Merge tag 'v5.15.64' into rpi-5.15.y
[platform/kernel/linux-rpi.git] / drivers / spi / spi.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
41
42 #include "internals.h"
43
44 static DEFINE_IDR(spi_master_idr);
45
46 static void spidev_release(struct device *dev)
47 {
48         struct spi_device       *spi = to_spi_device(dev);
49
50         spi_controller_put(spi->controller);
51         kfree(spi->driver_override);
52         kfree(spi);
53 }
54
55 static ssize_t
56 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
57 {
58         const struct spi_device *spi = to_spi_device(dev);
59         int len;
60
61         len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
62         if (len != -ENODEV)
63                 return len;
64
65         return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
66 }
67 static DEVICE_ATTR_RO(modalias);
68
69 static ssize_t driver_override_store(struct device *dev,
70                                      struct device_attribute *a,
71                                      const char *buf, size_t count)
72 {
73         struct spi_device *spi = to_spi_device(dev);
74         const char *end = memchr(buf, '\n', count);
75         const size_t len = end ? end - buf : count;
76         const char *driver_override, *old;
77
78         /* We need to keep extra room for a newline when displaying value */
79         if (len >= (PAGE_SIZE - 1))
80                 return -EINVAL;
81
82         driver_override = kstrndup(buf, len, GFP_KERNEL);
83         if (!driver_override)
84                 return -ENOMEM;
85
86         device_lock(dev);
87         old = spi->driver_override;
88         if (len) {
89                 spi->driver_override = driver_override;
90         } else {
91                 /* Empty string, disable driver override */
92                 spi->driver_override = NULL;
93                 kfree(driver_override);
94         }
95         device_unlock(dev);
96         kfree(old);
97
98         return count;
99 }
100
101 static ssize_t driver_override_show(struct device *dev,
102                                     struct device_attribute *a, char *buf)
103 {
104         const struct spi_device *spi = to_spi_device(dev);
105         ssize_t len;
106
107         device_lock(dev);
108         len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
109         device_unlock(dev);
110         return len;
111 }
112 static DEVICE_ATTR_RW(driver_override);
113
114 #define SPI_STATISTICS_ATTRS(field, file)                               \
115 static ssize_t spi_controller_##field##_show(struct device *dev,        \
116                                              struct device_attribute *attr, \
117                                              char *buf)                 \
118 {                                                                       \
119         struct spi_controller *ctlr = container_of(dev,                 \
120                                          struct spi_controller, dev);   \
121         return spi_statistics_##field##_show(&ctlr->statistics, buf);   \
122 }                                                                       \
123 static struct device_attribute dev_attr_spi_controller_##field = {      \
124         .attr = { .name = file, .mode = 0444 },                         \
125         .show = spi_controller_##field##_show,                          \
126 };                                                                      \
127 static ssize_t spi_device_##field##_show(struct device *dev,            \
128                                          struct device_attribute *attr, \
129                                         char *buf)                      \
130 {                                                                       \
131         struct spi_device *spi = to_spi_device(dev);                    \
132         return spi_statistics_##field##_show(&spi->statistics, buf);    \
133 }                                                                       \
134 static struct device_attribute dev_attr_spi_device_##field = {          \
135         .attr = { .name = file, .mode = 0444 },                         \
136         .show = spi_device_##field##_show,                              \
137 }
138
139 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)      \
140 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
141                                             char *buf)                  \
142 {                                                                       \
143         unsigned long flags;                                            \
144         ssize_t len;                                                    \
145         spin_lock_irqsave(&stat->lock, flags);                          \
146         len = sprintf(buf, format_string, stat->field);                 \
147         spin_unlock_irqrestore(&stat->lock, flags);                     \
148         return len;                                                     \
149 }                                                                       \
150 SPI_STATISTICS_ATTRS(name, file)
151
152 #define SPI_STATISTICS_SHOW(field, format_string)                       \
153         SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
154                                  field, format_string)
155
156 SPI_STATISTICS_SHOW(messages, "%lu");
157 SPI_STATISTICS_SHOW(transfers, "%lu");
158 SPI_STATISTICS_SHOW(errors, "%lu");
159 SPI_STATISTICS_SHOW(timedout, "%lu");
160
161 SPI_STATISTICS_SHOW(spi_sync, "%lu");
162 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
163 SPI_STATISTICS_SHOW(spi_async, "%lu");
164
165 SPI_STATISTICS_SHOW(bytes, "%llu");
166 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
167 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
168
169 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)              \
170         SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,           \
171                                  "transfer_bytes_histo_" number,        \
172                                  transfer_bytes_histo[index],  "%lu")
173 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
174 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
175 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
176 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
190
191 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
192
193 static struct attribute *spi_dev_attrs[] = {
194         &dev_attr_modalias.attr,
195         &dev_attr_driver_override.attr,
196         NULL,
197 };
198
199 static const struct attribute_group spi_dev_group = {
200         .attrs  = spi_dev_attrs,
201 };
202
203 static struct attribute *spi_device_statistics_attrs[] = {
204         &dev_attr_spi_device_messages.attr,
205         &dev_attr_spi_device_transfers.attr,
206         &dev_attr_spi_device_errors.attr,
207         &dev_attr_spi_device_timedout.attr,
208         &dev_attr_spi_device_spi_sync.attr,
209         &dev_attr_spi_device_spi_sync_immediate.attr,
210         &dev_attr_spi_device_spi_async.attr,
211         &dev_attr_spi_device_bytes.attr,
212         &dev_attr_spi_device_bytes_rx.attr,
213         &dev_attr_spi_device_bytes_tx.attr,
214         &dev_attr_spi_device_transfer_bytes_histo0.attr,
215         &dev_attr_spi_device_transfer_bytes_histo1.attr,
216         &dev_attr_spi_device_transfer_bytes_histo2.attr,
217         &dev_attr_spi_device_transfer_bytes_histo3.attr,
218         &dev_attr_spi_device_transfer_bytes_histo4.attr,
219         &dev_attr_spi_device_transfer_bytes_histo5.attr,
220         &dev_attr_spi_device_transfer_bytes_histo6.attr,
221         &dev_attr_spi_device_transfer_bytes_histo7.attr,
222         &dev_attr_spi_device_transfer_bytes_histo8.attr,
223         &dev_attr_spi_device_transfer_bytes_histo9.attr,
224         &dev_attr_spi_device_transfer_bytes_histo10.attr,
225         &dev_attr_spi_device_transfer_bytes_histo11.attr,
226         &dev_attr_spi_device_transfer_bytes_histo12.attr,
227         &dev_attr_spi_device_transfer_bytes_histo13.attr,
228         &dev_attr_spi_device_transfer_bytes_histo14.attr,
229         &dev_attr_spi_device_transfer_bytes_histo15.attr,
230         &dev_attr_spi_device_transfer_bytes_histo16.attr,
231         &dev_attr_spi_device_transfers_split_maxsize.attr,
232         NULL,
233 };
234
235 static const struct attribute_group spi_device_statistics_group = {
236         .name  = "statistics",
237         .attrs  = spi_device_statistics_attrs,
238 };
239
240 static const struct attribute_group *spi_dev_groups[] = {
241         &spi_dev_group,
242         &spi_device_statistics_group,
243         NULL,
244 };
245
246 static struct attribute *spi_controller_statistics_attrs[] = {
247         &dev_attr_spi_controller_messages.attr,
248         &dev_attr_spi_controller_transfers.attr,
249         &dev_attr_spi_controller_errors.attr,
250         &dev_attr_spi_controller_timedout.attr,
251         &dev_attr_spi_controller_spi_sync.attr,
252         &dev_attr_spi_controller_spi_sync_immediate.attr,
253         &dev_attr_spi_controller_spi_async.attr,
254         &dev_attr_spi_controller_bytes.attr,
255         &dev_attr_spi_controller_bytes_rx.attr,
256         &dev_attr_spi_controller_bytes_tx.attr,
257         &dev_attr_spi_controller_transfer_bytes_histo0.attr,
258         &dev_attr_spi_controller_transfer_bytes_histo1.attr,
259         &dev_attr_spi_controller_transfer_bytes_histo2.attr,
260         &dev_attr_spi_controller_transfer_bytes_histo3.attr,
261         &dev_attr_spi_controller_transfer_bytes_histo4.attr,
262         &dev_attr_spi_controller_transfer_bytes_histo5.attr,
263         &dev_attr_spi_controller_transfer_bytes_histo6.attr,
264         &dev_attr_spi_controller_transfer_bytes_histo7.attr,
265         &dev_attr_spi_controller_transfer_bytes_histo8.attr,
266         &dev_attr_spi_controller_transfer_bytes_histo9.attr,
267         &dev_attr_spi_controller_transfer_bytes_histo10.attr,
268         &dev_attr_spi_controller_transfer_bytes_histo11.attr,
269         &dev_attr_spi_controller_transfer_bytes_histo12.attr,
270         &dev_attr_spi_controller_transfer_bytes_histo13.attr,
271         &dev_attr_spi_controller_transfer_bytes_histo14.attr,
272         &dev_attr_spi_controller_transfer_bytes_histo15.attr,
273         &dev_attr_spi_controller_transfer_bytes_histo16.attr,
274         &dev_attr_spi_controller_transfers_split_maxsize.attr,
275         NULL,
276 };
277
278 static const struct attribute_group spi_controller_statistics_group = {
279         .name  = "statistics",
280         .attrs  = spi_controller_statistics_attrs,
281 };
282
283 static const struct attribute_group *spi_master_groups[] = {
284         &spi_controller_statistics_group,
285         NULL,
286 };
287
288 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
289                                        struct spi_transfer *xfer,
290                                        struct spi_controller *ctlr)
291 {
292         unsigned long flags;
293         int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
294
295         if (l2len < 0)
296                 l2len = 0;
297
298         spin_lock_irqsave(&stats->lock, flags);
299
300         stats->transfers++;
301         stats->transfer_bytes_histo[l2len]++;
302
303         stats->bytes += xfer->len;
304         if ((xfer->tx_buf) &&
305             (xfer->tx_buf != ctlr->dummy_tx))
306                 stats->bytes_tx += xfer->len;
307         if ((xfer->rx_buf) &&
308             (xfer->rx_buf != ctlr->dummy_rx))
309                 stats->bytes_rx += xfer->len;
310
311         spin_unlock_irqrestore(&stats->lock, flags);
312 }
313 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
314
315 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
316  * and the sysfs version makes coldplug work too.
317  */
318
319 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
320                                                 const struct spi_device *sdev)
321 {
322         while (id->name[0]) {
323                 if (!strcmp(sdev->modalias, id->name))
324                         return id;
325                 id++;
326         }
327         return NULL;
328 }
329
330 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
331 {
332         const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
333
334         return spi_match_id(sdrv->id_table, sdev);
335 }
336 EXPORT_SYMBOL_GPL(spi_get_device_id);
337
338 static int spi_match_device(struct device *dev, struct device_driver *drv)
339 {
340         const struct spi_device *spi = to_spi_device(dev);
341         const struct spi_driver *sdrv = to_spi_driver(drv);
342
343         /* Check override first, and if set, only use the named driver */
344         if (spi->driver_override)
345                 return strcmp(spi->driver_override, drv->name) == 0;
346
347         /* Attempt an OF style match */
348         if (of_driver_match_device(dev, drv))
349                 return 1;
350
351         /* Then try ACPI */
352         if (acpi_driver_match_device(dev, drv))
353                 return 1;
354
355         if (sdrv->id_table)
356                 return !!spi_match_id(sdrv->id_table, spi);
357
358         return strcmp(spi->modalias, drv->name) == 0;
359 }
360
361 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
362 {
363         const struct spi_device         *spi = to_spi_device(dev);
364         int rc;
365
366         rc = acpi_device_uevent_modalias(dev, env);
367         if (rc != -ENODEV)
368                 return rc;
369
370         return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
371 }
372
373 static int spi_probe(struct device *dev)
374 {
375         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
376         struct spi_device               *spi = to_spi_device(dev);
377         int ret;
378
379         ret = of_clk_set_defaults(dev->of_node, false);
380         if (ret)
381                 return ret;
382
383         if (dev->of_node) {
384                 spi->irq = of_irq_get(dev->of_node, 0);
385                 if (spi->irq == -EPROBE_DEFER)
386                         return -EPROBE_DEFER;
387                 if (spi->irq < 0)
388                         spi->irq = 0;
389         }
390
391         ret = dev_pm_domain_attach(dev, true);
392         if (ret)
393                 return ret;
394
395         if (sdrv->probe) {
396                 ret = sdrv->probe(spi);
397                 if (ret)
398                         dev_pm_domain_detach(dev, true);
399         }
400
401         return ret;
402 }
403
404 static void spi_remove(struct device *dev)
405 {
406         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
407
408         if (sdrv->remove) {
409                 int ret;
410
411                 ret = sdrv->remove(to_spi_device(dev));
412                 if (ret)
413                         dev_warn(dev,
414                                  "Failed to unbind driver (%pe), ignoring\n",
415                                  ERR_PTR(ret));
416         }
417
418         dev_pm_domain_detach(dev, true);
419 }
420
421 static void spi_shutdown(struct device *dev)
422 {
423         if (dev->driver) {
424                 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
425
426                 if (sdrv->shutdown)
427                         sdrv->shutdown(to_spi_device(dev));
428         }
429 }
430
431 struct bus_type spi_bus_type = {
432         .name           = "spi",
433         .dev_groups     = spi_dev_groups,
434         .match          = spi_match_device,
435         .uevent         = spi_uevent,
436         .probe          = spi_probe,
437         .remove         = spi_remove,
438         .shutdown       = spi_shutdown,
439 };
440 EXPORT_SYMBOL_GPL(spi_bus_type);
441
442 /**
443  * __spi_register_driver - register a SPI driver
444  * @owner: owner module of the driver to register
445  * @sdrv: the driver to register
446  * Context: can sleep
447  *
448  * Return: zero on success, else a negative error code.
449  */
450 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
451 {
452         sdrv->driver.owner = owner;
453         sdrv->driver.bus = &spi_bus_type;
454
455         /*
456          * For Really Good Reasons we use spi: modaliases not of:
457          * modaliases for DT so module autoloading won't work if we
458          * don't have a spi_device_id as well as a compatible string.
459          */
460         if (sdrv->driver.of_match_table) {
461                 const struct of_device_id *of_id;
462
463                 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
464                      of_id++) {
465                         const char *of_name;
466
467                         /* Strip off any vendor prefix */
468                         of_name = strnchr(of_id->compatible,
469                                           sizeof(of_id->compatible), ',');
470                         if (of_name)
471                                 of_name++;
472                         else
473                                 of_name = of_id->compatible;
474
475                         if (sdrv->id_table) {
476                                 const struct spi_device_id *spi_id;
477
478                                 for (spi_id = sdrv->id_table; spi_id->name[0];
479                                      spi_id++)
480                                         if (strcmp(spi_id->name, of_name) == 0)
481                                                 break;
482
483                                 if (spi_id->name[0])
484                                         continue;
485                         } else {
486                                 if (strcmp(sdrv->driver.name, of_name) == 0)
487                                         continue;
488                         }
489
490                         pr_warn("SPI driver %s has no spi_device_id for %s\n",
491                                 sdrv->driver.name, of_id->compatible);
492                 }
493         }
494
495         return driver_register(&sdrv->driver);
496 }
497 EXPORT_SYMBOL_GPL(__spi_register_driver);
498
499 /*-------------------------------------------------------------------------*/
500
501 /* SPI devices should normally not be created by SPI device drivers; that
502  * would make them board-specific.  Similarly with SPI controller drivers.
503  * Device registration normally goes into like arch/.../mach.../board-YYY.c
504  * with other readonly (flashable) information about mainboard devices.
505  */
506
507 struct boardinfo {
508         struct list_head        list;
509         struct spi_board_info   board_info;
510 };
511
512 static LIST_HEAD(board_list);
513 static LIST_HEAD(spi_controller_list);
514
515 /*
516  * Used to protect add/del operation for board_info list and
517  * spi_controller list, and their matching process
518  * also used to protect object of type struct idr
519  */
520 static DEFINE_MUTEX(board_lock);
521
522 /**
523  * spi_alloc_device - Allocate a new SPI device
524  * @ctlr: Controller to which device is connected
525  * Context: can sleep
526  *
527  * Allows a driver to allocate and initialize a spi_device without
528  * registering it immediately.  This allows a driver to directly
529  * fill the spi_device with device parameters before calling
530  * spi_add_device() on it.
531  *
532  * Caller is responsible to call spi_add_device() on the returned
533  * spi_device structure to add it to the SPI controller.  If the caller
534  * needs to discard the spi_device without adding it, then it should
535  * call spi_dev_put() on it.
536  *
537  * Return: a pointer to the new device, or NULL.
