2 * SPI driver for NVIDIA's Tegra114 SPI Controller.
4 * Copyright (c) 2013, NVIDIA CORPORATION. All rights reserved.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/delay.h>
22 #include <linux/dmaengine.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/dmapool.h>
25 #include <linux/err.h>
26 #include <linux/interrupt.h>
28 #include <linux/kernel.h>
29 #include <linux/kthread.h>
30 #include <linux/module.h>
31 #include <linux/platform_device.h>
32 #include <linux/pm_runtime.h>
34 #include <linux/of_device.h>
35 #include <linux/reset.h>
36 #include <linux/spi/spi.h>
38 #define SPI_COMMAND1 0x000
39 #define SPI_BIT_LENGTH(x) (((x) & 0x1f) << 0)
40 #define SPI_PACKED (1 << 5)
41 #define SPI_TX_EN (1 << 11)
42 #define SPI_RX_EN (1 << 12)
43 #define SPI_BOTH_EN_BYTE (1 << 13)
44 #define SPI_BOTH_EN_BIT (1 << 14)
45 #define SPI_LSBYTE_FE (1 << 15)
46 #define SPI_LSBIT_FE (1 << 16)
47 #define SPI_BIDIROE (1 << 17)
48 #define SPI_IDLE_SDA_DRIVE_LOW (0 << 18)
49 #define SPI_IDLE_SDA_DRIVE_HIGH (1 << 18)
50 #define SPI_IDLE_SDA_PULL_LOW (2 << 18)
51 #define SPI_IDLE_SDA_PULL_HIGH (3 << 18)
52 #define SPI_IDLE_SDA_MASK (3 << 18)
53 #define SPI_CS_SS_VAL (1 << 20)
54 #define SPI_CS_SW_HW (1 << 21)
55 /* SPI_CS_POL_INACTIVE bits are default high */
57 #define SPI_CS_POL_INACTIVE(n) (1 << (22 + (n)))
58 #define SPI_CS_POL_INACTIVE_MASK (0xF << 22)
60 #define SPI_CS_SEL_0 (0 << 26)
61 #define SPI_CS_SEL_1 (1 << 26)
62 #define SPI_CS_SEL_2 (2 << 26)
63 #define SPI_CS_SEL_3 (3 << 26)
64 #define SPI_CS_SEL_MASK (3 << 26)
65 #define SPI_CS_SEL(x) (((x) & 0x3) << 26)
66 #define SPI_CONTROL_MODE_0 (0 << 28)
67 #define SPI_CONTROL_MODE_1 (1 << 28)
68 #define SPI_CONTROL_MODE_2 (2 << 28)
69 #define SPI_CONTROL_MODE_3 (3 << 28)
70 #define SPI_CONTROL_MODE_MASK (3 << 28)
71 #define SPI_MODE_SEL(x) (((x) & 0x3) << 28)
72 #define SPI_M_S (1 << 30)
73 #define SPI_PIO (1 << 31)
75 #define SPI_COMMAND2 0x004
76 #define SPI_TX_TAP_DELAY(x) (((x) & 0x3F) << 6)
77 #define SPI_RX_TAP_DELAY(x) (((x) & 0x3F) << 0)
79 #define SPI_CS_TIMING1 0x008
80 #define SPI_SETUP_HOLD(setup, hold) (((setup) << 4) | (hold))
81 #define SPI_CS_SETUP_HOLD(reg, cs, val) \
82 ((((val) & 0xFFu) << ((cs) * 8)) | \
83 ((reg) & ~(0xFFu << ((cs) * 8))))
85 #define SPI_CS_TIMING2 0x00C
86 #define CYCLES_BETWEEN_PACKETS_0(x) (((x) & 0x1F) << 0)
87 #define CS_ACTIVE_BETWEEN_PACKETS_0 (1 << 5)
88 #define CYCLES_BETWEEN_PACKETS_1(x) (((x) & 0x1F) << 8)
89 #define CS_ACTIVE_BETWEEN_PACKETS_1 (1 << 13)
90 #define CYCLES_BETWEEN_PACKETS_2(x) (((x) & 0x1F) << 16)
91 #define CS_ACTIVE_BETWEEN_PACKETS_2 (1 << 21)
92 #define CYCLES_BETWEEN_PACKETS_3(x) (((x) & 0x1F) << 24)
93 #define CS_ACTIVE_BETWEEN_PACKETS_3 (1 << 29)
94 #define SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(reg, cs, val) \
95 (reg = (((val) & 0x1) << ((cs) * 8 + 5)) | \
96 ((reg) & ~(1 << ((cs) * 8 + 5))))
97 #define SPI_SET_CYCLES_BETWEEN_PACKETS(reg, cs, val) \
98 (reg = (((val) & 0xF) << ((cs) * 8)) | \
99 ((reg) & ~(0xF << ((cs) * 8))))
101 #define SPI_TRANS_STATUS 0x010
102 #define SPI_BLK_CNT(val) (((val) >> 0) & 0xFFFF)
103 #define SPI_SLV_IDLE_COUNT(val) (((val) >> 16) & 0xFF)
104 #define SPI_RDY (1 << 30)
106 #define SPI_FIFO_STATUS 0x014
107 #define SPI_RX_FIFO_EMPTY (1 << 0)
108 #define SPI_RX_FIFO_FULL (1 << 1)
109 #define SPI_TX_FIFO_EMPTY (1 << 2)
110 #define SPI_TX_FIFO_FULL (1 << 3)
111 #define SPI_RX_FIFO_UNF (1 << 4)
112 #define SPI_RX_FIFO_OVF (1 << 5)
113 #define SPI_TX_FIFO_UNF (1 << 6)
114 #define SPI_TX_FIFO_OVF (1 << 7)
115 #define SPI_ERR (1 << 8)
116 #define SPI_TX_FIFO_FLUSH (1 << 14)
117 #define SPI_RX_FIFO_FLUSH (1 << 15)
118 #define SPI_TX_FIFO_EMPTY_COUNT(val) (((val) >> 16) & 0x7F)
119 #define SPI_RX_FIFO_FULL_COUNT(val) (((val) >> 23) & 0x7F)
120 #define SPI_FRAME_END (1 << 30)
121 #define SPI_CS_INACTIVE (1 << 31)
123 #define SPI_FIFO_ERROR (SPI_RX_FIFO_UNF | \
