Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[platform/kernel/linux-rpi.git] / drivers / spi / spi-tegra114.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * SPI driver for NVIDIA's Tegra114 SPI Controller.
4  *
5  * Copyright (c) 2013, NVIDIA CORPORATION.  All rights reserved.
6  */
7
8 #include <linux/clk.h>
9 #include <linux/completion.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmapool.h>
14 #include <linux/err.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/kernel.h>
18 #include <linux/kthread.h>
19 #include <linux/module.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/of.h>
23 #include <linux/reset.h>
24 #include <linux/spi/spi.h>
25
26 #define SPI_COMMAND1                            0x000
27 #define SPI_BIT_LENGTH(x)                       (((x) & 0x1f) << 0)
28 #define SPI_PACKED                              (1 << 5)
29 #define SPI_TX_EN                               (1 << 11)
30 #define SPI_RX_EN                               (1 << 12)
31 #define SPI_BOTH_EN_BYTE                        (1 << 13)
32 #define SPI_BOTH_EN_BIT                         (1 << 14)
33 #define SPI_LSBYTE_FE                           (1 << 15)
34 #define SPI_LSBIT_FE                            (1 << 16)
35 #define SPI_BIDIROE                             (1 << 17)
36 #define SPI_IDLE_SDA_DRIVE_LOW                  (0 << 18)
37 #define SPI_IDLE_SDA_DRIVE_HIGH                 (1 << 18)
38 #define SPI_IDLE_SDA_PULL_LOW                   (2 << 18)
39 #define SPI_IDLE_SDA_PULL_HIGH                  (3 << 18)
40 #define SPI_IDLE_SDA_MASK                       (3 << 18)
41 #define SPI_CS_SW_VAL                           (1 << 20)
42 #define SPI_CS_SW_HW                            (1 << 21)
43 /* SPI_CS_POL_INACTIVE bits are default high */
44                                                 /* n from 0 to 3 */
45 #define SPI_CS_POL_INACTIVE(n)                  (1 << (22 + (n)))
46 #define SPI_CS_POL_INACTIVE_MASK                (0xF << 22)
47
48 #define SPI_CS_SEL_0                            (0 << 26)
49 #define SPI_CS_SEL_1                            (1 << 26)
50 #define SPI_CS_SEL_2                            (2 << 26)
51 #define SPI_CS_SEL_3                            (3 << 26)
52 #define SPI_CS_SEL_MASK                         (3 << 26)
53 #define SPI_CS_SEL(x)                           (((x) & 0x3) << 26)
54 #define SPI_CONTROL_MODE_0                      (0 << 28)
55 #define SPI_CONTROL_MODE_1                      (1 << 28)
56 #define SPI_CONTROL_MODE_2                      (2 << 28)
57 #define SPI_CONTROL_MODE_3                      (3 << 28)
58 #define SPI_CONTROL_MODE_MASK                   (3 << 28)
59 #define SPI_MODE_SEL(x)                         (((x) & 0x3) << 28)
60 #define SPI_M_S                                 (1 << 30)
61 #define SPI_PIO                                 (1 << 31)
62
63 #define SPI_COMMAND2                            0x004
64 #define SPI_TX_TAP_DELAY(x)                     (((x) & 0x3F) << 6)
65 #define SPI_RX_TAP_DELAY(x)                     (((x) & 0x3F) << 0)
66
67 #define SPI_CS_TIMING1                          0x008
68 #define SPI_SETUP_HOLD(setup, hold)             (((setup) << 4) | (hold))
69 #define SPI_CS_SETUP_HOLD(reg, cs, val)                 \
70                 ((((val) & 0xFFu) << ((cs) * 8)) |      \
71                 ((reg) & ~(0xFFu << ((cs) * 8))))
72
73 #define SPI_CS_TIMING2                          0x00C
74 #define CYCLES_BETWEEN_PACKETS_0(x)             (((x) & 0x1F) << 0)
75 #define CS_ACTIVE_BETWEEN_PACKETS_0             (1 << 5)
76 #define CYCLES_BETWEEN_PACKETS_1(x)             (((x) & 0x1F) << 8)
77 #define CS_ACTIVE_BETWEEN_PACKETS_1             (1 << 13)
78 #define CYCLES_BETWEEN_PACKETS_2(x)             (((x) & 0x1F) << 16)
79 #define CS_ACTIVE_BETWEEN_PACKETS_2             (1 << 21)
80 #define CYCLES_BETWEEN_PACKETS_3(x)             (((x) & 0x1F) << 24)
81 #define CS_ACTIVE_BETWEEN_PACKETS_3             (1 << 29)
82 #define SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(reg, cs, val)         \
83                 (reg = (((val) & 0x1) << ((cs) * 8 + 5)) |      \
84                         ((reg) & ~(1 << ((cs) * 8 + 5))))
85 #define SPI_SET_CYCLES_BETWEEN_PACKETS(reg, cs, val)            \
86                 (reg = (((val) & 0x1F) << ((cs) * 8)) |         \
87                         ((reg) & ~(0x1F << ((cs) * 8))))
88 #define MAX_SETUP_HOLD_CYCLES                   16
89 #define MAX_INACTIVE_CYCLES                     32
90
91 #define SPI_TRANS_STATUS                        0x010
92 #define SPI_BLK_CNT(val)                        (((val) >> 0) & 0xFFFF)
