dmaengine: at_hdmac: Start transfer for cyclic channels in issue_pending
[platform/kernel/linux-rpi.git] / drivers / spi / spi-tegra114.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * SPI driver for NVIDIA's Tegra114 SPI Controller.
4  *
5  * Copyright (c) 2013, NVIDIA CORPORATION.  All rights reserved.
6  */
7
8 #include <linux/clk.h>
9 #include <linux/completion.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmapool.h>
14 #include <linux/err.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/kernel.h>
18 #include <linux/kthread.h>
19 #include <linux/module.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/reset.h>
25 #include <linux/spi/spi.h>
26
27 #define SPI_COMMAND1                            0x000
28 #define SPI_BIT_LENGTH(x)                       (((x) & 0x1f) << 0)
29 #define SPI_PACKED                              (1 << 5)
30 #define SPI_TX_EN                               (1 << 11)
31 #define SPI_RX_EN                               (1 << 12)
32 #define SPI_BOTH_EN_BYTE                        (1 << 13)
33 #define SPI_BOTH_EN_BIT                         (1 << 14)
34 #define SPI_LSBYTE_FE                           (1 << 15)
35 #define SPI_LSBIT_FE                            (1 << 16)
36 #define SPI_BIDIROE                             (1 << 17)
37 #define SPI_IDLE_SDA_DRIVE_LOW                  (0 << 18)
38 #define SPI_IDLE_SDA_DRIVE_HIGH                 (1 << 18)
39 #define SPI_IDLE_SDA_PULL_LOW                   (2 << 18)
40 #define SPI_IDLE_SDA_PULL_HIGH                  (3 << 18)
41 #define SPI_IDLE_SDA_MASK                       (3 << 18)
42 #define SPI_CS_SW_VAL                           (1 << 20)
43 #define SPI_CS_SW_HW                            (1 << 21)
44 /* SPI_CS_POL_INACTIVE bits are default high */
45                                                 /* n from 0 to 3 */
46 #define SPI_CS_POL_INACTIVE(n)                  (1 << (22 + (n)))
47 #define SPI_CS_POL_INACTIVE_MASK                (0xF << 22)
48
49 #define SPI_CS_SEL_0                            (0 << 26)
50 #define SPI_CS_SEL_1                            (1 << 26)
51 #define SPI_CS_SEL_2                            (2 << 26)
52 #define SPI_CS_SEL_3                            (3 << 26)
53 #define SPI_CS_SEL_MASK                         (3 << 26)
54 #define SPI_CS_SEL(x)                           (((x) & 0x3) << 26)
55 #define SPI_CONTROL_MODE_0                      (0 << 28)
56 #define SPI_CONTROL_MODE_1                      (1 << 28)
57 #define SPI_CONTROL_MODE_2                      (2 << 28)
58 #define SPI_CONTROL_MODE_3                      (3 << 28)
59 #define SPI_CONTROL_MODE_MASK                   (3 << 28)
60 #define SPI_MODE_SEL(x)                         (((x) & 0x3) << 28)
61 #define SPI_M_S                                 (1 << 30)
62 #define SPI_PIO                                 (1 << 31)
63
64 #define SPI_COMMAND2                            0x004
65 #define SPI_TX_TAP_DELAY(x)                     (((x) & 0x3F) << 6)
66 #define SPI_RX_TAP_DELAY(x)                     (((x) & 0x3F) << 0)
67
68 #define SPI_CS_TIMING1                          0x008
69 #define SPI_SETUP_HOLD(setup, hold)             (((setup) << 4) | (hold))
70 #define SPI_CS_SETUP_HOLD(reg, cs, val)                 \
71                 ((((val) & 0xFFu) << ((cs) * 8)) |      \
72                 ((reg) & ~(0xFFu << ((cs) * 8))))
73
74 #define SPI_CS_TIMING2                          0x00C
75 #define CYCLES_BETWEEN_PACKETS_0(x)             (((x) & 0x1F) << 0)
76 #define CS_ACTIVE_BETWEEN_PACKETS_0             (1 << 5)
77 #define CYCLES_BETWEEN_PACKETS_1(x)             (((x) & 0x1F) << 8)
78 #define CS_ACTIVE_BETWEEN_PACKETS_1             (1 << 13)
79 #define CYCLES_BETWEEN_PACKETS_2(x)             (((x) & 0x1F) << 16)
80 #define CS_ACTIVE_BETWEEN_PACKETS_2             (1 << 21)
81 #define CYCLES_BETWEEN_PACKETS_3(x)             (((x) & 0x1F) << 24)
82 #define CS_ACTIVE_BETWEEN_PACKETS_3             (1 << 29)
83 #define SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(reg, cs, val)         \
84                 (reg = (((val) & 0x1) << ((cs) * 8 + 5)) |      \
85                         ((reg) & ~(1 << ((cs) * 8 + 5))))
86 #define SPI_SET_CYCLES_BETWEEN_PACKETS(reg, cs, val)            \
87                 (reg = (((val) & 0x1F) << ((cs) * 8)) |         \
88                         ((reg) & ~(0x1F << ((cs) * 8))))
89 #define MAX_SETUP_HOLD_CYCLES                   16
90 #define MAX_INACTIVE_CYCLES                     32
91
92 #define SPI_TRANS_STATUS                        0x010
93 #define SPI_BLK_CNT(val)                        (((val) >> 0) & 0xFFFF)
94 #define SPI_SLV_IDLE_COUNT(val)                 (((val) >> 16) & 0xFF)
95 #define SPI_RDY                                 (1 << 30)
96
97 #define SPI_FIFO_STATUS                         0x014
98 #define SPI_RX_FIFO_EMPTY                       (1 << 0)
99 #define SPI_RX_FIFO_FULL                        (1 << 1)
100 #define SPI_TX_FIFO_EMPTY                       (1 << 2)
101 #define SPI_TX_FIFO_FULL                        (1 << 3)
102 #define SPI_RX_FIFO_UNF                         (1 << 4)
103 #define SPI_RX_FIFO_OVF                         (1 << 5)
104 #define SPI_TX_FIFO_UNF                         (1 << 6)
105 #define SPI_TX_FIFO_OVF                         (1 << 7)
106 #define SPI_ERR                                 (1 << 8)
107 #define SPI_TX_FIFO_FLUSH                       (1 << 14)
108 #define SPI_RX_FIFO_FLUSH                       (1 << 15)
109 #define SPI_TX_FIFO_EMPTY_COUNT(val)            (((val) >> 16) & 0x7F)
110 #define SPI_RX_FIFO_FULL_COUNT(val)             (((val) >> 23) & 0x7F)
111 #define SPI_FRAME_END                           (1 << 30)
112 #define SPI_CS_INACTIVE                         (1 << 31)
113
114 #define SPI_FIFO_ERROR                          (SPI_RX_FIFO_UNF | \
115                         SPI_RX_FIFO_OVF | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF)
116 #define SPI_FIFO_EMPTY                  (SPI_RX_FIFO_EMPTY | SPI_TX_FIFO_EMPTY)
117
118 #define SPI_TX_DATA                             0x018
119 #define SPI_RX_DATA                             0x01C
120
121 #define SPI_DMA_CTL                             0x020
122 #define SPI_TX_TRIG_1                           (0 << 15)
123 #define SPI_TX_TRIG_4                           (1 << 15)
124 #define SPI_TX_TRIG_8                           (2 << 15)
125 #define SPI_TX_TRIG_16                          (3 << 15)
126 #define SPI_TX_TRIG_MASK                        (3 << 15)
127 #define SPI_RX_TRIG_1                           (0 << 19)
128 #define SPI_RX_TRIG_4                           (1 << 19)
129 #define SPI_RX_TRIG_8                           (2 << 19)
130 #define SPI_RX_TRIG_16                          (3 << 19)
131 #define SPI_RX_TRIG_MASK                        (3 << 19)
132 #define SPI_IE_TX                               (1 << 28)
133 #define SPI_IE_RX                               (1 << 29)
134 #define SPI_CONT                                (1 << 30)
135 #define SPI_DMA                                 (1 << 31)
136 #define SPI_DMA_EN                              SPI_DMA
137
138 #define SPI_DMA_BLK                             0x024
139 #define SPI_DMA_BLK_SET(x)                      (((x) & 0xFFFF) << 0)
140
141 #define SPI_TX_FIFO                             0x108
142 #define SPI_RX_FIFO                             0x188
143 #define SPI_INTR_MASK                           0x18c
144 #define SPI_INTR_ALL_MASK                       (0x1fUL << 25)
145 #define MAX_CHIP_SELECT                         4
146 #define SPI_FIFO_DEPTH                          64
147 #define DATA_DIR_TX                             (1 << 0)
148 #define DATA_DIR_RX                             (1 << 1)
149
150 #define SPI_DMA_TIMEOUT                         (msecs_to_jiffies(1000))
151 #define DEFAULT_SPI_DMA_BUF_LEN                 (16*1024)
152 #define TX_FIFO_EMPTY_COUNT_MAX                 SPI_TX_FIFO_EMPTY_COUNT(0x40)
153 #define RX_FIFO_FULL_COUNT_ZERO                 SPI_RX_FIFO_FULL_COUNT(0)
154 #define MAX_HOLD_CYCLES                         16
155 #define SPI_DEFAULT_SPEED                       25000000
156