124 SPI_RX_FIFO_OVF | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF)
125 #define SPI_FIFO_EMPTY (SPI_RX_FIFO_EMPTY | SPI_TX_FIFO_EMPTY)
127 #define SPI_TX_DATA 0x018
128 #define SPI_RX_DATA 0x01C
130 #define SPI_DMA_CTL 0x020
131 #define SPI_TX_TRIG_1 (0 << 15)
132 #define SPI_TX_TRIG_4 (1 << 15)
133 #define SPI_TX_TRIG_8 (2 << 15)
134 #define SPI_TX_TRIG_16 (3 << 15)
135 #define SPI_TX_TRIG_MASK (3 << 15)
136 #define SPI_RX_TRIG_1 (0 << 19)
137 #define SPI_RX_TRIG_4 (1 << 19)
138 #define SPI_RX_TRIG_8 (2 << 19)
139 #define SPI_RX_TRIG_16 (3 << 19)
140 #define SPI_RX_TRIG_MASK (3 << 19)
141 #define SPI_IE_TX (1 << 28)
142 #define SPI_IE_RX (1 << 29)
143 #define SPI_CONT (1 << 30)
144 #define SPI_DMA (1 << 31)
145 #define SPI_DMA_EN SPI_DMA
147 #define SPI_DMA_BLK 0x024
148 #define SPI_DMA_BLK_SET(x) (((x) & 0xFFFF) << 0)
150 #define SPI_TX_FIFO 0x108
151 #define SPI_RX_FIFO 0x188
152 #define MAX_CHIP_SELECT 4
153 #define SPI_FIFO_DEPTH 64
154 #define DATA_DIR_TX (1 << 0)
155 #define DATA_DIR_RX (1 << 1)
157 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
158 #define DEFAULT_SPI_DMA_BUF_LEN (16*1024)
159 #define TX_FIFO_EMPTY_COUNT_MAX SPI_TX_FIFO_EMPTY_COUNT(0x40)
160 #define RX_FIFO_FULL_COUNT_ZERO SPI_RX_FIFO_FULL_COUNT(0)
161 #define MAX_HOLD_CYCLES 16
162 #define SPI_DEFAULT_SPEED 25000000
164 struct tegra_spi_data {
166 struct spi_master *master;
170 struct reset_control *rst;
174 u32 spi_max_frequency;
177 struct spi_device *cur_spi;
178 struct spi_device *cs_control;
180 unsigned words_per_32bit;
181 unsigned bytes_per_word;
182 unsigned curr_dma_words;
183 unsigned cur_direction;
188 unsigned dma_buf_size;
189 unsigned max_buf_size;
190 bool is_curr_dma_xfer;
192 struct completion rx_dma_complete;
193 struct completion tx_dma_complete;
202 u32 def_command1_reg;
204 struct completion xfer_completion;
205 struct spi_transfer *curr_xfer;
206 struct dma_chan *rx_dma_chan;
208 dma_addr_t rx_dma_phys;
209 struct dma_async_tx_descriptor *rx_dma_desc;
211 struct dma_chan *tx_dma_chan;
213 dma_addr_t tx_dma_phys;
214 struct dma_async_tx_descriptor *tx_dma_desc;
217 static int tegra_spi_runtime_suspend(struct device *dev);
218 static int tegra_spi_runtime_resume(struct device *dev);
220 static inline u32 tegra_spi_readl(struct tegra_spi_data *tspi,
223 return readl(tspi->base + reg);
226 static inline void tegra_spi_writel(struct tegra_spi_data *tspi,
227 u32 val, unsigned long reg)
229 writel(val, tspi->base + reg);
231 /* Read back register to make sure that register writes completed */
232 if (reg != SPI_TX_FIFO)
233 readl(tspi->base + SPI_COMMAND1);
236 static void tegra_spi_clear_status(struct tegra_spi_data *tspi)
240 /* Write 1 to clear status register */
241 val = tegra_spi_readl(tspi, SPI_TRANS_STATUS);
242 tegra_spi_writel(tspi, val, SPI_TRANS_STATUS);
244 /* Clear fifo status error if any */
245 val = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
247 tegra_spi_writel(tspi, SPI_ERR | SPI_FIFO_ERROR,
251 static unsigned tegra_spi_calculate_curr_xfer_param(
252 struct spi_device *spi, struct tegra_spi_data *tspi,
253 struct spi_transfer *t)
255 unsigned remain_len = t->len - tspi->cur_pos;
257 unsigned bits_per_word = t->bits_per_word;
259 unsigned total_fifo_words;
261 tspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8);
263 if (bits_per_word == 8 || bits_per_word == 16) {
265 tspi->words_per_32bit = 32/bits_per_word;
268 tspi->words_per_32bit = 1;
271 if (tspi->is_packed) {
272 max_len = min(remain_len, tspi->max_buf_size);
273 tspi->curr_dma_words = max_len/tspi->bytes_per_word;
274 total_fifo_words = (max_len + 3) / 4;
276 max_word = (remain_len - 1) / tspi->bytes_per_word + 1;
277 max_word = min(max_word, tspi->max_buf_size/4);
278 tspi->curr_dma_words = max_word;
279 total_fifo_words = max_word;
281 return total_fifo_words;
284 static unsigned tegra_spi_fill_tx_fifo_from_client_txbuf(
285 struct tegra_spi_data *tspi, struct spi_transfer *t)
