Merge tag 'upstream-3.14-rc1' of git://git.infradead.org/linux-ubifs
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / spi / spi-topcliff-pch.c
1 /*
2  * SPI bus driver for the Topcliff PCH used by Intel SoCs
3  *
4  * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 of the License.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307, USA.
18  */
19
20 #include <linux/delay.h>
21 #include <linux/pci.h>
22 #include <linux/wait.h>
23 #include <linux/spi/spi.h>
24 #include <linux/interrupt.h>
25 #include <linux/sched.h>
26 #include <linux/spi/spidev.h>
27 #include <linux/module.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30
31 #include <linux/dmaengine.h>
32 #include <linux/pch_dma.h>
33
34 /* Register offsets */
35 #define PCH_SPCR                0x00    /* SPI control register */
36 #define PCH_SPBRR               0x04    /* SPI baud rate register */
37 #define PCH_SPSR                0x08    /* SPI status register */
38 #define PCH_SPDWR               0x0C    /* SPI write data register */
39 #define PCH_SPDRR               0x10    /* SPI read data register */
40 #define PCH_SSNXCR              0x18    /* SSN Expand Control Register */
41 #define PCH_SRST                0x1C    /* SPI reset register */
42 #define PCH_ADDRESS_SIZE        0x20
43
44 #define PCH_SPSR_TFD            0x000007C0
45 #define PCH_SPSR_RFD            0x0000F800
46
47 #define PCH_READABLE(x)         (((x) & PCH_SPSR_RFD)>>11)
48 #define PCH_WRITABLE(x)         (((x) & PCH_SPSR_TFD)>>6)
49
50 #define PCH_RX_THOLD            7
51 #define PCH_RX_THOLD_MAX        15
52
53 #define PCH_TX_THOLD            2
54
55 #define PCH_MAX_BAUDRATE        5000000
56 #define PCH_MAX_FIFO_DEPTH      16
57
58 #define STATUS_RUNNING          1
59 #define STATUS_EXITING          2
60 #define PCH_SLEEP_TIME          10
61
62 #define SSN_LOW                 0x02U
63 #define SSN_HIGH                0x03U
64 #define SSN_NO_CONTROL          0x00U
65 #define PCH_MAX_CS              0xFF
66 #define PCI_DEVICE_ID_GE_SPI    0x8816
67
68 #define SPCR_SPE_BIT            (1 << 0)
69 #define SPCR_MSTR_BIT           (1 << 1)
70 #define SPCR_LSBF_BIT           (1 << 4)
71 #define SPCR_CPHA_BIT           (1 << 5)
72 #define SPCR_CPOL_BIT           (1 << 6)
73 #define SPCR_TFIE_BIT           (1 << 8)
74 #define SPCR_RFIE_BIT           (1 << 9)
75 #define SPCR_FIE_BIT            (1 << 10)
76 #define SPCR_ORIE_BIT           (1 << 11)
77 #define SPCR_MDFIE_BIT          (1 << 12)
78 #define SPCR_FICLR_BIT          (1 << 24)
79 #define SPSR_TFI_BIT            (1 << 0)
80 #define SPSR_RFI_BIT            (1 << 1)
81 #define SPSR_FI_BIT             (1 << 2)
82 #define SPSR_ORF_BIT            (1 << 3)
83 #define SPBRR_SIZE_BIT          (1 << 10)
84
85 #define PCH_ALL                 (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
86                                 SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
87
88 #define SPCR_RFIC_FIELD         20
89 #define SPCR_TFIC_FIELD         16
90
91 #define MASK_SPBRR_SPBR_BITS    ((1 << 10) - 1)
92 #define MASK_RFIC_SPCR_BITS     (0xf << SPCR_RFIC_FIELD)
93 #define MASK_TFIC_SPCR_BITS     (0xf << SPCR_TFIC_FIELD)
94
95 #define PCH_CLOCK_HZ            50000000
96 #define PCH_MAX_SPBR            1023
97
98 /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
99 #define PCI_VENDOR_ID_ROHM              0x10DB
100 #define PCI_DEVICE_ID_ML7213_SPI        0x802c
101 #define PCI_DEVICE_ID_ML7223_SPI        0x800F
102 #define PCI_DEVICE_ID_ML7831_SPI        0x8816
103
104 /*
105  * Set the number of SPI instance max
106  * Intel EG20T PCH :            1ch
107  * LAPIS Semiconductor ML7213 IOH :     2ch
108  * LAPIS Semiconductor ML7223 IOH :     1ch
109  * LAPIS Semiconductor ML7831 IOH :     1ch
110 */
111 #define PCH_SPI_MAX_DEV                 2
112
113 #define PCH_BUF_SIZE            4096
114 #define PCH_DMA_TRANS_SIZE      12
115
116 static int use_dma = 1;
117
118 struct pch_spi_dma_ctrl {
119         struct dma_async_tx_descriptor  *desc_tx;
120         struct dma_async_tx_descriptor  *desc_rx;
121         struct pch_dma_slave            param_tx;
122         struct pch_dma_slave            param_rx;
123         struct dma_chan         *chan_tx;
124         struct dma_chan         *chan_rx;
125         struct scatterlist              *sg_tx_p;
126         struct scatterlist              *sg_rx_p;
127         struct scatterlist              sg_tx;
128         struct scatterlist              sg_rx;
129         int                             nent;
130         void                            *tx_buf_virt;
131         void                            *rx_buf_virt;
132         dma_addr_t                      tx_buf_dma;
133         dma_addr_t                      rx_buf_dma;
134 };
135 /**
136  * struct pch_spi_data - Holds the SPI channel specific details
137  * @io_remap_addr:              The remapped PCI base address
138  * @master:                     Pointer to the SPI master structure
139  * @work:                       Reference to work queue handler
140  * @wk:                         Workqueue for carrying out execution of the
141  *                              requests
142  * @wait:                       Wait queue for waking up upon receiving an
143  *                              interrupt.
144  * @transfer_complete:          Status of SPI Transfer
145  * @bcurrent_msg_processing:    Status flag for message processing
146  * @lock:                       Lock for protecting this structure
147  * @queue:                      SPI Message queue
148  * @status:                     Status of the SPI driver
149  * @bpw_len:                    Length of data to be transferred in bits per
150  *                              word
151  * @transfer_active:            Flag showing active transfer
152  * @tx_index:                   Transmit data count; for bookkeeping during
153  *                              transfer
154  * @rx_index:                   Receive data count; for bookkeeping during
155  *                              transfer
156  * @tx_buff:                    Buffer for data to be transmitted
157  * @rx_index:                   Buffer for Received data
158  * @n_curnt_chip:               The chip number that this SPI driver currently
159  *                              operates on
160  * @current_chip:               Reference to the current chip that this SPI
161  *                              driver currently operates on
162  * @current_msg:                The current message that this SPI driver is
163  *                              handling
164  * @cur_trans:                  The current transfer that this SPI driver is
165  *                              handling
166  * @board_dat:                  Reference to the SPI device data structure
167  * @plat_dev:                   platform_device structure
168  * @ch:                         SPI channel number
169  * @irq_reg_sts:                Status of IRQ registration
170  */
171 struct pch_spi_data {
172         void __iomem *io_remap_addr;
173         unsigned long io_base_addr;
174         struct spi_master *master;
175         struct work_struct work;
176         struct workqueue_struct *wk;
177         wait_queue_head_t wait;
178         u8 transfer_complete;
179         u8 bcurrent_msg_processing;
180         spinlock_t lock;
181         struct list_head queue;
182         u8 status;
183         u32 bpw_len;
184         u8 transfer_active;
185         u32 tx_index;
186         u32 rx_index;
187         u16 *pkt_tx_buff;
188         u16 *pkt_rx_buff;
189         u8 n_curnt_chip;
190         struct spi_device *current_chip;
191         struct spi_message *current_msg;
192         struct spi_transfer *cur_trans;
193         struct pch_spi_board_data *board_dat;
194         struct platform_device  *plat_dev;
195         int ch;
196         struct pch_spi_dma_ctrl dma;
197         int use_dma;
198         u8 irq_reg_sts;
199         int save_total_len;
200 };
201
202 /**
203  * struct pch_spi_board_data - Holds the SPI device specific details
204  * @pdev:               Pointer to the PCI device
205  * @suspend_sts:        Status of suspend
206  * @num:                The number of SPI device instance
207  */
208 struct pch_spi_board_data {
209         struct pci_dev *pdev;
210         u8 suspend_sts;
211         int num;
212 };
213
214 struct pch_pd_dev_save {
215         int num;
216         struct platform_device *pd_save[PCH_SPI_MAX_DEV];
217         struct pch_spi_board_data *board_dat;
218 };
219
220 static const struct pci_device_id pch_spi_pcidev_id[] = {
221         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI),    1, },
222         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
223         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
224         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
225         { }
226 };
227
228 /**
229  * pch_spi_writereg() - Performs  register writes
230  * @master:     Pointer to struct spi_master.