538  */
539 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
540 {
541         struct spi_device       *spi;
542
543         if (!spi_controller_get(ctlr))
544                 return NULL;
545
546         spi = kzalloc(sizeof(*spi), GFP_KERNEL);
547         if (!spi) {
548                 spi_controller_put(ctlr);
549                 return NULL;
550         }
551
552         spi->master = spi->controller = ctlr;
553         spi->dev.parent = &ctlr->dev;
554         spi->dev.bus = &spi_bus_type;
555         spi->dev.release = spidev_release;
556         spi->cs_gpio = -ENOENT;
557         spi->mode = ctlr->buswidth_override_bits;
558
559         spin_lock_init(&spi->statistics.lock);
560
561         device_initialize(&spi->dev);
562         return spi;
563 }
564 EXPORT_SYMBOL_GPL(spi_alloc_device);
565
566 static void spi_dev_set_name(struct spi_device *spi)
567 {
568         struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
569
570         if (adev) {
571                 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
572                 return;
573         }
574
575         dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
576                      spi->chip_select);
577 }
578
579 static int spi_dev_check(struct device *dev, void *data)
580 {
581         struct spi_device *spi = to_spi_device(dev);
582         struct spi_device *new_spi = data;
583
584         if (spi->controller == new_spi->controller &&
585             spi->chip_select == new_spi->chip_select)
586                 return -EBUSY;
587         return 0;
588 }
589
590 static void spi_cleanup(struct spi_device *spi)
591 {
592         if (spi->controller->cleanup)
593                 spi->controller->cleanup(spi);
594 }
595
596 static int __spi_add_device(struct spi_device *spi)
597 {
598         struct spi_controller *ctlr = spi->controller;
599         struct device *dev = ctlr->dev.parent;
600         int status;
601
602         status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
603         if (status) {
604                 dev_err(dev, "chipselect %d already in use\n",
605                                 spi->chip_select);
606                 return status;
607         }
608
609         /* Controller may unregister concurrently */
610         if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
611             !device_is_registered(&ctlr->dev)) {
612                 return -ENODEV;
613         }
614
615         /* Descriptors take precedence */
616         if (ctlr->cs_gpiods)
617                 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
618         else if (ctlr->cs_gpios)
619                 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
620
621         /* Drivers may modify this initial i/o setup, but will
622          * normally rely on the device being setup.  Devices
623          * using SPI_CS_HIGH can't coexist well otherwise...
624          */
625         status = spi_setup(spi);
626         if (status < 0) {
627                 dev_err(dev, "can't setup %s, status %d\n",
628                                 dev_name(&spi->dev), status);
629                 return status;
630         }
631
632         /* Device may be bound to an active driver when this returns */
633         status = device_add(&spi->dev);
634         if (status < 0) {
635                 dev_err(dev, "can't add %s, status %d\n",
636                                 dev_name(&spi->dev), status);
637                 spi_cleanup(spi);
638         } else {
639                 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
640         }
641
642         return status;
643 }
644
645 /**
646  * spi_add_device - Add spi_device allocated with spi_alloc_device
647  * @spi: spi_device to register
648  *
649  * Companion function to spi_alloc_device.  Devices allocated with
650  * spi_alloc_device can be added onto the spi bus with this function.
651  *
652  * Return: 0 on success; negative errno on failure
653  */
654 int spi_add_device(struct spi_device *spi)
655 {
656         struct spi_controller *ctlr = spi->controller;
657         struct device *dev = ctlr->dev.parent;
658         int status;
659
660         /* Chipselects are numbered 0..max; validate. */
661         if (spi->chip_select >= ctlr->num_chipselect) {
662                 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
663                         ctlr->num_chipselect);
664                 return -EINVAL;
665         }
666
667         /* Set the bus ID string */
668         spi_dev_set_name(spi);
669
670         /* We need to make sure there's no other device with this
671          * chipselect **BEFORE** we call setup(), else we'll trash
672          * its configuration.  Lock against concurrent add() calls.
673          */
674         mutex_lock(&ctlr->add_lock);
675         status = __spi_add_device(spi);
676         mutex_unlock(&ctlr->add_lock);
677         return status;
678 }
679 EXPORT_SYMBOL_GPL(spi_add_device);
680
681 static int spi_add_device_locked(struct spi_device *spi)
682 {
683         struct spi_controller *ctlr = spi->controller;
684         struct device *dev = ctlr->dev.parent;
685
686         /* Chipselects are numbered 0..max; validate. */
687         if (spi->chip_select >= ctlr->num_chipselect) {
688                 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
689                         ctlr->num_chipselect);
690                 return -EINVAL;
691         }
692
693         /* Set the bus ID string */
694         spi_dev_set_name(spi);
695
696         WARN_ON(!mutex_is_locked(&ctlr->add_lock));
697         return __spi_add_device(spi);
698 }
699
700 /**
701  * spi_new_device - instantiate one new SPI device
702  * @ctlr: Controller to which device is connected
703  * @chip: Describes the SPI device
704  * Context: can sleep
705  *
706  * On typical mainboards, this is purely internal; and it's not needed
707  * after board init creates the hard-wired devices.  Some development
708  * platforms may not be able to use spi_register_board_info though, and
709  * this is exported so that for example a USB or parport based adapter
710  * driver could add devices (which it would learn about out-of-band).
711  *
712  * Return: the new device, or NULL.
713  */
714 struct spi_device *spi_new_device(struct spi_controller *ctlr,
715                                   struct spi_board_info *chip)
716 {
717         struct spi_device       *proxy;
718         int                     status;
719
720         /* NOTE:  caller did any chip->bus_num checks necessary.
721          *
722          * Also, unless we change the return value convention to use
723          * error-or-pointer (not NULL-or-pointer), troubleshootability
724          * suggests syslogged diagnostics are best here (ugh).
725          */
726
727         proxy = spi_alloc_device(ctlr);
728         if (!proxy)
729                 return NULL;
730
731         WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
732
733         proxy->chip_select = chip->chip_select;
734         proxy->max_speed_hz = chip->max_speed_hz;
735         proxy->mode = chip->mode;
736         proxy->irq = chip->irq;
737         strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
738         proxy->dev.platform_data = (void *) chip->platform_data;
739         proxy->controller_data = chip->controller_data;
740         proxy->controller_state = NULL;
741
742         if (chip->swnode) {
743                 status = device_add_software_node(&proxy->dev, chip->swnode);
744                 if (status) {
745                         dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
746                                 chip->modalias, status);
747                         goto err_dev_put;
748                 }
749         }
750
751         status = spi_add_device(proxy);
752         if (status < 0)
753                 goto err_dev_put;
754
755         return proxy;
756
757 err_dev_put:
758         device_remove_software_node(&proxy->dev);
759         spi_dev_put(proxy);
760         return NULL;
761 }
762 EXPORT_SYMBOL_GPL(spi_new_device);
763
764 /**
765  * spi_unregister_device - unregister a single SPI device
766  * @spi: spi_device to unregister
767  *
768  * Start making the passed SPI device vanish. Normally this would be handled
769  * by spi_unregister_controller().
770  */
771 void spi_unregister_device(struct spi_device *spi)
772 {
773         if (!spi)
774                 return;
775
776         if (spi->dev.of_node) {
777                 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
778                 of_node_put(spi->dev.of_node);
779         }
780         if (ACPI_COMPANION(&spi->dev))
781                 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
782         device_remove_software_node(&spi->dev);
783         device_del(&spi->dev);
784         spi_cleanup(spi);
785         put_device(&spi->dev);
786 }
787 EXPORT_SYMBOL_GPL(spi_unregister_device);
788
789 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
790                                               struct spi_board_info *bi)
791 {
792         struct spi_device *dev;
793
794         if (ctlr->bus_num != bi->bus_num)
795                 return;
796
797         dev = spi_new_device(ctlr, bi);
798         if (!dev)
799                 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
800                         bi->modalias);
801 }
802
803 /**
804  * spi_register_board_info - register SPI devices for a given board
805  * @info: array of chip descriptors
806  * @n: how many descriptors are provided
807  * Context: can sleep
808  *
809  * Board-specific early init code calls this (probably during arch_initcall)
810  * with segments of the SPI device table.  Any device nodes are created later,
811  * after the relevant parent SPI controller (bus_num) is defined.  We keep
812  * this table of devices forever, so that reloading a controller driver will
813  * not make Linux forget about these hard-wired devices.
814  *
815  * Other code can also call this, e.g. a particular add-on board might provide
816  * SPI devices through its expansion connector, so code initializing that board
817  * would naturally declare its SPI devices.
818  *
819  * The board info passed can safely be __initdata ... but be careful of
820  * any embedded pointers (platform_data, etc), they're copied as-is.
821  *
822  * Return: zero on success, else a negative error code.
823  */
824 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
825 {
826         struct boardinfo *bi;
827         int i;
828
829         if (!n)
830                 return 0;
831
832         bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
833         if (!bi)
834                 return -ENOMEM;
835
836         for (i = 0; i < n; i++, bi++, info++) {
837                 struct spi_controller *ctlr;
838
839                 memcpy(&bi->board_info, info, sizeof(*info));
840
841                 mutex_lock(&board_lock);
842                 list_add_tail(&bi->list, &board_list);
843                 list_for_each_entry(ctlr, &spi_controller_list, list)
844                         spi_match_controller_to_boardinfo(ctlr,
845                                                           &bi->board_info);
846                 mutex_unlock(&board_lock);
847         }
848
849         return 0;
850 }
851
852 /*-------------------------------------------------------------------------*/
853
854 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
855 {
856         bool activate = enable;
857
858         /*
859          * Avoid calling into the driver (or doing delays) if the chip select
860          * isn't actually changing from the last time this was called.
861          */
862         if (!force && (spi->controller->last_cs_enable == enable) &&
863             (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
864                 return;
865
866         trace_spi_set_cs(spi, activate);
867
868         spi->controller->last_cs_enable = enable;
869         spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
870
871         if ((spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
872             !spi->controller->set_cs_timing) && !activate) {
873                 spi_delay_exec(&spi->cs_hold, NULL);
874         }
875
876         if (spi->mode & SPI_CS_HIGH)
877                 enable = !enable;
878
879         if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
880                 if (!(spi->mode & SPI_NO_CS)) {
881                         if (spi->cs_gpiod) {
882                                 /*
883                                  * Historically ACPI has no means of the GPIO polarity and
884                                  * thus the SPISerialBus() resource defines it on the per-chip
885                                  * basis. In order to avoid a chain of negations, the GPIO
886                                  * polarity is considered being Active High. Even for the cases
887                                  * when _DSD() is involved (in the updated versions of ACPI)
888                                  * the GPIO CS polarity must be defined Active High to avoid
889                                  * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
890                                  * into account.
891                                  */
892                                 if (has_acpi_companion(&spi->dev))
893                                         gpiod_set_value_cansleep(spi->cs_gpiod, !enable);
894                                 else
895                                         /* Polarity handled by GPIO library */
896                                         gpiod_set_value_cansleep(spi->cs_gpiod, activate);
897                         } else {
898                                 /*
899                                  * invert the enable line, as active low is
900                                  * default for SPI.
901                                  */
902                                 gpio_set_value_cansleep(spi->cs_gpio, !enable);
903                         }
904                 }
905                 /* Some SPI masters need both GPIO CS & slave_select */
906                 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
907                     spi->controller->set_cs)
908                         spi->controller->set_cs(spi, !enable);
909         } else if (spi->controller->set_cs) {
910                 spi->controller->set_cs(spi, !enable);
911         }
912
913         if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
914             !spi->controller->set_cs_timing) {
915                 if (activate)
916                         spi_delay_exec(&spi->cs_setup, NULL);
917                 else
918                         spi_delay_exec(&spi->cs_inactive, NULL);
919         }
920 }
921
922 #ifdef CONFIG_HAS_DMA
923 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
924                 struct sg_table *sgt, void *buf, size_t len,
925                 enum dma_data_direction dir)
926 {
927         const bool vmalloced_buf = is_vmalloc_addr(buf);
928         unsigned int max_seg_size = dma_get_max_seg_size(dev);
929 #ifdef CONFIG_HIGHMEM
930         const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
931                                 (unsigned long)buf < (PKMAP_BASE +
932                                         (LAST_PKMAP * PAGE_SIZE)));
933 #else
934         const bool kmap_buf = false;
935 #endif
936         int desc_len;
937         int sgs;
938         struct page *vm_page;
939         struct scatterlist *sg;
940         void *sg_buf;
941         size_t min;
942         int i, ret;
943
944         if (vmalloced_buf || kmap_buf) {
945                 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
946                 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
947         } else if (virt_addr_valid(buf)) {
948                 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
949                 sgs = DIV_ROUND_UP(len, desc_len);
950         } else {
951                 return -EINVAL;
952         }
953
954         ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
955         if (ret != 0)
956                 return ret;
957
958         sg = &sgt->sgl[0];
959         for (i = 0; i < sgs; i++) {
960
961                 if (vmalloced_buf || kmap_buf) {
962                         /*
963                          * Next scatterlist entry size is the minimum between
964                          * the desc_len and the remaining buffer length that
965                          * fits in a page.
966                          */
967                         min = min_t(size_t, desc_len,
968                                     min_t(size_t, len,
969                                           PAGE_SIZE - offset_in_page(buf)));
970                         if (vmalloced_buf)
971                                 vm_page = vmalloc_to_page(buf);
972                         else
973                                 vm_page = kmap_to_page(buf);
974                         if (!vm_page) {
975                                 sg_free_table(sgt);
976                                 return -ENOMEM;
977                         }
978                         sg_set_page(sg, vm_page,
979                                     min, offset_in_page(buf));
980                 } else {
981                         min = min_t(size_t, len, desc_len);
982                         sg_buf = buf;
983                         sg_set_buf(sg, sg_buf, min);
984                 }
985
986                 buf += min;
987                 len -= min;
988                 sg = sg_next(sg);
989         }
990
991         ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
992         if (!ret)
993                 ret = -ENOMEM;
994         if (ret < 0) {
995                 sg_free_table(sgt);
996                 return ret;
997         }
998
999         sgt->nents = ret;
1000
1001         return 0;
1002 }
1003
1004 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1005                    struct sg_table *sgt, enum dma_data_direction dir)
1006 {
1007         if (sgt->orig_nents) {
1008                 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
1009                 sg_free_table(sgt);
1010         }
1011 }
1012
1013 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1014 {
1015         struct device *tx_dev, *rx_dev;
1016         struct spi_transfer *xfer;
1017         int ret;
1018
1019         if (!ctlr->can_dma)
1020                 return 0;
1021
1022         if (ctlr->dma_tx)
1023                 tx_dev = ctlr->dma_tx->device->dev;
1024         else if (ctlr->dma_map_dev)
1025                 tx_dev = ctlr->dma_map_dev;
1026         else
1027                 tx_dev = ctlr->dev.parent;
1028
1029         if (ctlr->dma_rx)
1030                 rx_dev = ctlr->dma_rx->device->dev;
1031         else if (ctlr->dma_map_dev)
1032                 rx_dev = ctlr->dma_map_dev;
1033         else
1034                 rx_dev = ctlr->dev.parent;
1035
1036         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1037                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1038                         continue;
1039
1040                 if (xfer->tx_buf != NULL) {
1041                         ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
1042                                           (void *)xfer->tx_buf, xfer->len,
1043                                           DMA_TO_DEVICE);
1044                         if (ret != 0)
1045                                 return ret;
1046                 }
1047
1048                 if (xfer->rx_buf != NULL) {
1049                         ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
1050                                           xfer->rx_buf, xfer->len,
1051                                           DMA_FROM_DEVICE);
1052                         if (ret != 0) {
1053                                 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
1054                                               DMA_TO_DEVICE);
1055                                 return ret;
1056                         }
1057                 }
1058         }
1059
1060         ctlr->cur_msg_mapped = true;
1061
1062         return 0;
1063 }
1064
1065 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1066 {
1067         struct spi_transfer *xfer;
1068         struct device *tx_dev, *rx_dev;
1069
1070         if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1071                 return 0;
1072
1073         if (ctlr->dma_tx)
1074                 tx_dev = ctlr->dma_tx->device->dev;
1075         else if (ctlr->dma_map_dev)
1076                 tx_dev = ctlr->dma_map_dev;
1077         else
1078                 tx_dev = ctlr->dev.parent;
1079
1080         if (ctlr->dma_rx)
1081                 rx_dev = ctlr->dma_rx->device->dev;
1082         else if (ctlr->dma_map_dev)
1083                 rx_dev = ctlr->dma_map_dev;
1084         else
1085                 rx_dev = ctlr->dev.parent;
1086
1087         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1088                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1089                         continue;
1090
1091                 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1092                 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1093         }
1094
1095         ctlr->cur_msg_mapped = false;
1096
1097         return 0;
1098 }
1099 #else /* !CONFIG_HAS_DMA */
1100 static inline int __spi_map_msg(struct spi_controller *ctlr,
1101                                 struct spi_message *msg)
1102 {
1103         return 0;
1104 }
1105
1106 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1107                                   struct spi_message *msg)
1108 {
1109         return 0;
1110 }
1111 #endif /* !CONFIG_HAS_DMA */
1112
1113 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1114                                 struct spi_message *msg)
1115 {
1116         struct spi_transfer *xfer;
1117
1118         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1119                 /*
1120                  * Restore the original value of tx_buf or rx_buf if they are
1121                  * NULL.