288 unsigned tx_empty_count;
290 unsigned max_n_32bit;
292 unsigned int written_words;
293 unsigned fifo_words_left;
294 u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
296 fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
297 tx_empty_count = SPI_TX_FIFO_EMPTY_COUNT(fifo_status);
299 if (tspi->is_packed) {
300 fifo_words_left = tx_empty_count * tspi->words_per_32bit;
301 written_words = min(fifo_words_left, tspi->curr_dma_words);
302 nbytes = written_words * tspi->bytes_per_word;
303 max_n_32bit = DIV_ROUND_UP(nbytes, 4);
304 for (count = 0; count < max_n_32bit; count++) {
306 for (i = 0; (i < 4) && nbytes; i++, nbytes--)
307 x |= (u32)(*tx_buf++) << (i * 8);
308 tegra_spi_writel(tspi, x, SPI_TX_FIFO);
311 max_n_32bit = min(tspi->curr_dma_words, tx_empty_count);
312 written_words = max_n_32bit;
313 nbytes = written_words * tspi->bytes_per_word;
314 for (count = 0; count < max_n_32bit; count++) {
316 for (i = 0; nbytes && (i < tspi->bytes_per_word);
318 x |= (u32)(*tx_buf++) << (i * 8);
319 tegra_spi_writel(tspi, x, SPI_TX_FIFO);
322 tspi->cur_tx_pos += written_words * tspi->bytes_per_word;
323 return written_words;
326 static unsigned int tegra_spi_read_rx_fifo_to_client_rxbuf(
327 struct tegra_spi_data *tspi, struct spi_transfer *t)
329 unsigned rx_full_count;
332 unsigned int read_words = 0;
334 u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos;
336 fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
337 rx_full_count = SPI_RX_FIFO_FULL_COUNT(fifo_status);
338 if (tspi->is_packed) {
339 len = tspi->curr_dma_words * tspi->bytes_per_word;
340 for (count = 0; count < rx_full_count; count++) {
341 u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO);
342 for (i = 0; len && (i < 4); i++, len--)
343 *rx_buf++ = (x >> i*8) & 0xFF;
345 tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
346 read_words += tspi->curr_dma_words;
348 u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
349 for (count = 0; count < rx_full_count; count++) {
350 u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO) & rx_mask;
351 for (i = 0; (i < tspi->bytes_per_word); i++)
352 *rx_buf++ = (x >> (i*8)) & 0xFF;
354 tspi->cur_rx_pos += rx_full_count * tspi->bytes_per_word;
355 read_words += rx_full_count;
360 static void tegra_spi_copy_client_txbuf_to_spi_txbuf(
361 struct tegra_spi_data *tspi, struct spi_transfer *t)
363 /* Make the dma buffer to read by cpu */
364 dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys,
365 tspi->dma_buf_size, DMA_TO_DEVICE);
367 if (tspi->is_packed) {
368 unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
369 memcpy(tspi->tx_dma_buf, t->tx_buf + tspi->cur_pos, len);
373 u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
374 unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
376 for (count = 0; count < tspi->curr_dma_words; count++) {
378 for (i = 0; consume && (i < tspi->bytes_per_word);
380 x |= (u32)(*tx_buf++) << (i * 8);
381 tspi->tx_dma_buf[count] = x;
384 tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
386 /* Make the dma buffer to read by dma */
387 dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys,
388 tspi->dma_buf_size, DMA_TO_DEVICE);
391 static void tegra_spi_copy_spi_rxbuf_to_client_rxbuf(
392 struct tegra_spi_data *tspi, struct spi_transfer *t)
394 /* Make the dma buffer to read by cpu */
395 dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys,
396 tspi->dma_buf_size, DMA_FROM_DEVICE);
398 if (tspi->is_packed) {
399 unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
400 memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_dma_buf, len);
404 unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos;
405 u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
407 for (count = 0; count < tspi->curr_dma_words; count++) {
408 u32 x = tspi->rx_dma_buf[count] & rx_mask;
409 for (i = 0; (i < tspi->bytes_per_word); i++)