157 struct tegra_spi_soc_data {
158         bool has_intr_mask_reg;
159 };
160
161 struct tegra_spi_client_data {
162         int tx_clk_tap_delay;
163         int rx_clk_tap_delay;
164 };
165
166 struct tegra_spi_data {
167         struct device                           *dev;
168         struct spi_master                       *master;
169         spinlock_t                              lock;
170
171         struct clk                              *clk;
172         struct reset_control                    *rst;
173         void __iomem                            *base;
174         phys_addr_t                             phys;
175         unsigned                                irq;
176         u32                                     cur_speed;
177
178         struct spi_device                       *cur_spi;
179         struct spi_device                       *cs_control;
180         unsigned                                cur_pos;
181         unsigned                                words_per_32bit;
182         unsigned                                bytes_per_word;
183         unsigned                                curr_dma_words;
184         unsigned                                cur_direction;
185
186         unsigned                                cur_rx_pos;
187         unsigned                                cur_tx_pos;
188
189         unsigned                                dma_buf_size;
190         unsigned                                max_buf_size;
191         bool                                    is_curr_dma_xfer;
192         bool                                    use_hw_based_cs;
193
194         struct completion                       rx_dma_complete;
195         struct completion                       tx_dma_complete;
196
197         u32                                     tx_status;
198         u32                                     rx_status;
199         u32                                     status_reg;
200         bool                                    is_packed;
201
202         u32                                     command1_reg;
203         u32                                     dma_control_reg;
204         u32                                     def_command1_reg;
205         u32                                     def_command2_reg;
206         u32                                     spi_cs_timing1;
207         u32                                     spi_cs_timing2;
208         u8                                      last_used_cs;
209
210         struct completion                       xfer_completion;
211         struct spi_transfer                     *curr_xfer;
212         struct dma_chan                         *rx_dma_chan;
213         u32                                     *rx_dma_buf;
214         dma_addr_t                              rx_dma_phys;
215         struct dma_async_tx_descriptor          *rx_dma_desc;
216
217         struct dma_chan                         *tx_dma_chan;
218         u32                                     *tx_dma_buf;
219         dma_addr_t                              tx_dma_phys;
220         struct dma_async_tx_descriptor          *tx_dma_desc;
221         const struct tegra_spi_soc_data         *soc_data;
222 };
223
224 static int tegra_spi_runtime_suspend(struct device *dev);
225 static int tegra_spi_runtime_resume(struct device *dev);
226
227 static inline u32 tegra_spi_readl(struct tegra_spi_data *tspi,
228                 unsigned long reg)
229 {
230         return readl(tspi->base + reg);
231 }
232
233 static inline void tegra_spi_writel(struct tegra_spi_data *tspi,
234                 u32 val, unsigned long reg)
235 {
236         writel(val, tspi->base + reg);
237
238         /* Read back register to make sure that register writes completed */
239         if (reg != SPI_TX_FIFO)
240                 readl(tspi->base + SPI_COMMAND1);
241 }
242
243 static void tegra_spi_clear_status(struct tegra_spi_data *tspi)
244 {
245         u32 val;
246
247         /* Write 1 to clear status register */
248         val = tegra_spi_readl(tspi, SPI_TRANS_STATUS);
249         tegra_spi_writel(tspi, val, SPI_TRANS_STATUS);
250
251         /* Clear fifo status error if any */
252         val = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
253         if (val & SPI_ERR)
254                 tegra_spi_writel(tspi, SPI_ERR | SPI_FIFO_ERROR,
255                                 SPI_FIFO_STATUS);
256 }
257
258 static unsigned tegra_spi_calculate_curr_xfer_param(
259         struct spi_device *spi, struct tegra_spi_data *tspi,
260         struct spi_transfer *t)
261 {
262         unsigned remain_len = t->len - tspi->cur_pos;
263         unsigned max_word;
264         unsigned bits_per_word = t->bits_per_word;
265         unsigned max_len;
266         unsigned total_fifo_words;
267
268         tspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8);
269
270         if ((bits_per_word == 8 || bits_per_word == 16 ||
271              bits_per_word == 32) && t->len > 3) {
272                 tspi->is_packed = true;
273                 tspi->words_per_32bit = 32/bits_per_word;
274         } else {
275                 tspi->is_packed = false;
276                 tspi->words_per_32bit = 1;
277         }
278
279         if (tspi->is_packed) {
280                 max_len = min(remain_len, tspi->max_buf_size);
281                 tspi->curr_dma_words = max_len/tspi->bytes_per_word;
282                 total_fifo_words = (max_len + 3) / 4;
283         } else {
284                 max_word = (remain_len - 1) / tspi->bytes_per_word + 1;
285                 max_word = min(max_word, tspi->max_buf_size/4);
286                 tspi->curr_dma_words = max_word;
287                 total_fifo_words = max_word;
288         }
289         return total_fifo_words;
290 }
291
292 static unsigned tegra_spi_fill_tx_fifo_from_client_txbuf(
293         struct tegra_spi_data *tspi, struct spi_transfer *t)
294 {
295         unsigned nbytes;
296         unsigned tx_empty_count;
297         u32 fifo_status;
298         unsigned max_n_32bit;
299         unsigned i, count;
300         unsigned int written_words;
301         unsigned fifo_words_left;
302         u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
303
304         fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
305         tx_empty_count = SPI_TX_FIFO_EMPTY_COUNT(fifo_status);
306
307         if (tspi->is_packed) {
308                 fifo_words_left = tx_empty_count * tspi->words_per_32bit;
309                 written_words = min(fifo_words_left, tspi->curr_dma_words);
310                 nbytes = written_words * tspi->bytes_per_word;
311                 max_n_32bit = DIV_ROUND_UP(nbytes, 4);
312                 for (count = 0; count < max_n_32bit; count++) {
313                         u32 x = 0;
314
315                         for (i = 0; (i < 4) && nbytes; i++, nbytes--)
316                                 x |= (u32)(*tx_buf++) << (i * 8);
317                         tegra_spi_writel(tspi, x, SPI_TX_FIFO);
318                 }
319
320                 tspi->cur_tx_pos += written_words * tspi->bytes_per_word;
321         } else {
322                 unsigned int write_bytes;
323                 max_n_32bit = min(tspi->curr_dma_words,  tx_empty_count);
324                 written_words = max_n_32bit;
325                 nbytes = written_words * tspi->bytes_per_word;
326                 if (nbytes > t->len - tspi->cur_pos)
327                         nbytes = t->len - tspi->cur_pos;
328                 write_bytes = nbytes;
329                 for (count = 0; count < max_n_32bit; count++) {
330                         u32 x = 0;
331
332                         for (i = 0; nbytes && (i < tspi->bytes_per_word);
333                                                         i++, nbytes--)
334                                 x |= (u32)(*tx_buf++) << (i * 8);
335                         tegra_spi_writel(tspi, x, SPI_TX_FIFO);
336                 }
337
338                 tspi->cur_tx_pos += write_bytes;
339         }
340
341         return written_words;
342 }
343
344 static unsigned int tegra_spi_read_rx_fifo_to_client_rxbuf(