93 #define SPI_SLV_IDLE_COUNT(val)                 (((val) >> 16) & 0xFF)
94 #define SPI_RDY                                 (1 << 30)
95
96 #define SPI_FIFO_STATUS                         0x014
97 #define SPI_RX_FIFO_EMPTY                       (1 << 0)
98 #define SPI_RX_FIFO_FULL                        (1 << 1)
99 #define SPI_TX_FIFO_EMPTY                       (1 << 2)
100 #define SPI_TX_FIFO_FULL                        (1 << 3)
101 #define SPI_RX_FIFO_UNF                         (1 << 4)
102 #define SPI_RX_FIFO_OVF                         (1 << 5)
103 #define SPI_TX_FIFO_UNF                         (1 << 6)
104 #define SPI_TX_FIFO_OVF                         (1 << 7)
105 #define SPI_ERR                                 (1 << 8)
106 #define SPI_TX_FIFO_FLUSH                       (1 << 14)
107 #define SPI_RX_FIFO_FLUSH                       (1 << 15)
108 #define SPI_TX_FIFO_EMPTY_COUNT(val)            (((val) >> 16) & 0x7F)
109 #define SPI_RX_FIFO_FULL_COUNT(val)             (((val) >> 23) & 0x7F)
110 #define SPI_FRAME_END                           (1 << 30)
111 #define SPI_CS_INACTIVE                         (1 << 31)
112
113 #define SPI_FIFO_ERROR                          (SPI_RX_FIFO_UNF | \
114                         SPI_RX_FIFO_OVF | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF)
115 #define SPI_FIFO_EMPTY                  (SPI_RX_FIFO_EMPTY | SPI_TX_FIFO_EMPTY)
116
117 #define SPI_TX_DATA                             0x018
118 #define SPI_RX_DATA                             0x01C
119
120 #define SPI_DMA_CTL                             0x020
121 #define SPI_TX_TRIG_1                           (0 << 15)
122 #define SPI_TX_TRIG_4                           (1 << 15)
123 #define SPI_TX_TRIG_8                           (2 << 15)
124 #define SPI_TX_TRIG_16                          (3 << 15)
125 #define SPI_TX_TRIG_MASK                        (3 << 15)
126 #define SPI_RX_TRIG_1                           (0 << 19)
127 #define SPI_RX_TRIG_4                           (1 << 19)
128 #define SPI_RX_TRIG_8                           (2 << 19)
129 #define SPI_RX_TRIG_16                          (3 << 19)
130 #define SPI_RX_TRIG_MASK                        (3 << 19)
131 #define SPI_IE_TX                               (1 << 28)
132 #define SPI_IE_RX                               (1 << 29)
133 #define SPI_CONT                                (1 << 30)
134 #define SPI_DMA                                 (1 << 31)
135 #define SPI_DMA_EN                              SPI_DMA
136
137 #define SPI_DMA_BLK                             0x024
138 #define SPI_DMA_BLK_SET(x)                      (((x) & 0xFFFF) << 0)
139
140 #define SPI_TX_FIFO                             0x108
141 #define SPI_RX_FIFO                             0x188
142 #define SPI_INTR_MASK                           0x18c
143 #define SPI_INTR_ALL_MASK                       (0x1fUL << 25)
144 #define MAX_CHIP_SELECT                         4
145 #define SPI_FIFO_DEPTH                          64
146 #define DATA_DIR_TX                             (1 << 0)
147 #define DATA_DIR_RX                             (1 << 1)
148
149 #define SPI_DMA_TIMEOUT                         (msecs_to_jiffies(1000))
150 #define DEFAULT_SPI_DMA_BUF_LEN                 (16*1024)
151 #define TX_FIFO_EMPTY_COUNT_MAX                 SPI_TX_FIFO_EMPTY_COUNT(0x40)
152 #define RX_FIFO_FULL_COUNT_ZERO                 SPI_RX_FIFO_FULL_COUNT(0)
153 #define MAX_HOLD_CYCLES                         16
154 #define SPI_DEFAULT_SPEED                       25000000
155
156 struct tegra_spi_soc_data {
157         bool has_intr_mask_reg;
158 };
159
160 struct tegra_spi_client_data {
161         int tx_clk_tap_delay;
162         int rx_clk_tap_delay;
163 };
164
165 struct tegra_spi_data {
166         struct device                           *dev;
167         struct spi_master                       *master;
168         spinlock_t                              lock;
169
170         struct clk                              *clk;
171         struct reset_control                    *rst;
172         void __iomem                            *base;
173         phys_addr_t                             phys;
174         unsigned                                irq;
175         u32                                     cur_speed;
176
177         struct spi_device                       *cur_spi;
178         struct spi_device                       *cs_control;
179         unsigned                                cur_pos;
180         unsigned                                words_per_32bit;
181         unsigned                                bytes_per_word;