410 *rx_buf++ = (x >> (i*8)) & 0xFF;
413 tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
415 /* Make the dma buffer to read by dma */
416 dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
417 tspi->dma_buf_size, DMA_FROM_DEVICE);
420 static void tegra_spi_dma_complete(void *args)
422 struct completion *dma_complete = args;
424 complete(dma_complete);
427 static int tegra_spi_start_tx_dma(struct tegra_spi_data *tspi, int len)
429 reinit_completion(&tspi->tx_dma_complete);
430 tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan,
431 tspi->tx_dma_phys, len, DMA_MEM_TO_DEV,
432 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
433 if (!tspi->tx_dma_desc) {
434 dev_err(tspi->dev, "Not able to get desc for Tx\n");
438 tspi->tx_dma_desc->callback = tegra_spi_dma_complete;
439 tspi->tx_dma_desc->callback_param = &tspi->tx_dma_complete;
441 dmaengine_submit(tspi->tx_dma_desc);
442 dma_async_issue_pending(tspi->tx_dma_chan);
446 static int tegra_spi_start_rx_dma(struct tegra_spi_data *tspi, int len)
448 reinit_completion(&tspi->rx_dma_complete);
449 tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan,
450 tspi->rx_dma_phys, len, DMA_DEV_TO_MEM,
451 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
452 if (!tspi->rx_dma_desc) {
453 dev_err(tspi->dev, "Not able to get desc for Rx\n");
457 tspi->rx_dma_desc->callback = tegra_spi_dma_complete;
458 tspi->rx_dma_desc->callback_param = &tspi->rx_dma_complete;
460 dmaengine_submit(tspi->rx_dma_desc);
461 dma_async_issue_pending(tspi->rx_dma_chan);
465 static int tegra_spi_start_dma_based_transfer(
466 struct tegra_spi_data *tspi, struct spi_transfer *t)
473 /* Make sure that Rx and Tx fifo are empty */
474 status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
475 if ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
476 dev_err(tspi->dev, "Rx/Tx fifo are not empty status 0x%08x\n",
481 val = SPI_DMA_BLK_SET(tspi->curr_dma_words - 1);
482 tegra_spi_writel(tspi, val, SPI_DMA_BLK);
485 len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word,
488 len = tspi->curr_dma_words * 4;
490 /* Set attention level based on length of transfer */
492 val |= SPI_TX_TRIG_1 | SPI_RX_TRIG_1;
493 else if (((len) >> 4) & 0x1)
494 val |= SPI_TX_TRIG_4 | SPI_RX_TRIG_4;
496 val |= SPI_TX_TRIG_8 | SPI_RX_TRIG_8;
498 if (tspi->cur_direction & DATA_DIR_TX)
501 if (tspi->cur_direction & DATA_DIR_RX)
504 tegra_spi_writel(tspi, val, SPI_DMA_CTL);
505 tspi->dma_control_reg = val;
507 if (tspi->cur_direction & DATA_DIR_TX) {
508 tegra_spi_copy_client_txbuf_to_spi_txbuf(tspi, t);
509 ret = tegra_spi_start_tx_dma(tspi, len);
512 "Starting tx dma failed, err %d\n", ret);
517 if (tspi->cur_direction & DATA_DIR_RX) {
518 /* Make the dma buffer to read by dma */
519 dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
520 tspi->dma_buf_size, DMA_FROM_DEVICE);
522 ret = tegra_spi_start_rx_dma(tspi, len);
525 "Starting rx dma failed, err %d\n", ret);
526 if (tspi->cur_direction & DATA_DIR_TX)
527 dmaengine_terminate_all(tspi->tx_dma_chan);
531 tspi->is_curr_dma_xfer = true;
532 tspi->dma_control_reg = val;
535 tegra_spi_writel(tspi, val, SPI_DMA_CTL);
539 static int tegra_spi_start_cpu_based_transfer(
540 struct tegra_spi_data *tspi, struct spi_transfer *t)
545 if (tspi->cur_direction & DATA_DIR_TX)
546 cur_words = tegra_spi_fill_tx_fifo_from_client_txbuf(tspi, t);
548 cur_words = tspi->curr_dma_words;
550 val = SPI_DMA_BLK_SET(cur_words - 1);
551 tegra_spi_writel(tspi, val, SPI_DMA_BLK);
554 if (tspi->cur_direction & DATA_DIR_TX)
557 if (tspi->cur_direction & DATA_DIR_RX)
560 tegra_spi_writel(tspi, val, SPI_DMA_CTL);
561 tspi->dma_control_reg = val;
563 tspi->is_curr_dma_xfer = false;
566 tegra_spi_writel(tspi, val, SPI_DMA_CTL);
570 static int tegra_spi_init_dma_param(struct tegra_spi_data *tspi,
573 struct dma_chan *dma_chan;
577 struct dma_slave_config dma_sconfig;
579 dma_chan = dma_request_slave_channel_reason(tspi->dev,