345                 struct tegra_spi_data *tspi, struct spi_transfer *t)
346 {
347         unsigned rx_full_count;
348         u32 fifo_status;
349         unsigned i, count;
350         unsigned int read_words = 0;
351         unsigned len;
352         u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos;
353
354         fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
355         rx_full_count = SPI_RX_FIFO_FULL_COUNT(fifo_status);
356         if (tspi->is_packed) {
357                 len = tspi->curr_dma_words * tspi->bytes_per_word;
358                 for (count = 0; count < rx_full_count; count++) {
359                         u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO);
360
361                         for (i = 0; len && (i < 4); i++, len--)
362                                 *rx_buf++ = (x >> i*8) & 0xFF;
363                 }
364                 read_words += tspi->curr_dma_words;
365                 tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
366         } else {
367                 u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
368                 u8 bytes_per_word = tspi->bytes_per_word;
369                 unsigned int read_bytes;
370
371                 len = rx_full_count * bytes_per_word;
372                 if (len > t->len - tspi->cur_pos)
373                         len = t->len - tspi->cur_pos;
374                 read_bytes = len;
375                 for (count = 0; count < rx_full_count; count++) {
376                         u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO) & rx_mask;
377
378                         for (i = 0; len && (i < bytes_per_word); i++, len--)
379                                 *rx_buf++ = (x >> (i*8)) & 0xFF;
380                 }
381                 read_words += rx_full_count;
382                 tspi->cur_rx_pos += read_bytes;
383         }
384
385         return read_words;
386 }
387
388 static void tegra_spi_copy_client_txbuf_to_spi_txbuf(
389                 struct tegra_spi_data *tspi, struct spi_transfer *t)
390 {
391         /* Make the dma buffer to read by cpu */
392         dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys,
393                                 tspi->dma_buf_size, DMA_TO_DEVICE);
394
395         if (tspi->is_packed) {
396                 unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
397
398                 memcpy(tspi->tx_dma_buf, t->tx_buf + tspi->cur_pos, len);
399                 tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
400         } else {
401                 unsigned int i;
402                 unsigned int count;
403                 u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
404                 unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
405                 unsigned int write_bytes;
406
407                 if (consume > t->len - tspi->cur_pos)
408                         consume = t->len - tspi->cur_pos;
409                 write_bytes = consume;
410                 for (count = 0; count < tspi->curr_dma_words; count++) {
411                         u32 x = 0;
412
413                         for (i = 0; consume && (i < tspi->bytes_per_word);
414                                                         i++, consume--)
415                                 x |= (u32)(*tx_buf++) << (i * 8);
416                         tspi->tx_dma_buf[count] = x;
417                 }
418
419                 tspi->cur_tx_pos += write_bytes;
420         }
421
422         /* Make the dma buffer to read by dma */
423         dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys,
424                                 tspi->dma_buf_size, DMA_TO_DEVICE);
425 }
426
427 static void tegra_spi_copy_spi_rxbuf_to_client_rxbuf(
428                 struct tegra_spi_data *tspi, struct spi_transfer *t)
429 {
430         /* Make the dma buffer to read by cpu */
431         dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys,
432                 tspi->dma_buf_size, DMA_FROM_DEVICE);
433
434         if (tspi->is_packed) {
435                 unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
436
437                 memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_dma_buf, len);
438                 tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
439         } else {
440                 unsigned int i;
441                 unsigned int count;
442                 unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos;
443                 u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
444                 unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
445                 unsigned int read_bytes;
446
447                 if (consume > t->len - tspi->cur_pos)
448                         consume = t->len - tspi->cur_pos;
449                 read_bytes = consume;
450                 for (count = 0; count < tspi->curr_dma_words; count++) {
451                         u32 x = tspi->rx_dma_buf[count] & rx_mask;
452
453                         for (i = 0; consume && (i < tspi->bytes_per_word);
454                                                         i++, consume--)
455                                 *rx_buf++ = (x >> (i*8)) & 0xFF;
456                 }
457
458                 tspi->cur_rx_pos += read_bytes;
459         }
460
461         /* Make the dma buffer to read by dma */
462         dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
463                 tspi->dma_buf_size, DMA_FROM_DEVICE);
464 }
465
466 static void tegra_spi_dma_complete(void *args)
467 {
468         struct completion *dma_complete = args;
469
470         complete(dma_complete);
471 }
472
473 static int tegra_spi_start_tx_dma(struct tegra_spi_data *tspi, int len)
474 {
475         reinit_completion(&tspi->tx_dma_complete);
476         tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan,
477                                 tspi->tx_dma_phys, len, DMA_MEM_TO_DEV,
478                                 DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
479         if (!tspi->tx_dma_desc) {
480                 dev_err(tspi->dev, "Not able to get desc for Tx\n");
481                 return -EIO;
482         }
483
484         tspi->tx_dma_desc->callback = tegra_spi_dma_complete;
485         tspi->tx_dma_desc->callback_param = &tspi->tx_dma_complete;
486
487         dmaengine_submit(tspi->tx_dma_desc);
488         dma_async_issue_pending(tspi->tx_dma_chan);
489         return 0;
490 }
491
492 static int tegra_spi_start_rx_dma(struct tegra_spi_data *tspi, int len)
493 {
494         reinit_completion(&tspi->rx_dma_complete);
495         tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan,
496                                 tspi->rx_dma_phys, len, DMA_DEV_TO_MEM,
497                                 DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
498         if (!tspi->rx_dma_desc) {
499                 dev_err(tspi->dev, "Not able to get desc for Rx\n");
500                 return -EIO;
501         }
502
503         tspi->rx_dma_desc->callback = tegra_spi_dma_complete;
504         tspi->rx_dma_desc->callback_param = &tspi->rx_dma_complete;
505
506         dmaengine_submit(tspi->rx_dma_desc);
507         dma_async_issue_pending(tspi->rx_dma_chan);
508         return 0;
509 }
510
511 static int tegra_spi_flush_fifos(struct tegra_spi_data *tspi)
512 {
513         unsigned long timeout = jiffies + HZ;
514         u32 status;
515
516         status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
517         if ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
518                 status |= SPI_RX_FIFO_FLUSH | SPI_TX_FIFO_FLUSH;
519                 tegra_spi_writel(tspi, status, SPI_FIFO_STATUS);
520                 while ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
521                         status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
522                         if (time_after(jiffies, timeout)) {
523                                 dev_err(tspi->dev,
524                                         "timeout waiting for fifo flush\n");
525                                 return -EIO;
526                         }