1122                  */
1123                 if (xfer->tx_buf == ctlr->dummy_tx)
1124                         xfer->tx_buf = NULL;
1125                 if (xfer->rx_buf == ctlr->dummy_rx)
1126                         xfer->rx_buf = NULL;
1127         }
1128
1129         return __spi_unmap_msg(ctlr, msg);
1130 }
1131
1132 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1133 {
1134         struct spi_transfer *xfer;
1135         void *tmp;
1136         unsigned int max_tx, max_rx;
1137
1138         if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1139                 && !(msg->spi->mode & SPI_3WIRE)) {
1140                 max_tx = 0;
1141                 max_rx = 0;
1142
1143                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1144                         if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1145                             !xfer->tx_buf)
1146                                 max_tx = max(xfer->len, max_tx);
1147                         if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1148                             !xfer->rx_buf)
1149                                 max_rx = max(xfer->len, max_rx);
1150                 }
1151
1152                 if (max_tx) {
1153                         tmp = krealloc(ctlr->dummy_tx, max_tx,
1154                                        GFP_KERNEL | GFP_DMA);
1155                         if (!tmp)
1156                                 return -ENOMEM;
1157                         ctlr->dummy_tx = tmp;
1158                         memset(tmp, 0, max_tx);
1159                 }
1160
1161                 if (max_rx) {
1162                         tmp = krealloc(ctlr->dummy_rx, max_rx,
1163                                        GFP_KERNEL | GFP_DMA);
1164                         if (!tmp)
1165                                 return -ENOMEM;
1166                         ctlr->dummy_rx = tmp;
1167                 }
1168
1169                 if (max_tx || max_rx) {
1170                         list_for_each_entry(xfer, &msg->transfers,
1171                                             transfer_list) {
1172                                 if (!xfer->len)
1173                                         continue;
1174                                 if (!xfer->tx_buf)
1175                                         xfer->tx_buf = ctlr->dummy_tx;
1176                                 if (!xfer->rx_buf)
1177                                         xfer->rx_buf = ctlr->dummy_rx;
1178                         }
1179                 }
1180         }
1181
1182         return __spi_map_msg(ctlr, msg);
1183 }
1184
1185 static int spi_transfer_wait(struct spi_controller *ctlr,
1186                              struct spi_message *msg,
1187                              struct spi_transfer *xfer)
1188 {
1189         struct spi_statistics *statm = &ctlr->statistics;
1190         struct spi_statistics *stats = &msg->spi->statistics;
1191         u32 speed_hz = xfer->speed_hz;
1192         unsigned long long ms;
1193
1194         if (spi_controller_is_slave(ctlr)) {
1195                 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1196                         dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1197                         return -EINTR;
1198                 }
1199         } else {
1200                 if (!speed_hz)
1201                         speed_hz = 100000;
1202
1203                 /*
1204                  * For each byte we wait for 8 cycles of the SPI clock.
1205                  * Since speed is defined in Hz and we want milliseconds,
1206                  * use respective multiplier, but before the division,
1207                  * otherwise we may get 0 for short transfers.
1208                  */
1209                 ms = 8LL * MSEC_PER_SEC * xfer->len;
1210                 do_div(ms, speed_hz);
1211
1212                 /*
1213                  * Increase it twice and add 200 ms tolerance, use
1214                  * predefined maximum in case of overflow.
1215                  */
1216                 ms += ms + 200;
1217                 if (ms > UINT_MAX)
1218                         ms = UINT_MAX;
1219
1220                 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1221                                                  msecs_to_jiffies(ms));
1222
1223                 if (ms == 0) {
1224                         SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1225                         SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1226                         dev_err(&msg->spi->dev,
1227                                 "SPI transfer timed out\n");
1228                         return -ETIMEDOUT;
1229                 }
1230         }
1231
1232         return 0;
1233 }
1234
1235 static void _spi_transfer_delay_ns(u32 ns)
1236 {
1237         if (!ns)
1238                 return;
1239         if (ns <= NSEC_PER_USEC) {
1240                 ndelay(ns);
1241         } else {
1242                 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1243
1244                 if (us <= 10)
1245                         udelay(us);
1246                 else
1247                         usleep_range(us, us + DIV_ROUND_UP(us, 10));
1248         }
1249 }
1250
1251 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1252 {
1253         u32 delay = _delay->value;
1254         u32 unit = _delay->unit;
1255         u32 hz;
1256
1257         if (!delay)
1258                 return 0;
1259
1260         switch (unit) {
1261         case SPI_DELAY_UNIT_USECS:
1262                 delay *= NSEC_PER_USEC;
1263                 break;
1264         case SPI_DELAY_UNIT_NSECS:
1265                 /* Nothing to do here */
1266                 break;
1267         case SPI_DELAY_UNIT_SCK:
1268                 /* clock cycles need to be obtained from spi_transfer */
1269                 if (!xfer)
1270                         return -EINVAL;
1271                 /*
1272                  * If there is unknown effective speed, approximate it
1273                  * by underestimating with half of the requested hz.
1274                  */
1275                 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1276                 if (!hz)
1277                         return -EINVAL;
1278
1279                 /* Convert delay to nanoseconds */
1280                 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1281                 break;
1282         default:
1283                 return -EINVAL;
1284         }
1285
1286         return delay;
1287 }
1288 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1289
1290 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1291 {
1292         int delay;
1293
1294         might_sleep();
1295
1296         if (!_delay)
1297                 return -EINVAL;
1298
1299         delay = spi_delay_to_ns(_delay, xfer);
1300         if (delay < 0)
1301                 return delay;
1302
1303         _spi_transfer_delay_ns(delay);
1304
1305         return 0;
1306 }
1307 EXPORT_SYMBOL_GPL(spi_delay_exec);
1308
1309 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1310                                           struct spi_transfer *xfer)
1311 {
1312         u32 default_delay_ns = 10 * NSEC_PER_USEC;
1313         u32 delay = xfer->cs_change_delay.value;
1314         u32 unit = xfer->cs_change_delay.unit;
1315         int ret;
1316
1317         /* return early on "fast" mode - for everything but USECS */
1318         if (!delay) {
1319                 if (unit == SPI_DELAY_UNIT_USECS)
1320                         _spi_transfer_delay_ns(default_delay_ns);
1321                 return;
1322         }
1323
1324         ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1325         if (ret) {
1326                 dev_err_once(&msg->spi->dev,
1327                              "Use of unsupported delay unit %i, using default of %luus\n",
1328                              unit, default_delay_ns / NSEC_PER_USEC);
1329                 _spi_transfer_delay_ns(default_delay_ns);
1330         }
1331 }
1332
1333 /*
1334  * spi_transfer_one_message - Default implementation of transfer_one_message()
1335  *
1336  * This is a standard implementation of transfer_one_message() for
1337  * drivers which implement a transfer_one() operation.  It provides
1338  * standard handling of delays and chip select management.
1339  */
1340 static int spi_transfer_one_message(struct spi_controller *ctlr,
1341                                     struct spi_message *msg)
1342 {
1343         struct spi_transfer *xfer;
1344         bool keep_cs = false;
1345         int ret = 0;
1346         struct spi_statistics *statm = &ctlr->statistics;
1347         struct spi_statistics *stats = &msg->spi->statistics;
1348
1349         spi_set_cs(msg->spi, true, false);
1350
1351         SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1352         SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1353
1354         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1355                 trace_spi_transfer_start(msg, xfer);
1356
1357                 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1358                 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1359
1360                 if (!ctlr->ptp_sts_supported) {
1361                         xfer->ptp_sts_word_pre = 0;
1362                         ptp_read_system_prets(xfer->ptp_sts);
1363                 }
1364
1365                 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1366                         reinit_completion(&ctlr->xfer_completion);
1367
1368 fallback_pio:
1369                         ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1370                         if (ret < 0) {
1371                                 if (ctlr->cur_msg_mapped &&
1372                                    (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1373                                         __spi_unmap_msg(ctlr, msg);
1374                                         ctlr->fallback = true;
1375                                         xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1376                                         goto fallback_pio;
1377                                 }
1378
1379                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
1380                                                                errors);
1381                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
1382                                                                errors);
1383                                 dev_err(&msg->spi->dev,
1384                                         "SPI transfer failed: %d\n", ret);
1385                                 goto out;
1386                         }
1387
1388                         if (ret > 0) {
1389                                 ret = spi_transfer_wait(ctlr, msg, xfer);
1390                                 if (ret < 0)
1391                                         msg->status = ret;
1392                         }
1393                 } else {
1394                         if (xfer->len)
1395                                 dev_err(&msg->spi->dev,
1396                                         "Bufferless transfer has length %u\n",
1397                                         xfer->len);
1398                 }
1399
1400                 if (!ctlr->ptp_sts_supported) {
1401                         ptp_read_system_postts(xfer->ptp_sts);
1402                         xfer->ptp_sts_word_post = xfer->len;
1403                 }
1404
1405                 trace_spi_transfer_stop(msg, xfer);
1406
1407                 if (msg->status != -EINPROGRESS)
1408                         goto out;
1409
1410                 spi_transfer_delay_exec(xfer);
1411
1412                 if (xfer->cs_change) {
1413                         if (list_is_last(&xfer->transfer_list,
1414                                          &msg->transfers)) {
1415                                 keep_cs = true;
1416                         } else {
1417                                 spi_set_cs(msg->spi, false, false);
1418                                 _spi_transfer_cs_change_delay(msg, xfer);
1419                                 spi_set_cs(msg->spi, true, false);
1420                         }
1421                 }
1422
1423                 msg->actual_length += xfer->len;
1424         }
1425
1426 out:
1427         if (ret != 0 || !keep_cs)
1428                 spi_set_cs(msg->spi, false, false);
1429
1430         if (msg->status == -EINPROGRESS)
1431                 msg->status = ret;
1432
1433         if (msg->status && ctlr->handle_err)
1434                 ctlr->handle_err(ctlr, msg);
1435
1436         spi_finalize_current_message(ctlr);
1437
1438         return ret;
1439 }
1440
1441 /**
1442  * spi_finalize_current_transfer - report completion of a transfer
1443  * @ctlr: the controller reporting completion
1444  *
1445  * Called by SPI drivers using the core transfer_one_message()
1446  * implementation to notify it that the current interrupt driven
1447  * transfer has finished and the next one may be scheduled.
1448  */
1449 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1450 {
1451         complete(&ctlr->xfer_completion);
1452 }
1453 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1454
1455 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1456 {
1457         if (ctlr->auto_runtime_pm) {
1458                 pm_runtime_mark_last_busy(ctlr->dev.parent);
1459                 pm_runtime_put_autosuspend(ctlr->dev.parent);
1460         }
1461 }
1462
1463 /**
1464  * __spi_pump_messages - function which processes spi message queue
1465  * @ctlr: controller to process queue for
1466  * @in_kthread: true if we are in the context of the message pump thread
1467  *
1468  * This function checks if there is any spi message in the queue that
1469  * needs processing and if so call out to the driver to initialize hardware
1470  * and transfer each message.
1471  *
1472  * Note that it is called both from the kthread itself and also from
1473  * inside spi_sync(); the queue extraction handling at the top of the
1474  * function should deal with this safely.
1475  */
1476 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1477 {
1478         struct spi_transfer *xfer;
1479         struct spi_message *msg;
1480         bool was_busy = false;
1481         unsigned long flags;
1482         int ret;
1483
1484         /* Lock queue */
1485         spin_lock_irqsave(&ctlr->queue_lock, flags);
1486
1487         /* Make sure we are not already running a message */
1488         if (ctlr->cur_msg) {
1489                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1490                 return;
1491         }
1492
1493         /* If another context is idling the device then defer */
1494         if (ctlr->idling) {
1495                 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1496                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1497                 return;
1498         }
1499
1500         /* Check if the queue is idle */
1501         if (list_empty(&ctlr->queue) || !ctlr->running) {
1502                 if (!ctlr->busy) {
1503                         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1504                         return;
1505                 }
1506
1507                 /* Defer any non-atomic teardown to the thread */
1508                 if (!in_kthread) {
1509                         if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1510                             !ctlr->unprepare_transfer_hardware) {
1511                                 spi_idle_runtime_pm(ctlr);
1512                                 ctlr->busy = false;
1513                                 trace_spi_controller_idle(ctlr);
1514                         } else {
1515                                 kthread_queue_work(ctlr->kworker,
1516                                                    &ctlr->pump_messages);
1517                         }
1518                         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1519                         return;
1520                 }
1521
1522                 ctlr->busy = false;
1523                 ctlr->idling = true;
1524                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1525
1526                 kfree(ctlr->dummy_rx);
1527                 ctlr->dummy_rx = NULL;
1528                 kfree(ctlr->dummy_tx);
1529                 ctlr->dummy_tx = NULL;
1530                 if (ctlr->unprepare_transfer_hardware &&
1531                     ctlr->unprepare_transfer_hardware(ctlr))
1532                         dev_err(&ctlr->dev,
1533                                 "failed to unprepare transfer hardware\n");
1534                 spi_idle_runtime_pm(ctlr);
1535                 trace_spi_controller_idle(ctlr);
1536
1537                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1538                 ctlr->idling = false;
1539                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1540                 return;
1541         }
1542
1543         /* Extract head of queue */
1544         msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1545         ctlr->cur_msg = msg;
1546
1547         list_del_init(&msg->queue);
1548         if (ctlr->busy)
1549                 was_busy = true;
1550         else
1551                 ctlr->busy = true;
1552         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1553
1554         mutex_lock(&ctlr->io_mutex);
1555
1556         if (!was_busy && ctlr->auto_runtime_pm) {
1557                 ret = pm_runtime_get_sync(ctlr->dev.parent);
1558                 if (ret < 0) {
1559                         pm_runtime_put_noidle(ctlr->dev.parent);
1560                         dev_err(&ctlr->dev, "Failed to power device: %d\n",
1561                                 ret);
1562                         mutex_unlock(&ctlr->io_mutex);
1563                         return;
1564                 }
1565         }
1566
1567         if (!was_busy)
1568                 trace_spi_controller_busy(ctlr);
1569
1570         if (!was_busy && ctlr->prepare_transfer_hardware) {
1571                 ret = ctlr->prepare_transfer_hardware(ctlr);
1572                 if (ret) {
1573                         dev_err(&ctlr->dev,
1574                                 "failed to prepare transfer hardware: %d\n",
1575                                 ret);
1576
1577                         if (ctlr->auto_runtime_pm)
1578                                 pm_runtime_put(ctlr->dev.parent);
1579
1580                         msg->status = ret;
1581                         spi_finalize_current_message(ctlr);
1582
1583                         mutex_unlock(&ctlr->io_mutex);
1584                         return;
1585                 }
1586         }
1587
1588         trace_spi_message_start(msg);
1589
1590         if (ctlr->prepare_message) {
1591                 ret = ctlr->prepare_message(ctlr, msg);
1592                 if (ret) {
1593                         dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1594                                 ret);
1595                         msg->status = ret;
1596                         spi_finalize_current_message(ctlr);
1597                         goto out;
1598                 }
1599                 ctlr->cur_msg_prepared = true;
1600         }
1601
1602         ret = spi_map_msg(ctlr, msg);
1603         if (ret) {
1604                 msg->status = ret;
1605                 spi_finalize_current_message(ctlr);
1606                 goto out;
1607         }
1608
1609         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1610                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1611                         xfer->ptp_sts_word_pre = 0;
1612                         ptp_read_system_prets(xfer->ptp_sts);
1613                 }
1614         }
1615
1616         ret = ctlr->transfer_one_message(ctlr, msg);
1617         if (ret) {
1618                 dev_err(&ctlr->dev,
1619                         "failed to transfer one message from queue\n");
1620                 goto out;
1621         }
1622
1623 out:
1624         mutex_unlock(&ctlr->io_mutex);
1625
1626         /* Prod the scheduler in case transfer_one() was busy waiting */
1627         if (!ret)
1628                 cond_resched();
1629 }
1630
1631 /**
1632  * spi_pump_messages - kthread work function which processes spi message queue
1633  * @work: pointer to kthread work struct contained in the controller struct
1634  */
1635 static void spi_pump_messages(struct kthread_work *work)
1636 {
1637         struct spi_controller *ctlr =
1638                 container_of(work, struct spi_controller, pump_messages);
1639
1640         __spi_pump_messages(ctlr, true);
1641 }
1642
1643 /**
1644  * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1645  *                          TX timestamp for the requested byte from the SPI
1646  *                          transfer. The frequency with which this function
1647  *                          must be called (once per word, once for the whole
1648  *                          transfer, once per batch of words etc) is arbitrary
1649  *                          as long as the @tx buffer offset is greater than or
1650  *                          equal to the requested byte at the time of the
1651  *                          call. The timestamp is only taken once, at the
1652  *                          first such call. It is assumed that the driver
1653  *                          advances its @tx buffer pointer monotonically.
1654  * @ctlr: Pointer to the spi_controller structure of the driver
1655  * @xfer: Pointer to the transfer being timestamped
1656  * @progress: How many words (not bytes) have been transferred so far
1657  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1658  *            transfer, for less jitter in time measurement. Only compatible
1659  *            with PIO drivers. If true, must follow up with
1660  *            spi_take_timestamp_post or otherwise system will crash.