580 dma_to_memory ? "rx" : "tx");
581 if (IS_ERR(dma_chan)) {
582 ret = PTR_ERR(dma_chan);
583 if (ret != -EPROBE_DEFER)
585 "Dma channel is not available: %d\n", ret);
589 dma_buf = dma_alloc_coherent(tspi->dev, tspi->dma_buf_size,
590 &dma_phys, GFP_KERNEL);
592 dev_err(tspi->dev, " Not able to allocate the dma buffer\n");
593 dma_release_channel(dma_chan);
598 dma_sconfig.src_addr = tspi->phys + SPI_RX_FIFO;
599 dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
600 dma_sconfig.src_maxburst = 0;
602 dma_sconfig.dst_addr = tspi->phys + SPI_TX_FIFO;
603 dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
604 dma_sconfig.dst_maxburst = 0;
607 ret = dmaengine_slave_config(dma_chan, &dma_sconfig);
611 tspi->rx_dma_chan = dma_chan;
612 tspi->rx_dma_buf = dma_buf;
613 tspi->rx_dma_phys = dma_phys;
615 tspi->tx_dma_chan = dma_chan;
616 tspi->tx_dma_buf = dma_buf;
617 tspi->tx_dma_phys = dma_phys;
622 dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
623 dma_release_channel(dma_chan);
627 static void tegra_spi_deinit_dma_param(struct tegra_spi_data *tspi,
632 struct dma_chan *dma_chan;
635 dma_buf = tspi->rx_dma_buf;
636 dma_chan = tspi->rx_dma_chan;
637 dma_phys = tspi->rx_dma_phys;
638 tspi->rx_dma_chan = NULL;
639 tspi->rx_dma_buf = NULL;
641 dma_buf = tspi->tx_dma_buf;
642 dma_chan = tspi->tx_dma_chan;
643 dma_phys = tspi->tx_dma_phys;
644 tspi->tx_dma_buf = NULL;
645 tspi->tx_dma_chan = NULL;
650 dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
651 dma_release_channel(dma_chan);
654 static u32 tegra_spi_setup_transfer_one(struct spi_device *spi,
655 struct spi_transfer *t, bool is_first_of_msg)
657 struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
658 u32 speed = t->speed_hz;
659 u8 bits_per_word = t->bits_per_word;
663 if (speed != tspi->cur_speed) {
664 clk_set_rate(tspi->clk, speed);
665 tspi->cur_speed = speed;
670 tspi->cur_rx_pos = 0;
671 tspi->cur_tx_pos = 0;
674 if (is_first_of_msg) {
675 tegra_spi_clear_status(tspi);
677 command1 = tspi->def_command1_reg;
678 command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
680 command1 &= ~SPI_CONTROL_MODE_MASK;
681 req_mode = spi->mode & 0x3;
682 if (req_mode == SPI_MODE_0)
683 command1 |= SPI_CONTROL_MODE_0;
684 else if (req_mode == SPI_MODE_1)
685 command1 |= SPI_CONTROL_MODE_1;
686 else if (req_mode == SPI_MODE_2)
687 command1 |= SPI_CONTROL_MODE_2;
688 else if (req_mode == SPI_MODE_3)
689 command1 |= SPI_CONTROL_MODE_3;
691 if (tspi->cs_control) {
692 if (tspi->cs_control != spi)
693 tegra_spi_writel(tspi, command1, SPI_COMMAND1);
694 tspi->cs_control = NULL;
696 tegra_spi_writel(tspi, command1, SPI_COMMAND1);
698 command1 |= SPI_CS_SW_HW;
699 if (spi->mode & SPI_CS_HIGH)
700 command1 |= SPI_CS_SS_VAL;
702 command1 &= ~SPI_CS_SS_VAL;
704 tegra_spi_writel(tspi, 0, SPI_COMMAND2);
706 command1 = tspi->command1_reg;
707 command1 &= ~SPI_BIT_LENGTH(~0);
708 command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
714 static int tegra_spi_start_transfer_one(struct spi_device *spi,
715 struct spi_transfer *t, u32 command1)
717 struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
718 unsigned total_fifo_words;
721 total_fifo_words = tegra_spi_calculate_curr_xfer_param(spi, tspi, t);
724 command1 |= SPI_PACKED;
726 command1 &= ~(SPI_CS_SEL_MASK | SPI_TX_EN | SPI_RX_EN);
727 tspi->cur_direction = 0;
729 command1 |= SPI_RX_EN;
730 tspi->cur_direction |= DATA_DIR_RX;
733 command1 |= SPI_TX_EN;
734 tspi->cur_direction |= DATA_DIR_TX;
736 command1 |= SPI_CS_SEL(spi->chip_select);
737 tegra_spi_writel(tspi, command1, SPI_COMMAND1);
738 tspi->command1_reg = command1;
740 dev_dbg(tspi->dev, "The def 0x%x and written 0x%x\n",
741 tspi->def_command1_reg, (unsigned)command1);
743 if (total_fifo_words > SPI_FIFO_DEPTH)
744 ret = tegra_spi_start_dma_based_transfer(tspi, t);
746 ret = tegra_spi_start_cpu_based_transfer(tspi, t);
