Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[platform/upstream/kernel-adaptation-pc.git] / drivers / spi / spi-topcliff-pch.c
1 /*
2  * SPI bus driver for the Topcliff PCH used by Intel SoCs
3  *
4  * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 of the License.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307, USA.
18  */
19
20 #include <linux/delay.h>
21 #include <linux/pci.h>
22 #include <linux/wait.h>
23 #include <linux/spi/spi.h>
24 #include <linux/interrupt.h>
25 #include <linux/sched.h>
26 #include <linux/spi/spidev.h>
27 #include <linux/module.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30
31 #include <linux/dmaengine.h>
32 #include <linux/pch_dma.h>
33
34 /* Register offsets */
35 #define PCH_SPCR                0x00    /* SPI control register */
36 #define PCH_SPBRR               0x04    /* SPI baud rate register */
37 #define PCH_SPSR                0x08    /* SPI status register */
38 #define PCH_SPDWR               0x0C    /* SPI write data register */
39 #define PCH_SPDRR               0x10    /* SPI read data register */
40 #define PCH_SSNXCR              0x18    /* SSN Expand Control Register */
41 #define PCH_SRST                0x1C    /* SPI reset register */
42 #define PCH_ADDRESS_SIZE        0x20
43
44 #define PCH_SPSR_TFD            0x000007C0
45 #define PCH_SPSR_RFD            0x0000F800
46
47 #define PCH_READABLE(x)         (((x) & PCH_SPSR_RFD)>>11)
48 #define PCH_WRITABLE(x)         (((x) & PCH_SPSR_TFD)>>6)
49
50 #define PCH_RX_THOLD            7
51 #define PCH_RX_THOLD_MAX        15
52
53 #define PCH_TX_THOLD            2
54
55 #define PCH_MAX_BAUDRATE        5000000
56 #define PCH_MAX_FIFO_DEPTH      16
57
58 #define STATUS_RUNNING          1
59 #define STATUS_EXITING          2
60 #define PCH_SLEEP_TIME          10
61
62 #define SSN_LOW                 0x02U
63 #define SSN_HIGH                0x03U
64 #define SSN_NO_CONTROL          0x00U
65 #define PCH_MAX_CS              0xFF
66 #define PCI_DEVICE_ID_GE_SPI    0x8816
67
68 #define SPCR_SPE_BIT            (1 << 0)
69 #define SPCR_MSTR_BIT           (1 << 1)
70 #define SPCR_LSBF_BIT           (1 << 4)
71 #define SPCR_CPHA_BIT           (1 << 5)
72 #define SPCR_CPOL_BIT           (1 << 6)
73 #define SPCR_TFIE_BIT           (1 << 8)
74 #define SPCR_RFIE_BIT           (1 << 9)
75 #define SPCR_FIE_BIT            (1 << 10)
76 #define SPCR_ORIE_BIT           (1 << 11)
77 #define SPCR_MDFIE_BIT          (1 << 12)
78 #define SPCR_FICLR_BIT          (1 << 24)
79 #define SPSR_TFI_BIT            (1 << 0)
80 #define SPSR_RFI_BIT            (1 << 1)
81 #define SPSR_FI_BIT             (1 << 2)
82 #define SPSR_ORF_BIT            (1 << 3)
83 #define SPBRR_SIZE_BIT          (1 << 10)
84
85 #define PCH_ALL                 (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
86                                 SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
87
88 #define SPCR_RFIC_FIELD         20
89 #define SPCR_TFIC_FIELD         16
90
91 #define MASK_SPBRR_SPBR_BITS    ((1 << 10) - 1)
92 #define MASK_RFIC_SPCR_BITS     (0xf << SPCR_RFIC_FIELD)
93 #define MASK_TFIC_SPCR_BITS     (0xf << SPCR_TFIC_FIELD)
94
95 #define PCH_CLOCK_HZ            50000000
96 #define PCH_MAX_SPBR            1023
97
98 /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
99 #define PCI_VENDOR_ID_ROHM              0x10DB
100 #define PCI_DEVICE_ID_ML7213_SPI        0x802c
101 #define PCI_DEVICE_ID_ML7223_SPI        0x800F
102 #define PCI_DEVICE_ID_ML7831_SPI        0x8816
103
104 /*
105  * Set the number of SPI instance max
106  * Intel EG20T PCH :            1ch
107  * LAPIS Semiconductor ML7213 IOH :     2ch
108  * LAPIS Semiconductor ML7223 IOH :     1ch
109  * LAPIS Semiconductor ML7831 IOH :     1ch
110 */
111 #define PCH_SPI_MAX_DEV                 2
112
113 #define PCH_BUF_SIZE            4096
114 #define PCH_DMA_TRANS_SIZE      12
115
116 static int use_dma = 1;
117
118 struct pch_spi_dma_ctrl {
119         struct dma_async_tx_descriptor  *desc_tx;
120         struct dma_async_tx_descriptor  *desc_rx;
121         struct pch_dma_slave            param_tx;
122         struct pch_dma_slave            param_rx;
123         struct dma_chan         *chan_tx;
124         struct dma_chan         *chan_rx;
125         struct scatterlist              *sg_tx_p;
126         struct scatterlist              *sg_rx_p;
127         struct scatterlist              sg_tx;
128         struct scatterlist              sg_rx;
129         int                             nent;
130         void                            *tx_buf_virt;
131         void                            *rx_buf_virt;
132         dma_addr_t                      tx_buf_dma;
133         dma_addr_t                      rx_buf_dma;
134 };
135 /**
136  * struct pch_spi_data - Holds the SPI channel specific details
137  * @io_remap_addr:              The remapped PCI base address
138  * @master:                     Pointer to the SPI master structure
139  * @work:                       Reference to work queue handler
140  * @wk:                         Workqueue for carrying out execution of the
141  *                              requests
142  * @wait:                       Wait queue for waking up upon receiving an
143  *                              interrupt.
144  * @transfer_complete:          Status of SPI Transfer
145  * @bcurrent_msg_processing:    Status flag for message processing
146  * @lock:                       Lock for protecting this structure
147  * @queue:                      SPI Message queue
148  * @status:                     Status of the SPI driver
149  * @bpw_len:                    Length of data to be transferred in bits per
150  *                              word
151  * @transfer_active:            Flag showing active transfer
152  * @tx_index:                   Transmit data count; for bookkeeping during
153  *                              transfer
154  * @rx_index:                   Receive data count; for bookkeeping during
155  *                              transfer
156  * @tx_buff:                    Buffer for data to be transmitted
157  * @rx_index:                   Buffer for Received data
158  * @n_curnt_chip:               The chip number that this SPI driver currently
159  *                              operates on
160  * @current_chip:               Reference to the current chip that this SPI
161  *                              driver currently operates on
162  * @current_msg:                The current message that this SPI driver is
163  *                              handling
164  * @cur_trans:                  The current transfer that this SPI driver is
165  *                              handling
166  * @board_dat:                  Reference to the SPI device data structure
167  * @plat_dev:                   platform_device structure
168  * @ch:                         SPI channel number
169  * @irq_reg_sts:                Status of IRQ registration
170  */
171 struct pch_spi_data {
172         void __iomem *io_remap_addr;
173         unsigned long io_base_addr;
174         struct spi_master *master;
175         struct work_struct work;
176         struct workqueue_struct *wk;
177         wait_queue_head_t wait;
178         u8 transfer_complete;
179         u8 bcurrent_msg_processing;
180         spinlock_t lock;
181         struct list_head queue;
182         u8 status;
183         u32 bpw_len;
184         u8 transfer_active;
185         u32 tx_index;
186         u32 rx_index;
187         u16 *pkt_tx_buff;
188         u16 *pkt_rx_buff;
189         u8 n_curnt_chip;
190         struct spi_device *current_chip;
191         struct spi_message *current_msg;
192         struct spi_transfer *cur_trans;
193         struct pch_spi_board_data *board_dat;
194         struct platform_device  *plat_dev;
195         int ch;
196         struct pch_spi_dma_ctrl dma;
197         int use_dma;
198         u8 irq_reg_sts;
199         int save_total_len;
200 };
201
202 /**
203  * struct pch_spi_board_data - Holds the SPI device specific details
204  * @pdev:               Pointer to the PCI device
205  * @suspend_sts:        Status of suspend
206  * @num:                The number of SPI device instance
207  */
208 struct pch_spi_board_data {
209         struct pci_dev *pdev;
210         u8 suspend_sts;
211         int num;
212 };
213
214 struct pch_pd_dev_save {
215         int num;
216         struct platform_device *pd_save[PCH_SPI_MAX_DEV];
217         struct pch_spi_board_data *board_dat;
218 };
219
220 static DEFINE_PCI_DEVICE_TABLE(pch_spi_pcidev_id) = {
221         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI),    1, },
222         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
223         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
224         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
225         { }
226 };
227
228 /**
229  * pch_spi_writereg() - Performs  register writes
230  * @master:     Pointer to struct spi_master.