231  * @idx:        Register offset.
232  * @val:        Value to be written to register.
233  */
234 static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
235 {
236         struct pch_spi_data *data = spi_master_get_devdata(master);
237         iowrite32(val, (data->io_remap_addr + idx));
238 }
239
240 /**
241  * pch_spi_readreg() - Performs register reads
242  * @master:     Pointer to struct spi_master.
243  * @idx:        Register offset.
244  */
245 static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
246 {
247         struct pch_spi_data *data = spi_master_get_devdata(master);
248         return ioread32(data->io_remap_addr + idx);
249 }
250
251 static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
252                                       u32 set, u32 clr)
253 {
254         u32 tmp = pch_spi_readreg(master, idx);
255         tmp = (tmp & ~clr) | set;
256         pch_spi_writereg(master, idx, tmp);
257 }
258
259 static void pch_spi_set_master_mode(struct spi_master *master)
260 {
261         pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
262 }
263
264 /**
265  * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
266  * @master:     Pointer to struct spi_master.
267  */
268 static void pch_spi_clear_fifo(struct spi_master *master)
269 {
270         pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
271         pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
272 }
273
274 static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
275                                 void __iomem *io_remap_addr)
276 {
277         u32 n_read, tx_index, rx_index, bpw_len;
278         u16 *pkt_rx_buffer, *pkt_tx_buff;
279         int read_cnt;
280         u32 reg_spcr_val;
281         void __iomem *spsr;
282         void __iomem *spdrr;
283         void __iomem *spdwr;
284
285         spsr = io_remap_addr + PCH_SPSR;
286         iowrite32(reg_spsr_val, spsr);
287
288         if (data->transfer_active) {
289                 rx_index = data->rx_index;
290                 tx_index = data->tx_index;
291                 bpw_len = data->bpw_len;
292                 pkt_rx_buffer = data->pkt_rx_buff;
293                 pkt_tx_buff = data->pkt_tx_buff;
294
295                 spdrr = io_remap_addr + PCH_SPDRR;
296                 spdwr = io_remap_addr + PCH_SPDWR;
297
298                 n_read = PCH_READABLE(reg_spsr_val);
299
300                 for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
301                         pkt_rx_buffer[rx_index++] = ioread32(spdrr);
302                         if (tx_index < bpw_len)
303                                 iowrite32(pkt_tx_buff[tx_index++], spdwr);
304                 }
305
306                 /* disable RFI if not needed */
307                 if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
308                         reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
309                         reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
310
311                         /* reset rx threshold */
312                         reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
313                         reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
314
315                         iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
316                 }
317
318                 /* update counts */
319                 data->tx_index = tx_index;
320                 data->rx_index = rx_index;
321
322                 /* if transfer complete interrupt */
323                 if (reg_spsr_val & SPSR_FI_BIT) {
324                         if ((tx_index == bpw_len) && (rx_index == tx_index)) {
325                                 /* disable interrupts */
326                                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
327                                                    PCH_ALL);
328
329                                 /* transfer is completed;
330                                    inform pch_spi_process_messages */
331                                 data->transfer_complete = true;
332                                 data->transfer_active = false;
333                                 wake_up(&data->wait);
334                         } else {
335                                 dev_err(&data->master->dev,
336                                         "%s : Transfer is not completed",
337                                         __func__);
338                         }
339                 }
340         }
341 }
342
343 /**
344  * pch_spi_handler() - Interrupt handler
345  * @irq:        The interrupt number.
346  * @dev_id:     Pointer to struct pch_spi_board_data.
347  */
348 static irqreturn_t pch_spi_handler(int irq, void *dev_id)
349 {
350         u32 reg_spsr_val;
351         void __iomem *spsr;
352         void __iomem *io_remap_addr;
353         irqreturn_t ret = IRQ_NONE;
354         struct pch_spi_data *data = dev_id;
355         struct pch_spi_board_data *board_dat = data->board_dat;
356
357         if (board_dat->suspend_sts) {
358                 dev_dbg(&board_dat->pdev->dev,
359                         "%s returning due to suspend\n", __func__);
360                 return IRQ_NONE;
361         }
362
363         io_remap_addr = data->io_remap_addr;
364         spsr = io_remap_addr + PCH_SPSR;
365
366         reg_spsr_val = ioread32(spsr);
367
368         if (reg_spsr_val & SPSR_ORF_BIT) {
369                 dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
370                 if (data->current_msg->complete) {
371                         data->transfer_complete = true;
372                         data->current_msg->status = -EIO;
373                         data->current_msg->complete(data->current_msg->context);
374                         data->bcurrent_msg_processing = false;
375                         data->current_msg = NULL;
376                         data->cur_trans = NULL;
377                 }
378         }
379
380         if (data->use_dma)
381                 return IRQ_NONE;
382
383         /* Check if the interrupt is for SPI device */
384         if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
385                 pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
386                 ret = IRQ_HANDLED;
387         }
388
389         dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
390                 __func__, ret);
391
392         return ret;
393 }
394
395 /**
396  * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
397  * @master:     Pointer to struct spi_master.
398  * @speed_hz:   Baud rate.
399  */
400 static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
401 {
402         u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
403
404         /* if baud rate is less than we can support limit it */
405         if (n_spbr > PCH_MAX_SPBR)
406                 n_spbr = PCH_MAX_SPBR;
407
408         pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
409 }
410
411 /**
412  * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
413  * @master:             Pointer to struct spi_master.
414  * @bits_per_word:      Bits per word for SPI transfer.
415  */
416 static void pch_spi_set_bits_per_word(struct spi_master *master,
417                                       u8 bits_per_word)
418 {
419         if (bits_per_word == 8)
420                 pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
421         else
422                 pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
423 }
424
425 /**
426  * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
427  * @spi:        Pointer to struct spi_device.