750 static int tegra_spi_setup(struct spi_device *spi)
752 struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
757 dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n",
759 spi->mode & SPI_CPOL ? "" : "~",
760 spi->mode & SPI_CPHA ? "" : "~",
763 BUG_ON(spi->chip_select >= MAX_CHIP_SELECT);
765 /* Set speed to the spi max fequency if spi device has not set */
766 spi->max_speed_hz = spi->max_speed_hz ? : tspi->spi_max_frequency;
768 ret = pm_runtime_get_sync(tspi->dev);
770 dev_err(tspi->dev, "pm runtime failed, e = %d\n", ret);
774 spin_lock_irqsave(&tspi->lock, flags);
775 val = tspi->def_command1_reg;
776 if (spi->mode & SPI_CS_HIGH)
777 val &= ~SPI_CS_POL_INACTIVE(spi->chip_select);
779 val |= SPI_CS_POL_INACTIVE(spi->chip_select);
780 tspi->def_command1_reg = val;
781 tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
782 spin_unlock_irqrestore(&tspi->lock, flags);
784 pm_runtime_put(tspi->dev);
788 static void tegra_spi_transfer_delay(int delay)
794 mdelay(delay / 1000);
796 udelay(delay % 1000);
799 static int tegra_spi_transfer_one_message(struct spi_master *master,
800 struct spi_message *msg)
802 bool is_first_msg = true;
803 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
804 struct spi_transfer *xfer;
805 struct spi_device *spi = msg->spi;
810 msg->actual_length = 0;
812 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
815 reinit_completion(&tspi->xfer_completion);
817 cmd1 = tegra_spi_setup_transfer_one(spi, xfer, is_first_msg);
825 ret = tegra_spi_start_transfer_one(spi, xfer, cmd1);
828 "spi can not start transfer, err %d\n", ret);
832 is_first_msg = false;
833 ret = wait_for_completion_timeout(&tspi->xfer_completion,
835 if (WARN_ON(ret == 0)) {
837 "spi trasfer timeout, err %d\n", ret);
842 if (tspi->tx_status || tspi->rx_status) {
843 dev_err(tspi->dev, "Error in Transfer\n");
847 msg->actual_length += xfer->len;
850 if (ret < 0 || skip) {
851 tegra_spi_writel(tspi, tspi->def_command1_reg,
853 tegra_spi_transfer_delay(xfer->delay_usecs);
855 } else if (msg->transfers.prev == &xfer->transfer_list) {
856 /* This is the last transfer in message */
858 tspi->cs_control = spi;
860 tegra_spi_writel(tspi, tspi->def_command1_reg,
862 tegra_spi_transfer_delay(xfer->delay_usecs);
864 } else if (xfer->cs_change) {
865 tegra_spi_writel(tspi, tspi->def_command1_reg,
867 tegra_spi_transfer_delay(xfer->delay_usecs);
874 spi_finalize_current_message(master);
878 static irqreturn_t handle_cpu_based_xfer(struct tegra_spi_data *tspi)
880 struct spi_transfer *t = tspi->curr_xfer;
883 spin_lock_irqsave(&tspi->lock, flags);
884 if (tspi->tx_status || tspi->rx_status) {
885 dev_err(tspi->dev, "CpuXfer ERROR bit set 0x%x\n",
887 dev_err(tspi->dev, "CpuXfer 0x%08x:0x%08x\n",
888 tspi->command1_reg, tspi->dma_control_reg);
889 reset_control_assert(tspi->rst);
891 reset_control_deassert(tspi->rst);
892 complete(&tspi->xfer_completion);
896 if (tspi->cur_direction & DATA_DIR_RX)
897 tegra_spi_read_rx_fifo_to_client_rxbuf(tspi, t);
899 if (tspi->cur_direction & DATA_DIR_TX)
900 tspi->cur_pos = tspi->cur_tx_pos;
902 tspi->cur_pos = tspi->cur_rx_pos;
904 if (tspi->cur_pos == t->len) {
905 complete(&tspi->xfer_completion);
909 tegra_spi_calculate_curr_xfer_param(tspi->cur_spi, tspi, t);
910 tegra_spi_start_cpu_based_transfer(tspi, t);
912 spin_unlock_irqrestore(&tspi->lock, flags);
916 static irqreturn_t handle_dma_based_xfer(struct tegra_spi_data *tspi)
918 struct spi_transfer *t = tspi->curr_xfer;
921 unsigned total_fifo_words;
924 /* Abort dmas if any error */
925 if (tspi->cur_direction & DATA_DIR_TX) {
926 if (tspi->tx_status) {
927 dmaengine_terminate_all(tspi->tx_dma_chan);
930 wait_status = wait_for_completion_interruptible_timeout(
931 &tspi->tx_dma_complete, SPI_DMA_TIMEOUT);
932 if (wait_status <= 0) {
933 dmaengine_terminate_all(tspi->tx_dma_chan);
934 dev_err(tspi->dev, "TxDma Xfer failed\n");
940 if (tspi->cur_direction & DATA_DIR_RX) {