231  * @idx:        Register offset.
232  * @val:        Value to be written to register.
233  */
234 static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
235 {
236         struct pch_spi_data *data = spi_master_get_devdata(master);
237         iowrite32(val, (data->io_remap_addr + idx));
238 }
239
240 /**
241  * pch_spi_readreg() - Performs register reads
242  * @master:     Pointer to struct spi_master.
243  * @idx:        Register offset.
244  */
245 static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
246 {
247         struct pch_spi_data *data = spi_master_get_devdata(master);
248         return ioread32(data->io_remap_addr + idx);
249 }
250
251 static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
252                                       u32 set, u32 clr)
253 {
254         u32 tmp = pch_spi_readreg(master, idx);
255         tmp = (tmp & ~clr) | set;
256         pch_spi_writereg(master, idx, tmp);
257 }
258
259 static void pch_spi_set_master_mode(struct spi_master *master)
260 {
261         pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
262 }
263
264 /**
265  * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
266  * @master:     Pointer to struct spi_master.
267  */
268 static void pch_spi_clear_fifo(struct spi_master *master)
269 {
270         pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
271         pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
272 }
273
274 static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
275                                 void __iomem *io_remap_addr)
276 {
277         u32 n_read, tx_index, rx_index, bpw_len;
278         u16 *pkt_rx_buffer, *pkt_tx_buff;
279         int read_cnt;
280         u32 reg_spcr_val;
281         void __iomem *spsr;
282         void __iomem *spdrr;
283         void __iomem *spdwr;
284
285         spsr = io_remap_addr + PCH_SPSR;
286         iowrite32(reg_spsr_val, spsr);
287
288         if (data->transfer_active) {
289                 rx_index = data->rx_index;
290                 tx_index = data->tx_index;
291                 bpw_len = data->bpw_len;
292                 pkt_rx_buffer = data->pkt_rx_buff;
293                 pkt_tx_buff = data->pkt_tx_buff;
294
295                 spdrr = io_remap_addr + PCH_SPDRR;
296                 spdwr = io_remap_addr + PCH_SPDWR;
297
298                 n_read = PCH_READABLE(reg_spsr_val);
299
300                 for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
301                         pkt_rx_buffer[rx_index++] = ioread32(spdrr);
302                         if (tx_index < bpw_len)
303                                 iowrite32(pkt_tx_buff[tx_index++], spdwr);
304                 }
305
306                 /* disable RFI if not needed */
307                 if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
308                         reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
309                         reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
310
311                         /* reset rx threshold */
312                         reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
313                         reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
314
315                         iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
316                 }
317
318                 /* update counts */
319                 data->tx_index = tx_index;
320                 data->rx_index = rx_index;
321
322                 /* if transfer complete interrupt */
323                 if (reg_spsr_val & SPSR_FI_BIT) {
324                         if ((tx_index == bpw_len) && (rx_index == tx_index)) {
325                                 /* disable interrupts */
326                                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
327                                                    PCH_ALL);
328
329                                 /* transfer is completed;
330                                    inform pch_spi_process_messages */
331                                 data->transfer_complete = true;
332                                 data->transfer_active = false;
333                                 wake_up(&data->wait);
334                         } else {
335                                 dev_err(&data->master->dev,
336                                         "%s : Transfer is not completed",
337                                         __func__);
338                         }
339                 }
340         }
341 }
342
343 /**
344  * pch_spi_handler() - Interrupt handler
345  * @irq:        The interrupt number.
346  * @dev_id:     Pointer to struct pch_spi_board_data.
347  */
348 static irqreturn_t pch_spi_handler(int irq, void *dev_id)
349 {
350         u32 reg_spsr_val;
351         void __iomem *spsr;
352         void __iomem *io_remap_addr;
353         irqreturn_t ret = IRQ_NONE;
354         struct pch_spi_data *data = dev_id;
355         struct pch_spi_board_data *board_dat = data->board_dat;
356
357         if (board_dat->suspend_sts) {
358                 dev_dbg(&board_dat->pdev->dev,
359                         "%s returning due to suspend\n", __func__);
360                 return IRQ_NONE;
361         }
362
363         io_remap_addr = data->io_remap_addr;
364         spsr = io_remap_addr + PCH_SPSR;
365
366         reg_spsr_val = ioread32(spsr);
367
368         if (reg_spsr_val & SPSR_ORF_BIT) {
369                 dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
370                 if (data->current_msg->complete != 0) {
371                         data->transfer_complete = true;
372                         data->current_msg->status = -EIO;
373                         data->current_msg->complete(data->current_msg->context);
374                         data->bcurrent_msg_processing = false;
375                         data->current_msg = NULL;
376                         data->cur_trans = NULL;
377                 }
378         }
379
380         if (data->use_dma)
381                 return IRQ_NONE;
382
383         /* Check if the interrupt is for SPI device */
384         if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
385                 pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
386                 ret = IRQ_HANDLED;
387         }
388
389         dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
390                 __func__, ret);
391
392         return ret;
393 }
394
395 /**
396  * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
397  * @master:     Pointer to struct spi_master.
398  * @speed_hz:   Baud rate.
399  */
400 static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
401 {
402         u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
403
404         /* if baud rate is less than we can support limit it */
405         if (n_spbr > PCH_MAX_SPBR)
406                 n_spbr = PCH_MAX_SPBR;
407
408         pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
409 }
410
411 /**
412  * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
413  * @master:             Pointer to struct spi_master.
414  * @bits_per_word:      Bits per word for SPI transfer.
415  */
416 static void pch_spi_set_bits_per_word(struct spi_master *master,
417                                       u8 bits_per_word)
418 {
419         if (bits_per_word == 8)
420                 pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
421         else
422                 pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
423 }
424
425 /**
426  * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
427  * @spi:        Pointer to struct spi_device.
428  */
429 static void pch_spi_setup_transfer(struct spi_device *spi)
430 {
431         u32 flags = 0;
432
433         dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
434                 __func__, pch_spi_readreg(spi->master, PCH_SPBRR),
435                 spi->max_speed_hz);
436         pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
437
438         /* set bits per word */
439         pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
440
441         if (!(spi->mode & SPI_LSB_FIRST))
442                 flags |= SPCR_LSBF_BIT;
443         if (spi->mode & SPI_CPOL)
444                 flags |= SPCR_CPOL_BIT;
445         if (spi->mode & SPI_CPHA)
446                 flags |= SPCR_CPHA_BIT;
447         pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
448                            (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
449
450         /* Clear the FIFO by toggling  FICLR to 1 and back to 0 */
451         pch_spi_clear_fifo(spi->master);
452 }
453
454 /**
455  * pch_spi_reset() - Clears SPI registers
456  * @master:     Pointer to struct spi_master.