527
528                         udelay(1);
529                 }
530         }
531
532         return 0;
533 }
534
535 static int tegra_spi_start_dma_based_transfer(
536                 struct tegra_spi_data *tspi, struct spi_transfer *t)
537 {
538         u32 val;
539         unsigned int len;
540         int ret = 0;
541         u8 dma_burst;
542         struct dma_slave_config dma_sconfig = {0};
543
544         val = SPI_DMA_BLK_SET(tspi->curr_dma_words - 1);
545         tegra_spi_writel(tspi, val, SPI_DMA_BLK);
546
547         if (tspi->is_packed)
548                 len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word,
549                                         4) * 4;
550         else
551                 len = tspi->curr_dma_words * 4;
552
553         /* Set attention level based on length of transfer */
554         if (len & 0xF) {
555                 val |= SPI_TX_TRIG_1 | SPI_RX_TRIG_1;
556                 dma_burst = 1;
557         } else if (((len) >> 4) & 0x1) {
558                 val |= SPI_TX_TRIG_4 | SPI_RX_TRIG_4;
559                 dma_burst = 4;
560         } else {
561                 val |= SPI_TX_TRIG_8 | SPI_RX_TRIG_8;
562                 dma_burst = 8;
563         }
564
565         if (!tspi->soc_data->has_intr_mask_reg) {
566                 if (tspi->cur_direction & DATA_DIR_TX)
567                         val |= SPI_IE_TX;
568
569                 if (tspi->cur_direction & DATA_DIR_RX)
570                         val |= SPI_IE_RX;
571         }
572
573         tegra_spi_writel(tspi, val, SPI_DMA_CTL);
574         tspi->dma_control_reg = val;
575
576         dma_sconfig.device_fc = true;
577         if (tspi->cur_direction & DATA_DIR_TX) {
578                 dma_sconfig.dst_addr = tspi->phys + SPI_TX_FIFO;
579                 dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
580                 dma_sconfig.dst_maxburst = dma_burst;
581                 ret = dmaengine_slave_config(tspi->tx_dma_chan, &dma_sconfig);
582                 if (ret < 0) {
583                         dev_err(tspi->dev,
584                                 "DMA slave config failed: %d\n", ret);
585                         return ret;
586                 }
587
588                 tegra_spi_copy_client_txbuf_to_spi_txbuf(tspi, t);
589                 ret = tegra_spi_start_tx_dma(tspi, len);
590                 if (ret < 0) {
591                         dev_err(tspi->dev,
592                                 "Starting tx dma failed, err %d\n", ret);
593                         return ret;
594                 }
595         }
596
597         if (tspi->cur_direction & DATA_DIR_RX) {
598                 dma_sconfig.src_addr = tspi->phys + SPI_RX_FIFO;
599                 dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
600                 dma_sconfig.src_maxburst = dma_burst;
601                 ret = dmaengine_slave_config(tspi->rx_dma_chan, &dma_sconfig);
602                 if (ret < 0) {
603                         dev_err(tspi->dev,
604                                 "DMA slave config failed: %d\n", ret);
605                         return ret;
606                 }
607
608                 /* Make the dma buffer to read by dma */
609                 dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
610                                 tspi->dma_buf_size, DMA_FROM_DEVICE);
611
612                 ret = tegra_spi_start_rx_dma(tspi, len);
613                 if (ret < 0) {
614                         dev_err(tspi->dev,
615                                 "Starting rx dma failed, err %d\n", ret);
616                         if (tspi->cur_direction & DATA_DIR_TX)
617                                 dmaengine_terminate_all(tspi->tx_dma_chan);
618                         return ret;
619                 }
620         }
621         tspi->is_curr_dma_xfer = true;
622         tspi->dma_control_reg = val;
623
624         val |= SPI_DMA_EN;
625         tegra_spi_writel(tspi, val, SPI_DMA_CTL);
626         return ret;
627 }
628
629 static int tegra_spi_start_cpu_based_transfer(
630                 struct tegra_spi_data *tspi, struct spi_transfer *t)
631 {
632         u32 val;
633         unsigned cur_words;
634
635         if (tspi->cur_direction & DATA_DIR_TX)
636                 cur_words = tegra_spi_fill_tx_fifo_from_client_txbuf(tspi, t);
637         else
638                 cur_words = tspi->curr_dma_words;
639
640         val = SPI_DMA_BLK_SET(cur_words - 1);
641         tegra_spi_writel(tspi, val, SPI_DMA_BLK);
642
643         val = 0;
644         if (tspi->cur_direction & DATA_DIR_TX)
645                 val |= SPI_IE_TX;
646
647         if (tspi->cur_direction & DATA_DIR_RX)
648                 val |= SPI_IE_RX;
649
650         tegra_spi_writel(tspi, val, SPI_DMA_CTL);
651         tspi->dma_control_reg = val;
652
653         tspi->is_curr_dma_xfer = false;
654
655         val = tspi->command1_reg;
656         val |= SPI_PIO;
657         tegra_spi_writel(tspi, val, SPI_COMMAND1);
658         return 0;
659 }
660
661 static int tegra_spi_init_dma_param(struct tegra_spi_data *tspi,
662                         bool dma_to_memory)
663 {
664         struct dma_chan *dma_chan;
665         u32 *dma_buf;
666         dma_addr_t dma_phys;
667
668         dma_chan = dma_request_chan(tspi->dev, dma_to_memory ? "rx" : "tx");
669         if (IS_ERR(dma_chan))
670                 return dev_err_probe(tspi->dev, PTR_ERR(dma_chan),
671                                      "Dma channel is not available\n");
672
673         dma_buf = dma_alloc_coherent(tspi->dev, tspi->dma_buf_size,
674                                 &dma_phys, GFP_KERNEL);
675         if (!dma_buf) {
676                 dev_err(tspi->dev, " Not able to allocate the dma buffer\n");
677                 dma_release_channel(dma_chan);
678                 return -ENOMEM;
679         }
680
681         if (dma_to_memory) {
682                 tspi->rx_dma_chan = dma_chan;
683                 tspi->rx_dma_buf = dma_buf;
684                 tspi->rx_dma_phys = dma_phys;
685         } else {
686                 tspi->tx_dma_chan = dma_chan;
687                 tspi->tx_dma_buf = dma_buf;
688                 tspi->tx_dma_phys = dma_phys;
689         }
690         return 0;
691 }
692
693 static void tegra_spi_deinit_dma_param(struct tegra_spi_data *tspi,
694         bool dma_to_memory)
695 {
696         u32 *dma_buf;
697         dma_addr_t dma_phys;
698         struct dma_chan *dma_chan;
699
700         if (dma_to_memory) {
701                 dma_buf = tspi->rx_dma_buf;
702                 dma_chan = tspi->rx_dma_chan;
703                 dma_phys = tspi->rx_dma_phys;
704                 tspi->rx_dma_chan = NULL;
705                 tspi->rx_dma_buf = NULL;
706         } else {
707                 dma_buf = tspi->tx_dma_buf;
708                 dma_chan = tspi->tx_dma_chan;
709                 dma_phys = tspi->tx_dma_phys;
710                 tspi->tx_dma_buf = NULL;
711                 tspi->tx_dma_chan = NULL;
712         }
713         if (!dma_chan)
714                 return;
715
716         dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
717         dma_release_channel(dma_chan);
718 }
719
720 static int tegra_spi_set_hw_cs_timing(struct spi_device *spi)
721 {
722         struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
723         struct spi_delay *setup = &spi->cs_setup;
724         struct spi_delay *hold = &spi->cs_hold;
725         struct spi_delay *inactive = &spi->cs_inactive;
726         u8 setup_dly, hold_dly, inactive_dly;
727         u32 setup_hold;
728         u32 spi_cs_timing;
729         u32 inactive_cycles;
730         u8 cs_state;
731
732         if ((setup && setup->unit != SPI_DELAY_UNIT_SCK) ||
733             (hold && hold->unit != SPI_DELAY_UNIT_SCK) ||
734             (inactive && inactive->unit != SPI_DELAY_UNIT_SCK)) {
735                 dev_err(&spi->dev,
736                         "Invalid delay unit %d, should be SPI_DELAY_UNIT_SCK\n",
737                         SPI_DELAY_UNIT_SCK);
738                 return -EINVAL;
739         }
740
741         setup_dly = setup ? setup->value : 0;