428  */
429 static void pch_spi_setup_transfer(struct spi_device *spi)
430 {
431         u32 flags = 0;
432
433         dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
434                 __func__, pch_spi_readreg(spi->master, PCH_SPBRR),
435                 spi->max_speed_hz);
436         pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
437
438         /* set bits per word */
439         pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
440
441         if (!(spi->mode & SPI_LSB_FIRST))
442                 flags |= SPCR_LSBF_BIT;
443         if (spi->mode & SPI_CPOL)
444                 flags |= SPCR_CPOL_BIT;
445         if (spi->mode & SPI_CPHA)
446                 flags |= SPCR_CPHA_BIT;
447         pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
448                            (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
449
450         /* Clear the FIFO by toggling  FICLR to 1 and back to 0 */
451         pch_spi_clear_fifo(spi->master);
452 }
453
454 /**
455  * pch_spi_reset() - Clears SPI registers
456  * @master:     Pointer to struct spi_master.
457  */
458 static void pch_spi_reset(struct spi_master *master)
459 {
460         /* write 1 to reset SPI */
461         pch_spi_writereg(master, PCH_SRST, 0x1);
462
463         /* clear reset */
464         pch_spi_writereg(master, PCH_SRST, 0x0);
465 }
466
467 static int pch_spi_setup(struct spi_device *pspi)
468 {
469         /* Check baud rate setting */
470         /* if baud rate of chip is greater than
471            max we can support,return error */
472         if ((pspi->max_speed_hz) > PCH_MAX_BAUDRATE)
473                 pspi->max_speed_hz = PCH_MAX_BAUDRATE;
474
475         dev_dbg(&pspi->dev, "%s MODE = %x\n", __func__,
476                 (pspi->mode) & (SPI_CPOL | SPI_CPHA));
477
478         return 0;
479 }
480
481 static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
482 {
483
484         struct spi_transfer *transfer;
485         struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
486         int retval;
487         unsigned long flags;
488
489         /* validate spi message and baud rate */
490         if (unlikely(list_empty(&pmsg->transfers) == 1)) {
491                 dev_err(&pspi->dev, "%s list empty\n", __func__);
492                 retval = -EINVAL;
493                 goto err_out;
494         }
495
496         if (unlikely(pspi->max_speed_hz == 0)) {
497                 dev_err(&pspi->dev, "%s pch_spi_transfer maxspeed=%d\n",
498                         __func__, pspi->max_speed_hz);
499                 retval = -EINVAL;
500                 goto err_out;
501         }
502
503         dev_dbg(&pspi->dev,
504                 "%s Transfer List not empty. Transfer Speed is set.\n", __func__);
505
506         spin_lock_irqsave(&data->lock, flags);
507         /* validate Tx/Rx buffers and Transfer length */
508         list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
509                 if (!transfer->tx_buf && !transfer->rx_buf) {
510                         dev_err(&pspi->dev,
511                                 "%s Tx and Rx buffer NULL\n", __func__);
512                         retval = -EINVAL;
513                         goto err_return_spinlock;
514                 }
515
516                 if (!transfer->len) {
517                         dev_err(&pspi->dev, "%s Transfer length invalid\n",
518                                 __func__);
519                         retval = -EINVAL;
520                         goto err_return_spinlock;
521                 }
522
523                 dev_dbg(&pspi->dev,
524                         "%s Tx/Rx buffer valid. Transfer length valid\n",
525                         __func__);
526
527                 /* if baud rate has been specified validate the same */
528                 if (transfer->speed_hz > PCH_MAX_BAUDRATE)
529                         transfer->speed_hz = PCH_MAX_BAUDRATE;
530         }
531         spin_unlock_irqrestore(&data->lock, flags);
532
533         /* We won't process any messages if we have been asked to terminate */
534         if (data->status == STATUS_EXITING) {
535                 dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
536                 retval = -ESHUTDOWN;
537                 goto err_out;
538         }
539
540         /* If suspended ,return -EINVAL */
541         if (data->board_dat->suspend_sts) {
542                 dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
543                 retval = -EINVAL;
544                 goto err_out;
545         }
546
547         /* set status of message */
548         pmsg->actual_length = 0;
549         dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
550
551         pmsg->status = -EINPROGRESS;
552         spin_lock_irqsave(&data->lock, flags);
553         /* add message to queue */
554         list_add_tail(&pmsg->queue, &data->queue);
555         spin_unlock_irqrestore(&data->lock, flags);
556
557         dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
558
559         /* schedule work queue to run */
560         queue_work(data->wk, &data->work);
561         dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
562
563         retval = 0;
564
565 err_out:
566         dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
567         return retval;
568 err_return_spinlock:
569         dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
570         spin_unlock_irqrestore(&data->lock, flags);
571         return retval;
572 }
573
574 static inline void pch_spi_select_chip(struct pch_spi_data *data,
575                                        struct spi_device *pspi)
576 {
577         if (data->current_chip != NULL) {
578                 if (pspi->chip_select != data->n_curnt_chip) {
579                         dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
580                         data->current_chip = NULL;
581                 }
582         }
583
584         data->current_chip = pspi;
585
586         data->n_curnt_chip = data->current_chip->chip_select;
587
588         dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
589         pch_spi_setup_transfer(pspi);
590 }
591
592 static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
593 {
594         int size;
595         u32 n_writes;
596         int j;
597         struct spi_message *pmsg, *tmp;
598         const u8 *tx_buf;
599         const u16 *tx_sbuf;
600
601         /* set baud rate if needed */
602         if (data->cur_trans->speed_hz) {
603                 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
604                 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
605         }
606
607         /* set bits per word if needed */
608         if (data->cur_trans->bits_per_word &&
609             (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
610                 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
611                 pch_spi_set_bits_per_word(data->master,
612                                           data->cur_trans->bits_per_word);
613                 *bpw = data->cur_trans->bits_per_word;
614         } else {
615                 *bpw = data->current_msg->spi->bits_per_word;
616         }
617
618         /* reset Tx/Rx index */
619         data->tx_index = 0;
620         data->rx_index = 0;
621
622         data->bpw_len = data->cur_trans->len / (*bpw / 8);
623
624         /* find alloc size */
625         size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
626
627         /* allocate memory for pkt_tx_buff & pkt_rx_buffer */
628         data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
629         if (data->pkt_tx_buff != NULL) {
630                 data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
631                 if (!data->pkt_rx_buff)
632                         kfree(data->pkt_tx_buff);
633         }
634
635         if (!data->pkt_rx_buff) {
636                 /* flush queue and set status of all transfers to -ENOMEM */
637                 dev_err(&data->master->dev, "%s :kzalloc failed\n", __func__);
638                 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
639                         pmsg->status = -ENOMEM;
640
641                         if (pmsg->complete)
642                                 pmsg->complete(pmsg->context);
643
644                         /* delete from queue */
645                         list_del_init(&pmsg->queue);
646                 }
647                 return;
648         }
649
650         /* copy Tx Data */
651         if (data->cur_trans->tx_buf != NULL) {
652                 if (*bpw == 8) {
653                         tx_buf = data->cur_trans->tx_buf;
654                         for (j = 0; j < data->bpw_len; j++)
655                                 data->pkt_tx_buff[j] = *tx_buf++;
656                 } else {
657                         tx_sbuf = data->cur_trans->tx_buf;
658                         for (j = 0; j < data->bpw_len; j++)
659                                 data->pkt_tx_buff[j] = *tx_sbuf++;
660                 }
661         }
662
663         /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
664         n_writes = data->bpw_len;