457  */
458 static void pch_spi_reset(struct spi_master *master)
459 {
460         /* write 1 to reset SPI */
461         pch_spi_writereg(master, PCH_SRST, 0x1);
462
463         /* clear reset */
464         pch_spi_writereg(master, PCH_SRST, 0x0);
465 }
466
467 static int pch_spi_setup(struct spi_device *pspi)
468 {
469         /* check bits per word */
470         if (pspi->bits_per_word == 0) {
471                 pspi->bits_per_word = 8;
472                 dev_dbg(&pspi->dev, "%s 8 bits per word\n", __func__);
473         }
474
475         if ((pspi->bits_per_word != 8) && (pspi->bits_per_word != 16)) {
476                 dev_err(&pspi->dev, "%s Invalid bits per word\n", __func__);
477                 return -EINVAL;
478         }
479
480         /* Check baud rate setting */
481         /* if baud rate of chip is greater than
482            max we can support,return error */
483         if ((pspi->max_speed_hz) > PCH_MAX_BAUDRATE)
484                 pspi->max_speed_hz = PCH_MAX_BAUDRATE;
485
486         dev_dbg(&pspi->dev, "%s MODE = %x\n", __func__,
487                 (pspi->mode) & (SPI_CPOL | SPI_CPHA));
488
489         return 0;
490 }
491
492 static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
493 {
494
495         struct spi_transfer *transfer;
496         struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
497         int retval;
498         unsigned long flags;
499
500         /* validate spi message and baud rate */
501         if (unlikely(list_empty(&pmsg->transfers) == 1)) {
502                 dev_err(&pspi->dev, "%s list empty\n", __func__);
503                 retval = -EINVAL;
504                 goto err_out;
505         }
506
507         if (unlikely(pspi->max_speed_hz == 0)) {
508                 dev_err(&pspi->dev, "%s pch_spi_transfer maxspeed=%d\n",
509                         __func__, pspi->max_speed_hz);
510                 retval = -EINVAL;
511                 goto err_out;
512         }
513
514         dev_dbg(&pspi->dev, "%s Transfer List not empty. "
515                 "Transfer Speed is set.\n", __func__);
516
517         spin_lock_irqsave(&data->lock, flags);
518         /* validate Tx/Rx buffers and Transfer length */
519         list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
520                 if (!transfer->tx_buf && !transfer->rx_buf) {
521                         dev_err(&pspi->dev,
522                                 "%s Tx and Rx buffer NULL\n", __func__);
523                         retval = -EINVAL;
524                         goto err_return_spinlock;
525                 }
526
527                 if (!transfer->len) {
528                         dev_err(&pspi->dev, "%s Transfer length invalid\n",
529                                 __func__);
530                         retval = -EINVAL;
531                         goto err_return_spinlock;
532                 }
533
534                 dev_dbg(&pspi->dev, "%s Tx/Rx buffer valid. Transfer length"
535                         " valid\n", __func__);
536
537                 /* if baud rate has been specified validate the same */
538                 if (transfer->speed_hz > PCH_MAX_BAUDRATE)
539                         transfer->speed_hz = PCH_MAX_BAUDRATE;
540
541                 /* if bits per word has been specified validate the same */
542                 if (transfer->bits_per_word) {
543                         if ((transfer->bits_per_word != 8)
544                             && (transfer->bits_per_word != 16)) {
545                                 retval = -EINVAL;
546                                 dev_err(&pspi->dev,
547                                         "%s Invalid bits per word\n", __func__);
548                                 goto err_return_spinlock;
549                         }
550                 }
551         }
552         spin_unlock_irqrestore(&data->lock, flags);
553
554         /* We won't process any messages if we have been asked to terminate */
555         if (data->status == STATUS_EXITING) {
556                 dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
557                 retval = -ESHUTDOWN;
558                 goto err_out;
559         }
560
561         /* If suspended ,return -EINVAL */
562         if (data->board_dat->suspend_sts) {
563                 dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
564                 retval = -EINVAL;
565                 goto err_out;
566         }
567
568         /* set status of message */
569         pmsg->actual_length = 0;
570         dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
571
572         pmsg->status = -EINPROGRESS;
573         spin_lock_irqsave(&data->lock, flags);
574         /* add message to queue */
575         list_add_tail(&pmsg->queue, &data->queue);
576         spin_unlock_irqrestore(&data->lock, flags);
577
578         dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
579
580         /* schedule work queue to run */
581         queue_work(data->wk, &data->work);
582         dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
583
584         retval = 0;
585
586 err_out:
587         dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
588         return retval;
589 err_return_spinlock:
590         dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
591         spin_unlock_irqrestore(&data->lock, flags);
592         return retval;
593 }
594
595 static inline void pch_spi_select_chip(struct pch_spi_data *data,
596                                        struct spi_device *pspi)
597 {
598         if (data->current_chip != NULL) {
599                 if (pspi->chip_select != data->n_curnt_chip) {
600                         dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
601                         data->current_chip = NULL;
602                 }
603         }
604
605         data->current_chip = pspi;
606
607         data->n_curnt_chip = data->current_chip->chip_select;
608
609         dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
610         pch_spi_setup_transfer(pspi);
611 }
612
613 static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
614 {
615         int size;
616         u32 n_writes;
617         int j;
618         struct spi_message *pmsg;
619         const u8 *tx_buf;
620         const u16 *tx_sbuf;
621
622         /* set baud rate if needed */
623         if (data->cur_trans->speed_hz) {
624                 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
625                 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
626         }
627
628         /* set bits per word if needed */
629         if (data->cur_trans->bits_per_word &&
630             (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
631                 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
632                 pch_spi_set_bits_per_word(data->master,
633                                           data->cur_trans->bits_per_word);
634                 *bpw = data->cur_trans->bits_per_word;
635         } else {
636                 *bpw = data->current_msg->spi->bits_per_word;
637         }
638
639         /* reset Tx/Rx index */
640         data->tx_index = 0;
641         data->rx_index = 0;
642
643         data->bpw_len = data->cur_trans->len / (*bpw / 8);
644
645         /* find alloc size */
646         size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
647
648         /* allocate memory for pkt_tx_buff & pkt_rx_buffer */
649         data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
650         if (data->pkt_tx_buff != NULL) {
651                 data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
652                 if (!data->pkt_rx_buff)
653                         kfree(data->pkt_tx_buff);
654         }
655
656         if (!data->pkt_rx_buff) {
657                 /* flush queue and set status of all transfers to -ENOMEM */
658                 dev_err(&data->master->dev, "%s :kzalloc failed\n", __func__);
659                 list_for_each_entry(pmsg, data->queue.next, queue) {
660                         pmsg->status = -ENOMEM;
661
662                         if (pmsg->complete != 0)
663                                 pmsg->complete(pmsg->context);
664
665                         /* delete from queue */
666                         list_del_init(&pmsg->queue);
667                 }
668                 return;
669         }
670
671         /* copy Tx Data */
672         if (data->cur_trans->tx_buf != NULL) {
673                 if (*bpw == 8) {
674                         tx_buf = data->cur_trans->tx_buf;
675                         for (j = 0; j < data->bpw_len; j++)
676                                 data->pkt_tx_buff[j] = *tx_buf++;
677                 } else {
678                         tx_sbuf = data->cur_trans->tx_buf;
679                         for (j = 0; j < data->bpw_len; j++)
680                                 data->pkt_tx_buff[j] = *tx_sbuf++;
681                 }
682         }
683
684         /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
685         n_writes = data->bpw_len;
686         if (n_writes > PCH_MAX_FIFO_DEPTH)