182         unsigned                                curr_dma_words;
183         unsigned                                cur_direction;
184
185         unsigned                                cur_rx_pos;
186         unsigned                                cur_tx_pos;
187
188         unsigned                                dma_buf_size;
189         unsigned                                max_buf_size;
190         bool                                    is_curr_dma_xfer;
191         bool                                    use_hw_based_cs;
192
193         struct completion                       rx_dma_complete;
194         struct completion                       tx_dma_complete;
195
196         u32                                     tx_status;
197         u32                                     rx_status;
198         u32                                     status_reg;
199         bool                                    is_packed;
200
201         u32                                     command1_reg;
202         u32                                     dma_control_reg;
203         u32                                     def_command1_reg;
204         u32                                     def_command2_reg;
205         u32                                     spi_cs_timing1;
206         u32                                     spi_cs_timing2;
207         u8                                      last_used_cs;
208
209         struct completion                       xfer_completion;
210         struct spi_transfer                     *curr_xfer;
211         struct dma_chan                         *rx_dma_chan;
212         u32                                     *rx_dma_buf;
213         dma_addr_t                              rx_dma_phys;
214         struct dma_async_tx_descriptor          *rx_dma_desc;
215
216         struct dma_chan                         *tx_dma_chan;
217         u32                                     *tx_dma_buf;
218         dma_addr_t                              tx_dma_phys;
219         struct dma_async_tx_descriptor          *tx_dma_desc;
220         const struct tegra_spi_soc_data         *soc_data;
221 };
222
223 static int tegra_spi_runtime_suspend(struct device *dev);
224 static int tegra_spi_runtime_resume(struct device *dev);
225
226 static inline u32 tegra_spi_readl(struct tegra_spi_data *tspi,
227                 unsigned long reg)
228 {
229         return readl(tspi->base + reg);
230 }
231
232 static inline void tegra_spi_writel(struct tegra_spi_data *tspi,
233                 u32 val, unsigned long reg)
234 {
235         writel(val, tspi->base + reg);
236
237         /* Read back register to make sure that register writes completed */
238         if (reg != SPI_TX_FIFO)
239                 readl(tspi->base + SPI_COMMAND1);
240 }
241
242 static void tegra_spi_clear_status(struct tegra_spi_data *tspi)
243 {
244         u32 val;
245
246         /* Write 1 to clear status register */
247         val = tegra_spi_readl(tspi, SPI_TRANS_STATUS);
248         tegra_spi_writel(tspi, val, SPI_TRANS_STATUS);
249
250         /* Clear fifo status error if any */
251         val = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
252         if (val & SPI_ERR)
253                 tegra_spi_writel(tspi, SPI_ERR | SPI_FIFO_ERROR,
254                                 SPI_FIFO_STATUS);
255 }
256
257 static unsigned tegra_spi_calculate_curr_xfer_param(
258         struct spi_device *spi, struct tegra_spi_data *tspi,
259         struct spi_transfer *t)
260 {
261         unsigned remain_len = t->len - tspi->cur_pos;
262         unsigned max_word;
263         unsigned bits_per_word = t->bits_per_word;
264         unsigned max_len;
265         unsigned total_fifo_words;
266
267         tspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8);
268
269         if ((bits_per_word == 8 || bits_per_word == 16 ||
270              bits_per_word == 32) && t->len > 3) {
271                 tspi->is_packed = true;
272                 tspi->words_per_32bit = 32/bits_per_word;
273         } else {
274                 tspi->is_packed = false;
275                 tspi->words_per_32bit = 1;
276         }
277
278         if (tspi->is_packed) {
279                 max_len = min(remain_len, tspi->max_buf_size);
280                 tspi->curr_dma_words = max_len/tspi->bytes_per_word;
281                 total_fifo_words = (max_len + 3) / 4;
282         } else {
283                 max_word = (remain_len - 1) / tspi->bytes_per_word + 1;
284                 max_word = min(max_word, tspi->max_buf_size/4);
