_nbits */
4018                 if (xfer->rx_buf) {
4019                         if (spi->mode & SPI_NO_RX)
4020                                 return -EINVAL;
4021                         if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
4022                                 xfer->rx_nbits != SPI_NBITS_DUAL &&
4023                                 xfer->rx_nbits != SPI_NBITS_QUAD)
4024                                 return -EINVAL;
4025                         if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
4026                                 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
4027                                 return -EINVAL;
4028                         if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
4029                                 !(spi->mode & SPI_RX_QUAD))
4030                                 return -EINVAL;
4031                 }
4032
4033                 if (_spi_xfer_word_delay_update(xfer, spi))
4034                         return -EINVAL;
4035         }
4036
4037         message->status = -EINPROGRESS;
4038
4039         return 0;
4040 }
4041
4042 static int __spi_async(struct spi_device *spi, struct spi_message *message)
4043 {
4044         struct spi_controller *ctlr = spi->controller;
4045         struct spi_transfer *xfer;
4046
4047         /*
4048          * Some controllers do not support doing regular SPI transfers. Return
4049          * ENOTSUPP when this is the case.
4050          */
4051         if (!ctlr->transfer)
4052                 return -ENOTSUPP;
4053
4054         message->spi = spi;
4055
4056         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4057         SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4058
4059         trace_spi_message_submit(message);
4060
4061         if (!ctlr->ptp_sts_supported) {
4062                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4063                         xfer->ptp_sts_word_pre = 0;
4064                         ptp_read_system_prets(xfer->ptp_sts);
4065                 }
4066         }
4067
4068         return ctlr->transfer(spi, message);
4069 }
4070
4071 /**
4072  * spi_async - asynchronous SPI transfer
4073  * @spi: device with which data will be exchanged
4074  * @message: describes the data transfers, including completion callback
4075  * Context: any (IRQs may be blocked, etc)
4076  *
4077  * This call may be used in_irq and other contexts which can't sleep,
4078  * as well as from task contexts which can sleep.
4079  *
4080  * The completion callback is invoked in a context which can't sleep.
4081  * Before that invocation, the value of message->status is undefined.
4082  * When the callback is issued, message->status holds either zero (to
4083  * indicate complete success) or a negative error code.  After that
4084  * callback returns, the driver which issued the transfer request may
4085  * deallocate the associated memory; it's no longer in use by any SPI
4086  * core or controller driver code.
4087  *
4088  * Note that although all messages to a spi_device are handled in
4089  * FIFO order, messages may go to different devices in other orders.
4090  * Some device might be higher priority, or have various "hard" access
4091  * time requirements, for example.
4092  *
4093  * On detection of any fault during the transfer, processing of
4094  * the entire message is aborted, and the device is deselected.
4095  * Until returning from the associated message completion callback,
4096  * no other spi_message queued to that device will be processed.
4097  * (This rule applies equally to all the synchronous transfer calls,
4098  * which are wrappers around this core asynchronous primitive.)
4099  *
4100  * Return: zero on success, else a negative error code.
4101  */
4102 int spi_async(struct spi_device *spi, struct spi_message *message)
4103 {
4104         struct spi_controller *ctlr = spi->controller;
4105         int ret;
4106         unsigned long flags;
4107
4108         ret = __spi_validate(spi, message);
4109         if (ret != 0)
4110                 return ret;
4111
4112         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4113
4114         if (ctlr->bus_lock_flag)
4115                 ret = -EBUSY;
4116         else
4117                 ret = __spi_async(spi, message);
4118
4119         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4120
4121         return ret;
4122 }
4123 EXPORT_SYMBOL_GPL(spi_async);
4124
4125 /**
4126  * spi_async_locked - version of spi_async with exclusive bus usage
4127  * @spi: device with which data will be exchanged
4128  * @message: describes the data transfers, including completion callback
4129  * Context: any (IRQs may be blocked, etc)
4130  *
4131  * This call may be used in_irq and other contexts which can't sleep,
4132  * as well as from task contexts which can sleep.
4133  *
4134  * The completion callback is invoked in a context which can't sleep.
4135  * Before that invocation, the value of message->status is undefined.