687                 n_writes = PCH_MAX_FIFO_DEPTH;
688
689         dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
690                 "0x2 to SSNXCR\n", __func__);
691         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
692
693         for (j = 0; j < n_writes; j++)
694                 pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
695
696         /* update tx_index */
697         data->tx_index = j;
698
699         /* reset transfer complete flag */
700         data->transfer_complete = false;
701         data->transfer_active = true;
702 }
703
704 static void pch_spi_nomore_transfer(struct pch_spi_data *data)
705 {
706         struct spi_message *pmsg;
707         dev_dbg(&data->master->dev, "%s called\n", __func__);
708         /* Invoke complete callback
709          * [To the spi core..indicating end of transfer] */
710         data->current_msg->status = 0;
711
712         if (data->current_msg->complete != 0) {
713                 dev_dbg(&data->master->dev,
714                         "%s:Invoking callback of SPI core\n", __func__);
715                 data->current_msg->complete(data->current_msg->context);
716         }
717
718         /* update status in global variable */
719         data->bcurrent_msg_processing = false;
720
721         dev_dbg(&data->master->dev,
722                 "%s:data->bcurrent_msg_processing = false\n", __func__);
723
724         data->current_msg = NULL;
725         data->cur_trans = NULL;
726
727         /* check if we have items in list and not suspending
728          * return 1 if list empty */
729         if ((list_empty(&data->queue) == 0) &&
730             (!data->board_dat->suspend_sts) &&
731             (data->status != STATUS_EXITING)) {
732                 /* We have some more work to do (either there is more tranint
733                  * bpw;sfer requests in the current message or there are
734                  *more messages)
735                  */
736                 dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
737                 queue_work(data->wk, &data->work);
738         } else if (data->board_dat->suspend_sts ||
739                    data->status == STATUS_EXITING) {
740                 dev_dbg(&data->master->dev,
741                         "%s suspend/remove initiated, flushing queue\n",
742                         __func__);
743                 list_for_each_entry(pmsg, data->queue.next, queue) {
744                         pmsg->status = -EIO;
745
746                         if (pmsg->complete)
747                                 pmsg->complete(pmsg->context);
748
749                         /* delete from queue */
750                         list_del_init(&pmsg->queue);
751                 }
752         }
753 }
754
755 static void pch_spi_set_ir(struct pch_spi_data *data)
756 {
757         /* enable interrupts, set threshold, enable SPI */
758         if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
759                 /* set receive threshold to PCH_RX_THOLD */
760                 pch_spi_setclr_reg(data->master, PCH_SPCR,
761                                    PCH_RX_THOLD << SPCR_RFIC_FIELD |
762                                    SPCR_FIE_BIT | SPCR_RFIE_BIT |
763                                    SPCR_ORIE_BIT | SPCR_SPE_BIT,
764                                    MASK_RFIC_SPCR_BITS | PCH_ALL);
765         else
766                 /* set receive threshold to maximum */
767                 pch_spi_setclr_reg(data->master, PCH_SPCR,
768                                    PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
769                                    SPCR_FIE_BIT | SPCR_ORIE_BIT |
770                                    SPCR_SPE_BIT,
771                                    MASK_RFIC_SPCR_BITS | PCH_ALL);
772
773         /* Wait until the transfer completes; go to sleep after
774                                  initiating the transfer. */
775         dev_dbg(&data->master->dev,
776                 "%s:waiting for transfer to get over\n", __func__);
777
778         wait_event_interruptible(data->wait, data->transfer_complete);
779
780         /* clear all interrupts */
781         pch_spi_writereg(data->master, PCH_SPSR,
782                          pch_spi_readreg(data->master, PCH_SPSR));
783         /* Disable interrupts and SPI transfer */
784         pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
785         /* clear FIFO */
786         pch_spi_clear_fifo(data->master);
787 }
788
789 static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
790 {
791         int j;
792         u8 *rx_buf;
793         u16 *rx_sbuf;
794
795         /* copy Rx Data */
796         if (!data->cur_trans->rx_buf)
797                 return;
798
799         if (bpw == 8) {
800                 rx_buf = data->cur_trans->rx_buf;
801                 for (j = 0; j < data->bpw_len; j++)
802                         *rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
803         } else {
804                 rx_sbuf = data->cur_trans->rx_buf;
805                 for (j = 0; j < data->bpw_len; j++)
806                         *rx_sbuf++ = data->pkt_rx_buff[j];
807         }
808 }
809
810 static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
811 {
812         int j;
813         u8 *rx_buf;
814         u16 *rx_sbuf;
815         const u8 *rx_dma_buf;
816         const u16 *rx_dma_sbuf;
817
818         /* copy Rx Data */
819         if (!data->cur_trans->rx_buf)
820                 return;
821
822         if (bpw == 8) {
823                 rx_buf = data->cur_trans->rx_buf;
824                 rx_dma_buf = data->dma.rx_buf_virt;
825                 for (j = 0; j < data->bpw_len; j++)
826                         *rx_buf++ = *rx_dma_buf++ & 0xFF;
827                 data->cur_trans->rx_buf = rx_buf;
828         } else {
829                 rx_sbuf = data->cur_trans->rx_buf;
830                 rx_dma_sbuf = data->dma.rx_buf_virt;
831                 for (j = 0; j < data->bpw_len; j++)
832                         *rx_sbuf++ = *rx_dma_sbuf++;
833                 data->cur_trans->rx_buf = rx_sbuf;
834         }
835 }
836
837 static int pch_spi_start_transfer(struct pch_spi_data *data)
838 {
839         struct pch_spi_dma_ctrl *dma;
840         unsigned long flags;
841         int rtn;
842
843         dma = &data->dma;
844
845         spin_lock_irqsave(&data->lock, flags);
846
847         /* disable interrupts, SPI set enable */
848         pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
849
850         spin_unlock_irqrestore(&data->lock, flags);
851
852         /* Wait until the transfer completes; go to sleep after
853                                  initiating the transfer. */
854         dev_dbg(&data->master->dev,
855                 "%s:waiting for transfer to get over\n", __func__);
856         rtn = wait_event_interruptible_timeout(data->wait,
857                                                data->transfer_complete,
858                                                msecs_to_jiffies(2 * HZ));
859         if (!rtn)
860                 dev_err(&data->master->dev,
861                         "%s wait-event timeout\n", __func__);
862
863         dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
864                             DMA_FROM_DEVICE);
865
866         dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
867                             DMA_FROM_DEVICE);
868         memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
869
870         async_tx_ack(dma->desc_rx);
871         async_tx_ack(dma->desc_tx);
872         kfree(dma->sg_tx_p);
873         kfree(dma->sg_rx_p);
874
875         spin_lock_irqsave(&data->lock, flags);
876
877         /* clear fifo threshold, disable interrupts, disable SPI transfer */
878         pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
879                            MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
880                            SPCR_SPE_BIT);
881         /* clear all interrupts */
882         pch_spi_writereg(data->master, PCH_SPSR,
883                          pch_spi_readreg(data->master, PCH_SPSR));
884         /* clear FIFO */
885         pch_spi_clear_fifo(data->master);
886
887         spin_unlock_irqrestore(&data->lock, flags);
888
889         return rtn;
890 }
891
892 static void pch_dma_rx_complete(void *arg)
893 {
894         struct pch_spi_data *data = arg;
895
896         /* transfer is completed;inform pch_spi_process_messages_dma */
897         data->transfer_complete = true;
898         wake_up_interruptible(&data->wait);
899 }
900
901 static bool pch_spi_filter(struct dma_chan *chan, void *slave)
902 {
903         struct pch_dma_slave *param = slave;
904
905         if ((chan->chan_id == param->chan_id) &&
906             (param->dma_dev == chan->device->dev)) {
907                 chan->private = param;
908                 return true;
909         } else {
910                 return false;
911         }
912 }
913
914 static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
915 {
916         dma_cap_mask_t mask;
917         struct dma_chan *chan;
918         struct pci_dev *dma_dev;