285                 tspi->curr_dma_words = max_word;
286                 total_fifo_words = max_word;
287         }
288         return total_fifo_words;
289 }
290
291 static unsigned tegra_spi_fill_tx_fifo_from_client_txbuf(
292         struct tegra_spi_data *tspi, struct spi_transfer *t)
293 {
294         unsigned nbytes;
295         unsigned tx_empty_count;
296         u32 fifo_status;
297         unsigned max_n_32bit;
298         unsigned i, count;
299         unsigned int written_words;
300         unsigned fifo_words_left;
301         u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
302
303         fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
304         tx_empty_count = SPI_TX_FIFO_EMPTY_COUNT(fifo_status);
305
306         if (tspi->is_packed) {
307                 fifo_words_left = tx_empty_count * tspi->words_per_32bit;
308                 written_words = min(fifo_words_left, tspi->curr_dma_words);
309                 nbytes = written_words * tspi->bytes_per_word;
310                 max_n_32bit = DIV_ROUND_UP(nbytes, 4);
311                 for (count = 0; count < max_n_32bit; count++) {
312                         u32 x = 0;
313
314                         for (i = 0; (i < 4) && nbytes; i++, nbytes--)
315                                 x |= (u32)(*tx_buf++) << (i * 8);
316                         tegra_spi_writel(tspi, x, SPI_TX_FIFO);
317                 }
318
319                 tspi->cur_tx_pos += written_words * tspi->bytes_per_word;
320         } else {
321                 unsigned int write_bytes;
322                 max_n_32bit = min(tspi->curr_dma_words,  tx_empty_count);
323                 written_words = max_n_32bit;
324                 nbytes = written_words * tspi->bytes_per_word;
325                 if (nbytes > t->len - tspi->cur_pos)
326                         nbytes = t->len - tspi->cur_pos;
327                 write_bytes = nbytes;
328                 for (count = 0; count < max_n_32bit; count++) {
329                         u32 x = 0;
330
331                         for (i = 0; nbytes && (i < tspi->bytes_per_word);
332                                                         i++, nbytes--)
333                                 x |= (u32)(*tx_buf++) << (i * 8);
334                         tegra_spi_writel(tspi, x, SPI_TX_FIFO);
335                 }
336
337                 tspi->cur_tx_pos += write_bytes;
338         }
339
340         return written_words;
341 }
342
343 static unsigned int tegra_spi_read_rx_fifo_to_client_rxbuf(
344                 struct tegra_spi_data *tspi, struct spi_transfer *t)
345 {
346         unsigned rx_full_count;
347         u32 fifo_status;
348         unsigned i, count;
349         unsigned int read_words = 0;
350         unsigned len;
351         u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos;
352
353         fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
354         rx_full_count = SPI_RX_FIFO_FULL_COUNT(fifo_status);
355         if (tspi->is_packed) {
356                 len = tspi->curr_dma_words * tspi->bytes_per_word;
357                 for (count = 0; count < rx_full_count; count++) {
358                         u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO);
359
360                         for (i = 0; len && (i < 4); i++, len--)
361                                 *rx_buf++ = (x >> i*8) & 0xFF;
362                 }
363                 read_words += tspi->curr_dma_words;
364                 tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
365         } else {
366                 u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
367                 u8 bytes_per_word = tspi->bytes_per_word;
368                 unsigned int read_bytes;
369
370                 len = rx_full_count * bytes_per_word;
371                 if (len > t->len - tspi->cur_pos)
372                         len = t->len - tspi->cur_pos;
373                 read_bytes = len;
374                 for (count = 0; count < rx_full_count; count++) {
375                         u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO) & rx_mask;
376
377                         for (i = 0; len && (i < bytes_per_word); i++, len--)
378                                 *rx_buf++ = (x >> (i*8)) & 0xFF;
379                 }
380                 read_words += rx_full_count;
381                 tspi->cur_rx_pos += read_bytes;
382         }
383
384         return read_words;
385 }
386
387 static void tegra_spi_copy_client_txbuf_to_spi_txbuf(
388                 struct tegra_spi_data *tspi, struct spi_transfer *t)
389 {
390         /* Make the dma buffer to read by cpu */