742         hold_dly = hold ? hold->value : 0;
743         inactive_dly = inactive ? inactive->value : 0;
744
745         setup_dly = min_t(u8, setup_dly, MAX_SETUP_HOLD_CYCLES);
746         hold_dly = min_t(u8, hold_dly, MAX_SETUP_HOLD_CYCLES);
747         if (setup_dly && hold_dly) {
748                 setup_hold = SPI_SETUP_HOLD(setup_dly - 1, hold_dly - 1);
749                 spi_cs_timing = SPI_CS_SETUP_HOLD(tspi->spi_cs_timing1,
750                                                   spi->chip_select,
751                                                   setup_hold);
752                 if (tspi->spi_cs_timing1 != spi_cs_timing) {
753                         tspi->spi_cs_timing1 = spi_cs_timing;
754                         tegra_spi_writel(tspi, spi_cs_timing, SPI_CS_TIMING1);
755                 }
756         }
757
758         inactive_cycles = min_t(u8, inactive_dly, MAX_INACTIVE_CYCLES);
759         if (inactive_cycles)
760                 inactive_cycles--;
761         cs_state = inactive_cycles ? 0 : 1;
762         spi_cs_timing = tspi->spi_cs_timing2;
763         SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(spi_cs_timing, spi->chip_select,
764                                           cs_state);
765         SPI_SET_CYCLES_BETWEEN_PACKETS(spi_cs_timing, spi->chip_select,
766                                        inactive_cycles);
767         if (tspi->spi_cs_timing2 != spi_cs_timing) {
768                 tspi->spi_cs_timing2 = spi_cs_timing;
769                 tegra_spi_writel(tspi, spi_cs_timing, SPI_CS_TIMING2);
770         }
771
772         return 0;
773 }
774
775 static u32 tegra_spi_setup_transfer_one(struct spi_device *spi,
776                                         struct spi_transfer *t,
777                                         bool is_first_of_msg,
778                                         bool is_single_xfer)
779 {
780         struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
781         struct tegra_spi_client_data *cdata = spi->controller_data;
782         u32 speed = t->speed_hz;
783         u8 bits_per_word = t->bits_per_word;
784         u32 command1, command2;
785         int req_mode;
786         u32 tx_tap = 0, rx_tap = 0;
787
788         if (speed != tspi->cur_speed) {
789                 clk_set_rate(tspi->clk, speed);
790                 tspi->cur_speed = speed;
791         }
792
793         tspi->cur_spi = spi;
794         tspi->cur_pos = 0;
795         tspi->cur_rx_pos = 0;
796         tspi->cur_tx_pos = 0;
797         tspi->curr_xfer = t;
798
799         if (is_first_of_msg) {
800                 tegra_spi_clear_status(tspi);
801
802                 command1 = tspi->def_command1_reg;
803                 command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
804
805                 command1 &= ~SPI_CONTROL_MODE_MASK;
806                 req_mode = spi->mode & 0x3;
807                 if (req_mode == SPI_MODE_0)
808                         command1 |= SPI_CONTROL_MODE_0;
809                 else if (req_mode == SPI_MODE_1)
810                         command1 |= SPI_CONTROL_MODE_1;
811                 else if (req_mode == SPI_MODE_2)
812                         command1 |= SPI_CONTROL_MODE_2;
813                 else if (req_mode == SPI_MODE_3)
814                         command1 |= SPI_CONTROL_MODE_3;
815
816                 if (spi->mode & SPI_LSB_FIRST)
817                         command1 |= SPI_LSBIT_FE;
818                 else
819                         command1 &= ~SPI_LSBIT_FE;
820
821                 if (spi->mode & SPI_3WIRE)
822                         command1 |= SPI_BIDIROE;
823                 else
824                         command1 &= ~SPI_BIDIROE;
825
826                 if (tspi->cs_control) {
827                         if (tspi->cs_control != spi)
828                                 tegra_spi_writel(tspi, command1, SPI_COMMAND1);
829                         tspi->cs_control = NULL;
830                 } else
831                         tegra_spi_writel(tspi, command1, SPI_COMMAND1);
832
833                 /* GPIO based chip select control */
834                 if (spi->cs_gpiod)
835                         gpiod_set_value(spi->cs_gpiod, 1);
836
837                 if (is_single_xfer && !(t->cs_change)) {
838                         tspi->use_hw_based_cs = true;
839                         command1 &= ~(SPI_CS_SW_HW | SPI_CS_SW_VAL);
840                 } else {
841                         tspi->use_hw_based_cs = false;
842                         command1 |= SPI_CS_SW_HW;
843                         if (spi->mode & SPI_CS_HIGH)
844                                 command1 |= SPI_CS_SW_VAL;
845                         else
846                                 command1 &= ~SPI_CS_SW_VAL;
847                 }
848
849                 if (tspi->last_used_cs != spi->chip_select) {
850                         if (cdata && cdata->tx_clk_tap_delay)
851                                 tx_tap = cdata->tx_clk_tap_delay;
852                         if (cdata && cdata->rx_clk_tap_delay)
853                                 rx_tap = cdata->rx_clk_tap_delay;
854                         command2 = SPI_TX_TAP_DELAY(tx_tap) |
855                                    SPI_RX_TAP_DELAY(rx_tap);
856                         if (command2 != tspi->def_command2_reg)
857                                 tegra_spi_writel(tspi, command2, SPI_COMMAND2);
858                         tspi->last_used_cs = spi->chip_select;
859                 }
860
861         } else {
862                 command1 = tspi->command1_reg;
863                 command1 &= ~SPI_BIT_LENGTH(~0);
864                 command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
865         }
866
867         return command1;
868 }
869
870 static int tegra_spi_start_transfer_one(struct spi_device *spi,
871                 struct spi_transfer *t, u32 command1)
872 {
873         struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
874         unsigned total_fifo_words;
875         int ret;
876
877         total_fifo_words = tegra_spi_calculate_curr_xfer_param(spi, tspi, t);
878
879         if (t->rx_nbits == SPI_NBITS_DUAL || t->tx_nbits == SPI_NBITS_DUAL)
880                 command1 |= SPI_BOTH_EN_BIT;
881         else
882                 command1 &= ~SPI_BOTH_EN_BIT;
883
884         if (tspi->is_packed)
885                 command1 |= SPI_PACKED;
886         else
887                 command1 &= ~SPI_PACKED;
888
889         command1 &= ~(SPI_CS_SEL_MASK | SPI_TX_EN | SPI_RX_EN);
890         tspi->cur_direction = 0;
891         if (t->rx_buf) {
892                 command1 |= SPI_RX_EN;
893                 tspi->cur_direction |= DATA_DIR_RX;
894         }
895         if (t->tx_buf) {
896                 command1 |= SPI_TX_EN;
897                 tspi->cur_direction |= DATA_DIR_TX;
898         }
899         command1 |= SPI_CS_SEL(spi->chip_select);
900         tegra_spi_writel(tspi, command1, SPI_COMMAND1);
901         tspi->command1_reg = command1;
902
903         dev_dbg(tspi->dev, "The def 0x%x and written 0x%x\n",
904                 tspi->def_command1_reg, (unsigned)command1);
905
906         ret = tegra_spi_flush_fifos(tspi);
907         if (ret < 0)
908                 return ret;
909         if (total_fifo_words > SPI_FIFO_DEPTH)
910                 ret = tegra_spi_start_dma_based_transfer(tspi, t);
911         else
912                 ret = tegra_spi_start_cpu_based_transfer(tspi, t);
913         return ret;
914 }
915
916 static struct tegra_spi_client_data
917         *tegra_spi_parse_cdata_dt(struct spi_device *spi)
918 {
919         struct tegra_spi_client_data *cdata;
920         struct device_node *slave_np;
921
922         slave_np = spi->dev.of_node;
923         if (!slave_np) {
924                 dev_dbg(&spi->dev, "device node not found\n");
925                 return NULL;
926         }
927
928         cdata = kzalloc(sizeof(*cdata), GFP_KERNEL);
929         if (!cdata)
930                 return NULL;
931
932         of_property_read_u32(slave_np, "nvidia,tx-clk-tap-delay",
933                              &cdata->tx_clk_tap_delay);
934         of_property_read_u32(slave_np, "nvidia,rx-clk-tap-delay",