665         if (n_writes > PCH_MAX_FIFO_DEPTH)
666                 n_writes = PCH_MAX_FIFO_DEPTH;
667
668         dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
669                 "0x2 to SSNXCR\n", __func__);
670         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
671
672         for (j = 0; j < n_writes; j++)
673                 pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
674
675         /* update tx_index */
676         data->tx_index = j;
677
678         /* reset transfer complete flag */
679         data->transfer_complete = false;
680         data->transfer_active = true;
681 }
682
683 static void pch_spi_nomore_transfer(struct pch_spi_data *data)
684 {
685         struct spi_message *pmsg, *tmp;
686         dev_dbg(&data->master->dev, "%s called\n", __func__);
687         /* Invoke complete callback
688          * [To the spi core..indicating end of transfer] */
689         data->current_msg->status = 0;
690
691         if (data->current_msg->complete) {
692                 dev_dbg(&data->master->dev,
693                         "%s:Invoking callback of SPI core\n", __func__);
694                 data->current_msg->complete(data->current_msg->context);
695         }
696
697         /* update status in global variable */
698         data->bcurrent_msg_processing = false;
699
700         dev_dbg(&data->master->dev,
701                 "%s:data->bcurrent_msg_processing = false\n", __func__);
702
703         data->current_msg = NULL;
704         data->cur_trans = NULL;
705
706         /* check if we have items in list and not suspending
707          * return 1 if list empty */
708         if ((list_empty(&data->queue) == 0) &&
709             (!data->board_dat->suspend_sts) &&
710             (data->status != STATUS_EXITING)) {
711                 /* We have some more work to do (either there is more tranint
712                  * bpw;sfer requests in the current message or there are
713                  *more messages)
714                  */
715                 dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
716                 queue_work(data->wk, &data->work);
717         } else if (data->board_dat->suspend_sts ||
718                    data->status == STATUS_EXITING) {
719                 dev_dbg(&data->master->dev,
720                         "%s suspend/remove initiated, flushing queue\n",
721                         __func__);
722                 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
723                         pmsg->status = -EIO;
724
725                         if (pmsg->complete)
726                                 pmsg->complete(pmsg->context);
727
728                         /* delete from queue */
729                         list_del_init(&pmsg->queue);
730                 }
731         }
732 }
733
734 static void pch_spi_set_ir(struct pch_spi_data *data)
735 {
736         /* enable interrupts, set threshold, enable SPI */
737         if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
738                 /* set receive threshold to PCH_RX_THOLD */
739                 pch_spi_setclr_reg(data->master, PCH_SPCR,
740                                    PCH_RX_THOLD << SPCR_RFIC_FIELD |
741                                    SPCR_FIE_BIT | SPCR_RFIE_BIT |
742                                    SPCR_ORIE_BIT | SPCR_SPE_BIT,
743                                    MASK_RFIC_SPCR_BITS | PCH_ALL);
744         else
745                 /* set receive threshold to maximum */
746                 pch_spi_setclr_reg(data->master, PCH_SPCR,
747                                    PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
748                                    SPCR_FIE_BIT | SPCR_ORIE_BIT |
749                                    SPCR_SPE_BIT,
750                                    MASK_RFIC_SPCR_BITS | PCH_ALL);
751
752         /* Wait until the transfer completes; go to sleep after
753                                  initiating the transfer. */
754         dev_dbg(&data->master->dev,
755                 "%s:waiting for transfer to get over\n", __func__);
756
757         wait_event_interruptible(data->wait, data->transfer_complete);
758
759         /* clear all interrupts */
760         pch_spi_writereg(data->master, PCH_SPSR,
761                          pch_spi_readreg(data->master, PCH_SPSR));
762         /* Disable interrupts and SPI transfer */
763         pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
764         /* clear FIFO */
765         pch_spi_clear_fifo(data->master);
766 }
767
768 static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
769 {
770         int j;
771         u8 *rx_buf;
772         u16 *rx_sbuf;
773
774         /* copy Rx Data */
775         if (!data->cur_trans->rx_buf)
776                 return;
777
778         if (bpw == 8) {
779                 rx_buf = data->cur_trans->rx_buf;
780                 for (j = 0; j < data->bpw_len; j++)
781                         *rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
782         } else {
783                 rx_sbuf = data->cur_trans->rx_buf;
784                 for (j = 0; j < data->bpw_len; j++)
785                         *rx_sbuf++ = data->pkt_rx_buff[j];
786         }
787 }
788
789 static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
790 {
791         int j;
792         u8 *rx_buf;
793         u16 *rx_sbuf;
794         const u8 *rx_dma_buf;
795         const u16 *rx_dma_sbuf;
796
797         /* copy Rx Data */
798         if (!data->cur_trans->rx_buf)
799                 return;
800
801         if (bpw == 8) {
802                 rx_buf = data->cur_trans->rx_buf;
803                 rx_dma_buf = data->dma.rx_buf_virt;
804                 for (j = 0; j < data->bpw_len; j++)
805                         *rx_buf++ = *rx_dma_buf++ & 0xFF;
806                 data->cur_trans->rx_buf = rx_buf;
807         } else {
808                 rx_sbuf = data->cur_trans->rx_buf;
809                 rx_dma_sbuf = data->dma.rx_buf_virt;
810                 for (j = 0; j < data->bpw_len; j++)
811                         *rx_sbuf++ = *rx_dma_sbuf++;
812                 data->cur_trans->rx_buf = rx_sbuf;
813         }
814 }
815
816 static int pch_spi_start_transfer(struct pch_spi_data *data)
817 {
818         struct pch_spi_dma_ctrl *dma;
819         unsigned long flags;
820         int rtn;
821
822         dma = &data->dma;
823
824         spin_lock_irqsave(&data->lock, flags);
825
826         /* disable interrupts, SPI set enable */
827         pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
828
829         spin_unlock_irqrestore(&data->lock, flags);
830
831         /* Wait until the transfer completes; go to sleep after
832                                  initiating the transfer. */
833         dev_dbg(&data->master->dev,
834                 "%s:waiting for transfer to get over\n", __func__);
835         rtn = wait_event_interruptible_timeout(data->wait,
836                                                data->transfer_complete,
837                                                msecs_to_jiffies(2 * HZ));
838         if (!rtn)
839                 dev_err(&data->master->dev,
840                         "%s wait-event timeout\n", __func__);
841
842         dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
843                             DMA_FROM_DEVICE);
844
845         dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
846                             DMA_FROM_DEVICE);
847         memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
848
849         async_tx_ack(dma->desc_rx);
850         async_tx_ack(dma->desc_tx);
851         kfree(dma->sg_tx_p);
852         kfree(dma->sg_rx_p);
853
854         spin_lock_irqsave(&data->lock, flags);
855
856         /* clear fifo threshold, disable interrupts, disable SPI transfer */
857         pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
858                            MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
859                            SPCR_SPE_BIT);
860         /* clear all interrupts */
861         pch_spi_writereg(data->master, PCH_SPSR,
862                          pch_spi_readreg(data->master, PCH_SPSR));
863         /* clear FIFO */
864         pch_spi_clear_fifo(data->master);
865
866         spin_unlock_irqrestore(&data->lock, flags);
867
868         return rtn;
869 }
870
871 static void pch_dma_rx_complete(void *arg)
872 {
873         struct pch_spi_data *data = arg;
874
875         /* transfer is completed;inform pch_spi_process_messages_dma */
876         data->transfer_complete = true;
877         wake_up_interruptible(&data->wait);
878 }
879
880 static bool pch_spi_filter(struct dma_chan *chan, void *slave)
881 {
882         struct pch_dma_slave *param = slave;
883
884         if ((chan->chan_id == param->chan_id) &&
885             (param->dma_dev == chan->device->dev)) {
886                 chan->private = param;
887                 return true;
888         } else {
889                 return false;
890         }
891 }
892
893 static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
894 {
895         dma_cap_mask_t mask;
896         struct dma_chan *chan;
897         struct pci_dev *dma_dev;