1661  *            WARNING: for fully predictable results, the CPU frequency must
1662  *            also be under control (governor).
1663  */
1664 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1665                             struct spi_transfer *xfer,
1666                             size_t progress, bool irqs_off)
1667 {
1668         if (!xfer->ptp_sts)
1669                 return;
1670
1671         if (xfer->timestamped)
1672                 return;
1673
1674         if (progress > xfer->ptp_sts_word_pre)
1675                 return;
1676
1677         /* Capture the resolution of the timestamp */
1678         xfer->ptp_sts_word_pre = progress;
1679
1680         if (irqs_off) {
1681                 local_irq_save(ctlr->irq_flags);
1682                 preempt_disable();
1683         }
1684
1685         ptp_read_system_prets(xfer->ptp_sts);
1686 }
1687 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1688
1689 /**
1690  * spi_take_timestamp_post - helper for drivers to collect the end of the
1691  *                           TX timestamp for the requested byte from the SPI
1692  *                           transfer. Can be called with an arbitrary
1693  *                           frequency: only the first call where @tx exceeds
1694  *                           or is equal to the requested word will be
1695  *                           timestamped.
1696  * @ctlr: Pointer to the spi_controller structure of the driver
1697  * @xfer: Pointer to the transfer being timestamped
1698  * @progress: How many words (not bytes) have been transferred so far
1699  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1700  */
1701 void spi_take_timestamp_post(struct spi_controller *ctlr,
1702                              struct spi_transfer *xfer,
1703                              size_t progress, bool irqs_off)
1704 {
1705         if (!xfer->ptp_sts)
1706                 return;
1707
1708         if (xfer->timestamped)
1709                 return;
1710
1711         if (progress < xfer->ptp_sts_word_post)
1712                 return;
1713
1714         ptp_read_system_postts(xfer->ptp_sts);
1715
1716         if (irqs_off) {
1717                 local_irq_restore(ctlr->irq_flags);
1718                 preempt_enable();
1719         }
1720
1721         /* Capture the resolution of the timestamp */
1722         xfer->ptp_sts_word_post = progress;
1723
1724         xfer->timestamped = true;
1725 }
1726 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1727
1728 /**
1729  * spi_set_thread_rt - set the controller to pump at realtime priority
1730  * @ctlr: controller to boost priority of
1731  *
1732  * This can be called because the controller requested realtime priority
1733  * (by setting the ->rt value before calling spi_register_controller()) or
1734  * because a device on the bus said that its transfers needed realtime
1735  * priority.
1736  *
1737  * NOTE: at the moment if any device on a bus says it needs realtime then
1738  * the thread will be at realtime priority for all transfers on that
1739  * controller.  If this eventually becomes a problem we may see if we can
1740  * find a way to boost the priority only temporarily during relevant
1741  * transfers.
1742  */
1743 static void spi_set_thread_rt(struct spi_controller *ctlr)
1744 {
1745         dev_info(&ctlr->dev,
1746                 "will run message pump with realtime priority\n");
1747         sched_set_fifo(ctlr->kworker->task);
1748 }
1749
1750 static int spi_init_queue(struct spi_controller *ctlr)
1751 {
1752         ctlr->running = false;
1753         ctlr->busy = false;
1754
1755         ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1756         if (IS_ERR(ctlr->kworker)) {
1757                 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1758                 return PTR_ERR(ctlr->kworker);
1759         }
1760
1761         kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1762
1763         /*
1764          * Controller config will indicate if this controller should run the
1765          * message pump with high (realtime) priority to reduce the transfer
1766          * latency on the bus by minimising the delay between a transfer
1767          * request and the scheduling of the message pump thread. Without this
1768          * setting the message pump thread will remain at default priority.
1769          */
1770         if (ctlr->rt)
1771                 spi_set_thread_rt(ctlr);
1772
1773         return 0;
1774 }
1775
1776 /**
1777  * spi_get_next_queued_message() - called by driver to check for queued
1778  * messages
1779  * @ctlr: the controller to check for queued messages
1780  *
1781  * If there are more messages in the queue, the next message is returned from
1782  * this call.
1783  *
1784  * Return: the next message in the queue, else NULL if the queue is empty.
1785  */
1786 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1787 {
1788         struct spi_message *next;
1789         unsigned long flags;
1790
1791         /* get a pointer to the next message, if any */
1792         spin_lock_irqsave(&ctlr->queue_lock, flags);
1793         next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1794                                         queue);
1795         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1796
1797         return next;
1798 }
1799 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1800
1801 /**
1802  * spi_finalize_current_message() - the current message is complete
1803  * @ctlr: the controller to return the message to
1804  *
1805  * Called by the driver to notify the core that the message in the front of the
1806  * queue is complete and can be removed from the queue.
1807  */
1808 void spi_finalize_current_message(struct spi_controller *ctlr)
1809 {
1810         struct spi_transfer *xfer;
1811         struct spi_message *mesg;
1812         unsigned long flags;
1813         int ret;
1814
1815         spin_lock_irqsave(&ctlr->queue_lock, flags);
1816         mesg = ctlr->cur_msg;
1817         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1818
1819         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1820                 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1821                         ptp_read_system_postts(xfer->ptp_sts);
1822                         xfer->ptp_sts_word_post = xfer->len;
1823                 }
1824         }
1825
1826         if (unlikely(ctlr->ptp_sts_supported))
1827                 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1828                         WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1829
1830         spi_unmap_msg(ctlr, mesg);
1831
1832         /* In the prepare_messages callback the spi bus has the opportunity to
1833          * split a transfer to smaller chunks.
1834          * Release splited transfers here since spi_map_msg is done on the
1835          * splited transfers.
1836          */
1837         spi_res_release(ctlr, mesg);
1838
1839         if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1840                 ret = ctlr->unprepare_message(ctlr, mesg);
1841                 if (ret) {
1842                         dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1843                                 ret);
1844                 }
1845         }
1846
1847         spin_lock_irqsave(&ctlr->queue_lock, flags);
1848         ctlr->cur_msg = NULL;
1849         ctlr->cur_msg_prepared = false;
1850         ctlr->fallback = false;
1851         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1852         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1853
1854         trace_spi_message_done(mesg);
1855
1856         mesg->state = NULL;
1857         if (mesg->complete)
1858                 mesg->complete(mesg->context);
1859 }
1860 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1861
1862 static int spi_start_queue(struct spi_controller *ctlr)
1863 {
1864         unsigned long flags;
1865
1866         spin_lock_irqsave(&ctlr->queue_lock, flags);
1867
1868         if (ctlr->running || ctlr->busy) {
1869                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1870                 return -EBUSY;
1871         }
1872
1873         ctlr->running = true;
1874         ctlr->cur_msg = NULL;
1875         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1876
1877         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1878
1879         return 0;
1880 }
1881
1882 static int spi_stop_queue(struct spi_controller *ctlr)
1883 {
1884         unsigned long flags;
1885         unsigned limit = 500;
1886         int ret = 0;
1887
1888         spin_lock_irqsave(&ctlr->queue_lock, flags);
1889
1890         /*
1891          * This is a bit lame, but is optimized for the common execution path.
1892          * A wait_queue on the ctlr->busy could be used, but then the common
1893          * execution path (pump_messages) would be required to call wake_up or
1894          * friends on every SPI message. Do this instead.
1895          */
1896         while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1897                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1898                 usleep_range(10000, 11000);
1899                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1900         }
1901
1902         if (!list_empty(&ctlr->queue) || ctlr->busy)
1903                 ret = -EBUSY;
1904         else
1905                 ctlr->running = false;
1906
1907         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1908
1909         if (ret) {
1910                 dev_warn(&ctlr->dev, "could not stop message queue\n");
1911                 return ret;
1912         }
1913         return ret;
1914 }
1915
1916 static int spi_destroy_queue(struct spi_controller *ctlr)
1917 {
1918         int ret;
1919
1920         ret = spi_stop_queue(ctlr);
1921
1922         /*
1923          * kthread_flush_worker will block until all work is done.
1924          * If the reason that stop_queue timed out is that the work will never
1925          * finish, then it does no good to call flush/stop thread, so
1926          * return anyway.
1927          */
1928         if (ret) {
1929                 dev_err(&ctlr->dev, "problem destroying queue\n");
1930                 return ret;
1931         }
1932
1933         kthread_destroy_worker(ctlr->kworker);
1934
1935         return 0;
1936 }
1937
1938 static int __spi_queued_transfer(struct spi_device *spi,
1939                                  struct spi_message *msg,
1940                                  bool need_pump)
1941 {
1942         struct spi_controller *ctlr = spi->controller;
1943         unsigned long flags;
1944
1945         spin_lock_irqsave(&ctlr->queue_lock, flags);
1946
1947         if (!ctlr->running) {
1948                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1949                 return -ESHUTDOWN;
1950         }
1951         msg->actual_length = 0;
1952         msg->status = -EINPROGRESS;
1953
1954         list_add_tail(&msg->queue, &ctlr->queue);
1955         if (!ctlr->busy && need_pump)
1956                 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1957
1958         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1959         return 0;
1960 }
1961
1962 /**
1963  * spi_queued_transfer - transfer function for queued transfers
1964  * @spi: spi device which is requesting transfer
1965  * @msg: spi message which is to handled is queued to driver queue
1966  *
1967  * Return: zero on success, else a negative error code.
1968  */
1969 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1970 {
1971         return __spi_queued_transfer(spi, msg, true);
1972 }
1973
1974 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1975 {
1976         int ret;
1977
1978         ctlr->transfer = spi_queued_transfer;
1979         if (!ctlr->transfer_one_message)
1980                 ctlr->transfer_one_message = spi_transfer_one_message;
1981
1982         /* Initialize and start queue */
1983         ret = spi_init_queue(ctlr);
1984         if (ret) {
1985                 dev_err(&ctlr->dev, "problem initializing queue\n");
1986                 goto err_init_queue;
1987         }
1988         ctlr->queued = true;
1989         ret = spi_start_queue(ctlr);
1990         if (ret) {
1991                 dev_err(&ctlr->dev, "problem starting queue\n");
1992                 goto err_start_queue;
1993         }
1994
1995         return 0;
1996
1997 err_start_queue:
1998         spi_destroy_queue(ctlr);
1999 err_init_queue:
2000         return ret;
2001 }
2002
2003 /**
2004  * spi_flush_queue - Send all pending messages in the queue from the callers'
2005  *                   context
2006  * @ctlr: controller to process queue for
2007  *
2008  * This should be used when one wants to ensure all pending messages have been
2009  * sent before doing something. Is used by the spi-mem code to make sure SPI
2010  * memory operations do not preempt regular SPI transfers that have been queued
2011  * before the spi-mem operation.
2012  */
2013 void spi_flush_queue(struct spi_controller *ctlr)
2014 {
2015         if (ctlr->transfer == spi_queued_transfer)
2016                 __spi_pump_messages(ctlr, false);
2017 }
2018
2019 /*-------------------------------------------------------------------------*/
2020
2021 #if defined(CONFIG_OF)
2022 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2023                            struct device_node *nc)
2024 {
2025         u32 value;
2026         int rc;
2027
2028         /* Mode (clock phase/polarity/etc.) */
2029         if (of_property_read_bool(nc, "spi-cpha"))
2030                 spi->mode |= SPI_CPHA;
2031         if (of_property_read_bool(nc, "spi-cpol"))
2032                 spi->mode |= SPI_CPOL;
2033         if (of_property_read_bool(nc, "spi-3wire"))
2034                 spi->mode |= SPI_3WIRE;
2035         if (of_property_read_bool(nc, "spi-lsb-first"))
2036                 spi->mode |= SPI_LSB_FIRST;
2037         if (of_property_read_bool(nc, "spi-cs-high"))
2038                 spi->mode |= SPI_CS_HIGH;
2039
2040         /* Device DUAL/QUAD mode */
2041         if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2042                 switch (value) {
2043                 case 0:
2044                         spi->mode |= SPI_NO_TX;
2045                         break;
2046                 case 1:
2047                         break;
2048                 case 2:
2049                         spi->mode |= SPI_TX_DUAL;
2050                         break;
2051                 case 4:
2052                         spi->mode |= SPI_TX_QUAD;
2053                         break;
2054                 case 8:
2055                         spi->mode |= SPI_TX_OCTAL;
2056                         break;
2057                 default:
2058                         dev_warn(&ctlr->dev,
2059                                 "spi-tx-bus-width %d not supported\n",
2060                                 value);
2061                         break;
2062                 }
2063         }
2064
2065         if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2066                 switch (value) {
2067                 case 0:
2068                         spi->mode |= SPI_NO_RX;
2069                         break;
2070                 case 1:
2071                         break;
2072                 case 2:
2073                         spi->mode |= SPI_RX_DUAL;
2074                         break;
2075                 case 4:
2076                         spi->mode |= SPI_RX_QUAD;
2077                         break;
2078                 case 8:
2079                         spi->mode |= SPI_RX_OCTAL;
2080                         break;
2081                 default:
2082                         dev_warn(&ctlr->dev,
2083                                 "spi-rx-bus-width %d not supported\n",
2084                                 value);
2085                         break;
2086                 }
2087         }
2088
2089         if (spi_controller_is_slave(ctlr)) {
2090                 if (!of_node_name_eq(nc, "slave")) {
2091                         dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2092                                 nc);
2093                         return -EINVAL;
2094                 }
2095                 return 0;
2096         }
2097
2098         /* Device address */
2099         rc = of_property_read_u32(nc, "reg", &value);
2100         if (rc) {
2101                 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2102                         nc, rc);
2103                 return rc;
2104         }
2105         spi->chip_select = value;
2106
2107         /* Device speed */
2108         if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2109                 spi->max_speed_hz = value;
2110
2111         return 0;
2112 }
2113
2114 static struct spi_device *
2115 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2116 {
2117         struct spi_device *spi;
2118         int rc;
2119
2120         /* Alloc an spi_device */
2121         spi = spi_alloc_device(ctlr);
2122         if (!spi) {
2123                 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2124                 rc = -ENOMEM;
2125                 goto err_out;
2126         }
2127
2128         /* Select device driver */
2129         rc = of_modalias_node(nc, spi->modalias,
2130                                 sizeof(spi->modalias));
2131         if (rc < 0) {
2132                 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2133                 goto err_out;
2134         }
2135
2136         rc = of_spi_parse_dt(ctlr, spi, nc);
2137         if (rc)
2138                 goto err_out;
2139
2140         /* Store a pointer to the node in the device structure */
2141         of_node_get(nc);
2142         spi->dev.of_node = nc;
2143         spi->dev.fwnode = of_fwnode_handle(nc);
2144
2145         /* Register the new device */
2146         rc = spi_add_device(spi);
2147         if (rc) {
2148                 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2149                 goto err_of_node_put;
2150         }
2151
2152         return spi;
2153
2154 err_of_node_put:
2155         of_node_put(nc);
2156 err_out:
2157         spi_dev_put(spi);
2158         return ERR_PTR(rc);
2159 }
2160
2161 /**
2162  * of_register_spi_devices() - Register child devices onto the SPI bus
2163  * @ctlr:       Pointer to spi_controller device
2164  *
2165  * Registers an spi_device for each child node of controller node which
2166  * represents a valid SPI slave.
2167  */
2168 static void of_register_spi_devices(struct spi_controller *ctlr)
2169 {
2170         struct spi_device *spi;
2171         struct device_node *nc;
2172
2173         if (!ctlr->dev.of_node)
2174                 return;
2175
2176         for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2177                 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2178                         continue;
2179                 spi = of_register_spi_device(ctlr, nc);
2180                 if (IS_ERR(spi)) {
2181                         dev_warn(&ctlr->dev,
2182                                  "Failed to create SPI device for %pOF\n", nc);
2183                         of_node_clear_flag(nc, OF_POPULATED);
2184                 }
2185         }
2186 }
2187 #else
2188 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2189 #endif
2190
2191 /**
2192  * spi_new_ancillary_device() - Register ancillary SPI device
2193  * @spi:         Pointer to the main SPI device registering the ancillary device
2194  * @chip_select: Chip Select of the ancillary device
2195  *
2196  * Register an ancillary SPI device; for example some chips have a chip-select
2197  * for normal device usage and another one for setup/firmware upload.
2198  *
2199  * This may only be called from main SPI device's probe routine.