941 if (tspi->rx_status) {
942 dmaengine_terminate_all(tspi->rx_dma_chan);
945 wait_status = wait_for_completion_interruptible_timeout(
946 &tspi->rx_dma_complete, SPI_DMA_TIMEOUT);
947 if (wait_status <= 0) {
948 dmaengine_terminate_all(tspi->rx_dma_chan);
949 dev_err(tspi->dev, "RxDma Xfer failed\n");
955 spin_lock_irqsave(&tspi->lock, flags);
957 dev_err(tspi->dev, "DmaXfer: ERROR bit set 0x%x\n",
959 dev_err(tspi->dev, "DmaXfer 0x%08x:0x%08x\n",
960 tspi->command1_reg, tspi->dma_control_reg);
961 reset_control_assert(tspi->rst);
963 reset_control_deassert(tspi->rst);
964 complete(&tspi->xfer_completion);
965 spin_unlock_irqrestore(&tspi->lock, flags);
969 if (tspi->cur_direction & DATA_DIR_RX)
970 tegra_spi_copy_spi_rxbuf_to_client_rxbuf(tspi, t);
972 if (tspi->cur_direction & DATA_DIR_TX)
973 tspi->cur_pos = tspi->cur_tx_pos;
975 tspi->cur_pos = tspi->cur_rx_pos;
977 if (tspi->cur_pos == t->len) {
978 complete(&tspi->xfer_completion);
982 /* Continue transfer in current message */
983 total_fifo_words = tegra_spi_calculate_curr_xfer_param(tspi->cur_spi,
985 if (total_fifo_words > SPI_FIFO_DEPTH)
986 err = tegra_spi_start_dma_based_transfer(tspi, t);
988 err = tegra_spi_start_cpu_based_transfer(tspi, t);
991 spin_unlock_irqrestore(&tspi->lock, flags);
995 static irqreturn_t tegra_spi_isr_thread(int irq, void *context_data)
997 struct tegra_spi_data *tspi = context_data;
999 if (!tspi->is_curr_dma_xfer)
1000 return handle_cpu_based_xfer(tspi);
1001 return handle_dma_based_xfer(tspi);
1004 static irqreturn_t tegra_spi_isr(int irq, void *context_data)
1006 struct tegra_spi_data *tspi = context_data;
1008 tspi->status_reg = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
1009 if (tspi->cur_direction & DATA_DIR_TX)
1010 tspi->tx_status = tspi->status_reg &
1011 (SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF);
1013 if (tspi->cur_direction & DATA_DIR_RX)
1014 tspi->rx_status = tspi->status_reg &
1015 (SPI_RX_FIFO_OVF | SPI_RX_FIFO_UNF);
1016 tegra_spi_clear_status(tspi);
1018 return IRQ_WAKE_THREAD;
1021 static void tegra_spi_parse_dt(struct platform_device *pdev,
1022 struct tegra_spi_data *tspi)
1024 struct device_node *np = pdev->dev.of_node;
1026 if (of_property_read_u32(np, "spi-max-frequency",
1027 &tspi->spi_max_frequency))
1028 tspi->spi_max_frequency = 25000000; /* 25MHz */
1031 static struct of_device_id tegra_spi_of_match[] = {
1032 { .compatible = "nvidia,tegra114-spi", },
1035 MODULE_DEVICE_TABLE(of, tegra_spi_of_match);
1037 static int tegra_spi_probe(struct platform_device *pdev)
1039 struct spi_master *master;
1040 struct tegra_spi_data *tspi;
1044 master = spi_alloc_master(&pdev->dev, sizeof(*tspi));
1046 dev_err(&pdev->dev, "master allocation failed\n");
1049 platform_set_drvdata(pdev, master);
1050 tspi = spi_master_get_devdata(master);
1053 tegra_spi_parse_dt(pdev, tspi);
1055 /* the spi->mode bits understood by this driver: */
1056 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1057 master->setup = tegra_spi_setup;
1058 master->transfer_one_message = tegra_spi_transfer_one_message;
1059 master->num_chipselect = MAX_CHIP_SELECT;
1060 master->bus_num = -1;
1061 master->auto_runtime_pm = true;
1063 tspi->master = master;
1064 tspi->dev = &pdev->dev;
1065 spin_lock_init(&tspi->lock);
1067 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1068 tspi->base = devm_ioremap_resource(&pdev->dev, r);
1069 if (IS_ERR(tspi->base)) {
1070 ret = PTR_ERR(tspi->base);
1071 goto exit_free_master;
1073 tspi->phys = r->start;
1075 spi_irq = platform_get_irq(pdev, 0);
1076 tspi->irq = spi_irq;
1077 ret = request_threaded_irq(tspi->irq, tegra_spi_isr,
1078 tegra_spi_isr_thread, IRQF_ONESHOT,
1079 dev_name(&pdev->dev), tspi);
1081 dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
1083 goto exit_free_master;
1086 tspi->clk = devm_clk_get(&pdev->dev, "spi");
1087 if (IS_ERR(tspi->clk)) {