4136  * When the callback is issued, message->status holds either zero (to
4137  * indicate complete success) or a negative error code.  After that
4138  * callback returns, the driver which issued the transfer request may
4139  * deallocate the associated memory; it's no longer in use by any SPI
4140  * core or controller driver code.
4141  *
4142  * Note that although all messages to a spi_device are handled in
4143  * FIFO order, messages may go to different devices in other orders.
4144  * Some device might be higher priority, or have various "hard" access
4145  * time requirements, for example.
4146  *
4147  * On detection of any fault during the transfer, processing of
4148  * the entire message is aborted, and the device is deselected.
4149  * Until returning from the associated message completion callback,
4150  * no other spi_message queued to that device will be processed.
4151  * (This rule applies equally to all the synchronous transfer calls,
4152  * which are wrappers around this core asynchronous primitive.)
4153  *
4154  * Return: zero on success, else a negative error code.
4155  */
4156 static int spi_async_locked(struct spi_device *spi, struct spi_message *message)
4157 {
4158         struct spi_controller *ctlr = spi->controller;
4159         int ret;
4160         unsigned long flags;
4161
4162         ret = __spi_validate(spi, message);
4163         if (ret != 0)
4164                 return ret;
4165
4166         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4167
4168         ret = __spi_async(spi, message);
4169
4170         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4171
4172         return ret;
4173
4174 }
4175
4176 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4177 {
4178         bool was_busy;
4179         int ret;
4180
4181         mutex_lock(&ctlr->io_mutex);
4182
4183         was_busy = ctlr->busy;
4184
4185         ctlr->cur_msg = msg;
4186         ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4187         if (ret)
4188                 dev_err(&ctlr->dev, "noqueue transfer failed\n");
4189         ctlr->cur_msg = NULL;
4190         ctlr->fallback = false;
4191
4192         if (!was_busy) {
4193                 kfree(ctlr->dummy_rx);
4194                 ctlr->dummy_rx = NULL;
4195                 kfree(ctlr->dummy_tx);
4196                 ctlr->dummy_tx = NULL;
4197                 if (ctlr->unprepare_transfer_hardware &&
4198                     ctlr->unprepare_transfer_hardware(ctlr))
4199                         dev_err(&ctlr->dev,
4200                                 "failed to unprepare transfer hardware\n");
4201                 spi_idle_runtime_pm(ctlr);
4202         }
4203
4204         mutex_unlock(&ctlr->io_mutex);
4205 }
4206
4207 /*-------------------------------------------------------------------------*/
4208
4209 /*
4210  * Utility methods for SPI protocol drivers, layered on
4211  * top of the core.  Some other utility methods are defined as
4212  * inline functions.
4213  */
4214
4215 static void spi_complete(void *arg)
4216 {
4217         complete(arg);
4218 }
4219
4220 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4221 {
4222         DECLARE_COMPLETION_ONSTACK(done);
4223         int status;
4224         struct spi_controller *ctlr = spi->controller;
4225
4226         if (__spi_check_suspended(ctlr)) {
4227                 dev_warn_once(&spi->dev, "Attempted to sync while suspend\n");
4228                 return -ESHUTDOWN;
4229         }
4230
4231         status = __spi_validate(spi, message);
4232         if (status != 0)
4233                 return status;
4234
4235         message->spi = spi;
4236
4237         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4238         SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4239
4240         /*
4241          * Checking queue_empty here only guarantees async/sync message
4242          * ordering when coming from the same context. It does not need to
4243          * guard against reentrancy from a different context. The io_mutex
4244          * will catch those cases.
4245          */
4246         if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4247                 message->actual_length = 0;
4248                 message->status = -EINPROGRESS;
4249
4250                 trace_spi_message_submit(message);
4251
4252                 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4253                 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4254
4255                 __spi_transfer_message_noqueue(ctlr, message);
4256
4257                 return message->status;
4258         }
4259
4260         /*
4261          * There are messages in the async queue that could have originated
4262          * from the same context, so we need to preserve ordering.
4263          * Therefor we send the message to the async queue and wait until they
4264          * are completed.