2200  *
2201  * Return: 0 on success; negative errno on failure
2202  */
2203 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2204                                              u8 chip_select)
2205 {
2206         struct spi_device *ancillary;
2207         int rc = 0;
2208
2209         /* Alloc an spi_device */
2210         ancillary = spi_alloc_device(spi->controller);
2211         if (!ancillary) {
2212                 rc = -ENOMEM;
2213                 goto err_out;
2214         }
2215
2216         strlcpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2217
2218         /* Use provided chip-select for ancillary device */
2219         ancillary->chip_select = chip_select;
2220
2221         /* Take over SPI mode/speed from SPI main device */
2222         ancillary->max_speed_hz = spi->max_speed_hz;
2223         ancillary->mode = spi->mode;
2224
2225         /* Register the new device */
2226         rc = spi_add_device_locked(ancillary);
2227         if (rc) {
2228                 dev_err(&spi->dev, "failed to register ancillary device\n");
2229                 goto err_out;
2230         }
2231
2232         return ancillary;
2233
2234 err_out:
2235         spi_dev_put(ancillary);
2236         return ERR_PTR(rc);
2237 }
2238 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2239
2240 #ifdef CONFIG_ACPI
2241 struct acpi_spi_lookup {
2242         struct spi_controller   *ctlr;
2243         u32                     max_speed_hz;
2244         u32                     mode;
2245         int                     irq;
2246         u8                      bits_per_word;
2247         u8                      chip_select;
2248 };
2249
2250 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2251                                             struct acpi_spi_lookup *lookup)
2252 {
2253         const union acpi_object *obj;
2254
2255         if (!x86_apple_machine)
2256                 return;
2257
2258         if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2259             && obj->buffer.length >= 4)
2260                 lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2261
2262         if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2263             && obj->buffer.length == 8)
2264                 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2265
2266         if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2267             && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2268                 lookup->mode |= SPI_LSB_FIRST;
2269
2270         if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2271             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2272                 lookup->mode |= SPI_CPOL;
2273
2274         if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2275             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2276                 lookup->mode |= SPI_CPHA;
2277 }
2278
2279 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2280 {
2281         struct acpi_spi_lookup *lookup = data;
2282         struct spi_controller *ctlr = lookup->ctlr;
2283
2284         if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2285                 struct acpi_resource_spi_serialbus *sb;
2286                 acpi_handle parent_handle;
2287                 acpi_status status;
2288
2289                 sb = &ares->data.spi_serial_bus;
2290                 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2291
2292                         status = acpi_get_handle(NULL,
2293                                                  sb->resource_source.string_ptr,
2294                                                  &parent_handle);
2295
2296                         if (ACPI_FAILURE(status) ||
2297                             ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2298                                 return -ENODEV;
2299
2300                         /*
2301                          * ACPI DeviceSelection numbering is handled by the
2302                          * host controller driver in Windows and can vary
2303                          * from driver to driver. In Linux we always expect
2304                          * 0 .. max - 1 so we need to ask the driver to
2305                          * translate between the two schemes.
2306                          */
2307                         if (ctlr->fw_translate_cs) {
2308                                 int cs = ctlr->fw_translate_cs(ctlr,
2309                                                 sb->device_selection);
2310                                 if (cs < 0)
2311                                         return cs;
2312                                 lookup->chip_select = cs;
2313                         } else {
2314                                 lookup->chip_select = sb->device_selection;
2315                         }
2316
2317                         lookup->max_speed_hz = sb->connection_speed;
2318                         lookup->bits_per_word = sb->data_bit_length;
2319
2320                         if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2321                                 lookup->mode |= SPI_CPHA;
2322                         if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2323                                 lookup->mode |= SPI_CPOL;
2324                         if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2325                                 lookup->mode |= SPI_CS_HIGH;
2326                 }
2327         } else if (lookup->irq < 0) {
2328                 struct resource r;
2329
2330                 if (acpi_dev_resource_interrupt(ares, 0, &r))
2331                         lookup->irq = r.start;
2332         }
2333
2334         /* Always tell the ACPI core to skip this resource */
2335         return 1;
2336 }
2337
2338 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2339                                             struct acpi_device *adev)
2340 {
2341         acpi_handle parent_handle = NULL;
2342         struct list_head resource_list;
2343         struct acpi_spi_lookup lookup = {};
2344         struct spi_device *spi;
2345         int ret;
2346
2347         if (acpi_bus_get_status(adev) || !adev->status.present ||
2348             acpi_device_enumerated(adev))
2349                 return AE_OK;
2350
2351         lookup.ctlr             = ctlr;
2352         lookup.irq              = -1;
2353
2354         INIT_LIST_HEAD(&resource_list);
2355         ret = acpi_dev_get_resources(adev, &resource_list,
2356                                      acpi_spi_add_resource, &lookup);
2357         acpi_dev_free_resource_list(&resource_list);
2358
2359         if (ret < 0)
2360                 /* found SPI in _CRS but it points to another controller */
2361                 return AE_OK;
2362
2363         if (!lookup.max_speed_hz &&
2364             ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2365             ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2366                 /* Apple does not use _CRS but nested devices for SPI slaves */
2367                 acpi_spi_parse_apple_properties(adev, &lookup);
2368         }
2369
2370         if (!lookup.max_speed_hz)
2371                 return AE_OK;
2372
2373         spi = spi_alloc_device(ctlr);
2374         if (!spi) {
2375                 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2376                         dev_name(&adev->dev));
2377                 return AE_NO_MEMORY;
2378         }
2379
2380
2381         ACPI_COMPANION_SET(&spi->dev, adev);
2382         spi->max_speed_hz       = lookup.max_speed_hz;
2383         spi->mode               |= lookup.mode;
2384         spi->irq                = lookup.irq;
2385         spi->bits_per_word      = lookup.bits_per_word;
2386         spi->chip_select        = lookup.chip_select;
2387
2388         acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2389                           sizeof(spi->modalias));
2390
2391         if (spi->irq < 0)
2392                 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2393
2394         acpi_device_set_enumerated(adev);
2395
2396         adev->power.flags.ignore_parent = true;
2397         if (spi_add_device(spi)) {
2398                 adev->power.flags.ignore_parent = false;
2399                 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2400                         dev_name(&adev->dev));
2401                 spi_dev_put(spi);
2402         }
2403
2404         return AE_OK;
2405 }
2406
2407 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2408                                        void *data, void **return_value)
2409 {
2410         struct spi_controller *ctlr = data;
2411         struct acpi_device *adev;
2412
2413         if (acpi_bus_get_device(handle, &adev))
2414                 return AE_OK;
2415
2416         return acpi_register_spi_device(ctlr, adev);
2417 }
2418
2419 #define SPI_ACPI_ENUMERATE_MAX_DEPTH            32
2420
2421 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2422 {
2423         acpi_status status;
2424         acpi_handle handle;
2425
2426         handle = ACPI_HANDLE(ctlr->dev.parent);
2427         if (!handle)
2428                 return;
2429
2430         status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2431                                      SPI_ACPI_ENUMERATE_MAX_DEPTH,
2432                                      acpi_spi_add_device, NULL, ctlr, NULL);
2433         if (ACPI_FAILURE(status))
2434                 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2435 }
2436 #else
2437 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2438 #endif /* CONFIG_ACPI */
2439
2440 static void spi_controller_release(struct device *dev)
2441 {
2442         struct spi_controller *ctlr;
2443
2444         ctlr = container_of(dev, struct spi_controller, dev);
2445         kfree(ctlr);
2446 }
2447
2448 static struct class spi_master_class = {
2449         .name           = "spi_master",
2450         .owner          = THIS_MODULE,
2451         .dev_release    = spi_controller_release,
2452         .dev_groups     = spi_master_groups,
2453 };
2454
2455 #ifdef CONFIG_SPI_SLAVE
2456 /**
2457  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2458  *                   controller
2459  * @spi: device used for the current transfer
2460  */
2461 int spi_slave_abort(struct spi_device *spi)
2462 {
2463         struct spi_controller *ctlr = spi->controller;
2464
2465         if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2466                 return ctlr->slave_abort(ctlr);
2467
2468         return -ENOTSUPP;
2469 }
2470 EXPORT_SYMBOL_GPL(spi_slave_abort);
2471
2472 static int match_true(struct device *dev, void *data)
2473 {
2474         return 1;
2475 }
2476
2477 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2478                           char *buf)
2479 {
2480         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2481                                                    dev);
2482         struct device *child;
2483
2484         child = device_find_child(&ctlr->dev, NULL, match_true);
2485         return sprintf(buf, "%s\n",
2486                        child ? to_spi_device(child)->modalias : NULL);
2487 }
2488
2489 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2490                            const char *buf, size_t count)
2491 {
2492         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2493                                                    dev);
2494         struct spi_device *spi;
2495         struct device *child;
2496         char name[32];
2497         int rc;
2498
2499         rc = sscanf(buf, "%31s", name);
2500         if (rc != 1 || !name[0])
2501                 return -EINVAL;
2502
2503         child = device_find_child(&ctlr->dev, NULL, match_true);
2504         if (child) {
2505                 /* Remove registered slave */
2506                 device_unregister(child);
2507                 put_device(child);
2508         }
2509
2510         if (strcmp(name, "(null)")) {
2511                 /* Register new slave */
2512                 spi = spi_alloc_device(ctlr);
2513                 if (!spi)
2514                         return -ENOMEM;
2515
2516                 strlcpy(spi->modalias, name, sizeof(spi->modalias));
2517
2518                 rc = spi_add_device(spi);
2519                 if (rc) {
2520                         spi_dev_put(spi);
2521                         return rc;
2522                 }
2523         }
2524
2525         return count;
2526 }
2527
2528 static DEVICE_ATTR_RW(slave);
2529
2530 static struct attribute *spi_slave_attrs[] = {
2531         &dev_attr_slave.attr,
2532         NULL,
2533 };
2534
2535 static const struct attribute_group spi_slave_group = {
2536         .attrs = spi_slave_attrs,
2537 };
2538
2539 static const struct attribute_group *spi_slave_groups[] = {
2540         &spi_controller_statistics_group,
2541         &spi_slave_group,
2542         NULL,
2543 };
2544
2545 static struct class spi_slave_class = {
2546         .name           = "spi_slave",
2547         .owner          = THIS_MODULE,
2548         .dev_release    = spi_controller_release,
2549         .dev_groups     = spi_slave_groups,
2550 };
2551 #else
2552 extern struct class spi_slave_class;    /* dummy */
2553 #endif
2554
2555 /**
2556  * __spi_alloc_controller - allocate an SPI master or slave controller
2557  * @dev: the controller, possibly using the platform_bus
2558  * @size: how much zeroed driver-private data to allocate; the pointer to this
2559  *      memory is in the driver_data field of the returned device, accessible
2560  *      with spi_controller_get_devdata(); the memory is cacheline aligned;
2561  *      drivers granting DMA access to portions of their private data need to
2562  *      round up @size using ALIGN(size, dma_get_cache_alignment()).
2563  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2564  *      slave (true) controller
2565  * Context: can sleep
2566  *
2567  * This call is used only by SPI controller drivers, which are the
2568  * only ones directly touching chip registers.  It's how they allocate
2569  * an spi_controller structure, prior to calling spi_register_controller().
2570  *
2571  * This must be called from context that can sleep.
2572  *
2573  * The caller is responsible for assigning the bus number and initializing the
2574  * controller's methods before calling spi_register_controller(); and (after
2575  * errors adding the device) calling spi_controller_put() to prevent a memory
2576  * leak.
2577  *
2578  * Return: the SPI controller structure on success, else NULL.
2579  */
2580 struct spi_controller *__spi_alloc_controller(struct device *dev,
2581                                               unsigned int size, bool slave)
2582 {
2583         struct spi_controller   *ctlr;
2584         size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2585
2586         if (!dev)
2587                 return NULL;
2588
2589         ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2590         if (!ctlr)
2591                 return NULL;
2592
2593         device_initialize(&ctlr->dev);
2594         INIT_LIST_HEAD(&ctlr->queue);
2595         spin_lock_init(&ctlr->queue_lock);
2596         spin_lock_init(&ctlr->bus_lock_spinlock);
2597         mutex_init(&ctlr->bus_lock_mutex);
2598         mutex_init(&ctlr->io_mutex);
2599         mutex_init(&ctlr->add_lock);
2600         ctlr->bus_num = -1;
2601         ctlr->num_chipselect = 1;
2602         ctlr->slave = slave;
2603         if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2604                 ctlr->dev.class = &spi_slave_class;
2605         else
2606                 ctlr->dev.class = &spi_master_class;
2607         ctlr->dev.parent = dev;
2608         pm_suspend_ignore_children(&ctlr->dev, true);
2609         spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2610
2611         return ctlr;
2612 }
2613 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2614
2615 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2616 {
2617         spi_controller_put(*(struct spi_controller **)ctlr);
2618 }
2619
2620 /**
2621  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2622  * @dev: physical device of SPI controller
2623  * @size: how much zeroed driver-private data to allocate
2624  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2625  * Context: can sleep
2626  *
2627  * Allocate an SPI controller and automatically release a reference on it
2628  * when @dev is unbound from its driver.  Drivers are thus relieved from
2629  * having to call spi_controller_put().
2630  *
2631  * The arguments to this function are identical to __spi_alloc_controller().
2632  *
2633  * Return: the SPI controller structure on success, else NULL.
2634  */
2635 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2636                                                    unsigned int size,
2637                                                    bool slave)
2638 {
2639         struct spi_controller **ptr, *ctlr;
2640
2641         ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2642                            GFP_KERNEL);
2643         if (!ptr)
2644                 return NULL;
2645
2646         ctlr = __spi_alloc_controller(dev, size, slave);
2647         if (ctlr) {
2648                 ctlr->devm_allocated = true;
2649                 *ptr = ctlr;
2650                 devres_add(dev, ptr);
2651         } else {
2652                 devres_free(ptr);
2653         }
2654
2655         return ctlr;
2656 }
2657 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2658
2659 #ifdef CONFIG_OF
2660 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2661 {
2662         int nb, i, *cs;
2663         struct device_node *np = ctlr->dev.of_node;
2664
2665         if (!np)
2666                 return 0;
2667
2668         nb = of_gpio_named_count(np, "cs-gpios");
2669         ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2670
2671         /* Return error only for an incorrectly formed cs-gpios property */
2672         if (nb == 0 || nb == -ENOENT)
2673                 return 0;
2674         else if (nb < 0)
2675                 return nb;
2676
2677         cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2678                           GFP_KERNEL);
2679         ctlr->cs_gpios = cs;
2680
2681         if (!ctlr->cs_gpios)
2682                 return -ENOMEM;
2683
2684         for (i = 0; i < ctlr->num_chipselect; i++)
2685                 cs[i] = -ENOENT;
2686
2687         for (i = 0; i < nb; i++)
2688                 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2689
2690         return 0;
2691 }
2692 #else
2693 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2694 {
2695         return 0;
2696 }
2697 #endif
2698
2699 /**
2700  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2701  * @ctlr: The SPI master to grab GPIO descriptors for
2702  */
2703 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2704 {
2705         int nb, i;
2706         struct gpio_desc **cs;
2707         struct device *dev = &ctlr->dev;
2708         unsigned long native_cs_mask = 0;
2709         unsigned int num_cs_gpios = 0;
2710
2711         nb = gpiod_count(dev, "cs");
2712         if (nb < 0) {
2713                 /* No GPIOs at all is fine, else return the error */
2714                 if (nb == -ENOENT)
2715                         return 0;
2716                 return nb;
2717         }
2718
2719         ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2720
2721         cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2722                           GFP_KERNEL);
2723         if (!cs)
2724                 return -ENOMEM;
2725         ctlr->cs_gpiods = cs;
2726
2727         for (i = 0; i < nb; i++) {
2728                 /*
2729                  * Most chipselects are active low, the inverted
2730                  * semantics are handled by special quirks in gpiolib,
2731                  * so initializing them GPIOD_OUT_LOW here means
2732                  * "unasserted", in most cases this will drive the physical
2733                  * line high.
2734                  */
2735                 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2736                                                       GPIOD_OUT_LOW);
2737                 if (IS_ERR(cs[i]))
2738                         return PTR_ERR(cs[i]);
2739
2740                 if (cs[i]) {
2741                         /*
2742                          * If we find a CS GPIO, name it after the device and
2743                          * chip select line.
2744                          */
2745                         char *gpioname;
2746
2747                         gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2748                                                   dev_name(dev), i);
2749                         if (!gpioname)
2750                                 return -ENOMEM;
2751                         gpiod_set_consumer_name(cs[i], gpioname);
2752                         num_cs_gpios++;
2753                         continue;
2754                 }
2755
2756                 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2757                         dev_err(dev, "Invalid native chip select %d\n", i);
2758                         return -EINVAL;
2759                 }
2760                 native_cs_mask |= BIT(i);
2761         }
2762
2763         ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
2764
2765         if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
2766             ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
2767                 dev_err(dev, "No unused native chip select available\n");
2768                 return -EINVAL;
2769         }
2770
2771         return 0;
2772 }
2773
2774 static int spi_controller_check_ops(struct spi_controller *ctlr)
2775 {
2776         /*
2777          * The controller may implement only the high-level SPI-memory like
2778          * operations if it does not support regular SPI transfers, and this is
2779          * valid use case.
2780          * If ->mem_ops is NULL, we request that at least one of the
2781          * ->transfer_xxx() method be implemented.
2782          */
2783         if (ctlr->mem_ops) {
2784                 if (!ctlr->mem_ops->exec_op)
2785                         return -EINVAL;
2786         } else if (!ctlr->transfer && !ctlr->transfer_one &&
2787                    !ctlr->transfer_one_message) {
2788                 return -EINVAL;
2789         }
2790
2791         return 0;
2792 }
2793
2794 /**
2795  * spi_register_controller - register SPI master or slave controller
2796  * @ctlr: initialized master, originally from spi_alloc_master() or
2797  *      spi_alloc_slave()
2798  * Context: can sleep
2799  *
2800  * SPI controllers connect to their drivers using some non-SPI bus,
2801  * such as the platform bus.  The final stage of probe() in that code
2802  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2803  *
2804  * SPI controllers use board specific (often SOC specific) bus numbers,
2805  * and board-specific addressing for SPI devices combines those numbers
2806  * with chip select numbers.  Since SPI does not directly support dynamic
2807  * device identification, boards need configuration tables telling which
2808  * chip is at which address.