919         struct pch_dma_slave *param;
920         struct pch_spi_dma_ctrl *dma;
921         unsigned int width;
922
923         if (bpw == 8)
924                 width = PCH_DMA_WIDTH_1_BYTE;
925         else
926                 width = PCH_DMA_WIDTH_2_BYTES;
927
928         dma = &data->dma;
929         dma_cap_zero(mask);
930         dma_cap_set(DMA_SLAVE, mask);
931
932         /* Get DMA's dev information */
933         dma_dev = pci_get_bus_and_slot(data->board_dat->pdev->bus->number,
934                                        PCI_DEVFN(12, 0));
935
936         /* Set Tx DMA */
937         param = &dma->param_tx;
938         param->dma_dev = &dma_dev->dev;
939         param->chan_id = data->master->bus_num * 2; /* Tx = 0, 2 */
940         param->tx_reg = data->io_base_addr + PCH_SPDWR;
941         param->width = width;
942         chan = dma_request_channel(mask, pch_spi_filter, param);
943         if (!chan) {
944                 dev_err(&data->master->dev,
945                         "ERROR: dma_request_channel FAILS(Tx)\n");
946                 data->use_dma = 0;
947                 return;
948         }
949         dma->chan_tx = chan;
950
951         /* Set Rx DMA */
952         param = &dma->param_rx;
953         param->dma_dev = &dma_dev->dev;
954         param->chan_id = data->master->bus_num * 2 + 1; /* Rx = Tx + 1 */
955         param->rx_reg = data->io_base_addr + PCH_SPDRR;
956         param->width = width;
957         chan = dma_request_channel(mask, pch_spi_filter, param);
958         if (!chan) {
959                 dev_err(&data->master->dev,
960                         "ERROR: dma_request_channel FAILS(Rx)\n");
961                 dma_release_channel(dma->chan_tx);
962                 dma->chan_tx = NULL;
963                 data->use_dma = 0;
964                 return;
965         }
966         dma->chan_rx = chan;
967 }
968
969 static void pch_spi_release_dma(struct pch_spi_data *data)
970 {
971         struct pch_spi_dma_ctrl *dma;
972
973         dma = &data->dma;
974         if (dma->chan_tx) {
975                 dma_release_channel(dma->chan_tx);
976                 dma->chan_tx = NULL;
977         }
978         if (dma->chan_rx) {
979                 dma_release_channel(dma->chan_rx);
980                 dma->chan_rx = NULL;
981         }
982         return;
983 }
984
985 static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
986 {
987         const u8 *tx_buf;
988         const u16 *tx_sbuf;
989         u8 *tx_dma_buf;
990         u16 *tx_dma_sbuf;
991         struct scatterlist *sg;
992         struct dma_async_tx_descriptor *desc_tx;
993         struct dma_async_tx_descriptor *desc_rx;
994         int num;
995         int i;
996         int size;
997         int rem;
998         int head;
999         unsigned long flags;
1000         struct pch_spi_dma_ctrl *dma;
1001
1002         dma = &data->dma;
1003
1004         /* set baud rate if needed */
1005         if (data->cur_trans->speed_hz) {
1006                 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
1007                 spin_lock_irqsave(&data->lock, flags);
1008                 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
1009                 spin_unlock_irqrestore(&data->lock, flags);
1010         }
1011
1012         /* set bits per word if needed */
1013         if (data->cur_trans->bits_per_word &&
1014             (data->current_msg->spi->bits_per_word !=
1015              data->cur_trans->bits_per_word)) {
1016                 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
1017                 spin_lock_irqsave(&data->lock, flags);
1018                 pch_spi_set_bits_per_word(data->master,
1019                                           data->cur_trans->bits_per_word);
1020                 spin_unlock_irqrestore(&data->lock, flags);
1021                 *bpw = data->cur_trans->bits_per_word;
1022         } else {
1023                 *bpw = data->current_msg->spi->bits_per_word;
1024         }
1025         data->bpw_len = data->cur_trans->len / (*bpw / 8);
1026
1027         if (data->bpw_len > PCH_BUF_SIZE) {
1028                 data->bpw_len = PCH_BUF_SIZE;
1029                 data->cur_trans->len -= PCH_BUF_SIZE;
1030         }
1031
1032         /* copy Tx Data */
1033         if (data->cur_trans->tx_buf != NULL) {
1034                 if (*bpw == 8) {
1035                         tx_buf = data->cur_trans->tx_buf;
1036                         tx_dma_buf = dma->tx_buf_virt;
1037                         for (i = 0; i < data->bpw_len; i++)
1038                                 *tx_dma_buf++ = *tx_buf++;
1039                 } else {
1040                         tx_sbuf = data->cur_trans->tx_buf;
1041                         tx_dma_sbuf = dma->tx_buf_virt;
1042                         for (i = 0; i < data->bpw_len; i++)
1043                                 *tx_dma_sbuf++ = *tx_sbuf++;
1044                 }
1045         }
1046
1047         /* Calculate Rx parameter for DMA transmitting */
1048         if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
1049                 if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
1050                         num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1051                         rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
1052                 } else {
1053                         num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1054                         rem = PCH_DMA_TRANS_SIZE;
1055                 }
1056                 size = PCH_DMA_TRANS_SIZE;
1057         } else {
1058                 num = 1;
1059                 size = data->bpw_len;
1060                 rem = data->bpw_len;
1061         }
1062         dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
1063                 __func__, num, size, rem);
1064         spin_lock_irqsave(&data->lock, flags);
1065
1066         /* set receive fifo threshold and transmit fifo threshold */
1067         pch_spi_setclr_reg(data->master, PCH_SPCR,
1068                            ((size - 1) << SPCR_RFIC_FIELD) |
1069                            (PCH_TX_THOLD << SPCR_TFIC_FIELD),
1070                            MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
1071
1072         spin_unlock_irqrestore(&data->lock, flags);
1073
1074         /* RX */
1075         dma->sg_rx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1076         sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
1077         /* offset, length setting */
1078         sg = dma->sg_rx_p;
1079         for (i = 0; i < num; i++, sg++) {
1080                 if (i == (num - 2)) {
1081                         sg->offset = size * i;
1082                         sg->offset = sg->offset * (*bpw / 8);
1083                         sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
1084                                     sg->offset);
1085                         sg_dma_len(sg) = rem;
1086                 } else if (i == (num - 1)) {
1087                         sg->offset = size * (i - 1) + rem;
1088                         sg->offset = sg->offset * (*bpw / 8);
1089                         sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1090                                     sg->offset);
1091                         sg_dma_len(sg) = size;
1092                 } else {
1093                         sg->offset = size * i;
1094                         sg->offset = sg->offset * (*bpw / 8);
1095                         sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1096                                     sg->offset);
1097                         sg_dma_len(sg) = size;
1098                 }
1099                 sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1100         }
1101         sg = dma->sg_rx_p;
1102         desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
1103                                         num, DMA_DEV_TO_MEM,
1104                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1105         if (!desc_rx) {
1106                 dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
1107                         __func__);
1108                 return;
1109         }
1110         dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1111         desc_rx->callback = pch_dma_rx_complete;
1112         desc_rx->callback_param = data;
1113         dma->nent = num;
1114         dma->desc_rx = desc_rx;
1115
1116         /* Calculate Tx parameter for DMA transmitting */
1117         if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
1118                 head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
1119                 if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
1120                         num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1121                         rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
1122                 } else {
1123                         num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1124                         rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