4265          */
4266         message->complete = spi_complete;
4267         message->context = &done;
4268         status = spi_async_locked(spi, message);
4269         if (status == 0) {
4270                 wait_for_completion(&done);
4271                 status = message->status;
4272         }
4273         message->context = NULL;
4274
4275         return status;
4276 }
4277
4278 /**
4279  * spi_sync - blocking/synchronous SPI data transfers
4280  * @spi: device with which data will be exchanged
4281  * @message: describes the data transfers
4282  * Context: can sleep
4283  *
4284  * This call may only be used from a context that may sleep.  The sleep
4285  * is non-interruptible, and has no timeout.  Low-overhead controller
4286  * drivers may DMA directly into and out of the message buffers.
4287  *
4288  * Note that the SPI device's chip select is active during the message,
4289  * and then is normally disabled between messages.  Drivers for some
4290  * frequently-used devices may want to minimize costs of selecting a chip,
4291  * by leaving it selected in anticipation that the next message will go
4292  * to the same chip.  (That may increase power usage.)
4293  *
4294  * Also, the caller is guaranteeing that the memory associated with the
4295  * message will not be freed before this call returns.
4296  *
4297  * Return: zero on success, else a negative error code.
4298  */
4299 int spi_sync(struct spi_device *spi, struct spi_message *message)
4300 {
4301         int ret;
4302
4303         mutex_lock(&spi->controller->bus_lock_mutex);
4304         ret = __spi_sync(spi, message);
4305         mutex_unlock(&spi->controller->bus_lock_mutex);
4306
4307         return ret;
4308 }
4309 EXPORT_SYMBOL_GPL(spi_sync);
4310
4311 /**
4312  * spi_sync_locked - version of spi_sync with exclusive bus usage
4313  * @spi: device with which data will be exchanged
4314  * @message: describes the data transfers
4315  * Context: can sleep
4316  *
4317  * This call may only be used from a context that may sleep.  The sleep
4318  * is non-interruptible, and has no timeout.  Low-overhead controller
4319  * drivers may DMA directly into and out of the message buffers.
4320  *
4321  * This call should be used by drivers that require exclusive access to the
4322  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4323  * be released by a spi_bus_unlock call when the exclusive access is over.
4324  *
4325  * Return: zero on success, else a negative error code.
4326  */
4327 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4328 {
4329         return __spi_sync(spi, message);
4330 }
4331 EXPORT_SYMBOL_GPL(spi_sync_locked);
4332
4333 /**
4334  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4335  * @ctlr: SPI bus master that should be locked for exclusive bus access
4336  * Context: can sleep
4337  *
4338  * This call may only be used from a context that may sleep.  The sleep
4339  * is non-interruptible, and has no timeout.
4340  *
4341  * This call should be used by drivers that require exclusive access to the
4342  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4343  * exclusive access is over. Data transfer must be done by spi_sync_locked
4344  * and spi_async_locked calls when the SPI bus lock is held.
4345  *
4346  * Return: always zero.
4347  */
4348 int spi_bus_lock(struct spi_controller *ctlr)
4349 {
4350         unsigned long flags;
4351
4352         mutex_lock(&ctlr->bus_lock_mutex);
4353
4354         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4355         ctlr->bus_lock_flag = 1;
4356         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4357
4358         /* Mutex remains locked until spi_bus_unlock() is called */
4359
4360         return 0;
4361 }
4362 EXPORT_SYMBOL_GPL(spi_bus_lock);
4363
4364 /**
4365  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4366  * @ctlr: SPI bus master that was locked for exclusive bus access
4367  * Context: can sleep
4368  *
4369  * This call may only be used from a context that may sleep.  The sleep
4370  * is non-interruptible, and has no timeout.
4371  *
4372  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4373  * call.
4374  *
4375  * Return: always zero.
4376  */
4377 int spi_bus_unlock(struct spi_controller *ctlr)
4378 {
4379         ctlr->bus_lock_flag = 0;
4380
4381         mutex_unlock(&ctlr->bus_lock_mutex);
4382
4383         return 0;
4384 }
4385 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4386
4387 /* Portable code must never pass more than 32 bytes */
4388 #define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
4389
4390 static u8       *buf;
4391
4392 /**
4393  * spi_write_then_read - SPI synchronous write followed by read
4394  * @spi: device with which data will be exchanged
4395  * @txbuf: data to be written (need not be DMA-safe)
4396  * @n_tx: size of txbuf, in bytes
4397  * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4398  * @n_rx: size of rxbuf, in bytes
4399  * Context: can sleep
4400  *
4401  * This performs a half duplex MicroWire style transaction with the
4402  * device, sending txbuf and then reading rxbuf.  The return value
4403  * is zero for success, else a negative errno status code.