2809  *
2810  * This must be called from context that can sleep.  It returns zero on
2811  * success, else a negative error code (dropping the controller's refcount).
2812  * After a successful return, the caller is responsible for calling
2813  * spi_unregister_controller().
2814  *
2815  * Return: zero on success, else a negative error code.
2816  */
2817 int spi_register_controller(struct spi_controller *ctlr)
2818 {
2819         struct device           *dev = ctlr->dev.parent;
2820         struct boardinfo        *bi;
2821         int                     status;
2822         int                     id, first_dynamic;
2823
2824         if (!dev)
2825                 return -ENODEV;
2826
2827         /*
2828          * Make sure all necessary hooks are implemented before registering
2829          * the SPI controller.
2830          */
2831         status = spi_controller_check_ops(ctlr);
2832         if (status)
2833                 return status;
2834
2835         if (ctlr->bus_num >= 0) {
2836                 /* devices with a fixed bus num must check-in with the num */
2837                 mutex_lock(&board_lock);
2838                 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2839                         ctlr->bus_num + 1, GFP_KERNEL);
2840                 mutex_unlock(&board_lock);
2841                 if (WARN(id < 0, "couldn't get idr"))
2842                         return id == -ENOSPC ? -EBUSY : id;
2843                 ctlr->bus_num = id;
2844         } else if (ctlr->dev.of_node) {
2845                 /* allocate dynamic bus number using Linux idr */
2846                 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2847                 if (id >= 0) {
2848                         ctlr->bus_num = id;
2849                         mutex_lock(&board_lock);
2850                         id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2851                                        ctlr->bus_num + 1, GFP_KERNEL);
2852                         mutex_unlock(&board_lock);
2853                         if (WARN(id < 0, "couldn't get idr"))
2854                                 return id == -ENOSPC ? -EBUSY : id;
2855                 }
2856         }
2857         if (ctlr->bus_num < 0) {
2858                 first_dynamic = of_alias_get_highest_id("spi");
2859                 if (first_dynamic < 0)
2860                         first_dynamic = 0;
2861                 else
2862                         first_dynamic++;
2863
2864                 mutex_lock(&board_lock);
2865                 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2866                                0, GFP_KERNEL);
2867                 mutex_unlock(&board_lock);
2868                 if (WARN(id < 0, "couldn't get idr"))
2869                         return id;
2870                 ctlr->bus_num = id;
2871         }
2872         ctlr->bus_lock_flag = 0;
2873         init_completion(&ctlr->xfer_completion);
2874         if (!ctlr->max_dma_len)
2875                 ctlr->max_dma_len = INT_MAX;
2876
2877         /* register the device, then userspace will see it.
2878          * registration fails if the bus ID is in use.
2879          */
2880         dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2881
2882         if (!spi_controller_is_slave(ctlr)) {
2883                 if (ctlr->use_gpio_descriptors) {
2884                         status = spi_get_gpio_descs(ctlr);
2885                         if (status)
2886                                 goto free_bus_id;
2887                         /*
2888                          * A controller using GPIO descriptors always
2889                          * supports SPI_CS_HIGH if need be.
2890                          */
2891                         ctlr->mode_bits |= SPI_CS_HIGH;
2892                 } else {
2893                         /* Legacy code path for GPIOs from DT */
2894                         status = of_spi_get_gpio_numbers(ctlr);
2895                         if (status)
2896                                 goto free_bus_id;
2897                 }
2898         }
2899
2900         /*
2901          * Even if it's just one always-selected device, there must
2902          * be at least one chipselect.
2903          */
2904         if (!ctlr->num_chipselect) {
2905                 status = -EINVAL;
2906                 goto free_bus_id;
2907         }
2908
2909         status = device_add(&ctlr->dev);
2910         if (status < 0)
2911                 goto free_bus_id;
2912         dev_dbg(dev, "registered %s %s\n",
2913                         spi_controller_is_slave(ctlr) ? "slave" : "master",
2914                         dev_name(&ctlr->dev));
2915
2916         /*
2917          * If we're using a queued driver, start the queue. Note that we don't
2918          * need the queueing logic if the driver is only supporting high-level
2919          * memory operations.
2920          */
2921         if (ctlr->transfer) {
2922                 dev_info(dev, "controller is unqueued, this is deprecated\n");
2923         } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2924                 status = spi_controller_initialize_queue(ctlr);
2925                 if (status) {
2926                         device_del(&ctlr->dev);
2927                         goto free_bus_id;
2928                 }
2929         }
2930         /* add statistics */
2931         spin_lock_init(&ctlr->statistics.lock);
2932
2933         mutex_lock(&board_lock);
2934         list_add_tail(&ctlr->list, &spi_controller_list);
2935         list_for_each_entry(bi, &board_list, list)
2936                 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2937         mutex_unlock(&board_lock);
2938
2939         /* Register devices from the device tree and ACPI */
2940         of_register_spi_devices(ctlr);
2941         acpi_register_spi_devices(ctlr);
2942         return status;
2943
2944 free_bus_id:
2945         mutex_lock(&board_lock);
2946         idr_remove(&spi_master_idr, ctlr->bus_num);
2947         mutex_unlock(&board_lock);
2948         return status;
2949 }
2950 EXPORT_SYMBOL_GPL(spi_register_controller);
2951
2952 static void devm_spi_unregister(struct device *dev, void *res)
2953 {
2954         spi_unregister_controller(*(struct spi_controller **)res);
2955 }
2956
2957 /**
2958  * devm_spi_register_controller - register managed SPI master or slave
2959  *      controller
2960  * @dev:    device managing SPI controller
2961  * @ctlr: initialized controller, originally from spi_alloc_master() or
2962  *      spi_alloc_slave()
2963  * Context: can sleep
2964  *
2965  * Register a SPI device as with spi_register_controller() which will
2966  * automatically be unregistered and freed.
2967  *
2968  * Return: zero on success, else a negative error code.
2969  */
2970 int devm_spi_register_controller(struct device *dev,
2971                                  struct spi_controller *ctlr)
2972 {
2973         struct spi_controller **ptr;
2974         int ret;
2975
2976         ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2977         if (!ptr)
2978                 return -ENOMEM;
2979
2980         ret = spi_register_controller(ctlr);
2981         if (!ret) {
2982                 *ptr = ctlr;
2983                 devres_add(dev, ptr);
2984         } else {
2985                 devres_free(ptr);
2986         }
2987
2988         return ret;
2989 }
2990 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2991
2992 static int __unregister(struct device *dev, void *null)
2993 {
2994         spi_unregister_device(to_spi_device(dev));
2995         return 0;
2996 }
2997
2998 /**
2999  * spi_unregister_controller - unregister SPI master or slave controller
3000  * @ctlr: the controller being unregistered
3001  * Context: can sleep
3002  *
3003  * This call is used only by SPI controller drivers, which are the
3004  * only ones directly touching chip registers.
3005  *
3006  * This must be called from context that can sleep.
3007  *
3008  * Note that this function also drops a reference to the controller.
3009  */
3010 void spi_unregister_controller(struct spi_controller *ctlr)
3011 {
3012         struct spi_controller *found;
3013         int id = ctlr->bus_num;
3014
3015         /* Prevent addition of new devices, unregister existing ones */
3016         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3017                 mutex_lock(&ctlr->add_lock);
3018
3019         device_for_each_child(&ctlr->dev, NULL, __unregister);
3020
3021         /* First make sure that this controller was ever added */
3022         mutex_lock(&board_lock);
3023         found = idr_find(&spi_master_idr, id);
3024         mutex_unlock(&board_lock);
3025         if (ctlr->queued) {
3026                 if (spi_destroy_queue(ctlr))
3027                         dev_err(&ctlr->dev, "queue remove failed\n");
3028         }
3029         mutex_lock(&board_lock);
3030         list_del(&ctlr->list);
3031         mutex_unlock(&board_lock);
3032
3033         device_del(&ctlr->dev);
3034
3035         /* free bus id */
3036         mutex_lock(&board_lock);
3037         if (found == ctlr)
3038                 idr_remove(&spi_master_idr, id);
3039         mutex_unlock(&board_lock);
3040
3041         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3042                 mutex_unlock(&ctlr->add_lock);
3043
3044         /* Release the last reference on the controller if its driver
3045          * has not yet been converted to devm_spi_alloc_master/slave().
3046          */
3047         if (!ctlr->devm_allocated)
3048                 put_device(&ctlr->dev);
3049 }
3050 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3051
3052 int spi_controller_suspend(struct spi_controller *ctlr)
3053 {
3054         int ret;
3055
3056         /* Basically no-ops for non-queued controllers */
3057         if (!ctlr->queued)
3058                 return 0;
3059
3060         ret = spi_stop_queue(ctlr);
3061         if (ret)
3062                 dev_err(&ctlr->dev, "queue stop failed\n");
3063
3064         return ret;
3065 }
3066 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3067
3068 int spi_controller_resume(struct spi_controller *ctlr)
3069 {
3070         int ret;
3071
3072         if (!ctlr->queued)
3073                 return 0;
3074
3075         ret = spi_start_queue(ctlr);
3076         if (ret)
3077                 dev_err(&ctlr->dev, "queue restart failed\n");
3078
3079         return ret;
3080 }
3081 EXPORT_SYMBOL_GPL(spi_controller_resume);
3082
3083 static int __spi_controller_match(struct device *dev, const void *data)
3084 {
3085         struct spi_controller *ctlr;
3086         const u16 *bus_num = data;
3087
3088         ctlr = container_of(dev, struct spi_controller, dev);
3089         return ctlr->bus_num == *bus_num;
3090 }
3091
3092 /**
3093  * spi_busnum_to_master - look up master associated with bus_num
3094  * @bus_num: the master's bus number
3095  * Context: can sleep
3096  *
3097  * This call may be used with devices that are registered after
3098  * arch init time.  It returns a refcounted pointer to the relevant
3099  * spi_controller (which the caller must release), or NULL if there is
3100  * no such master registered.
3101  *
3102  * Return: the SPI master structure on success, else NULL.
3103  */
3104 struct spi_controller *spi_busnum_to_master(u16 bus_num)
3105 {
3106         struct device           *dev;
3107         struct spi_controller   *ctlr = NULL;
3108
3109         dev = class_find_device(&spi_master_class, NULL, &bus_num,
3110                                 __spi_controller_match);
3111         if (dev)
3112                 ctlr = container_of(dev, struct spi_controller, dev);
3113         /* reference got in class_find_device */
3114         return ctlr;
3115 }
3116 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
3117
3118 /*-------------------------------------------------------------------------*/
3119
3120 /* Core methods for SPI resource management */
3121
3122 /**
3123  * spi_res_alloc - allocate a spi resource that is life-cycle managed
3124  *                 during the processing of a spi_message while using
3125  *                 spi_transfer_one
3126  * @spi:     the spi device for which we allocate memory
3127  * @release: the release code to execute for this resource
3128  * @size:    size to alloc and return
3129  * @gfp:     GFP allocation flags
3130  *
3131  * Return: the pointer to the allocated data
3132  *
3133  * This may get enhanced in the future to allocate from a memory pool
3134  * of the @spi_device or @spi_controller to avoid repeated allocations.
3135  */
3136 void *spi_res_alloc(struct spi_device *spi,
3137                     spi_res_release_t release,
3138                     size_t size, gfp_t gfp)
3139 {
3140         struct spi_res *sres;
3141
3142         sres = kzalloc(sizeof(*sres) + size, gfp);
3143         if (!sres)
3144                 return NULL;
3145
3146         INIT_LIST_HEAD(&sres->entry);
3147         sres->release = release;
3148
3149         return sres->data;
3150 }
3151 EXPORT_SYMBOL_GPL(spi_res_alloc);
3152
3153 /**
3154  * spi_res_free - free an spi resource
3155  * @res: pointer to the custom data of a resource
3156  *
3157  */
3158 void spi_res_free(void *res)
3159 {
3160         struct spi_res *sres = container_of(res, struct spi_res, data);
3161
3162         if (!res)
3163                 return;
3164
3165         WARN_ON(!list_empty(&sres->entry));
3166         kfree(sres);
3167 }
3168 EXPORT_SYMBOL_GPL(spi_res_free);
3169
3170 /**
3171  * spi_res_add - add a spi_res to the spi_message
3172  * @message: the spi message
3173  * @res:     the spi_resource
3174  */
3175 void spi_res_add(struct spi_message *message, void *res)
3176 {
3177         struct spi_res *sres = container_of(res, struct spi_res, data);
3178
3179         WARN_ON(!list_empty(&sres->entry));
3180         list_add_tail(&sres->entry, &message->resources);
3181 }
3182 EXPORT_SYMBOL_GPL(spi_res_add);
3183
3184 /**
3185  * spi_res_release - release all spi resources for this message
3186  * @ctlr:  the @spi_controller
3187  * @message: the @spi_message
3188  */
3189 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
3190 {
3191         struct spi_res *res, *tmp;
3192
3193         list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
3194                 if (res->release)
3195                         res->release(ctlr, message, res->data);
3196
3197                 list_del(&res->entry);
3198
3199                 kfree(res);
3200         }
3201 }
3202 EXPORT_SYMBOL_GPL(spi_res_release);
3203
3204 /*-------------------------------------------------------------------------*/
3205
3206 /* Core methods for spi_message alterations */
3207
3208 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3209                                             struct spi_message *msg,
3210                                             void *res)
3211 {
3212         struct spi_replaced_transfers *rxfer = res;
3213         size_t i;
3214
3215         /* call extra callback if requested */
3216         if (rxfer->release)
3217                 rxfer->release(ctlr, msg, res);
3218
3219         /* insert replaced transfers back into the message */
3220         list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3221
3222         /* remove the formerly inserted entries */
3223         for (i = 0; i < rxfer->inserted; i++)
3224                 list_del(&rxfer->inserted_transfers[i].transfer_list);
3225 }
3226
3227 /**
3228  * spi_replace_transfers - replace transfers with several transfers
3229  *                         and register change with spi_message.resources
3230  * @msg:           the spi_message we work upon
3231  * @xfer_first:    the first spi_transfer we want to replace
3232  * @remove:        number of transfers to remove
3233  * @insert:        the number of transfers we want to insert instead
3234  * @release:       extra release code necessary in some circumstances
3235  * @extradatasize: extra data to allocate (with alignment guarantees
3236  *                 of struct @spi_transfer)
3237  * @gfp:           gfp flags
3238  *
3239  * Returns: pointer to @spi_replaced_transfers,
3240  *          PTR_ERR(...) in case of errors.
3241  */
3242 struct spi_replaced_transfers *spi_replace_transfers(
3243         struct spi_message *msg,
3244         struct spi_transfer *xfer_first,
3245         size_t remove,
3246         size_t insert,
3247         spi_replaced_release_t release,
3248         size_t extradatasize,
3249         gfp_t gfp)
3250 {
3251         struct spi_replaced_transfers *rxfer;
3252         struct spi_transfer *xfer;
3253         size_t i;
3254
3255         /* allocate the structure using spi_res */
3256         rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3257                               struct_size(rxfer, inserted_transfers, insert)
3258                               + extradatasize,
3259                               gfp);
3260         if (!rxfer)
3261                 return ERR_PTR(-ENOMEM);
3262
3263         /* the release code to invoke before running the generic release */
3264         rxfer->release = release;
3265
3266         /* assign extradata */
3267         if (extradatasize)
3268                 rxfer->extradata =
3269                         &rxfer->inserted_transfers[insert];
3270
3271         /* init the replaced_transfers list */
3272         INIT_LIST_HEAD(&rxfer->replaced_transfers);
3273
3274         /* assign the list_entry after which we should reinsert
3275          * the @replaced_transfers - it may be spi_message.messages!
