1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (C) 2022 Jonathan Neuschäfer
5 #include <linux/mfd/syscon.h>
6 #include <linux/mod_devicetable.h>
7 #include <linux/module.h>
8 #include <linux/platform_device.h>
9 #include <linux/regmap.h>
10 #include <linux/spi/spi-mem.h>
13 #define FIU_BURST_BFG 0x01
14 #define FIU_RESP_CFG 0x02
15 #define FIU_CFBB_PROT 0x03
16 #define FIU_FWIN1_LOW 0x04
17 #define FIU_FWIN1_HIGH 0x06
18 #define FIU_FWIN2_LOW 0x08
19 #define FIU_FWIN2_HIGH 0x0a
20 #define FIU_FWIN3_LOW 0x0c
21 #define FIU_FWIN3_HIGH 0x0e
22 #define FIU_PROT_LOCK 0x10
23 #define FIU_PROT_CLEAR 0x11
24 #define FIU_SPI_FL_CFG 0x14
25 #define FIU_UMA_CODE 0x16
26 #define FIU_UMA_AB0 0x17
27 #define FIU_UMA_AB1 0x18
28 #define FIU_UMA_AB2 0x19
29 #define FIU_UMA_DB0 0x1a
30 #define FIU_UMA_DB1 0x1b
31 #define FIU_UMA_DB2 0x1c
32 #define FIU_UMA_DB3 0x1d
33 #define FIU_UMA_CTS 0x1e
34 #define FIU_UMA_ECTS 0x1f
36 #define FIU_BURST_CFG_R16 3
38 #define FIU_UMA_CTS_D_SIZE(x) (x)
39 #define FIU_UMA_CTS_A_SIZE BIT(3)
40 #define FIU_UMA_CTS_WR BIT(4)
41 #define FIU_UMA_CTS_CS(x) ((x) << 5)
42 #define FIU_UMA_CTS_EXEC_DONE BIT(7)
44 #define SHM_FLASH_SIZE 0x02
45 #define SHM_FLASH_SIZE_STALL_HOST BIT(6)
48 * I observed a typical wait time of 16 iterations for a UMA transfer to
49 * finish, so this should be a safe limit.
51 #define UMA_WAIT_ITERATIONS 100
53 /* The memory-mapped view of flash is 16 MiB long */
54 #define MAX_MEMORY_SIZE_PER_CS (16 << 20)
55 #define MAX_MEMORY_SIZE_TOTAL (4 * MAX_MEMORY_SIZE_PER_CS)
63 struct regmap *shm_regmap;
66 static void wpcm_fiu_set_opcode(struct wpcm_fiu_spi *fiu, u8 opcode)
68 writeb(opcode, fiu->regs + FIU_UMA_CODE);
71 static void wpcm_fiu_set_addr(struct wpcm_fiu_spi *fiu, u32 addr)
73 writeb((addr >> 0) & 0xff, fiu->regs + FIU_UMA_AB0);
74 writeb((addr >> 8) & 0xff, fiu->regs + FIU_UMA_AB1);
75 writeb((addr >> 16) & 0xff, fiu->regs + FIU_UMA_AB2);
78 static void wpcm_fiu_set_data(struct wpcm_fiu_spi *fiu, const u8 *data, unsigned int nbytes)
82 for (i = 0; i < nbytes; i++)
83 writeb(data[i], fiu->regs + FIU_UMA_DB0 + i);
86 static void wpcm_fiu_get_data(struct wpcm_fiu_spi *fiu, u8 *data, unsigned int nbytes)
90 for (i = 0; i < nbytes; i++)
91 data[i] = readb(fiu->regs + FIU_UMA_DB0 + i);
95 * Perform a UMA (User Mode Access) operation, i.e. a software-controlled SPI transfer.