935                              &cdata->rx_clk_tap_delay);
936         return cdata;
937 }
938
939 static void tegra_spi_cleanup(struct spi_device *spi)
940 {
941         struct tegra_spi_client_data *cdata = spi->controller_data;
942
943         spi->controller_data = NULL;
944         if (spi->dev.of_node)
945                 kfree(cdata);
946 }
947
948 static int tegra_spi_setup(struct spi_device *spi)
949 {
950         struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
951         struct tegra_spi_client_data *cdata = spi->controller_data;
952         u32 val;
953         unsigned long flags;
954         int ret;
955
956         dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n",
957                 spi->bits_per_word,
958                 spi->mode & SPI_CPOL ? "" : "~",
959                 spi->mode & SPI_CPHA ? "" : "~",
960                 spi->max_speed_hz);
961
962         if (!cdata) {
963                 cdata = tegra_spi_parse_cdata_dt(spi);
964                 spi->controller_data = cdata;
965         }
966
967         ret = pm_runtime_get_sync(tspi->dev);
968         if (ret < 0) {
969                 pm_runtime_put_noidle(tspi->dev);
970                 dev_err(tspi->dev, "pm runtime failed, e = %d\n", ret);
971                 if (cdata)
972                         tegra_spi_cleanup(spi);
973                 return ret;
974         }
975
976         if (tspi->soc_data->has_intr_mask_reg) {
977                 val = tegra_spi_readl(tspi, SPI_INTR_MASK);
978                 val &= ~SPI_INTR_ALL_MASK;
979                 tegra_spi_writel(tspi, val, SPI_INTR_MASK);
980         }
981
982         spin_lock_irqsave(&tspi->lock, flags);
983         /* GPIO based chip select control */
984         if (spi->cs_gpiod)
985                 gpiod_set_value(spi->cs_gpiod, 0);
986
987         val = tspi->def_command1_reg;
988         if (spi->mode & SPI_CS_HIGH)
989                 val &= ~SPI_CS_POL_INACTIVE(spi->chip_select);
990         else
991                 val |= SPI_CS_POL_INACTIVE(spi->chip_select);
992         tspi->def_command1_reg = val;
993         tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
994         spin_unlock_irqrestore(&tspi->lock, flags);
995
996         pm_runtime_put(tspi->dev);
997         return 0;
998 }
999
1000 static void tegra_spi_transfer_end(struct spi_device *spi)
1001 {
1002         struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
1003         int cs_val = (spi->mode & SPI_CS_HIGH) ? 0 : 1;
1004
1005         /* GPIO based chip select control */
1006         if (spi->cs_gpiod)
1007                 gpiod_set_value(spi->cs_gpiod, 0);
1008
1009         if (!tspi->use_hw_based_cs) {
1010                 if (cs_val)
1011                         tspi->command1_reg |= SPI_CS_SW_VAL;
1012                 else
1013                         tspi->command1_reg &= ~SPI_CS_SW_VAL;
1014                 tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
1015         }
1016
1017         tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
1018 }
1019
1020 static void tegra_spi_dump_regs(struct tegra_spi_data *tspi)
1021 {
1022         dev_dbg(tspi->dev, "============ SPI REGISTER DUMP ============\n");
1023         dev_dbg(tspi->dev, "Command1:    0x%08x | Command2:    0x%08x\n",
1024                 tegra_spi_readl(tspi, SPI_COMMAND1),
1025                 tegra_spi_readl(tspi, SPI_COMMAND2));
1026         dev_dbg(tspi->dev, "DMA_CTL:     0x%08x | DMA_BLK:     0x%08x\n",
1027                 tegra_spi_readl(tspi, SPI_DMA_CTL),
1028                 tegra_spi_readl(tspi, SPI_DMA_BLK));
1029         dev_dbg(tspi->dev, "TRANS_STAT:  0x%08x | FIFO_STATUS: 0x%08x\n",
1030                 tegra_spi_readl(tspi, SPI_TRANS_STATUS),
1031                 tegra_spi_readl(tspi, SPI_FIFO_STATUS));
1032 }
1033
1034 static int tegra_spi_transfer_one_message(struct spi_master *master,
1035                         struct spi_message *msg)
1036 {
1037         bool is_first_msg = true;
1038         struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1039         struct spi_transfer *xfer;
1040         struct spi_device *spi = msg->spi;
1041         int ret;
1042         bool skip = false;
1043         int single_xfer;
1044
1045         msg->status = 0;
1046         msg->actual_length = 0;
1047
1048         single_xfer = list_is_singular(&msg->transfers);
1049         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1050                 u32 cmd1;
1051
1052                 reinit_completion(&tspi->xfer_completion);
1053
1054                 cmd1 = tegra_spi_setup_transfer_one(spi, xfer, is_first_msg,
1055                                                     single_xfer);
1056
1057                 if (!xfer->len) {
1058                         ret = 0;
1059                         skip = true;
1060                         goto complete_xfer;
1061                 }
1062
1063                 ret = tegra_spi_start_transfer_one(spi, xfer, cmd1);
1064                 if (ret < 0) {
1065                         dev_err(tspi->dev,
1066                                 "spi can not start transfer, err %d\n", ret);
1067                         goto complete_xfer;
1068                 }
1069
1070                 is_first_msg = false;
1071                 ret = wait_for_completion_timeout(&tspi->xfer_completion,
1072                                                 SPI_DMA_TIMEOUT);
1073                 if (WARN_ON(ret == 0)) {
1074                         dev_err(tspi->dev, "spi transfer timeout\n");
1075                         if (tspi->is_curr_dma_xfer &&
1076                             (tspi->cur_direction & DATA_DIR_TX))
1077                                 dmaengine_terminate_all(tspi->tx_dma_chan);
1078                         if (tspi->is_curr_dma_xfer &&
1079                             (tspi->cur_direction & DATA_DIR_RX))
1080                                 dmaengine_terminate_all(tspi->rx_dma_chan);
1081                         ret = -EIO;
1082                         tegra_spi_dump_regs(tspi);
1083                         tegra_spi_flush_fifos(tspi);
1084                         reset_control_assert(tspi->rst);
1085                         udelay(2);
1086                         reset_control_deassert(tspi->rst);
1087                         tspi->last_used_cs = master->num_chipselect + 1;
1088                         goto complete_xfer;
1089                 }
1090
1091                 if (tspi->tx_status ||  tspi->rx_status) {
1092                         dev_err(tspi->dev, "Error in Transfer\n");
1093                         ret = -EIO;
1094                         tegra_spi_dump_regs(tspi);
1095                         goto complete_xfer;
1096                 }
1097                 msg->actual_length += xfer->len;
1098
1099 complete_xfer:
1100                 if (ret < 0 || skip) {
1101                         tegra_spi_transfer_end(spi);
1102                         spi_transfer_delay_exec(xfer);
1103                         goto exit;
1104                 } else if (list_is_last(&xfer->transfer_list,
1105                                         &msg->transfers)) {
1106                         if (xfer->cs_change)
1107                                 tspi->cs_control = spi;
1108                         else {
1109                                 tegra_spi_transfer_end(spi);
1110                                 spi_transfer_delay_exec(xfer);
1111                         }
1112                 } else if (xfer->cs_change) {
1113                         tegra_spi_transfer_end(spi);
1114                         spi_transfer_delay_exec(xfer);
1115                 }
1116
1117         }
1118         ret = 0;
1119 exit:
1120         msg->status = ret;
1121         spi_finalize_current_message(master);
1122         return ret;
1123 }
1124
1125 static irqreturn_t handle_cpu_based_xfer(struct tegra_spi_data *tspi)
1126 {
1127         struct spi_transfer *t = tspi->curr_xfer;
1128         unsigned long flags;
1129
1130         spin_lock_irqsave(&tspi->lock, flags);
1131         if (tspi->tx_status ||  tspi->rx_status) {