898         struct pch_dma_slave *param;
899         struct pch_spi_dma_ctrl *dma;
900         unsigned int width;
901
902         if (bpw == 8)
903                 width = PCH_DMA_WIDTH_1_BYTE;
904         else
905                 width = PCH_DMA_WIDTH_2_BYTES;
906
907         dma = &data->dma;
908         dma_cap_zero(mask);
909         dma_cap_set(DMA_SLAVE, mask);
910
911         /* Get DMA's dev information */
912         dma_dev = pci_get_bus_and_slot(data->board_dat->pdev->bus->number,
913                                        PCI_DEVFN(12, 0));
914
915         /* Set Tx DMA */
916         param = &dma->param_tx;
917         param->dma_dev = &dma_dev->dev;
918         param->chan_id = data->master->bus_num * 2; /* Tx = 0, 2 */
919         param->tx_reg = data->io_base_addr + PCH_SPDWR;
920         param->width = width;
921         chan = dma_request_channel(mask, pch_spi_filter, param);
922         if (!chan) {
923                 dev_err(&data->master->dev,
924                         "ERROR: dma_request_channel FAILS(Tx)\n");
925                 data->use_dma = 0;
926                 return;
927         }
928         dma->chan_tx = chan;
929
930         /* Set Rx DMA */
931         param = &dma->param_rx;
932         param->dma_dev = &dma_dev->dev;
933         param->chan_id = data->master->bus_num * 2 + 1; /* Rx = Tx + 1 */
934         param->rx_reg = data->io_base_addr + PCH_SPDRR;
935         param->width = width;
936         chan = dma_request_channel(mask, pch_spi_filter, param);
937         if (!chan) {
938                 dev_err(&data->master->dev,
939                         "ERROR: dma_request_channel FAILS(Rx)\n");
940                 dma_release_channel(dma->chan_tx);
941                 dma->chan_tx = NULL;
942                 data->use_dma = 0;
943                 return;
944         }
945         dma->chan_rx = chan;
946 }
947
948 static void pch_spi_release_dma(struct pch_spi_data *data)
949 {
950         struct pch_spi_dma_ctrl *dma;
951
952         dma = &data->dma;
953         if (dma->chan_tx) {
954                 dma_release_channel(dma->chan_tx);
955                 dma->chan_tx = NULL;
956         }
957         if (dma->chan_rx) {
958                 dma_release_channel(dma->chan_rx);
959                 dma->chan_rx = NULL;
960         }
961         return;
962 }
963
964 static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
965 {
966         const u8 *tx_buf;
967         const u16 *tx_sbuf;
968         u8 *tx_dma_buf;
969         u16 *tx_dma_sbuf;
970         struct scatterlist *sg;
971         struct dma_async_tx_descriptor *desc_tx;
972         struct dma_async_tx_descriptor *desc_rx;
973         int num;
974         int i;
975         int size;
976         int rem;
977         int head;
978         unsigned long flags;
979         struct pch_spi_dma_ctrl *dma;
980
981         dma = &data->dma;
982
983         /* set baud rate if needed */
984         if (data->cur_trans->speed_hz) {
985                 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
986                 spin_lock_irqsave(&data->lock, flags);
987                 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
988                 spin_unlock_irqrestore(&data->lock, flags);
989         }
990
991         /* set bits per word if needed */
992         if (data->cur_trans->bits_per_word &&
993             (data->current_msg->spi->bits_per_word !=
994              data->cur_trans->bits_per_word)) {
995                 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
996                 spin_lock_irqsave(&data->lock, flags);
997                 pch_spi_set_bits_per_word(data->master,
998                                           data->cur_trans->bits_per_word);
999                 spin_unlock_irqrestore(&data->lock, flags);
1000                 *bpw = data->cur_trans->bits_per_word;
1001         } else {
1002                 *bpw = data->current_msg->spi->bits_per_word;
1003         }
1004         data->bpw_len = data->cur_trans->len / (*bpw / 8);
1005
1006         if (data->bpw_len > PCH_BUF_SIZE) {
1007                 data->bpw_len = PCH_BUF_SIZE;
1008                 data->cur_trans->len -= PCH_BUF_SIZE;
1009         }
1010
1011         /* copy Tx Data */
1012         if (data->cur_trans->tx_buf != NULL) {
1013                 if (*bpw == 8) {
1014                         tx_buf = data->cur_trans->tx_buf;
1015                         tx_dma_buf = dma->tx_buf_virt;
1016                         for (i = 0; i < data->bpw_len; i++)
1017                                 *tx_dma_buf++ = *tx_buf++;
1018                 } else {
1019                         tx_sbuf = data->cur_trans->tx_buf;
1020                         tx_dma_sbuf = dma->tx_buf_virt;
1021                         for (i = 0; i < data->bpw_len; i++)
1022                                 *tx_dma_sbuf++ = *tx_sbuf++;
1023                 }
1024         }
1025
1026         /* Calculate Rx parameter for DMA transmitting */
1027         if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
1028                 if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
1029                         num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1030                         rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
1031                 } else {
1032                         num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1033                         rem = PCH_DMA_TRANS_SIZE;
1034                 }
1035                 size = PCH_DMA_TRANS_SIZE;
1036         } else {
1037                 num = 1;
1038                 size = data->bpw_len;
1039                 rem = data->bpw_len;
1040         }
1041         dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
1042                 __func__, num, size, rem);
1043         spin_lock_irqsave(&data->lock, flags);
1044
1045         /* set receive fifo threshold and transmit fifo threshold */
1046         pch_spi_setclr_reg(data->master, PCH_SPCR,
1047                            ((size - 1) << SPCR_RFIC_FIELD) |
1048                            (PCH_TX_THOLD << SPCR_TFIC_FIELD),
1049                            MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
1050
1051         spin_unlock_irqrestore(&data->lock, flags);
1052
1053         /* RX */
1054         dma->sg_rx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1055         sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
1056         /* offset, length setting */
1057         sg = dma->sg_rx_p;
1058         for (i = 0; i < num; i++, sg++) {
1059                 if (i == (num - 2)) {
1060                         sg->offset = size * i;
1061                         sg->offset = sg->offset * (*bpw / 8);
1062                         sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
1063                                     sg->offset);
1064                         sg_dma_len(sg) = rem;
1065                 } else if (i == (num - 1)) {
1066                         sg->offset = size * (i - 1) + rem;
1067                         sg->offset = sg->offset * (*bpw / 8);
1068                         sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1069                                     sg->offset);
1070                         sg_dma_len(sg) = size;
1071                 } else {
1072                         sg->offset = size * i;
1073                         sg->offset = sg->offset * (*bpw / 8);
1074                         sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1075                                     sg->offset);
1076                         sg_dma_len(sg) = size;
1077                 }
1078                 sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1079         }
1080         sg = dma->sg_rx_p;
1081         desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
1082                                         num, DMA_DEV_TO_MEM,
1083                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1084         if (!desc_rx) {
1085                 dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
1086                         __func__);
1087                 return;
1088         }
1089         dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1090         desc_rx->callback = pch_dma_rx_complete;
1091         desc_rx->callback_param = data;
1092         dma->nent = num;
1093         dma->desc_rx = desc_rx;
1094
1095         /* Calculate Tx parameter for DMA transmitting */
1096         if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
1097                 head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
1098                 if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
1099                         num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1100                         rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
1101                 } else {
1102                         num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1103                         rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
1104                               PCH_DMA_TRANS_SIZE - head;
1105                 }