97 static int wpcm_fiu_do_uma(struct wpcm_fiu_spi *fiu, unsigned int cs,
98 bool use_addr, bool write, int data_bytes)
101 u8 cts = FIU_UMA_CTS_EXEC_DONE | FIU_UMA_CTS_CS(cs);
104 cts |= FIU_UMA_CTS_A_SIZE;
106 cts |= FIU_UMA_CTS_WR;
107 cts |= FIU_UMA_CTS_D_SIZE(data_bytes);
109 writeb(cts, fiu->regs + FIU_UMA_CTS);
111 for (i = 0; i < UMA_WAIT_ITERATIONS; i++)
112 if (!(readb(fiu->regs + FIU_UMA_CTS) & FIU_UMA_CTS_EXEC_DONE))
115 dev_info(fiu->dev, "UMA transfer has not finished in %d iterations\n", UMA_WAIT_ITERATIONS);
119 static void wpcm_fiu_ects_assert(struct wpcm_fiu_spi *fiu, unsigned int cs)
121 u8 ects = readb(fiu->regs + FIU_UMA_ECTS);
124 writeb(ects, fiu->regs + FIU_UMA_ECTS);
127 static void wpcm_fiu_ects_deassert(struct wpcm_fiu_spi *fiu, unsigned int cs)
129 u8 ects = readb(fiu->regs + FIU_UMA_ECTS);
132 writeb(ects, fiu->regs + FIU_UMA_ECTS);
135 struct wpcm_fiu_op_shape {
136 bool (*match)(const struct spi_mem_op *op);
137 int (*exec)(struct spi_mem *mem, const struct spi_mem_op *op);
140 static bool wpcm_fiu_normal_match(const struct spi_mem_op *op)
142 // Opcode 0x0b (FAST READ) is treated differently in hardware
143 if (op->cmd.opcode == 0x0b)
146 return (op->addr.nbytes == 0 || op->addr.nbytes == 3) &&
147 op->dummy.nbytes == 0 && op->data.nbytes <= 4;
150 static int wpcm_fiu_normal_exec(struct spi_mem *mem, const struct spi_mem_op *op)
152 struct wpcm_fiu_spi *fiu = spi_controller_get_devdata(mem->spi->controller);
155 wpcm_fiu_set_opcode(fiu, op->cmd.opcode);
156 wpcm_fiu_set_addr(fiu, op->addr.val);
157 if (op->data.dir == SPI_MEM_DATA_OUT)
158 wpcm_fiu_set_data(fiu, op->data.buf.out, op->data.nbytes);
160 ret = wpcm_fiu_do_uma(fiu, spi_get_chipselect(mem->spi, 0), op->addr.nbytes == 3,
161 op->data.dir == SPI_MEM_DATA_OUT, op->data.nbytes);
163 if (op->data.dir == SPI_MEM_DATA_IN)
164 wpcm_fiu_get_data(fiu, op->data.buf.in, op->data.nbytes);
169 static bool wpcm_fiu_fast_read_match(const struct spi_mem_op *op)
171 return op->cmd.opcode == 0x0b && op->addr.nbytes == 3 &&
172 op->dummy.nbytes == 1 &&
173 op->data.nbytes >= 1 && op->data.nbytes <= 4 &&
174 op->data.dir == SPI_MEM_DATA_IN;
177 static int wpcm_fiu_fast_read_exec(struct spi_mem *mem, const struct spi_mem_op *op)
185 * Flash view: [ C A A A A D D D D]
186 * bytes: 13 aa bb cc dd -> 5a a5 f0 0f
187 * FIU's view: [ C A A A][ C D D D D]
188 * FIU mode: [ read/write][ read ]
190 static bool wpcm_fiu_4ba_match(const struct spi_mem_op *op)
192 return op->addr.nbytes == 4 && op->dummy.nbytes == 0 && op->data.nbytes <= 4;
195 static int wpcm_fiu_4ba_exec(struct spi_mem *mem, const struct spi_mem_op *op)
197 struct wpcm_fiu_spi *fiu = spi_controller_get_devdata(mem->spi->controller);
198 int cs = spi_get_chipselect(mem->spi, 0);
200 wpcm_fiu_ects_assert(fiu, cs);
202 wpcm_fiu_set_opcode(fiu, op->cmd.opcode);
203 wpcm_fiu_set_addr(fiu, op->addr.val >> 8);
204 wpcm_fiu_do_uma(fiu, cs, true, false, 0);
206 wpcm_fiu_set_opcode(fiu, op->addr.val & 0xff);
207 wpcm_fiu_set_addr(fiu, 0);
208 if (op->data.dir == SPI_MEM_DATA_OUT)
209 wpcm_fiu_set_data(fiu, op->data.buf.out, op->data.nbytes);
210 wpcm_fiu_do_uma(fiu, cs, false, op->data.dir == SPI_MEM_DATA_OUT, op->data.nbytes);
212 wpcm_fiu_ects_deassert(fiu, cs);
214 if (op->data.dir == SPI_MEM_DATA_IN)
215 wpcm_fiu_get_data(fiu, op->data.buf.in, op->data.nbytes);
221 * RDID (Read Identification) needs special handling because Linux expects to
222 * be able to read 6 ID bytes and FIU can only read up to 4 at once.