4404  * This call may only be used from a context that may sleep.
4405  *
4406  * Parameters to this routine are always copied using a small buffer.
4407  * Performance-sensitive or bulk transfer code should instead use
4408  * spi_{async,sync}() calls with DMA-safe buffers.
4409  *
4410  * Return: zero on success, else a negative error code.
4411  */
4412 int spi_write_then_read(struct spi_device *spi,
4413                 const void *txbuf, unsigned n_tx,
4414                 void *rxbuf, unsigned n_rx)
4415 {
4416         static DEFINE_MUTEX(lock);
4417
4418         int                     status;
4419         struct spi_message      message;
4420         struct spi_transfer     x[2];
4421         u8                      *local_buf;
4422
4423         /*
4424          * Use preallocated DMA-safe buffer if we can. We can't avoid
4425          * copying here, (as a pure convenience thing), but we can
4426          * keep heap costs out of the hot path unless someone else is
4427          * using the pre-allocated buffer or the transfer is too large.
4428          */
4429         if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4430                 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4431                                     GFP_KERNEL | GFP_DMA);
4432                 if (!local_buf)
4433                         return -ENOMEM;
4434         } else {
4435                 local_buf = buf;
4436         }
4437
4438         spi_message_init(&message);
4439         memset(x, 0, sizeof(x));
4440         if (n_tx) {
4441                 x[0].len = n_tx;
4442                 spi_message_add_tail(&x[0], &message);
4443         }
4444         if (n_rx) {
4445                 x[1].len = n_rx;
4446                 spi_message_add_tail(&x[1], &message);
4447         }
4448
4449         memcpy(local_buf, txbuf, n_tx);
4450         x[0].tx_buf = local_buf;
4451         x[1].rx_buf = local_buf + n_tx;
4452
4453         /* Do the I/O */
4454         status = spi_sync(spi, &message);
4455         if (status == 0)
4456                 memcpy(rxbuf, x[1].rx_buf, n_rx);
4457
4458         if (x[0].tx_buf == buf)
4459                 mutex_unlock(&lock);
4460         else
4461                 kfree(local_buf);
4462
4463         return status;
4464 }
4465 EXPORT_SYMBOL_GPL(spi_write_then_read);
4466
4467 /*-------------------------------------------------------------------------*/
4468
4469 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4470 /* Must call put_device() when done with returned spi_device device */
4471 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4472 {
4473         struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4474
4475         return dev ? to_spi_device(dev) : NULL;
4476 }
4477
4478 /* The spi controllers are not using spi_bus, so we find it with another way */
4479 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4480 {
4481         struct device *dev;
4482
4483         dev = class_find_device_by_of_node(&spi_master_class, node);
4484         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4485                 dev = class_find_device_by_of_node(&spi_slave_class, node);
4486         if (!dev)
4487                 return NULL;
4488
4489         /* Reference got in class_find_device */
4490         return container_of(dev, struct spi_controller, dev);
4491 }
4492
4493 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4494                          void *arg)
4495 {
4496         struct of_reconfig_data *rd = arg;
4497         struct spi_controller *ctlr;
4498         struct spi_device *spi;
4499
4500         switch (of_reconfig_get_state_change(action, arg)) {
4501         case OF_RECONFIG_CHANGE_ADD:
4502                 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4503                 if (ctlr == NULL)
4504                         return NOTIFY_OK;       /* Not for us */
4505
4506                 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4507                         put_device(&ctlr->dev);
4508                         return NOTIFY_OK;
4509                 }
4510
4511                 /*
4512                  * Clear the flag before adding the device so that fw_devlink
4513                  * doesn't skip adding consumers to this device.