1088 dev_err(&pdev->dev, "can not get clock\n");
1089 ret = PTR_ERR(tspi->clk);
1093 tspi->rst = devm_reset_control_get(&pdev->dev, "spi");
1094 if (IS_ERR(tspi->rst)) {
1095 dev_err(&pdev->dev, "can not get reset\n");
1096 ret = PTR_ERR(tspi->rst);
1100 tspi->max_buf_size = SPI_FIFO_DEPTH << 2;
1101 tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN;
1103 ret = tegra_spi_init_dma_param(tspi, true);
1106 ret = tegra_spi_init_dma_param(tspi, false);
1108 goto exit_rx_dma_free;
1109 tspi->max_buf_size = tspi->dma_buf_size;
1110 init_completion(&tspi->tx_dma_complete);
1111 init_completion(&tspi->rx_dma_complete);
1113 init_completion(&tspi->xfer_completion);
1115 pm_runtime_enable(&pdev->dev);
1116 if (!pm_runtime_enabled(&pdev->dev)) {
1117 ret = tegra_spi_runtime_resume(&pdev->dev);
1119 goto exit_pm_disable;
1122 ret = pm_runtime_get_sync(&pdev->dev);
1124 dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
1125 goto exit_pm_disable;
1127 tspi->def_command1_reg = SPI_M_S;
1128 tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
1129 pm_runtime_put(&pdev->dev);
1131 master->dev.of_node = pdev->dev.of_node;
1132 ret = devm_spi_register_master(&pdev->dev, master);
1134 dev_err(&pdev->dev, "can not register to master err %d\n", ret);
1135 goto exit_pm_disable;
1140 pm_runtime_disable(&pdev->dev);
1141 if (!pm_runtime_status_suspended(&pdev->dev))
1142 tegra_spi_runtime_suspend(&pdev->dev);
1143 tegra_spi_deinit_dma_param(tspi, false);
1145 tegra_spi_deinit_dma_param(tspi, true);
1147 free_irq(spi_irq, tspi);
1149 spi_master_put(master);
1153 static int tegra_spi_remove(struct platform_device *pdev)
1155 struct spi_master *master = platform_get_drvdata(pdev);
1156 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1158 free_irq(tspi->irq, tspi);
1160 if (tspi->tx_dma_chan)
1161 tegra_spi_deinit_dma_param(tspi, false);
1163 if (tspi->rx_dma_chan)
1164 tegra_spi_deinit_dma_param(tspi, true);
1166 pm_runtime_disable(&pdev->dev);
1167 if (!pm_runtime_status_suspended(&pdev->dev))
1168 tegra_spi_runtime_suspend(&pdev->dev);
1173 #ifdef CONFIG_PM_SLEEP
1174 static int tegra_spi_suspend(struct device *dev)
1176 struct spi_master *master = dev_get_drvdata(dev);
1178 return spi_master_suspend(master);
1181 static int tegra_spi_resume(struct device *dev)
1183 struct spi_master *master = dev_get_drvdata(dev);
1184 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1187 ret = pm_runtime_get_sync(dev);
1189 dev_err(dev, "pm runtime failed, e = %d\n", ret);
1192 tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
1193 pm_runtime_put(dev);
1195 return spi_master_resume(master);
1199 static int tegra_spi_runtime_suspend(struct device *dev)
1201 struct spi_master *master = dev_get_drvdata(dev);
1202 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1204 /* Flush all write which are in PPSB queue by reading back */
1205 tegra_spi_readl(tspi, SPI_COMMAND1);
1207 clk_disable_unprepare(tspi->clk);
1211 static int tegra_spi_runtime_resume(struct device *dev)
1213 struct spi_master *master = dev_get_drvdata(dev);
1214 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1217 ret = clk_prepare_enable(tspi->clk);
1219 dev_err(tspi->dev, "clk_prepare failed: %d\n", ret);
1225 static const struct dev_pm_ops tegra_spi_pm_ops = {
1226 SET_RUNTIME_PM_OPS(tegra_spi_runtime_suspend,
1227 tegra_spi_runtime_resume, NULL)
1228 SET_SYSTEM_SLEEP_PM_OPS(tegra_spi_suspend, tegra_spi_resume)
1230 static struct platform_driver tegra_spi_driver = {
1232 .name = "spi-tegra114",
1233 .owner = THIS_MODULE,
1234 .pm = &tegra_spi_pm_ops,
1235 .of_match_table = tegra_spi_of_match,
1237 .probe = tegra_spi_probe,
1238 .remove = tegra_spi_remove,
1240 module_platform_driver(tegra_spi_driver);
1242 MODULE_ALIAS("platform:spi-tegra114");
1243 MODULE_DESCRIPTION("NVIDIA Tegra114 SPI Controller Driver");
1244 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1245 MODULE_LICENSE("GPL v2");