224 * We're lucky in this case, because executing the RDID instruction twice will
225 * result in the same result.
227 * What we do is as follows (C: write command/opcode byte, D: read data byte,
228 * A: write address byte):
233 static bool wpcm_fiu_rdid_match(const struct spi_mem_op *op)
235 return op->cmd.opcode == 0x9f && op->addr.nbytes == 0 &&
236 op->dummy.nbytes == 0 && op->data.nbytes == 6 &&
237 op->data.dir == SPI_MEM_DATA_IN;
240 static int wpcm_fiu_rdid_exec(struct spi_mem *mem, const struct spi_mem_op *op)
242 struct wpcm_fiu_spi *fiu = spi_controller_get_devdata(mem->spi->controller);
243 int cs = spi_get_chipselect(mem->spi, 0);
246 wpcm_fiu_set_opcode(fiu, op->cmd.opcode);
247 wpcm_fiu_set_addr(fiu, 0);
248 wpcm_fiu_do_uma(fiu, cs, false, false, 3);
249 wpcm_fiu_get_data(fiu, op->data.buf.in, 3);
251 /* Second transfer */
252 wpcm_fiu_set_opcode(fiu, op->cmd.opcode);
253 wpcm_fiu_set_addr(fiu, 0);
254 wpcm_fiu_do_uma(fiu, cs, true, false, 3);
255 wpcm_fiu_get_data(fiu, op->data.buf.in + 3, 3);
261 * With some dummy bytes.
263 * C A A A X* X D D D D
264 * [C A A A D*][C D D D D]
266 static bool wpcm_fiu_dummy_match(const struct spi_mem_op *op)
268 // Opcode 0x0b (FAST READ) is treated differently in hardware
269 if (op->cmd.opcode == 0x0b)
272 return (op->addr.nbytes == 0 || op->addr.nbytes == 3) &&
273 op->dummy.nbytes >= 1 && op->dummy.nbytes <= 5 &&
274 op->data.nbytes <= 4;
277 static int wpcm_fiu_dummy_exec(struct spi_mem *mem, const struct spi_mem_op *op)
279 struct wpcm_fiu_spi *fiu = spi_controller_get_devdata(mem->spi->controller);
280 int cs = spi_get_chipselect(mem->spi, 0);
282 wpcm_fiu_ects_assert(fiu, cs);
285 wpcm_fiu_set_opcode(fiu, op->cmd.opcode);
286 wpcm_fiu_set_addr(fiu, op->addr.val);
287 wpcm_fiu_do_uma(fiu, cs, op->addr.nbytes != 0, true, op->dummy.nbytes - 1);
289 /* Second transfer */
290 wpcm_fiu_set_opcode(fiu, 0);
291 wpcm_fiu_set_addr(fiu, 0);
292 wpcm_fiu_do_uma(fiu, cs, false, false, op->data.nbytes);
293 wpcm_fiu_get_data(fiu, op->data.buf.in, op->data.nbytes);
295 wpcm_fiu_ects_deassert(fiu, cs);
300 static const struct wpcm_fiu_op_shape wpcm_fiu_op_shapes[] = {
301 { .match = wpcm_fiu_normal_match, .exec = wpcm_fiu_normal_exec },
302 { .match = wpcm_fiu_fast_read_match, .exec = wpcm_fiu_fast_read_exec },