1125                               PCH_DMA_TRANS_SIZE - head;
1126                 }
1127                 size = PCH_DMA_TRANS_SIZE;
1128         } else {
1129                 num = 1;
1130                 size = data->bpw_len;
1131                 rem = data->bpw_len;
1132                 head = 0;
1133         }
1134
1135         dma->sg_tx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1136         sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1137         /* offset, length setting */
1138         sg = dma->sg_tx_p;
1139         for (i = 0; i < num; i++, sg++) {
1140                 if (i == 0) {
1141                         sg->offset = 0;
1142                         sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
1143                                     sg->offset);
1144                         sg_dma_len(sg) = size + head;
1145                 } else if (i == (num - 1)) {
1146                         sg->offset = head + size * i;
1147                         sg->offset = sg->offset * (*bpw / 8);
1148                         sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1149                                     sg->offset);
1150                         sg_dma_len(sg) = rem;
1151                 } else {
1152                         sg->offset = head + size * i;
1153                         sg->offset = sg->offset * (*bpw / 8);
1154                         sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1155                                     sg->offset);
1156                         sg_dma_len(sg) = size;
1157                 }
1158                 sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1159         }
1160         sg = dma->sg_tx_p;
1161         desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
1162                                         sg, num, DMA_MEM_TO_DEV,
1163                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1164         if (!desc_tx) {
1165                 dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
1166                         __func__);
1167                 return;
1168         }
1169         dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1170         desc_tx->callback = NULL;
1171         desc_tx->callback_param = data;
1172         dma->nent = num;
1173         dma->desc_tx = desc_tx;
1174
1175         dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
1176                 "0x2 to SSNXCR\n", __func__);
1177
1178         spin_lock_irqsave(&data->lock, flags);
1179         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1180         desc_rx->tx_submit(desc_rx);
1181         desc_tx->tx_submit(desc_tx);
1182         spin_unlock_irqrestore(&data->lock, flags);
1183
1184         /* reset transfer complete flag */
1185         data->transfer_complete = false;
1186 }
1187
1188 static void pch_spi_process_messages(struct work_struct *pwork)
1189 {
1190         struct spi_message *pmsg;
1191         struct pch_spi_data *data;
1192         int bpw;
1193
1194         data = container_of(pwork, struct pch_spi_data, work);
1195         dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1196
1197         spin_lock(&data->lock);
1198         /* check if suspend has been initiated;if yes flush queue */
1199         if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1200                 dev_dbg(&data->master->dev, "%s suspend/remove initiated,"
1201                         "flushing queue\n", __func__);
1202                 list_for_each_entry(pmsg, data->queue.next, queue) {
1203                         pmsg->status = -EIO;
1204
1205                         if (pmsg->complete != 0) {
1206                                 spin_unlock(&data->lock);
1207                                 pmsg->complete(pmsg->context);
1208                                 spin_lock(&data->lock);
1209                         }
1210
1211                         /* delete from queue */
1212                         list_del_init(&pmsg->queue);
1213                 }
1214
1215                 spin_unlock(&data->lock);
1216                 return;
1217         }
1218
1219         data->bcurrent_msg_processing = true;
1220         dev_dbg(&data->master->dev,
1221                 "%s Set data->bcurrent_msg_processing= true\n", __func__);
1222
1223         /* Get the message from the queue and delete it from there. */
1224         data->current_msg = list_entry(data->queue.next, struct spi_message,
1225                                         queue);
1226
1227         list_del_init(&data->current_msg->queue);
1228
1229         data->current_msg->status = 0;
1230
1231         pch_spi_select_chip(data, data->current_msg->spi);
1232
1233         spin_unlock(&data->lock);
1234
1235         if (data->use_dma)
1236                 pch_spi_request_dma(data,
1237                                     data->current_msg->spi->bits_per_word);
1238         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1239         do {
1240                 int cnt;
1241                 /* If we are already processing a message get the next
1242                 transfer structure from the message otherwise retrieve
1243                 the 1st transfer request from the message. */
1244                 spin_lock(&data->lock);
1245                 if (data->cur_trans == NULL) {
1246                         data->cur_trans =
1247                                 list_entry(data->current_msg->transfers.next,
1248                                            struct spi_transfer, transfer_list);
1249                         dev_dbg(&data->master->dev, "%s "
1250                                 ":Getting 1st transfer message\n", __func__);
1251                 } else {
1252                         data->cur_trans =
1253                                 list_entry(data->cur_trans->transfer_list.next,
1254                                            struct spi_transfer, transfer_list);
1255                         dev_dbg(&data->master->dev, "%s "
1256                                 ":Getting next transfer message\n", __func__);
1257                 }
1258                 spin_unlock(&data->lock);
1259
1260                 if (!data->cur_trans->len)
1261                         goto out;
1262                 cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
1263                 data->save_total_len = data->cur_trans->len;
1264                 if (data->use_dma) {
1265                         int i;
1266                         char *save_rx_buf = data->cur_trans->rx_buf;
1267                         for (i = 0; i < cnt; i ++) {
1268                                 pch_spi_handle_dma(data, &bpw);
1269                                 if (!pch_spi_start_transfer(data)) {
1270                                         data->transfer_complete = true;
1271                                         data->current_msg->status = -EIO;
1272                                         data->current_msg->complete
1273                                                    (data->current_msg->context);
1274                                         data->bcurrent_msg_processing = false;
1275                                         data->current_msg = NULL;
1276                                         data->cur_trans = NULL;
1277                                         goto out;
1278                                 }
1279                                 pch_spi_copy_rx_data_for_dma(data, bpw);
1280                         }
1281                         data->cur_trans->rx_buf = save_rx_buf;
1282                 } else {
1283                         pch_spi_set_tx(data, &bpw);
1284                         pch_spi_set_ir(data);
1285                         pch_spi_copy_rx_data(data, bpw);
1286                         kfree(data->pkt_rx_buff);
1287                         data->pkt_rx_buff = NULL;
1288                         kfree(data->pkt_tx_buff);
1289                         data->pkt_tx_buff = NULL;
1290                 }
1291                 /* increment message count */
1292                 data->cur_trans->len = data->save_total_len;
1293                 data->current_msg->actual_length += data->cur_trans->len;
1294
1295                 dev_dbg(&data->master->dev,
1296                         "%s:data->current_msg->actual_length=%d\n",
1297                         __func__, data->current_msg->actual_length);
1298
1299                 /* check for delay */
1300                 if (data->cur_trans->delay_usecs) {
1301                         dev_dbg(&data->master->dev, "%s:"
1302                                 "delay in usec=%d\n", __func__,
1303                                 data->cur_trans->delay_usecs);
1304                         udelay(data->cur_trans->delay_usecs);
1305                 }
1306
1307                 spin_lock(&data->lock);
1308
1309                 /* No more transfer in this message. */
1310                 if ((data->cur_trans->transfer_list.next) ==
1311                     &(data->current_msg->transfers)) {
1312                         pch_spi_nomore_transfer(data);
1313                 }
1314
1315                 spin_unlock(&data->lock);
1316