3276          */
3277         rxfer->replaced_after = xfer_first->transfer_list.prev;
3278
3279         /* remove the requested number of transfers */
3280         for (i = 0; i < remove; i++) {
3281                 /* if the entry after replaced_after it is msg->transfers
3282                  * then we have been requested to remove more transfers
3283                  * than are in the list
3284                  */
3285                 if (rxfer->replaced_after->next == &msg->transfers) {
3286                         dev_err(&msg->spi->dev,
3287                                 "requested to remove more spi_transfers than are available\n");
3288                         /* insert replaced transfers back into the message */
3289                         list_splice(&rxfer->replaced_transfers,
3290                                     rxfer->replaced_after);
3291
3292                         /* free the spi_replace_transfer structure */
3293                         spi_res_free(rxfer);
3294
3295                         /* and return with an error */
3296                         return ERR_PTR(-EINVAL);
3297                 }
3298
3299                 /* remove the entry after replaced_after from list of
3300                  * transfers and add it to list of replaced_transfers
3301                  */
3302                 list_move_tail(rxfer->replaced_after->next,
3303                                &rxfer->replaced_transfers);
3304         }
3305
3306         /* create copy of the given xfer with identical settings
3307          * based on the first transfer to get removed
3308          */
3309         for (i = 0; i < insert; i++) {
3310                 /* we need to run in reverse order */
3311                 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3312
3313                 /* copy all spi_transfer data */
3314                 memcpy(xfer, xfer_first, sizeof(*xfer));
3315
3316                 /* add to list */
3317                 list_add(&xfer->transfer_list, rxfer->replaced_after);
3318
3319                 /* clear cs_change and delay for all but the last */
3320                 if (i) {
3321                         xfer->cs_change = false;
3322                         xfer->delay.value = 0;
3323                 }
3324         }
3325
3326         /* set up inserted */
3327         rxfer->inserted = insert;
3328
3329         /* and register it with spi_res/spi_message */
3330         spi_res_add(msg, rxfer);
3331
3332         return rxfer;
3333 }
3334 EXPORT_SYMBOL_GPL(spi_replace_transfers);
3335
3336 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3337                                         struct spi_message *msg,
3338                                         struct spi_transfer **xferp,
3339                                         size_t maxsize,
3340                                         gfp_t gfp)
3341 {
3342         struct spi_transfer *xfer = *xferp, *xfers;
3343         struct spi_replaced_transfers *srt;
3344         size_t offset;
3345         size_t count, i;
3346
3347         /* calculate how many we have to replace */
3348         count = DIV_ROUND_UP(xfer->len, maxsize);
3349
3350         /* create replacement */
3351         srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3352         if (IS_ERR(srt))
3353                 return PTR_ERR(srt);
3354         xfers = srt->inserted_transfers;
3355
3356         /* now handle each of those newly inserted spi_transfers
3357          * note that the replacements spi_transfers all are preset
3358          * to the same values as *xferp, so tx_buf, rx_buf and len
3359          * are all identical (as well as most others)
3360          * so we just have to fix up len and the pointers.
3361          *
3362          * this also includes support for the depreciated
3363          * spi_message.is_dma_mapped interface
3364          */
3365
3366         /* the first transfer just needs the length modified, so we
3367          * run it outside the loop
3368          */
3369         xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3370
3371         /* all the others need rx_buf/tx_buf also set */
3372         for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3373                 /* update rx_buf, tx_buf and dma */
3374                 if (xfers[i].rx_buf)
3375                         xfers[i].rx_buf += offset;
3376                 if (xfers[i].rx_dma)
3377                         xfers[i].rx_dma += offset;
3378                 if (xfers[i].tx_buf)
3379                         xfers[i].tx_buf += offset;
3380                 if (xfers[i].tx_dma)
3381                         xfers[i].tx_dma += offset;
3382
3383                 /* update length */
3384                 xfers[i].len = min(maxsize, xfers[i].len - offset);
3385         }
3386
3387         /* we set up xferp to the last entry we have inserted,
3388          * so that we skip those already split transfers
3389          */
3390         *xferp = &xfers[count - 1];
3391
3392         /* increment statistics counters */
3393         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3394                                        transfers_split_maxsize);
3395         SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3396                                        transfers_split_maxsize);
3397
3398         return 0;
3399 }
3400
3401 /**
3402  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3403  *                               when an individual transfer exceeds a
3404  *                               certain size
3405  * @ctlr:    the @spi_controller for this transfer
3406  * @msg:   the @spi_message to transform
3407  * @maxsize:  the maximum when to apply this
3408  * @gfp: GFP allocation flags
3409  *
3410  * Return: status of transformation
3411  */
3412 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3413                                 struct spi_message *msg,
3414                                 size_t maxsize,
3415                                 gfp_t gfp)
3416 {
3417         struct spi_transfer *xfer;
3418         int ret;
3419
3420         /* iterate over the transfer_list,
3421          * but note that xfer is advanced to the last transfer inserted
3422          * to avoid checking sizes again unnecessarily (also xfer does
3423          * potentiall belong to a different list by the time the
3424          * replacement has happened
3425          */
3426         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3427                 if (xfer->len > maxsize) {
3428                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3429                                                            maxsize, gfp);
3430                         if (ret)
3431                                 return ret;
3432                 }
3433         }
3434
3435         return 0;
3436 }
3437 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3438
3439 /*-------------------------------------------------------------------------*/
3440
3441 /* Core methods for SPI controller protocol drivers.  Some of the
3442  * other core methods are currently defined as inline functions.
3443  */
3444
3445 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3446                                         u8 bits_per_word)
3447 {
3448         if (ctlr->bits_per_word_mask) {
3449                 /* Only 32 bits fit in the mask */
3450                 if (bits_per_word > 32)
3451                         return -EINVAL;
3452                 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3453                         return -EINVAL;
3454         }
3455
3456         return 0;
3457 }
3458
3459 /**
3460  * spi_setup - setup SPI mode and clock rate
3461  * @spi: the device whose settings are being modified
3462  * Context: can sleep, and no requests are queued to the device
3463  *
3464  * SPI protocol drivers may need to update the transfer mode if the
3465  * device doesn't work with its default.  They may likewise need
3466  * to update clock rates or word sizes from initial values.  This function
3467  * changes those settings, and must be called from a context that can sleep.
3468  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3469  * effect the next time the device is selected and data is transferred to
3470  * or from it.  When this function returns, the spi device is deselected.
3471  *
3472  * Note that this call will fail if the protocol driver specifies an option
3473  * that the underlying controller or its driver does not support.  For
3474  * example, not all hardware supports wire transfers using nine bit words,
3475  * LSB-first wire encoding, or active-high chipselects.
3476  *
3477  * Return: zero on success, else a negative error code.
3478  */
3479 int spi_setup(struct spi_device *spi)
3480 {
3481         struct spi_controller *ctlr = spi->controller;
3482         unsigned        bad_bits, ugly_bits;
3483         int             status;
3484
3485         /*
3486          * check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3487          * are set at the same time
3488          */
3489         if ((hweight_long(spi->mode &
3490                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3491             (hweight_long(spi->mode &
3492                 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3493                 dev_err(&spi->dev,
3494                 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3495                 return -EINVAL;
3496         }
3497         /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3498          */
3499         if ((spi->mode & SPI_3WIRE) && (spi->mode &
3500                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3501                  SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3502                 return -EINVAL;
3503
3504         if (ctlr->use_gpio_descriptors && ctlr->cs_gpiods &&
3505             ctlr->cs_gpiods[spi->chip_select] && !(spi->mode & SPI_CS_HIGH)) {
3506                 dev_dbg(&spi->dev,
3507                         "setup: forcing CS_HIGH (use_gpio_descriptors)\n");
3508                 spi->mode |= SPI_CS_HIGH;
3509         }
3510
3511         /* help drivers fail *cleanly* when they need options
3512          * that aren't supported with their current controller
3513          * SPI_CS_WORD has a fallback software implementation,
3514          * so it is ignored here.
3515          */
3516         bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3517                                  SPI_NO_TX | SPI_NO_RX);
3518         /* nothing prevents from working with active-high CS in case if it
3519          * is driven by GPIO.
3520          */
3521         if (gpio_is_valid(spi->cs_gpio))
3522                 bad_bits &= ~SPI_CS_HIGH;
3523         ugly_bits = bad_bits &
3524                     (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3525                      SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3526         if (ugly_bits) {
3527                 dev_warn(&spi->dev,
3528                          "setup: ignoring unsupported mode bits %x\n",
3529                          ugly_bits);
3530                 spi->mode &= ~ugly_bits;
3531                 bad_bits &= ~ugly_bits;
3532         }
3533         if (bad_bits) {
3534                 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3535                         bad_bits);
3536                 return -EINVAL;
3537         }
3538
3539         if (!spi->bits_per_word)
3540                 spi->bits_per_word = 8;
3541
3542         status = __spi_validate_bits_per_word(spi->controller,
3543                                               spi->bits_per_word);
3544         if (status)
3545                 return status;
3546
3547         if (spi->controller->max_speed_hz &&
3548             (!spi->max_speed_hz ||
3549              spi->max_speed_hz > spi->controller->max_speed_hz))
3550                 spi->max_speed_hz = spi->controller->max_speed_hz;
3551
3552         mutex_lock(&spi->controller->io_mutex);
3553
3554         if (spi->controller->setup) {
3555                 status = spi->controller->setup(spi);
3556                 if (status) {
3557                         mutex_unlock(&spi->controller->io_mutex);
3558                         dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3559                                 status);
3560                         return status;
3561                 }
3562         }
3563
3564         if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3565                 status = pm_runtime_get_sync(spi->controller->dev.parent);
3566                 if (status < 0) {
3567                         mutex_unlock(&spi->controller->io_mutex);
3568                         pm_runtime_put_noidle(spi->controller->dev.parent);
3569                         dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3570                                 status);
3571                         return status;
3572                 }
3573
3574                 /*
3575                  * We do not want to return positive value from pm_runtime_get,
3576                  * there are many instances of devices calling spi_setup() and
3577                  * checking for a non-zero return value instead of a negative
3578                  * return value.
3579                  */
3580                 status = 0;
3581
3582                 spi_set_cs(spi, false, true);
3583                 pm_runtime_mark_last_busy(spi->controller->dev.parent);
3584                 pm_runtime_put_autosuspend(spi->controller->dev.parent);
3585         } else {
3586                 spi_set_cs(spi, false, true);
3587         }
3588
3589         mutex_unlock(&spi->controller->io_mutex);
3590
3591         if (spi->rt && !spi->controller->rt) {
3592                 spi->controller->rt = true;
3593                 spi_set_thread_rt(spi->controller);
3594         }
3595
3596         trace_spi_setup(spi, status);
3597
3598         dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3599                         spi->mode & SPI_MODE_X_MASK,
3600                         (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3601                         (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3602                         (spi->mode & SPI_3WIRE) ? "3wire, " : "",
3603                         (spi->mode & SPI_LOOP) ? "loopback, " : "",
3604                         spi->bits_per_word, spi->max_speed_hz,
3605                         status);
3606
3607         return status;
3608 }
3609 EXPORT_SYMBOL_GPL(spi_setup);
3610
3611 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3612                                        struct spi_device *spi)
3613 {
3614         int delay1, delay2;
3615
3616         delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3617         if (delay1 < 0)
3618                 return delay1;
3619
3620         delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3621         if (delay2 < 0)
3622                 return delay2;
3623
3624         if (delay1 < delay2)
3625                 memcpy(&xfer->word_delay, &spi->word_delay,
3626                        sizeof(xfer->word_delay));
3627
3628         return 0;
3629 }
3630
3631 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3632 {
3633         struct spi_controller *ctlr = spi->controller;
3634         struct spi_transfer *xfer;
3635         int w_size;
3636
3637         if (list_empty(&message->transfers))
3638                 return -EINVAL;
3639
3640         /* If an SPI controller does not support toggling the CS line on each
3641          * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3642          * for the CS line, we can emulate the CS-per-word hardware function by
3643          * splitting transfers into one-word transfers and ensuring that
3644          * cs_change is set for each transfer.
3645          */
3646         if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3647                                           spi->cs_gpiod ||
3648                                           gpio_is_valid(spi->cs_gpio))) {
3649                 size_t maxsize;
3650                 int ret;
3651
3652                 maxsize = (spi->bits_per_word + 7) / 8;
3653
3654                 /* spi_split_transfers_maxsize() requires message->spi */
3655                 message->spi = spi;
3656
3657                 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3658                                                   GFP_KERNEL);
3659                 if (ret)
3660                         return ret;
3661
3662                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3663                         /* don't change cs_change on the last entry in the list */
3664                         if (list_is_last(&xfer->transfer_list, &message->transfers))
3665                                 break;
3666                         xfer->cs_change = 1;
3667                 }
3668         }
3669
3670         /* Half-duplex links include original MicroWire, and ones with
3671          * only one data pin like SPI_3WIRE (switches direction) or where
3672          * either MOSI or MISO is missing.  They can also be caused by
3673          * software limitations.
3674          */
3675         if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3676             (spi->mode & SPI_3WIRE)) {
3677                 unsigned flags = ctlr->flags;
3678
3679                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3680                         if (xfer->rx_buf && xfer->tx_buf)
3681                                 return -EINVAL;
3682                         if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3683                                 return -EINVAL;
3684                         if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3685                                 return -EINVAL;
3686                 }
3687         }
3688
3689         /**
3690          * Set transfer bits_per_word and max speed as spi device default if
3691          * it is not set for this transfer.
3692          * Set transfer tx_nbits and rx_nbits as single transfer default
3693          * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3694          * Ensure transfer word_delay is at least as long as that required by
3695          * device itself.
3696          */
3697         message->frame_length = 0;
3698         list_for_each_entry(xfer, &message->transfers, transfer_list) {
3699                 xfer->effective_speed_hz = 0;
3700                 message->frame_length += xfer->len;
3701                 if (!xfer->bits_per_word)
3702                         xfer->bits_per_word = spi->bits_per_word;
3703
3704                 if (!xfer->speed_hz)
3705                         xfer->speed_hz = spi->max_speed_hz;
3706
3707                 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3708                         xfer->speed_hz = ctlr->max_speed_hz;
3709
3710                 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3711                         return -EINVAL;
3712
3713                 /*
3714                  * SPI transfer length should be multiple of SPI word size
3715                  * where SPI word size should be power-of-two multiple
3716                  */
3717                 if (xfer->bits_per_word <= 8)
3718                         w_size = 1;
3719                 else if (xfer->bits_per_word <= 16)
3720                         w_size = 2;
3721                 else
3722                         w_size = 4;
3723
3724                 /* No partial transfers accepted */
3725                 if (xfer->len % w_size)
3726                         return -EINVAL;
3727
3728                 if (xfer->speed_hz && ctlr->min_speed_hz &&
3729                     xfer->speed_hz < ctlr->min_speed_hz)
3730                         return -EINVAL;
3731
3732                 if (xfer->tx_buf && !xfer->tx_nbits)
3733                         xfer->tx_nbits = SPI_NBITS_SINGLE;
3734                 if (xfer->rx_buf && !xfer->rx_nbits)
3735                         xfer->rx_nbits = SPI_NBITS_SINGLE;
3736                 /* check transfer tx/rx_nbits:
3737                  * 1. check the value matches one of single, dual and quad
3738                  * 2. check tx/rx_nbits match the mode in spi_device
3739                  */
3740                 if (xfer->tx_buf) {
3741                         if (spi->mode & SPI_NO_TX)
3742                                 return -EINVAL;
3743                         if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3744                                 xfer->tx_nbits != SPI_NBITS_DUAL &&
3745                                 xfer->tx_nbits != SPI_NBITS_QUAD)
3746                                 return -EINVAL;
3747                         if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3748                                 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3749                                 return -EINVAL;
3750                         if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3751                                 !(spi->mode & SPI_TX_QUAD))
3752                                 return -EINVAL;
3753                 }
3754                 /* check transfer rx_nbits */
3755                 if (xfer->rx_buf) {
3756                         if (spi->mode & SPI_NO_RX)
3757                                 return -EINVAL;
3758                         if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3759                                 xfer->rx_nbits != SPI_NBITS_DUAL &&
3760                                 xfer->rx_nbits != SPI_NBITS_QUAD)
3761                                 return -EINVAL;
3762                         if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3763                                 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3764                                 return -EINVAL;
3765                         if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3766                                 !(spi->mode & SPI_RX_QUAD))
3767                                 return -EINVAL;
3768                 }
3769
3770                 if (_spi_xfer_word_delay_update(xfer, spi))
3771                         return -EINVAL;
3772         }
3773
3774         message->status = -EINPROGRESS;
3775
3776         return 0;
3777 }
3778
3779 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3780 {
3781         struct spi_controller *ctlr = spi->controller;
3782         struct spi_transfer *xfer;
3783
3784         /*
3785          * Some controllers do not support doing regular SPI transfers. Return
3786          * ENOTSUPP when this is the case.
3787          */
3788         if (!ctlr->transfer)
3789                 return -ENOTSUPP;
3790
3791         message->spi = spi;
3792
3793         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3794         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3795
3796         trace_spi_message_submit(message);
3797
3798         if (!ctlr->ptp_sts_supported) {
3799                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3800                         xfer->ptp_sts_word_pre = 0;
3801                         ptp_read_system_prets(xfer->ptp_sts);
3802                 }
3803         }
3804
3805         return ctlr->transfer(spi, message);
3806 }
3807
3808 /**
3809  * spi_async - asynchronous SPI transfer
3810  * @spi: device with which data will be exchanged
3811  * @message: describes the data transfers, including completion callback
3812  * Context: any (irqs may be blocked, etc)
3813  *
3814  * This call may be used in_irq and other contexts which can't sleep,
3815  * as well as from task contexts which can sleep.
3816  *
3817  * The completion callback is invoked in a context which can't sleep.
3818  * Before that invocation, the value of message->status is undefined.
3819  * When the callback is issued, message->status holds either zero (to
3820  * indicate complete success) or a negative error code.  After that
3821  * callback returns, the driver which issued the transfer request may
3822  * deallocate the associated memory; it's no longer in use by any SPI
3823  * core or controller driver code.