303 { .match = wpcm_fiu_4ba_match, .exec = wpcm_fiu_4ba_exec },
304 { .match = wpcm_fiu_rdid_match, .exec = wpcm_fiu_rdid_exec },
305 { .match = wpcm_fiu_dummy_match, .exec = wpcm_fiu_dummy_exec },
308 static const struct wpcm_fiu_op_shape *wpcm_fiu_find_op_shape(const struct spi_mem_op *op)
312 for (i = 0; i < ARRAY_SIZE(wpcm_fiu_op_shapes); i++) {
313 const struct wpcm_fiu_op_shape *shape = &wpcm_fiu_op_shapes[i];
315 if (shape->match(op))
322 static bool wpcm_fiu_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
324 if (!spi_mem_default_supports_op(mem, op))
327 if (op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr)
330 if (op->cmd.buswidth > 1 || op->addr.buswidth > 1 ||
331 op->dummy.buswidth > 1 || op->data.buswidth > 1)
334 return wpcm_fiu_find_op_shape(op) != NULL;
338 * In order to ensure the integrity of SPI transfers performed via UMA,
339 * temporarily disable (stall) memory accesses coming from the host CPU.
341 static void wpcm_fiu_stall_host(struct wpcm_fiu_spi *fiu, bool stall)
343 if (fiu->shm_regmap) {
344 int res = regmap_update_bits(fiu->shm_regmap, SHM_FLASH_SIZE,
345 SHM_FLASH_SIZE_STALL_HOST,
346 stall ? SHM_FLASH_SIZE_STALL_HOST : 0);
348 dev_warn(fiu->dev, "Failed to (un)stall host memory accesses: %d\n", res);
352 static int wpcm_fiu_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
354 struct wpcm_fiu_spi *fiu = spi_controller_get_devdata(mem->spi->controller);
355 const struct wpcm_fiu_op_shape *shape = wpcm_fiu_find_op_shape(op);
357 wpcm_fiu_stall_host(fiu, true);
360 return shape->exec(mem, op);
362 wpcm_fiu_stall_host(fiu, false);
367 static int wpcm_fiu_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
369 if (op->data.nbytes > 4)
375 static int wpcm_fiu_dirmap_create(struct spi_mem_dirmap_desc *desc)
377 struct wpcm_fiu_spi *fiu = spi_controller_get_devdata(desc->mem->spi->controller);
378 int cs = spi_get_chipselect(desc->mem->spi, 0);
380 if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN)
384 * Unfortunately, FIU only supports a 16 MiB direct mapping window (per
385 * attached flash chip), but the SPI MEM core doesn't support partial
386 * direct mappings. This means that we can't support direct mapping on
387 * flashes that are bigger than 16 MiB.