1106                 size = PCH_DMA_TRANS_SIZE;
1107         } else {
1108                 num = 1;
1109                 size = data->bpw_len;
1110                 rem = data->bpw_len;
1111                 head = 0;
1112         }
1113
1114         dma->sg_tx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1115         sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1116         /* offset, length setting */
1117         sg = dma->sg_tx_p;
1118         for (i = 0; i < num; i++, sg++) {
1119                 if (i == 0) {
1120                         sg->offset = 0;
1121                         sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
1122                                     sg->offset);
1123                         sg_dma_len(sg) = size + head;
1124                 } else if (i == (num - 1)) {
1125                         sg->offset = head + size * i;
1126                         sg->offset = sg->offset * (*bpw / 8);
1127                         sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1128                                     sg->offset);
1129                         sg_dma_len(sg) = rem;
1130                 } else {
1131                         sg->offset = head + size * i;
1132                         sg->offset = sg->offset * (*bpw / 8);
1133                         sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1134                                     sg->offset);
1135                         sg_dma_len(sg) = size;
1136                 }
1137                 sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1138         }
1139         sg = dma->sg_tx_p;
1140         desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
1141                                         sg, num, DMA_MEM_TO_DEV,
1142                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1143         if (!desc_tx) {
1144                 dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
1145                         __func__);
1146                 return;
1147         }
1148         dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1149         desc_tx->callback = NULL;
1150         desc_tx->callback_param = data;
1151         dma->nent = num;
1152         dma->desc_tx = desc_tx;
1153
1154         dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
1155                 "0x2 to SSNXCR\n", __func__);
1156
1157         spin_lock_irqsave(&data->lock, flags);
1158         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1159         desc_rx->tx_submit(desc_rx);
1160         desc_tx->tx_submit(desc_tx);
1161         spin_unlock_irqrestore(&data->lock, flags);
1162
1163         /* reset transfer complete flag */
1164         data->transfer_complete = false;
1165 }
1166
1167 static void pch_spi_process_messages(struct work_struct *pwork)
1168 {
1169         struct spi_message *pmsg, *tmp;
1170         struct pch_spi_data *data;
1171         int bpw;
1172
1173         data = container_of(pwork, struct pch_spi_data, work);
1174         dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1175
1176         spin_lock(&data->lock);
1177         /* check if suspend has been initiated;if yes flush queue */
1178         if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1179                 dev_dbg(&data->master->dev,
1180                         "%s suspend/remove initiated, flushing queue\n", __func__);
1181                 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
1182                         pmsg->status = -EIO;
1183
1184                         if (pmsg->complete) {
1185                                 spin_unlock(&data->lock);
1186                                 pmsg->complete(pmsg->context);
1187                                 spin_lock(&data->lock);
1188                         }
1189
1190                         /* delete from queue */
1191                         list_del_init(&pmsg->queue);
1192                 }
1193
1194                 spin_unlock(&data->lock);
1195                 return;
1196         }
1197
1198         data->bcurrent_msg_processing = true;
1199         dev_dbg(&data->master->dev,
1200                 "%s Set data->bcurrent_msg_processing= true\n", __func__);
1201
1202         /* Get the message from the queue and delete it from there. */
1203         data->current_msg = list_entry(data->queue.next, struct spi_message,
1204                                         queue);
1205
1206         list_del_init(&data->current_msg->queue);
1207
1208         data->current_msg->status = 0;
1209
1210         pch_spi_select_chip(data, data->current_msg->spi);
1211
1212         spin_unlock(&data->lock);
1213
1214         if (data->use_dma)
1215                 pch_spi_request_dma(data,
1216                                     data->current_msg->spi->bits_per_word);
1217         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1218         do {
1219                 int cnt;
1220                 /* If we are already processing a message get the next
1221                 transfer structure from the message otherwise retrieve
1222                 the 1st transfer request from the message. */
1223                 spin_lock(&data->lock);
1224                 if (data->cur_trans == NULL) {
1225                         data->cur_trans =
1226                                 list_entry(data->current_msg->transfers.next,
1227                                            struct spi_transfer, transfer_list);
1228                         dev_dbg(&data->master->dev, "%s "
1229                                 ":Getting 1st transfer message\n", __func__);
1230                 } else {
1231                         data->cur_trans =
1232                                 list_entry(data->cur_trans->transfer_list.next,
1233                                            struct spi_transfer, transfer_list);
1234                         dev_dbg(&data->master->dev, "%s "
1235                                 ":Getting next transfer message\n", __func__);
1236                 }
1237                 spin_unlock(&data->lock);
1238
1239                 if (!data->cur_trans->len)
1240                         goto out;
1241                 cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
1242                 data->save_total_len = data->cur_trans->len;
1243                 if (data->use_dma) {
1244                         int i;
1245                         char *save_rx_buf = data->cur_trans->rx_buf;
1246                         for (i = 0; i < cnt; i ++) {
1247                                 pch_spi_handle_dma(data, &bpw);
1248                                 if (!pch_spi_start_transfer(data)) {
1249                                         data->transfer_complete = true;
1250                                         data->current_msg->status = -EIO;
1251                                         data->current_msg->complete
1252                                                    (data->current_msg->context);
1253                                         data->bcurrent_msg_processing = false;
1254                                         data->current_msg = NULL;
1255                                         data->cur_trans = NULL;
1256                                         goto out;
1257                                 }
1258                                 pch_spi_copy_rx_data_for_dma(data, bpw);
1259                         }
1260                         data->cur_trans->rx_buf = save_rx_buf;
1261                 } else {
1262                         pch_spi_set_tx(data, &bpw);
1263                         pch_spi_set_ir(data);
1264                         pch_spi_copy_rx_data(data, bpw);
1265                         kfree(data->pkt_rx_buff);
1266                         data->pkt_rx_buff = NULL;
1267                         kfree(data->pkt_tx_buff);
1268                         data->pkt_tx_buff = NULL;
1269                 }
1270                 /* increment message count */
1271                 data->cur_trans->len = data->save_total_len;
1272                 data->current_msg->actual_length += data->cur_trans->len;
1273
1274                 dev_dbg(&data->master->dev,
1275                         "%s:data->current_msg->actual_length=%d\n",
1276                         __func__, data->current_msg->actual_length);
1277
1278                 /* check for delay */
1279                 if (data->cur_trans->delay_usecs) {
1280                         dev_dbg(&data->master->dev, "%s:"
1281                                 "delay in usec=%d\n", __func__,
1282                                 data->cur_trans->delay_usecs);
1283                         udelay(data->cur_trans->delay_usecs);
1284                 }
1285
1286                 spin_lock(&data->lock);
1287
1288                 /* No more transfer in this message. */
1289                 if ((data->cur_trans->transfer_list.next) ==
1290                     &(data->current_msg->transfers)) {
1291                         pch_spi_nomore_transfer(data);
1292                 }
1293
1294                 spin_unlock(&data->lock);
1295
1296         } while (data->cur_trans != NULL);
1297
1298 out:
1299         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1300         if (data->use_dma)