1317         } while (data->cur_trans != NULL);
1318
1319 out:
1320         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1321         if (data->use_dma)
1322                 pch_spi_release_dma(data);
1323 }
1324
1325 static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1326                                    struct pch_spi_data *data)
1327 {
1328         dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1329
1330         /* free workqueue */
1331         if (data->wk != NULL) {
1332                 destroy_workqueue(data->wk);
1333                 data->wk = NULL;
1334                 dev_dbg(&board_dat->pdev->dev,
1335                         "%s destroy_workqueue invoked successfully\n",
1336                         __func__);
1337         }
1338 }
1339
1340 static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1341                                  struct pch_spi_data *data)
1342 {
1343         int retval = 0;
1344
1345         dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1346
1347         /* create workqueue */
1348         data->wk = create_singlethread_workqueue(KBUILD_MODNAME);
1349         if (!data->wk) {
1350                 dev_err(&board_dat->pdev->dev,
1351                         "%s create_singlet hread_workqueue failed\n", __func__);
1352                 retval = -EBUSY;
1353                 goto err_return;
1354         }
1355
1356         /* reset PCH SPI h/w */
1357         pch_spi_reset(data->master);
1358         dev_dbg(&board_dat->pdev->dev,
1359                 "%s pch_spi_reset invoked successfully\n", __func__);
1360
1361         dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1362
1363 err_return:
1364         if (retval != 0) {
1365                 dev_err(&board_dat->pdev->dev,
1366                         "%s FAIL:invoking pch_spi_free_resources\n", __func__);
1367                 pch_spi_free_resources(board_dat, data);
1368         }
1369
1370         dev_dbg(&board_dat->pdev->dev, "%s Return=%d\n", __func__, retval);
1371
1372         return retval;
1373 }
1374
1375 static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1376                              struct pch_spi_data *data)
1377 {
1378         struct pch_spi_dma_ctrl *dma;
1379
1380         dma = &data->dma;
1381         if (dma->tx_buf_dma)
1382                 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1383                                   dma->tx_buf_virt, dma->tx_buf_dma);
1384         if (dma->rx_buf_dma)
1385                 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1386                                   dma->rx_buf_virt, dma->rx_buf_dma);
1387         return;
1388 }
1389
1390 static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1391                               struct pch_spi_data *data)
1392 {
1393         struct pch_spi_dma_ctrl *dma;
1394
1395         dma = &data->dma;
1396         /* Get Consistent memory for Tx DMA */
1397         dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1398                                 PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1399         /* Get Consistent memory for Rx DMA */
1400         dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1401                                 PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1402 }
1403
1404 static int pch_spi_pd_probe(struct platform_device *plat_dev)
1405 {
1406         int ret;
1407         struct spi_master *master;
1408         struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1409         struct pch_spi_data *data;
1410
1411         dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1412
1413         master = spi_alloc_master(&board_dat->pdev->dev,
1414                                   sizeof(struct pch_spi_data));
1415         if (!master) {
1416                 dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1417                         plat_dev->id);
1418                 return -ENOMEM;
1419         }
1420
1421         data = spi_master_get_devdata(master);
1422         data->master = master;
1423
1424         platform_set_drvdata(plat_dev, data);
1425
1426         /* baseaddress + address offset) */
1427         data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1428                                          PCH_ADDRESS_SIZE * plat_dev->id;
1429         data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0) +
1430                                          PCH_ADDRESS_SIZE * plat_dev->id;
1431         if (!data->io_remap_addr) {
1432                 dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1433                 ret = -ENOMEM;
1434                 goto err_pci_iomap;
1435         }
1436
1437         dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1438                 plat_dev->id, data->io_remap_addr);
1439
1440         /* initialize members of SPI master */
1441         master->num_chipselect = PCH_MAX_CS;
1442         master->setup = pch_spi_setup;
1443         master->transfer = pch_spi_transfer;
1444         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1445
1446         data->board_dat = board_dat;
1447         data->plat_dev = plat_dev;
1448         data->n_curnt_chip = 255;
1449         data->status = STATUS_RUNNING;
1450         data->ch = plat_dev->id;
1451         data->use_dma = use_dma;
1452
1453         INIT_LIST_HEAD(&data->queue);
1454         spin_lock_init(&data->lock);
1455         INIT_WORK(&data->work, pch_spi_process_messages);
1456         init_waitqueue_head(&data->wait);
1457
1458         ret = pch_spi_get_resources(board_dat, data);
1459         if (ret) {
1460                 dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1461                 goto err_spi_get_resources;
1462         }
1463
1464         ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1465                           IRQF_SHARED, KBUILD_MODNAME, data);
1466         if (ret) {
1467                 dev_err(&plat_dev->dev,
1468                         "%s request_irq failed\n", __func__);
1469                 goto err_request_irq;
1470         }
1471         data->irq_reg_sts = true;
1472
1473         pch_spi_set_master_mode(master);
1474
1475         ret = spi_register_master(master);
1476         if (ret != 0) {
1477                 dev_err(&plat_dev->dev,
1478                         "%s spi_register_master FAILED\n", __func__);
1479                 goto err_spi_register_master;
1480         }
1481
1482         if (use_dma) {
1483                 dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1484                 pch_alloc_dma_buf(board_dat, data);
1485         }
1486
1487         return 0;
1488
1489 err_spi_register_master:
1490         free_irq(board_dat->pdev->irq, board_dat);
1491 err_request_irq:
1492         pch_spi_free_resources(board_dat, data);
1493 err_spi_get_resources:
1494         pci_iounmap(board_dat->pdev, data->io_remap_addr);
1495 err_pci_iomap:
1496         spi_master_put(master);
1497
1498         return ret;
1499 }
1500
1501 static int pch_spi_pd_remove(struct platform_device *plat_dev)
1502 {
1503         struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1504         struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1505         int count;
1506         unsigned long flags;
1507
1508         dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1509                 __func__, plat_dev->id, board_dat->pdev->irq);
1510
1511         if (use_dma)
1512                 pch_free_dma_buf(board_dat, data);
1513
1514         /* check for any pending messages; no action is taken if the queue
1515          * is still full; but at least we tried.  Unload anyway */
1516         count = 500;
1517         spin_lock_irqsave(&data->lock, flags);
1518         data->status = STATUS_EXITING;
1519         while ((list_empty(&data->queue) == 0) && --count) {
1520                 dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1521                         __func__);
1522                 spin_unlock_irqrestore(&data->lock, flags);
1523                 msleep(PCH_SLEEP_TIME);
1524                 spin_lock_irqsave(&data->lock, flags);
1525         }
1526         spin_unlock_irqrestore(&data->lock, flags);
1527
1528         pch_spi_free_resources(board_dat, data);
1529         /* disable interrupts & free IRQ */
1530         if (data->irq_reg_sts) {
1531                 /* disable interrupts */
1532                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1533                 data->irq_reg_sts = false;
1534                 free_irq(board_dat->pdev->irq, data);
1535         }
1536
1537         pci_iounmap(board_dat->pdev, data->io_remap_addr);
1538         spi_unregister_master(data->master);
1539
1540         return 0;
1541 }
1542 #ifdef CONFIG_PM
1543 static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1544                               pm_message_t state)
1545 {
1546         u8 count;
1547         struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1548         struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1549
1550         dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1551