4514                  */
4515                 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4516                 spi = of_register_spi_device(ctlr, rd->dn);
4517                 put_device(&ctlr->dev);
4518
4519                 if (IS_ERR(spi)) {
4520                         pr_err("%s: failed to create for '%pOF'\n",
4521                                         __func__, rd->dn);
4522                         of_node_clear_flag(rd->dn, OF_POPULATED);
4523                         return notifier_from_errno(PTR_ERR(spi));
4524                 }
4525                 break;
4526
4527         case OF_RECONFIG_CHANGE_REMOVE:
4528                 /* Already depopulated? */
4529                 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4530                         return NOTIFY_OK;
4531
4532                 /* Find our device by node */
4533                 spi = of_find_spi_device_by_node(rd->dn);
4534                 if (spi == NULL)
4535                         return NOTIFY_OK;       /* No? not meant for us */
4536
4537                 /* Unregister takes one ref away */
4538                 spi_unregister_device(spi);
4539
4540                 /* And put the reference of the find */
4541                 put_device(&spi->dev);
4542                 break;
4543         }
4544
4545         return NOTIFY_OK;
4546 }
4547
4548 static struct notifier_block spi_of_notifier = {
4549         .notifier_call = of_spi_notify,
4550 };
4551 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4552 extern struct notifier_block spi_of_notifier;
4553 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4554
4555 #if IS_ENABLED(CONFIG_ACPI)
4556 static int spi_acpi_controller_match(struct device *dev, const void *data)
4557 {
4558         return ACPI_COMPANION(dev->parent) == data;
4559 }
4560
4561 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4562 {
4563         struct device *dev;
4564
4565         dev = class_find_device(&spi_master_class, NULL, adev,
4566                                 spi_acpi_controller_match);
4567         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4568                 dev = class_find_device(&spi_slave_class, NULL, adev,
4569                                         spi_acpi_controller_match);
4570         if (!dev)
4571                 return NULL;
4572
4573         return container_of(dev, struct spi_controller, dev);
4574 }
4575
4576 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4577 {
4578         struct device *dev;
4579
4580         dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4581         return to_spi_device(dev);
4582 }
4583
4584 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4585                            void *arg)
4586 {
4587         struct acpi_device *adev = arg;
4588         struct spi_controller *ctlr;
4589         struct spi_device *spi;
4590
4591         switch (value) {
4592         case ACPI_RECONFIG_DEVICE_ADD:
4593                 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4594                 if (!ctlr)
4595                         break;
4596
4597                 acpi_register_spi_device(ctlr, adev);
4598                 put_device(&ctlr->dev);
4599                 break;
4600         case ACPI_RECONFIG_DEVICE_REMOVE:
4601                 if (!acpi_device_enumerated(adev))
4602                         break;
4603
4604                 spi = acpi_spi_find_device_by_adev(adev);
4605                 if (!spi)
4606                         break;
4607
4608                 spi_unregister_device(spi);
4609                 put_device(&spi->dev);
4610                 break;
4611         }
4612
4613         return NOTIFY_OK;
4614 }
4615
4616 static struct notifier_block spi_acpi_notifier = {
4617         .notifier_call = acpi_spi_notify,
4618 };
4619 #else
4620 extern struct notifier_block spi_acpi_notifier;
4621 #endif
4622
4623 static int __init spi_init(void)
4624 {
4625         int     status;
4626
4627         buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4628         if (!buf) {
4629                 status = -ENOMEM;
4630                 goto err0;
4631         }
4632
4633         status = bus_register(&spi_bus_type);
4634         if (status < 0)
4635                 goto err1;
4636
4637         status = class_register(&spi_master_class);
4638         if (status < 0)
4639                 goto err2;
4640
4641         if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4642                 status = class_register(&spi_slave_class);
4643                 if (status < 0)
4644                         goto err3;
4645         }
4646
4647         if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4648                 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4649         if (IS_ENABLED(CONFIG_ACPI))
4650                 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4651
4652         return 0;
4653
4654 err3:
4655         class_unregister(&spi_master_class);
4656 err2:
4657         bus_unregister(&spi_bus_type);
4658 err1:
4659         kfree(buf);
4660         buf = NULL;
4661 err0:
4662         return status;
4663 }
4664
4665 /*
4666  * A board_info is normally registered in arch_initcall(),
4667  * but even essential drivers wait till later.
4668  *
4669  * REVISIT only boardinfo really needs static linking. The rest (device and
4670  * driver registration) _could_ be dynamically linked (modular) ... Costs
4671  * include needing to have boardinfo data structures be much more public.
4672  */
4673 postcore_initcall(spi_init);