1301                 pch_spi_release_dma(data);
1302 }
1303
1304 static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1305                                    struct pch_spi_data *data)
1306 {
1307         dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1308
1309         /* free workqueue */
1310         if (data->wk != NULL) {
1311                 destroy_workqueue(data->wk);
1312                 data->wk = NULL;
1313                 dev_dbg(&board_dat->pdev->dev,
1314                         "%s destroy_workqueue invoked successfully\n",
1315                         __func__);
1316         }
1317 }
1318
1319 static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1320                                  struct pch_spi_data *data)
1321 {
1322         int retval = 0;
1323
1324         dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1325
1326         /* create workqueue */
1327         data->wk = create_singlethread_workqueue(KBUILD_MODNAME);
1328         if (!data->wk) {
1329                 dev_err(&board_dat->pdev->dev,
1330                         "%s create_singlet hread_workqueue failed\n", __func__);
1331                 retval = -EBUSY;
1332                 goto err_return;
1333         }
1334
1335         /* reset PCH SPI h/w */
1336         pch_spi_reset(data->master);
1337         dev_dbg(&board_dat->pdev->dev,
1338                 "%s pch_spi_reset invoked successfully\n", __func__);
1339
1340         dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1341
1342 err_return:
1343         if (retval != 0) {
1344                 dev_err(&board_dat->pdev->dev,
1345                         "%s FAIL:invoking pch_spi_free_resources\n", __func__);
1346                 pch_spi_free_resources(board_dat, data);
1347         }
1348
1349         dev_dbg(&board_dat->pdev->dev, "%s Return=%d\n", __func__, retval);
1350
1351         return retval;
1352 }
1353
1354 static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1355                              struct pch_spi_data *data)
1356 {
1357         struct pch_spi_dma_ctrl *dma;
1358
1359         dma = &data->dma;
1360         if (dma->tx_buf_dma)
1361                 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1362                                   dma->tx_buf_virt, dma->tx_buf_dma);
1363         if (dma->rx_buf_dma)
1364                 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1365                                   dma->rx_buf_virt, dma->rx_buf_dma);
1366         return;
1367 }
1368
1369 static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1370                               struct pch_spi_data *data)
1371 {
1372         struct pch_spi_dma_ctrl *dma;
1373
1374         dma = &data->dma;
1375         /* Get Consistent memory for Tx DMA */
1376         dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1377                                 PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1378         /* Get Consistent memory for Rx DMA */
1379         dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1380                                 PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1381 }
1382
1383 static int pch_spi_pd_probe(struct platform_device *plat_dev)
1384 {
1385         int ret;
1386         struct spi_master *master;
1387         struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1388         struct pch_spi_data *data;
1389
1390         dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1391
1392         master = spi_alloc_master(&board_dat->pdev->dev,
1393                                   sizeof(struct pch_spi_data));
1394         if (!master) {
1395                 dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1396                         plat_dev->id);
1397                 return -ENOMEM;
1398         }
1399
1400         data = spi_master_get_devdata(master);
1401         data->master = master;
1402
1403         platform_set_drvdata(plat_dev, data);
1404
1405         /* baseaddress + address offset) */
1406         data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1407                                          PCH_ADDRESS_SIZE * plat_dev->id;
1408         data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0);
1409         if (!data->io_remap_addr) {
1410                 dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1411                 ret = -ENOMEM;
1412                 goto err_pci_iomap;
1413         }
1414         data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id;
1415
1416         dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1417                 plat_dev->id, data->io_remap_addr);
1418
1419         /* initialize members of SPI master */
1420         master->num_chipselect = PCH_MAX_CS;
1421         master->setup = pch_spi_setup;
1422         master->transfer = pch_spi_transfer;
1423         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1424         master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
1425
1426         data->board_dat = board_dat;
1427         data->plat_dev = plat_dev;
1428         data->n_curnt_chip = 255;
1429         data->status = STATUS_RUNNING;
1430         data->ch = plat_dev->id;
1431         data->use_dma = use_dma;
1432
1433         INIT_LIST_HEAD(&data->queue);
1434         spin_lock_init(&data->lock);
1435         INIT_WORK(&data->work, pch_spi_process_messages);
1436         init_waitqueue_head(&data->wait);
1437
1438         ret = pch_spi_get_resources(board_dat, data);
1439         if (ret) {
1440                 dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1441                 goto err_spi_get_resources;
1442         }
1443
1444         ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1445                           IRQF_SHARED, KBUILD_MODNAME, data);
1446         if (ret) {
1447                 dev_err(&plat_dev->dev,
1448                         "%s request_irq failed\n", __func__);
1449                 goto err_request_irq;
1450         }
1451         data->irq_reg_sts = true;
1452
1453         pch_spi_set_master_mode(master);
1454
1455         ret = spi_register_master(master);
1456         if (ret != 0) {
1457                 dev_err(&plat_dev->dev,
1458                         "%s spi_register_master FAILED\n", __func__);
1459                 goto err_spi_register_master;
1460         }
1461
1462         if (use_dma) {
1463                 dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1464                 pch_alloc_dma_buf(board_dat, data);
1465         }
1466
1467         return 0;
1468
1469 err_spi_register_master:
1470         free_irq(board_dat->pdev->irq, data);
1471 err_request_irq:
1472         pch_spi_free_resources(board_dat, data);
1473 err_spi_get_resources:
1474         pci_iounmap(board_dat->pdev, data->io_remap_addr);
1475 err_pci_iomap:
1476         spi_master_put(master);
1477
1478         return ret;
1479 }
1480
1481 static int pch_spi_pd_remove(struct platform_device *plat_dev)
1482 {
1483         struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1484         struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1485         int count;
1486         unsigned long flags;
1487
1488         dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1489                 __func__, plat_dev->id, board_dat->pdev->irq);
1490
1491         if (use_dma)
1492                 pch_free_dma_buf(board_dat, data);
1493
1494         /* check for any pending messages; no action is taken if the queue
1495          * is still full; but at least we tried.  Unload anyway */
1496         count = 500;
1497         spin_lock_irqsave(&data->lock, flags);
1498         data->status = STATUS_EXITING;
1499         while ((list_empty(&data->queue) == 0) && --count) {
1500                 dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1501                         __func__);
1502                 spin_unlock_irqrestore(&data->lock, flags);
1503                 msleep(PCH_SLEEP_TIME);
1504                 spin_lock_irqsave(&data->lock, flags);
1505         }
1506         spin_unlock_irqrestore(&data->lock, flags);
1507
1508         pch_spi_free_resources(board_dat, data);
1509         /* disable interrupts & free IRQ */
1510         if (data->irq_reg_sts) {
1511                 /* disable interrupts */
1512                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1513                 data->irq_reg_sts = false;
1514                 free_irq(board_dat->pdev->irq, data);
1515         }
1516
1517         pci_iounmap(board_dat->pdev, data->io_remap_addr);
1518         spi_unregister_master(data->master);
1519
1520         return 0;
1521 }
1522 #ifdef CONFIG_PM
1523 static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1524                               pm_message_t state)
1525 {
1526         u8 count;
1527         struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1528         struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1529
1530         dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1531
1532         if (!board_dat) {
1533                 dev_err(&pd_dev->dev,
1534                         "%s pci_get_drvdata returned NULL\n", __func__);