1132                 dev_err(tspi->dev, "CpuXfer ERROR bit set 0x%x\n",
1133                         tspi->status_reg);
1134                 dev_err(tspi->dev, "CpuXfer 0x%08x:0x%08x\n",
1135                         tspi->command1_reg, tspi->dma_control_reg);
1136                 tegra_spi_dump_regs(tspi);
1137                 tegra_spi_flush_fifos(tspi);
1138                 complete(&tspi->xfer_completion);
1139                 spin_unlock_irqrestore(&tspi->lock, flags);
1140                 reset_control_assert(tspi->rst);
1141                 udelay(2);
1142                 reset_control_deassert(tspi->rst);
1143                 return IRQ_HANDLED;
1144         }
1145
1146         if (tspi->cur_direction & DATA_DIR_RX)
1147                 tegra_spi_read_rx_fifo_to_client_rxbuf(tspi, t);
1148
1149         if (tspi->cur_direction & DATA_DIR_TX)
1150                 tspi->cur_pos = tspi->cur_tx_pos;
1151         else
1152                 tspi->cur_pos = tspi->cur_rx_pos;
1153
1154         if (tspi->cur_pos == t->len) {
1155                 complete(&tspi->xfer_completion);
1156                 goto exit;
1157         }
1158
1159         tegra_spi_calculate_curr_xfer_param(tspi->cur_spi, tspi, t);
1160         tegra_spi_start_cpu_based_transfer(tspi, t);
1161 exit:
1162         spin_unlock_irqrestore(&tspi->lock, flags);
1163         return IRQ_HANDLED;
1164 }
1165
1166 static irqreturn_t handle_dma_based_xfer(struct tegra_spi_data *tspi)
1167 {
1168         struct spi_transfer *t = tspi->curr_xfer;
1169         long wait_status;
1170         int err = 0;
1171         unsigned total_fifo_words;
1172         unsigned long flags;
1173
1174         /* Abort dmas if any error */
1175         if (tspi->cur_direction & DATA_DIR_TX) {
1176                 if (tspi->tx_status) {
1177                         dmaengine_terminate_all(tspi->tx_dma_chan);
1178                         err += 1;
1179                 } else {
1180                         wait_status = wait_for_completion_interruptible_timeout(
1181                                 &tspi->tx_dma_complete, SPI_DMA_TIMEOUT);
1182                         if (wait_status <= 0) {
1183                                 dmaengine_terminate_all(tspi->tx_dma_chan);
1184                                 dev_err(tspi->dev, "TxDma Xfer failed\n");
1185                                 err += 1;
1186                         }
1187                 }
1188         }
1189
1190         if (tspi->cur_direction & DATA_DIR_RX) {
1191                 if (tspi->rx_status) {
1192                         dmaengine_terminate_all(tspi->rx_dma_chan);
1193                         err += 2;
1194                 } else {
1195                         wait_status = wait_for_completion_interruptible_timeout(
1196                                 &tspi->rx_dma_complete, SPI_DMA_TIMEOUT);
1197                         if (wait_status <= 0) {
1198                                 dmaengine_terminate_all(tspi->rx_dma_chan);
1199                                 dev_err(tspi->dev, "RxDma Xfer failed\n");
1200                                 err += 2;
1201                         }
1202                 }
1203         }
1204
1205         spin_lock_irqsave(&tspi->lock, flags);
1206         if (err) {
1207                 dev_err(tspi->dev, "DmaXfer: ERROR bit set 0x%x\n",
1208                         tspi->status_reg);
1209                 dev_err(tspi->dev, "DmaXfer 0x%08x:0x%08x\n",
1210                         tspi->command1_reg, tspi->dma_control_reg);
1211                 tegra_spi_dump_regs(tspi);
1212                 tegra_spi_flush_fifos(tspi);
1213                 complete(&tspi->xfer_completion);
1214                 spin_unlock_irqrestore(&tspi->lock, flags);
1215                 reset_control_assert(tspi->rst);
1216                 udelay(2);
1217                 reset_control_deassert(tspi->rst);
1218                 return IRQ_HANDLED;
1219         }
1220
1221         if (tspi->cur_direction & DATA_DIR_RX)
1222                 tegra_spi_copy_spi_rxbuf_to_client_rxbuf(tspi, t);
1223
1224         if (tspi->cur_direction & DATA_DIR_TX)
1225                 tspi->cur_pos = tspi->cur_tx_pos;
1226         else
1227                 tspi->cur_pos = tspi->cur_rx_pos;
1228
1229         if (tspi->cur_pos == t->len) {
1230                 complete(&tspi->xfer_completion);
1231                 goto exit;
1232         }
1233
1234         /* Continue transfer in current message */
1235         total_fifo_words = tegra_spi_calculate_curr_xfer_param(tspi->cur_spi,
1236                                                         tspi, t);
1237         if (total_fifo_words > SPI_FIFO_DEPTH)
1238                 err = tegra_spi_start_dma_based_transfer(tspi, t);
1239         else
1240                 err = tegra_spi_start_cpu_based_transfer(tspi, t);
1241
1242 exit:
1243         spin_unlock_irqrestore(&tspi->lock, flags);
1244         return IRQ_HANDLED;
1245 }
1246
1247 static irqreturn_t tegra_spi_isr_thread(int irq, void *context_data)
1248 {
1249         struct tegra_spi_data *tspi = context_data;
1250
1251         if (!tspi->is_curr_dma_xfer)
1252                 return handle_cpu_based_xfer(tspi);
1253         return handle_dma_based_xfer(tspi);
1254 }
1255
1256 static irqreturn_t tegra_spi_isr(int irq, void *context_data)
1257 {
1258         struct tegra_spi_data *tspi = context_data;
1259
1260         tspi->status_reg = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
1261         if (tspi->cur_direction & DATA_DIR_TX)
1262                 tspi->tx_status = tspi->status_reg &
1263                                         (SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF);
1264
1265         if (tspi->cur_direction & DATA_DIR_RX)
1266                 tspi->rx_status = tspi->status_reg &
1267                                         (SPI_RX_FIFO_OVF | SPI_RX_FIFO_UNF);
1268         tegra_spi_clear_status(tspi);
1269
1270         return IRQ_WAKE_THREAD;
1271 }
1272
1273 static struct tegra_spi_soc_data tegra114_spi_soc_data = {
1274         .has_intr_mask_reg = false,
1275 };
1276
1277 static struct tegra_spi_soc_data tegra124_spi_soc_data = {
1278         .has_intr_mask_reg = false,
1279 };
1280
1281 static struct tegra_spi_soc_data tegra210_spi_soc_data = {
1282         .has_intr_mask_reg = true,
1283 };
1284
1285 static const struct of_device_id tegra_spi_of_match[] = {
1286         {
1287                 .compatible = "nvidia,tegra114-spi",
1288                 .data       = &tegra114_spi_soc_data,
1289         }, {
1290                 .compatible = "nvidia,tegra124-spi",
1291                 .data       = &tegra124_spi_soc_data,
1292         }, {
1293                 .compatible = "nvidia,tegra210-spi",
1294                 .data       = &tegra210_spi_soc_data,
1295         },
1296         {}
1297 };
1298 MODULE_DEVICE_TABLE(of, tegra_spi_of_match);
1299
1300 static int tegra_spi_probe(struct platform_device *pdev)
1301 {
1302         struct spi_master       *master;
1303         struct tegra_spi_data   *tspi;
1304         struct resource         *r;
1305         int ret, spi_irq;
1306         int bus_num;
1307
1308         master = spi_alloc_master(&pdev->dev, sizeof(*tspi));
1309         if (!master) {
1310                 dev_err(&pdev->dev, "master allocation failed\n");
1311                 return -ENOMEM;
1312         }
1313         platform_set_drvdata(pdev, master);
1314         tspi = spi_master_get_devdata(master);
1315
1316         if (of_property_read_u32(pdev->dev.of_node, "spi-max-frequency",
1317                                  &master->max_speed_hz))
1318                 master->max_speed_hz = 25000000; /* 25MHz */
1319
1320         /* the spi->mode bits understood by this driver: */
1321         master->use_gpio_descriptors = true;
1322         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST |
1323                             SPI_TX_DUAL | SPI_RX_DUAL | SPI_3WIRE;
1324         master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1325         master->setup = tegra_spi_setup;
1326         master->cleanup = tegra_spi_cleanup;
1327         master->transfer_one_message = tegra_spi_transfer_one_message;