1552         if (!board_dat) {
1553                 dev_err(&pd_dev->dev,
1554                         "%s pci_get_drvdata returned NULL\n", __func__);
1555                 return -EFAULT;
1556         }
1557
1558         /* check if the current message is processed:
1559            Only after thats done the transfer will be suspended */
1560         count = 255;
1561         while ((--count) > 0) {
1562                 if (!(data->bcurrent_msg_processing))
1563                         break;
1564                 msleep(PCH_SLEEP_TIME);
1565         }
1566
1567         /* Free IRQ */
1568         if (data->irq_reg_sts) {
1569                 /* disable all interrupts */
1570                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1571                 pch_spi_reset(data->master);
1572                 free_irq(board_dat->pdev->irq, data);
1573
1574                 data->irq_reg_sts = false;
1575                 dev_dbg(&pd_dev->dev,
1576                         "%s free_irq invoked successfully.\n", __func__);
1577         }
1578
1579         return 0;
1580 }
1581
1582 static int pch_spi_pd_resume(struct platform_device *pd_dev)
1583 {
1584         struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1585         struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1586         int retval;
1587
1588         if (!board_dat) {
1589                 dev_err(&pd_dev->dev,
1590                         "%s pci_get_drvdata returned NULL\n", __func__);
1591                 return -EFAULT;
1592         }
1593
1594         if (!data->irq_reg_sts) {
1595                 /* register IRQ */
1596                 retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1597                                      IRQF_SHARED, KBUILD_MODNAME, data);
1598                 if (retval < 0) {
1599                         dev_err(&pd_dev->dev,
1600                                 "%s request_irq failed\n", __func__);
1601                         return retval;
1602                 }
1603
1604                 /* reset PCH SPI h/w */
1605                 pch_spi_reset(data->master);
1606                 pch_spi_set_master_mode(data->master);
1607                 data->irq_reg_sts = true;
1608         }
1609         return 0;
1610 }
1611 #else
1612 #define pch_spi_pd_suspend NULL
1613 #define pch_spi_pd_resume NULL
1614 #endif
1615
1616 static struct platform_driver pch_spi_pd_driver = {
1617         .driver = {
1618                 .name = "pch-spi",
1619                 .owner = THIS_MODULE,
1620         },
1621         .probe = pch_spi_pd_probe,
1622         .remove = pch_spi_pd_remove,
1623         .suspend = pch_spi_pd_suspend,
1624         .resume = pch_spi_pd_resume
1625 };
1626
1627 static int pch_spi_probe(struct pci_dev *pdev,
1628                                    const struct pci_device_id *id)
1629 {
1630         struct pch_spi_board_data *board_dat;
1631         struct platform_device *pd_dev = NULL;
1632         int retval;
1633         int i;
1634         struct pch_pd_dev_save *pd_dev_save;
1635
1636         pd_dev_save = kzalloc(sizeof(struct pch_pd_dev_save), GFP_KERNEL);
1637         if (!pd_dev_save) {
1638                 dev_err(&pdev->dev, "%s Can't allocate pd_dev_sav\n", __func__);
1639                 return -ENOMEM;
1640         }
1641
1642         board_dat = kzalloc(sizeof(struct pch_spi_board_data), GFP_KERNEL);
1643         if (!board_dat) {
1644                 dev_err(&pdev->dev, "%s Can't allocate board_dat\n", __func__);
1645                 retval = -ENOMEM;
1646                 goto err_no_mem;
1647         }
1648
1649         retval = pci_request_regions(pdev, KBUILD_MODNAME);
1650         if (retval) {
1651                 dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1652                 goto pci_request_regions;
1653         }
1654
1655         board_dat->pdev = pdev;
1656         board_dat->num = id->driver_data;
1657         pd_dev_save->num = id->driver_data;
1658         pd_dev_save->board_dat = board_dat;
1659
1660         retval = pci_enable_device(pdev);
1661         if (retval) {
1662                 dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1663                 goto pci_enable_device;
1664         }
1665
1666         for (i = 0; i < board_dat->num; i++) {
1667                 pd_dev = platform_device_alloc("pch-spi", i);
1668                 if (!pd_dev) {
1669                         dev_err(&pdev->dev, "platform_device_alloc failed\n");
1670                         goto err_platform_device;
1671                 }
1672                 pd_dev_save->pd_save[i] = pd_dev;
1673                 pd_dev->dev.parent = &pdev->dev;
1674
1675                 retval = platform_device_add_data(pd_dev, board_dat,
1676                                                   sizeof(*board_dat));
1677                 if (retval) {
1678                         dev_err(&pdev->dev,
1679                                 "platform_device_add_data failed\n");
1680                         platform_device_put(pd_dev);
1681                         goto err_platform_device;
1682                 }
1683
1684                 retval = platform_device_add(pd_dev);
1685                 if (retval) {
1686                         dev_err(&pdev->dev, "platform_device_add failed\n");
1687                         platform_device_put(pd_dev);
1688                         goto err_platform_device;
1689                 }
1690         }
1691
1692         pci_set_drvdata(pdev, pd_dev_save);
1693
1694         return 0;
1695
1696 err_platform_device:
1697         pci_disable_device(pdev);
1698 pci_enable_device:
1699         pci_release_regions(pdev);
1700 pci_request_regions:
1701         kfree(board_dat);
1702 err_no_mem:
1703         kfree(pd_dev_save);
1704
1705         return retval;
1706 }
1707
1708 static void pch_spi_remove(struct pci_dev *pdev)
1709 {
1710         int i;
1711         struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1712
1713         dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1714
1715         for (i = 0; i < pd_dev_save->num; i++)
1716                 platform_device_unregister(pd_dev_save->pd_save[i]);
1717
1718         pci_disable_device(pdev);
1719         pci_release_regions(pdev);
1720         kfree(pd_dev_save->board_dat);
1721         kfree(pd_dev_save);
1722 }
1723
1724 #ifdef CONFIG_PM
1725 static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
1726 {
1727         int retval;
1728         struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1729
1730         dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1731
1732         pd_dev_save->board_dat->suspend_sts = true;
1733
1734         /* save config space */
1735         retval = pci_save_state(pdev);
1736         if (retval == 0) {
1737                 pci_enable_wake(pdev, PCI_D3hot, 0);
1738                 pci_disable_device(pdev);
1739                 pci_set_power_state(pdev, PCI_D3hot);
1740         } else {
1741                 dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
1742         }
1743
1744         return retval;
1745 }
1746
1747 static int pch_spi_resume(struct pci_dev *pdev)
1748 {
1749         int retval;
1750         struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1751         dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1752
1753         pci_set_power_state(pdev, PCI_D0);
1754         pci_restore_state(pdev);
1755
1756         retval = pci_enable_device(pdev);
1757         if (retval < 0) {
1758                 dev_err(&pdev->dev,
1759                         "%s pci_enable_device failed\n", __func__);
1760         } else {
1761                 pci_enable_wake(pdev, PCI_D3hot, 0);
1762
1763                 /* set suspend status to false */
1764                 pd_dev_save->board_dat->suspend_sts = false;
1765         }
1766
1767         return retval;
1768 }
1769 #else
1770 #define pch_spi_suspend NULL
1771 #define pch_spi_resume NULL
1772
1773 #endif
1774
1775 static struct pci_driver pch_spi_pcidev_driver = {
1776         .name = "pch_spi",
1777         .id_table = pch_spi_pcidev_id,
1778         .probe = pch_spi_probe,
1779         .remove = pch_spi_remove,
1780         .suspend = pch_spi_suspend,
1781         .resume = pch_spi_resume,
1782 };
1783
1784 static int __init pch_spi_init(void)
1785 {
1786         int ret;
1787         ret = platform_driver_register(&pch_spi_pd_driver);
1788         if (ret)
1789                 return ret;
1790
1791         ret = pci_register_driver(&pch_spi_pcidev_driver);
1792         if (ret)
1793                 return ret;
1794
1795         return 0;
1796 }
1797 module_init(pch_spi_init);
1798
1799 static void __exit pch_spi_exit(void)
1800 {
1801         pci_unregister_driver(&pch_spi_pcidev_driver);
1802         platform_driver_unregister(&pch_spi_pd_driver);
1803 }
1804 module_exit(pch_spi_exit);
1805
1806 module_param(use_dma, int, 0644);
1807 MODULE_PARM_DESC(use_dma,
1808                  "to use DMA for data transfers pass 1 else 0; default 1");
1809
1810 MODULE_LICENSE("GPL");
1811 MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");