1535                 return -EFAULT;
1536         }
1537
1538         /* check if the current message is processed:
1539            Only after thats done the transfer will be suspended */
1540         count = 255;
1541         while ((--count) > 0) {
1542                 if (!(data->bcurrent_msg_processing))
1543                         break;
1544                 msleep(PCH_SLEEP_TIME);
1545         }
1546
1547         /* Free IRQ */
1548         if (data->irq_reg_sts) {
1549                 /* disable all interrupts */
1550                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1551                 pch_spi_reset(data->master);
1552                 free_irq(board_dat->pdev->irq, data);
1553
1554                 data->irq_reg_sts = false;
1555                 dev_dbg(&pd_dev->dev,
1556                         "%s free_irq invoked successfully.\n", __func__);
1557         }
1558
1559         return 0;
1560 }
1561
1562 static int pch_spi_pd_resume(struct platform_device *pd_dev)
1563 {
1564         struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1565         struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1566         int retval;
1567
1568         if (!board_dat) {
1569                 dev_err(&pd_dev->dev,
1570                         "%s pci_get_drvdata returned NULL\n", __func__);
1571                 return -EFAULT;
1572         }
1573
1574         if (!data->irq_reg_sts) {
1575                 /* register IRQ */
1576                 retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1577                                      IRQF_SHARED, KBUILD_MODNAME, data);
1578                 if (retval < 0) {
1579                         dev_err(&pd_dev->dev,
1580                                 "%s request_irq failed\n", __func__);
1581                         return retval;
1582                 }
1583
1584                 /* reset PCH SPI h/w */
1585                 pch_spi_reset(data->master);
1586                 pch_spi_set_master_mode(data->master);
1587                 data->irq_reg_sts = true;
1588         }
1589         return 0;
1590 }
1591 #else
1592 #define pch_spi_pd_suspend NULL
1593 #define pch_spi_pd_resume NULL
1594 #endif
1595
1596 static struct platform_driver pch_spi_pd_driver = {
1597         .driver = {
1598                 .name = "pch-spi",
1599                 .owner = THIS_MODULE,
1600         },
1601         .probe = pch_spi_pd_probe,
1602         .remove = pch_spi_pd_remove,
1603         .suspend = pch_spi_pd_suspend,
1604         .resume = pch_spi_pd_resume
1605 };
1606
1607 static int pch_spi_probe(struct pci_dev *pdev,
1608                                    const struct pci_device_id *id)
1609 {
1610         struct pch_spi_board_data *board_dat;
1611         struct platform_device *pd_dev = NULL;
1612         int retval;
1613         int i;
1614         struct pch_pd_dev_save *pd_dev_save;
1615
1616         pd_dev_save = kzalloc(sizeof(struct pch_pd_dev_save), GFP_KERNEL);
1617         if (!pd_dev_save) {
1618                 dev_err(&pdev->dev, "%s Can't allocate pd_dev_sav\n", __func__);
1619                 return -ENOMEM;
1620         }
1621
1622         board_dat = kzalloc(sizeof(struct pch_spi_board_data), GFP_KERNEL);
1623         if (!board_dat) {
1624                 dev_err(&pdev->dev, "%s Can't allocate board_dat\n", __func__);
1625                 retval = -ENOMEM;
1626                 goto err_no_mem;
1627         }
1628
1629         retval = pci_request_regions(pdev, KBUILD_MODNAME);
1630         if (retval) {
1631                 dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1632                 goto pci_request_regions;
1633         }
1634
1635         board_dat->pdev = pdev;
1636         board_dat->num = id->driver_data;
1637         pd_dev_save->num = id->driver_data;
1638         pd_dev_save->board_dat = board_dat;
1639
1640         retval = pci_enable_device(pdev);
1641         if (retval) {
1642                 dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1643                 goto pci_enable_device;
1644         }
1645
1646         for (i = 0; i < board_dat->num; i++) {
1647                 pd_dev = platform_device_alloc("pch-spi", i);
1648                 if (!pd_dev) {
1649                         dev_err(&pdev->dev, "platform_device_alloc failed\n");
1650                         retval = -ENOMEM;
1651                         goto err_platform_device;
1652                 }
1653                 pd_dev_save->pd_save[i] = pd_dev;
1654                 pd_dev->dev.parent = &pdev->dev;
1655
1656                 retval = platform_device_add_data(pd_dev, board_dat,
1657                                                   sizeof(*board_dat));
1658                 if (retval) {
1659                         dev_err(&pdev->dev,
1660                                 "platform_device_add_data failed\n");
1661                         platform_device_put(pd_dev);
1662                         goto err_platform_device;
1663                 }
1664
1665                 retval = platform_device_add(pd_dev);
1666                 if (retval) {
1667                         dev_err(&pdev->dev, "platform_device_add failed\n");
1668                         platform_device_put(pd_dev);
1669                         goto err_platform_device;
1670                 }
1671         }
1672
1673         pci_set_drvdata(pdev, pd_dev_save);
1674
1675         return 0;
1676
1677 err_platform_device:
1678         pci_disable_device(pdev);
1679 pci_enable_device:
1680         pci_release_regions(pdev);
1681 pci_request_regions:
1682         kfree(board_dat);
1683 err_no_mem:
1684         kfree(pd_dev_save);
1685
1686         return retval;
1687 }
1688
1689 static void pch_spi_remove(struct pci_dev *pdev)
1690 {
1691         int i;
1692         struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1693
1694         dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1695
1696         for (i = 0; i < pd_dev_save->num; i++)
1697                 platform_device_unregister(pd_dev_save->pd_save[i]);
1698
1699         pci_disable_device(pdev);
1700         pci_release_regions(pdev);
1701         kfree(pd_dev_save->board_dat);
1702         kfree(pd_dev_save);
1703 }
1704
1705 #ifdef CONFIG_PM
1706 static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
1707 {
1708         int retval;
1709         struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1710
1711         dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1712
1713         pd_dev_save->board_dat->suspend_sts = true;
1714
1715         /* save config space */
1716         retval = pci_save_state(pdev);
1717         if (retval == 0) {
1718                 pci_enable_wake(pdev, PCI_D3hot, 0);
1719                 pci_disable_device(pdev);
1720                 pci_set_power_state(pdev, PCI_D3hot);
1721         } else {
1722                 dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
1723         }
1724
1725         return retval;
1726 }
1727
1728 static int pch_spi_resume(struct pci_dev *pdev)
1729 {
1730         int retval;
1731         struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1732         dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1733
1734         pci_set_power_state(pdev, PCI_D0);
1735         pci_restore_state(pdev);
1736
1737         retval = pci_enable_device(pdev);
1738         if (retval < 0) {
1739                 dev_err(&pdev->dev,
1740                         "%s pci_enable_device failed\n", __func__);
1741         } else {
1742                 pci_enable_wake(pdev, PCI_D3hot, 0);
1743
1744                 /* set suspend status to false */
1745                 pd_dev_save->board_dat->suspend_sts = false;
1746         }
1747
1748         return retval;
1749 }
1750 #else
1751 #define pch_spi_suspend NULL
1752 #define pch_spi_resume NULL
1753
1754 #endif
1755
1756 static struct pci_driver pch_spi_pcidev_driver = {
1757         .name = "pch_spi",
1758         .id_table = pch_spi_pcidev_id,
1759         .probe = pch_spi_probe,
1760         .remove = pch_spi_remove,
1761         .suspend = pch_spi_suspend,
1762         .resume = pch_spi_resume,
1763 };
1764
1765 static int __init pch_spi_init(void)
1766 {
1767         int ret;
1768         ret = platform_driver_register(&pch_spi_pd_driver);
1769         if (ret)
1770                 return ret;
1771
1772         ret = pci_register_driver(&pch_spi_pcidev_driver);
1773         if (ret) {
1774                 platform_driver_unregister(&pch_spi_pd_driver);
1775                 return ret;
1776         }
1777
1778         return 0;
1779 }
1780 module_init(pch_spi_init);
1781
1782 static void __exit pch_spi_exit(void)
1783 {
1784         pci_unregister_driver(&pch_spi_pcidev_driver);
1785         platform_driver_unregister(&pch_spi_pd_driver);
1786 }
1787 module_exit(pch_spi_exit);
1788
1789 module_param(use_dma, int, 0644);
1790 MODULE_PARM_DESC(use_dma,
1791                  "to use DMA for data transfers pass 1 else 0; default 1");
1792
1793 MODULE_LICENSE("GPL");
1794 MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
1795 MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);
1796