1328         master->set_cs_timing = tegra_spi_set_hw_cs_timing;
1329         master->num_chipselect = MAX_CHIP_SELECT;
1330         master->auto_runtime_pm = true;
1331         bus_num = of_alias_get_id(pdev->dev.of_node, "spi");
1332         if (bus_num >= 0)
1333                 master->bus_num = bus_num;
1334
1335         tspi->master = master;
1336         tspi->dev = &pdev->dev;
1337         spin_lock_init(&tspi->lock);
1338
1339         tspi->soc_data = of_device_get_match_data(&pdev->dev);
1340         if (!tspi->soc_data) {
1341                 dev_err(&pdev->dev, "unsupported tegra\n");
1342                 ret = -ENODEV;
1343                 goto exit_free_master;
1344         }
1345
1346         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1347         tspi->base = devm_ioremap_resource(&pdev->dev, r);
1348         if (IS_ERR(tspi->base)) {
1349                 ret = PTR_ERR(tspi->base);
1350                 goto exit_free_master;
1351         }
1352         tspi->phys = r->start;
1353
1354         spi_irq = platform_get_irq(pdev, 0);
1355         if (spi_irq < 0) {
1356                 ret = spi_irq;
1357                 goto exit_free_master;
1358         }
1359         tspi->irq = spi_irq;
1360
1361         tspi->clk = devm_clk_get(&pdev->dev, "spi");
1362         if (IS_ERR(tspi->clk)) {
1363                 dev_err(&pdev->dev, "can not get clock\n");
1364                 ret = PTR_ERR(tspi->clk);
1365                 goto exit_free_master;
1366         }
1367
1368         tspi->rst = devm_reset_control_get_exclusive(&pdev->dev, "spi");
1369         if (IS_ERR(tspi->rst)) {
1370                 dev_err(&pdev->dev, "can not get reset\n");
1371                 ret = PTR_ERR(tspi->rst);
1372                 goto exit_free_master;
1373         }
1374
1375         tspi->max_buf_size = SPI_FIFO_DEPTH << 2;
1376         tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN;
1377
1378         ret = tegra_spi_init_dma_param(tspi, true);
1379         if (ret < 0)
1380                 goto exit_free_master;
1381         ret = tegra_spi_init_dma_param(tspi, false);
1382         if (ret < 0)
1383                 goto exit_rx_dma_free;
1384         tspi->max_buf_size = tspi->dma_buf_size;
1385         init_completion(&tspi->tx_dma_complete);
1386         init_completion(&tspi->rx_dma_complete);
1387
1388         init_completion(&tspi->xfer_completion);
1389
1390         pm_runtime_enable(&pdev->dev);
1391         if (!pm_runtime_enabled(&pdev->dev)) {
1392                 ret = tegra_spi_runtime_resume(&pdev->dev);
1393                 if (ret)
1394                         goto exit_pm_disable;
1395         }
1396
1397         ret = pm_runtime_get_sync(&pdev->dev);
1398         if (ret < 0) {
1399                 dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
1400                 pm_runtime_put_noidle(&pdev->dev);
1401                 goto exit_pm_disable;
1402         }
1403
1404         reset_control_assert(tspi->rst);
1405         udelay(2);
1406         reset_control_deassert(tspi->rst);
1407         tspi->def_command1_reg  = SPI_M_S;
1408         tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
1409         tspi->spi_cs_timing1 = tegra_spi_readl(tspi, SPI_CS_TIMING1);
1410         tspi->spi_cs_timing2 = tegra_spi_readl(tspi, SPI_CS_TIMING2);
1411         tspi->def_command2_reg = tegra_spi_readl(tspi, SPI_COMMAND2);
1412         tspi->last_used_cs = master->num_chipselect + 1;
1413         pm_runtime_put(&pdev->dev);
1414         ret = request_threaded_irq(tspi->irq, tegra_spi_isr,
1415                                    tegra_spi_isr_thread, IRQF_ONESHOT,
1416                                    dev_name(&pdev->dev), tspi);
1417         if (ret < 0) {
1418                 dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
1419                         tspi->irq);
1420                 goto exit_pm_disable;
1421         }
1422
1423         master->dev.of_node = pdev->dev.of_node;
1424         ret = devm_spi_register_master(&pdev->dev, master);
1425         if (ret < 0) {
1426                 dev_err(&pdev->dev, "can not register to master err %d\n", ret);
1427                 goto exit_free_irq;
1428         }
1429         return ret;
1430
1431 exit_free_irq:
1432         free_irq(spi_irq, tspi);
1433 exit_pm_disable:
1434         pm_runtime_disable(&pdev->dev);
1435         if (!pm_runtime_status_suspended(&pdev->dev))
1436                 tegra_spi_runtime_suspend(&pdev->dev);
1437         tegra_spi_deinit_dma_param(tspi, false);
1438 exit_rx_dma_free:
1439         tegra_spi_deinit_dma_param(tspi, true);
1440 exit_free_master:
1441         spi_master_put(master);
1442         return ret;
1443 }
1444
1445 static int tegra_spi_remove(struct platform_device *pdev)
1446 {
1447         struct spi_master *master = platform_get_drvdata(pdev);
1448         struct tegra_spi_data   *tspi = spi_master_get_devdata(master);
1449
1450         free_irq(tspi->irq, tspi);
1451
1452         if (tspi->tx_dma_chan)
1453                 tegra_spi_deinit_dma_param(tspi, false);
1454
1455         if (tspi->rx_dma_chan)
1456                 tegra_spi_deinit_dma_param(tspi, true);
1457
1458         pm_runtime_disable(&pdev->dev);
1459         if (!pm_runtime_status_suspended(&pdev->dev))
1460                 tegra_spi_runtime_suspend(&pdev->dev);
1461
1462         return 0;
1463 }
1464
1465 #ifdef CONFIG_PM_SLEEP
1466 static int tegra_spi_suspend(struct device *dev)
1467 {
1468         struct spi_master *master = dev_get_drvdata(dev);
1469
1470         return spi_master_suspend(master);
1471 }
1472
1473 static int tegra_spi_resume(struct device *dev)
1474 {
1475         struct spi_master *master = dev_get_drvdata(dev);
1476         struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1477         int ret;
1478
1479         ret = pm_runtime_get_sync(dev);
1480         if (ret < 0) {
1481                 pm_runtime_put_noidle(dev);
1482                 dev_err(dev, "pm runtime failed, e = %d\n", ret);
1483                 return ret;
1484         }
1485         tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
1486         tegra_spi_writel(tspi, tspi->def_command2_reg, SPI_COMMAND2);
1487         tspi->last_used_cs = master->num_chipselect + 1;
1488         pm_runtime_put(dev);
1489
1490         return spi_master_resume(master);
1491 }
1492 #endif
1493
1494 static int tegra_spi_runtime_suspend(struct device *dev)
1495 {
1496         struct spi_master *master = dev_get_drvdata(dev);
1497         struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1498
1499         /* Flush all write which are in PPSB queue by reading back */
1500         tegra_spi_readl(tspi, SPI_COMMAND1);
1501
1502         clk_disable_unprepare(tspi->clk);
1503         return 0;
1504 }
1505
1506 static int tegra_spi_runtime_resume(struct device *dev)
1507 {
1508         struct spi_master *master = dev_get_drvdata(dev);
1509         struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1510         int ret;
1511
1512         ret = clk_prepare_enable(tspi->clk);
1513         if (ret < 0) {
1514                 dev_err(tspi->dev, "clk_prepare failed: %d\n", ret);
1515                 return ret;
1516         }
1517         return 0;
1518 }
1519
1520 static const struct dev_pm_ops tegra_spi_pm_ops = {
1521         SET_RUNTIME_PM_OPS(tegra_spi_runtime_suspend,
1522                 tegra_spi_runtime_resume, NULL)
1523         SET_SYSTEM_SLEEP_PM_OPS(tegra_spi_suspend, tegra_spi_resume)
1524 };
1525 static struct platform_driver tegra_spi_driver = {
1526         .driver = {
1527                 .name           = "spi-tegra114",
1528                 .pm             = &tegra_spi_pm_ops,
1529                 .of_match_table = tegra_spi_of_match,
1530         },
1531         .probe =        tegra_spi_probe,
1532         .remove =       tegra_spi_remove,
1533 };
1534 module_platform_driver(tegra_spi_driver);
1535
1536 MODULE_ALIAS("platform:spi-tegra114");
1537 MODULE_DESCRIPTION("NVIDIA Tegra114 SPI Controller Driver");
1538 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1539 MODULE_LICENSE("GPL v2");