3824  *
3825  * Note that although all messages to a spi_device are handled in
3826  * FIFO order, messages may go to different devices in other orders.
3827  * Some device might be higher priority, or have various "hard" access
3828  * time requirements, for example.
3829  *
3830  * On detection of any fault during the transfer, processing of
3831  * the entire message is aborted, and the device is deselected.
3832  * Until returning from the associated message completion callback,
3833  * no other spi_message queued to that device will be processed.
3834  * (This rule applies equally to all the synchronous transfer calls,
3835  * which are wrappers around this core asynchronous primitive.)
3836  *
3837  * Return: zero on success, else a negative error code.
3838  */
3839 int spi_async(struct spi_device *spi, struct spi_message *message)
3840 {
3841         struct spi_controller *ctlr = spi->controller;
3842         int ret;
3843         unsigned long flags;
3844
3845         ret = __spi_validate(spi, message);
3846         if (ret != 0)
3847                 return ret;
3848
3849         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3850
3851         if (ctlr->bus_lock_flag)
3852                 ret = -EBUSY;
3853         else
3854                 ret = __spi_async(spi, message);
3855
3856         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3857
3858         return ret;
3859 }
3860 EXPORT_SYMBOL_GPL(spi_async);
3861
3862 /**
3863  * spi_async_locked - version of spi_async with exclusive bus usage
3864  * @spi: device with which data will be exchanged
3865  * @message: describes the data transfers, including completion callback
3866  * Context: any (irqs may be blocked, etc)
3867  *
3868  * This call may be used in_irq and other contexts which can't sleep,
3869  * as well as from task contexts which can sleep.
3870  *
3871  * The completion callback is invoked in a context which can't sleep.
3872  * Before that invocation, the value of message->status is undefined.
3873  * When the callback is issued, message->status holds either zero (to
3874  * indicate complete success) or a negative error code.  After that
3875  * callback returns, the driver which issued the transfer request may
3876  * deallocate the associated memory; it's no longer in use by any SPI
3877  * core or controller driver code.
3878  *
3879  * Note that although all messages to a spi_device are handled in
3880  * FIFO order, messages may go to different devices in other orders.
3881  * Some device might be higher priority, or have various "hard" access
3882  * time requirements, for example.
3883  *
3884  * On detection of any fault during the transfer, processing of
3885  * the entire message is aborted, and the device is deselected.
3886  * Until returning from the associated message completion callback,
3887  * no other spi_message queued to that device will be processed.
3888  * (This rule applies equally to all the synchronous transfer calls,
3889  * which are wrappers around this core asynchronous primitive.)
3890  *
3891  * Return: zero on success, else a negative error code.
3892  */
3893 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3894 {
3895         struct spi_controller *ctlr = spi->controller;
3896         int ret;
3897         unsigned long flags;
3898
3899         ret = __spi_validate(spi, message);
3900         if (ret != 0)
3901                 return ret;
3902
3903         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3904
3905         ret = __spi_async(spi, message);
3906
3907         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3908
3909         return ret;
3910
3911 }
3912 EXPORT_SYMBOL_GPL(spi_async_locked);
3913
3914 /*-------------------------------------------------------------------------*/
3915
3916 /* Utility methods for SPI protocol drivers, layered on
3917  * top of the core.  Some other utility methods are defined as
3918  * inline functions.
3919  */
3920
3921 static void spi_complete(void *arg)
3922 {
3923         complete(arg);
3924 }
3925
3926 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3927 {
3928         DECLARE_COMPLETION_ONSTACK(done);
3929         int status;
3930         struct spi_controller *ctlr = spi->controller;
3931         unsigned long flags;
3932
3933         status = __spi_validate(spi, message);
3934         if (status != 0)
3935                 return status;
3936
3937         message->complete = spi_complete;
3938         message->context = &done;
3939         message->spi = spi;
3940
3941         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3942         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3943
3944         /* If we're not using the legacy transfer method then we will
3945          * try to transfer in the calling context so special case.
3946          * This code would be less tricky if we could remove the
3947          * support for driver implemented message queues.
3948          */
3949         if (ctlr->transfer == spi_queued_transfer) {
3950                 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3951
3952                 trace_spi_message_submit(message);
3953
3954                 status = __spi_queued_transfer(spi, message, false);
3955
3956                 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3957         } else {
3958                 status = spi_async_locked(spi, message);
3959         }
3960
3961         if (status == 0) {
3962                 /* Push out the messages in the calling context if we
3963                  * can.
3964                  */
3965                 if (ctlr->transfer == spi_queued_transfer) {
3966                         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3967                                                        spi_sync_immediate);
3968                         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3969                                                        spi_sync_immediate);
3970                         __spi_pump_messages(ctlr, false);
3971                 }
3972
3973                 wait_for_completion(&done);
3974                 status = message->status;
3975         }
3976         message->context = NULL;
3977         return status;
3978 }
3979
3980 /**
3981  * spi_sync - blocking/synchronous SPI data transfers
3982  * @spi: device with which data will be exchanged
3983  * @message: describes the data transfers
3984  * Context: can sleep
3985  *
3986  * This call may only be used from a context that may sleep.  The sleep
3987  * is non-interruptible, and has no timeout.  Low-overhead controller
3988  * drivers may DMA directly into and out of the message buffers.
3989  *
3990  * Note that the SPI device's chip select is active during the message,
3991  * and then is normally disabled between messages.  Drivers for some
3992  * frequently-used devices may want to minimize costs of selecting a chip,
3993  * by leaving it selected in anticipation that the next message will go
3994  * to the same chip.  (That may increase power usage.)
3995  *
3996  * Also, the caller is guaranteeing that the memory associated with the
3997  * message will not be freed before this call returns.
3998  *
3999  * Return: zero on success, else a negative error code.
4000  */
4001 int spi_sync(struct spi_device *spi, struct spi_message *message)
4002 {
4003         int ret;
4004
4005         mutex_lock(&spi->controller->bus_lock_mutex);
4006         ret = __spi_sync(spi, message);
4007         mutex_unlock(&spi->controller->bus_lock_mutex);
4008
4009         return ret;
4010 }
4011 EXPORT_SYMBOL_GPL(spi_sync);
4012
4013 /**
4014  * spi_sync_locked - version of spi_sync with exclusive bus usage
4015  * @spi: device with which data will be exchanged
4016  * @message: describes the data transfers
4017  * Context: can sleep
4018  *
4019  * This call may only be used from a context that may sleep.  The sleep
4020  * is non-interruptible, and has no timeout.  Low-overhead controller
4021  * drivers may DMA directly into and out of the message buffers.
4022  *
4023  * This call should be used by drivers that require exclusive access to the
4024  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4025  * be released by a spi_bus_unlock call when the exclusive access is over.
4026  *
4027  * Return: zero on success, else a negative error code.
4028  */
4029 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4030 {
4031         return __spi_sync(spi, message);
4032 }
4033 EXPORT_SYMBOL_GPL(spi_sync_locked);
4034
4035 /**
4036  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4037  * @ctlr: SPI bus master that should be locked for exclusive bus access
4038  * Context: can sleep
4039  *
4040  * This call may only be used from a context that may sleep.  The sleep
4041  * is non-interruptible, and has no timeout.
4042  *
4043  * This call should be used by drivers that require exclusive access to the
4044  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4045  * exclusive access is over. Data transfer must be done by spi_sync_locked
4046  * and spi_async_locked calls when the SPI bus lock is held.
4047  *
4048  * Return: always zero.
4049  */
4050 int spi_bus_lock(struct spi_controller *ctlr)
4051 {
4052         unsigned long flags;
4053
4054         mutex_lock(&ctlr->bus_lock_mutex);
4055
4056         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4057         ctlr->bus_lock_flag = 1;
4058         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4059
4060         /* mutex remains locked until spi_bus_unlock is called */
4061
4062         return 0;
4063 }
4064 EXPORT_SYMBOL_GPL(spi_bus_lock);
4065
4066 /**
4067  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4068  * @ctlr: SPI bus master that was locked for exclusive bus access
4069  * Context: can sleep
4070  *
4071  * This call may only be used from a context that may sleep.  The sleep
4072  * is non-interruptible, and has no timeout.
4073  *
4074  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4075  * call.
4076  *
4077  * Return: always zero.
4078  */
4079 int spi_bus_unlock(struct spi_controller *ctlr)
4080 {
4081         ctlr->bus_lock_flag = 0;
4082
4083         mutex_unlock(&ctlr->bus_lock_mutex);
4084
4085         return 0;
4086 }
4087 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4088
4089 /* portable code must never pass more than 32 bytes */
4090 #define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
4091
4092 static u8       *buf;
4093
4094 /**
4095  * spi_write_then_read - SPI synchronous write followed by read
4096  * @spi: device with which data will be exchanged
4097  * @txbuf: data to be written (need not be dma-safe)
4098  * @n_tx: size of txbuf, in bytes
4099  * @rxbuf: buffer into which data will be read (need not be dma-safe)
4100  * @n_rx: size of rxbuf, in bytes
4101  * Context: can sleep
4102  *
4103  * This performs a half duplex MicroWire style transaction with the
4104  * device, sending txbuf and then reading rxbuf.  The return value
4105  * is zero for success, else a negative errno status code.
4106  * This call may only be used from a context that may sleep.
4107  *
4108  * Parameters to this routine are always copied using a small buffer.
4109  * Performance-sensitive or bulk transfer code should instead use
4110  * spi_{async,sync}() calls with dma-safe buffers.
4111  *
4112  * Return: zero on success, else a negative error code.
4113  */
4114 int spi_write_then_read(struct spi_device *spi,
4115                 const void *txbuf, unsigned n_tx,
4116                 void *rxbuf, unsigned n_rx)
4117 {
4118         static DEFINE_MUTEX(lock);
4119
4120         int                     status;
4121         struct spi_message      message;
4122         struct spi_transfer     x[2];
4123         u8                      *local_buf;
4124
4125         /* Use preallocated DMA-safe buffer if we can.  We can't avoid
4126          * copying here, (as a pure convenience thing), but we can
4127          * keep heap costs out of the hot path unless someone else is
4128          * using the pre-allocated buffer or the transfer is too large.
4129          */
4130         if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4131                 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4132                                     GFP_KERNEL | GFP_DMA);
4133                 if (!local_buf)
4134                         return -ENOMEM;
4135         } else {
4136                 local_buf = buf;
4137         }
4138
4139         spi_message_init(&message);
4140         memset(x, 0, sizeof(x));
4141         if (n_tx) {
4142                 x[0].len = n_tx;
4143                 spi_message_add_tail(&x[0], &message);
4144         }
4145         if (n_rx) {
4146                 x[1].len = n_rx;
4147                 spi_message_add_tail(&x[1], &message);
4148         }
4149
4150         memcpy(local_buf, txbuf, n_tx);
4151         x[0].tx_buf = local_buf;
4152         x[1].rx_buf = local_buf + n_tx;
4153
4154         /* do the i/o */
4155         status = spi_sync(spi, &message);
4156         if (status == 0)
4157                 memcpy(rxbuf, x[1].rx_buf, n_rx);
4158
4159         if (x[0].tx_buf == buf)
4160                 mutex_unlock(&lock);
4161         else
4162                 kfree(local_buf);
4163
4164         return status;
4165 }
4166 EXPORT_SYMBOL_GPL(spi_write_then_read);
4167
4168 /*-------------------------------------------------------------------------*/
4169
4170 #if IS_ENABLED(CONFIG_OF)
4171 /* must call put_device() when done with returned spi_device device */
4172 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4173 {
4174         struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4175
4176         return dev ? to_spi_device(dev) : NULL;
4177 }
4178 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
4179 #endif /* IS_ENABLED(CONFIG_OF) */
4180
4181 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4182 /* the spi controllers are not using spi_bus, so we find it with another way */
4183 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4184 {
4185         struct device *dev;
4186
4187         dev = class_find_device_by_of_node(&spi_master_class, node);
4188         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4189                 dev = class_find_device_by_of_node(&spi_slave_class, node);
4190         if (!dev)
4191                 return NULL;
4192
4193         /* reference got in class_find_device */
4194         return container_of(dev, struct spi_controller, dev);
4195 }
4196
4197 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4198                          void *arg)
4199 {
4200         struct of_reconfig_data *rd = arg;
4201         struct spi_controller *ctlr;
4202         struct spi_device *spi;
4203
4204         switch (of_reconfig_get_state_change(action, arg)) {
4205         case OF_RECONFIG_CHANGE_ADD:
4206                 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4207                 if (ctlr == NULL)
4208                         return NOTIFY_OK;       /* not for us */
4209
4210                 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4211                         put_device(&ctlr->dev);
4212                         return NOTIFY_OK;
4213                 }
4214
4215                 spi = of_register_spi_device(ctlr, rd->dn);
4216                 put_device(&ctlr->dev);
4217
4218                 if (IS_ERR(spi)) {
4219                         pr_err("%s: failed to create for '%pOF'\n",
4220                                         __func__, rd->dn);
4221                         of_node_clear_flag(rd->dn, OF_POPULATED);
4222                         return notifier_from_errno(PTR_ERR(spi));
4223                 }
4224                 break;
4225
4226         case OF_RECONFIG_CHANGE_REMOVE:
4227                 /* already depopulated? */
4228                 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4229                         return NOTIFY_OK;
4230
4231                 /* find our device by node */
4232                 spi = of_find_spi_device_by_node(rd->dn);
4233                 if (spi == NULL)
4234                         return NOTIFY_OK;       /* no? not meant for us */
4235
4236                 /* unregister takes one ref away */
4237                 spi_unregister_device(spi);
4238
4239                 /* and put the reference of the find */
4240                 put_device(&spi->dev);
4241                 break;
4242         }
4243
4244         return NOTIFY_OK;
4245 }
4246
4247 static struct notifier_block spi_of_notifier = {
4248         .notifier_call = of_spi_notify,
4249 };
4250 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4251 extern struct notifier_block spi_of_notifier;
4252 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4253
4254 #if IS_ENABLED(CONFIG_ACPI)
4255 static int spi_acpi_controller_match(struct device *dev, const void *data)
4256 {
4257         return ACPI_COMPANION(dev->parent) == data;
4258 }
4259
4260 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4261 {
4262         struct device *dev;
4263
4264         dev = class_find_device(&spi_master_class, NULL, adev,
4265                                 spi_acpi_controller_match);
4266         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4267                 dev = class_find_device(&spi_slave_class, NULL, adev,
4268                                         spi_acpi_controller_match);
4269         if (!dev)
4270                 return NULL;
4271
4272         return container_of(dev, struct spi_controller, dev);
4273 }
4274
4275 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4276 {
4277         struct device *dev;
4278
4279         dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4280         return to_spi_device(dev);
4281 }
4282
4283 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4284                            void *arg)
4285 {
4286         struct acpi_device *adev = arg;
4287         struct spi_controller *ctlr;
4288         struct spi_device *spi;
4289
4290         switch (value) {
4291         case ACPI_RECONFIG_DEVICE_ADD:
4292                 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4293                 if (!ctlr)
4294                         break;
4295
4296                 acpi_register_spi_device(ctlr, adev);
4297                 put_device(&ctlr->dev);
4298                 break;
4299         case ACPI_RECONFIG_DEVICE_REMOVE:
4300                 if (!acpi_device_enumerated(adev))
4301                         break;
4302
4303                 spi = acpi_spi_find_device_by_adev(adev);
4304                 if (!spi)
4305                         break;
4306
4307                 spi_unregister_device(spi);
4308                 put_device(&spi->dev);
4309                 break;
4310         }
4311
4312         return NOTIFY_OK;
4313 }
4314
4315 static struct notifier_block spi_acpi_notifier = {
4316         .notifier_call = acpi_spi_notify,
4317 };
4318 #else
4319 extern struct notifier_block spi_acpi_notifier;
4320 #endif
4321
4322 static int __init spi_init(void)
4323 {
4324         int     status;
4325
4326         buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4327         if (!buf) {
4328                 status = -ENOMEM;
4329                 goto err0;
4330         }
4331
4332         status = bus_register(&spi_bus_type);
4333         if (status < 0)
4334                 goto err1;
4335
4336         status = class_register(&spi_master_class);
4337         if (status < 0)
4338                 goto err2;
4339
4340         if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4341                 status = class_register(&spi_slave_class);
4342                 if (status < 0)
4343                         goto err3;
4344         }
4345
4346         if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4347                 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4348         if (IS_ENABLED(CONFIG_ACPI))
4349                 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4350
4351         return 0;
4352
4353 err3:
4354         class_unregister(&spi_master_class);
4355 err2:
4356         bus_unregister(&spi_bus_type);
4357 err1:
4358         kfree(buf);
4359         buf = NULL;
4360 err0:
4361         return status;
4362 }
4363
4364 /* board_info is normally registered in arch_initcall(),
4365  * but even essential drivers wait till later
4366  *
4367  * REVISIT only boardinfo really needs static linking. the rest (device and
4368  * driver registration) _could_ be dynamically linked (modular) ... costs
4369  * include needing to have boardinfo data structures be much more public.
4370  */
4371 postcore_initcall(spi_init);