389 if (desc->info.offset + desc->info.length > MAX_MEMORY_SIZE_PER_CS)
392 /* Don't read past the memory window */
393 if (cs * MAX_MEMORY_SIZE_PER_CS + desc->info.offset + desc->info.length > fiu->memory_size)
399 static ssize_t wpcm_fiu_direct_read(struct spi_mem_dirmap_desc *desc, u64 offs, size_t len, void *buf)
401 struct wpcm_fiu_spi *fiu = spi_controller_get_devdata(desc->mem->spi->controller);
402 int cs = spi_get_chipselect(desc->mem->spi, 0);
404 if (offs >= MAX_MEMORY_SIZE_PER_CS)
407 offs += cs * MAX_MEMORY_SIZE_PER_CS;
409 if (!fiu->memory || offs >= fiu->memory_size)
412 len = min_t(size_t, len, fiu->memory_size - offs);
413 memcpy_fromio(buf, fiu->memory + offs, len);
418 static const struct spi_controller_mem_ops wpcm_fiu_mem_ops = {
419 .adjust_op_size = wpcm_fiu_adjust_op_size,
420 .supports_op = wpcm_fiu_supports_op,
421 .exec_op = wpcm_fiu_exec_op,
422 .dirmap_create = wpcm_fiu_dirmap_create,
423 .dirmap_read = wpcm_fiu_direct_read,
426 static void wpcm_fiu_hw_init(struct wpcm_fiu_spi *fiu)
428 /* Configure memory-mapped flash access */
429 writeb(FIU_BURST_CFG_R16, fiu->regs + FIU_BURST_BFG);
430 writeb(MAX_MEMORY_SIZE_TOTAL / (512 << 10), fiu->regs + FIU_CFG);
431 writeb(MAX_MEMORY_SIZE_PER_CS / (512 << 10) | BIT(6), fiu->regs + FIU_SPI_FL_CFG);
433 /* Deassert all manually asserted chip selects */
434 writeb(0x0f, fiu->regs + FIU_UMA_ECTS);
437 static int wpcm_fiu_probe(struct platform_device *pdev)
439 struct device *dev = &pdev->dev;
440 struct spi_controller *ctrl;
441 struct wpcm_fiu_spi *fiu;
442 struct resource *res;
444 ctrl = devm_spi_alloc_master(dev, sizeof(*fiu));
448 fiu = spi_controller_get_devdata(ctrl);
451 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "control");
452 fiu->regs = devm_ioremap_resource(dev, res);
453 if (IS_ERR(fiu->regs)) {
454 dev_err(dev, "Failed to map registers\n");
455 return PTR_ERR(fiu->regs);
458 fiu->clk = devm_clk_get_enabled(dev, NULL);
459 if (IS_ERR(fiu->clk))
460 return PTR_ERR(fiu->clk);
462 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "memory");
463 fiu->memory = devm_ioremap_resource(dev, res);
464 fiu->memory_size = min_t(size_t, resource_size(res), MAX_MEMORY_SIZE_TOTAL);
465 if (IS_ERR(fiu->memory)) {
466 dev_err(dev, "Failed to map flash memory window\n");
467 return PTR_ERR(fiu->memory);
470 fiu->shm_regmap = syscon_regmap_lookup_by_phandle_optional(dev->of_node, "nuvoton,shm");
472 wpcm_fiu_hw_init(fiu);
475 ctrl->mem_ops = &wpcm_fiu_mem_ops;
476 ctrl->num_chipselect = 4;
477 ctrl->dev.of_node = dev->of_node;
480 * The FIU doesn't include a clock divider, the clock is entirely
481 * determined by the AHB3 bus clock.
483 ctrl->min_speed_hz = clk_get_rate(fiu->clk);
484 ctrl->max_speed_hz = clk_get_rate(fiu->clk);
486 return devm_spi_register_controller(dev, ctrl);
489 static const struct of_device_id wpcm_fiu_dt_ids[] = {
490 { .compatible = "nuvoton,wpcm450-fiu", },
493 MODULE_DEVICE_TABLE(of, wpcm_fiu_dt_ids);
495 static struct platform_driver wpcm_fiu_driver = {
497 .name = "wpcm450-fiu",
498 .bus = &platform_bus_type,
499 .of_match_table = wpcm_fiu_dt_ids,
501 .probe = wpcm_fiu_probe,
503 module_platform_driver(wpcm_fiu_driver);
505 MODULE_DESCRIPTION("Nuvoton WPCM450 FIU SPI controller driver");
506 MODULE_AUTHOR("Jonathan Neuschäfer <j.neuschaefer@gmx.net>");
507 MODULE_LICENSE("GPL");