391         dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys,
392                                 tspi->dma_buf_size, DMA_TO_DEVICE);
393
394         if (tspi->is_packed) {
395                 unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
396
397                 memcpy(tspi->tx_dma_buf, t->tx_buf + tspi->cur_pos, len);
398                 tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
399         } else {
400                 unsigned int i;
401                 unsigned int count;
402                 u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
403                 unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
404                 unsigned int write_bytes;
405
406                 if (consume > t->len - tspi->cur_pos)
407                         consume = t->len - tspi->cur_pos;
408                 write_bytes = consume;
409                 for (count = 0; count < tspi->curr_dma_words; count++) {
410                         u32 x = 0;
411
412                         for (i = 0; consume && (i < tspi->bytes_per_word);
413                                                         i++, consume--)
414                                 x |= (u32)(*tx_buf++) << (i * 8);
415                         tspi->tx_dma_buf[count] = x;
416                 }
417
418                 tspi->cur_tx_pos += write_bytes;
419         }
420
421         /* Make the dma buffer to read by dma */
422         dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys,
423                                 tspi->dma_buf_size, DMA_TO_DEVICE);
424 }
425
426 static void tegra_spi_copy_spi_rxbuf_to_client_rxbuf(
427                 struct tegra_spi_data *tspi, struct spi_transfer *t)
428 {
429         /* Make the dma buffer to read by cpu */
430         dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys,
431                 tspi->dma_buf_size, DMA_FROM_DEVICE);
432
433         if (tspi->is_packed) {
434                 unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
435
436                 memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_dma_buf, len);
437                 tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
438         } else {
439                 unsigned int i;
440                 unsigned int count;
441                 unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos;
442                 u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
443                 unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
444                 unsigned int read_bytes;
445
446                 if (consume > t->len - tspi->cur_pos)
447                         consume = t->len - tspi->cur_pos;
448                 read_bytes = consume;
449                 for (count = 0; count < tspi->curr_dma_words; count++) {
450                         u32 x = tspi->rx_dma_buf[count] & rx_mask;
451
452                         for (i = 0; consume && (i < tspi->bytes_per_word);
453                                                         i++, consume--)
454                                 *rx_buf++ = (x >> (i*8)) & 0xFF;
455                 }
456
457                 tspi->cur_rx_pos += read_bytes;
458         }
459
460         /* Make the dma buffer to read by dma */
461         dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
462                 tspi->dma_buf_size, DMA_FROM_DEVICE);
463 }
464
465 static void tegra_spi_dma_complete(void *args)
466 {
467         struct completion *dma_complete = args;
468
469         complete(dma_complete);
470 }
471
472 static int tegra_spi_start_tx_dma(struct tegra_spi_data *tspi, int len)
473 {
474         reinit_completion(&tspi->tx_dma_complete);
475         tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan,
476                                 tspi->tx_dma_phys, len, DMA_MEM_TO_DEV,
477                                 DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
478         if (!tspi->tx_dma_desc) {
479                 dev_err(tspi->dev, "Not able to get desc for Tx\n");
480                 return -EIO;
481         }
482
483         tspi->tx_dma_desc->callback = tegra_spi_dma_complete;
484         tspi->tx_dma_desc->callback_param = &tspi->tx_dma_complete;
485
486         dmaengine_submit(tspi->tx_dma_desc);
487         dma_async_issue_pending(tspi->tx_dma_chan);
488         return 0;
489 }
490
491 static int tegra_spi_start_rx_dma(struct tegra_spi_data *tspi, int len)
492 {
493         reinit_completion(&tspi->rx_dma_complete);
494         tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan,
495                                 tspi->rx_dma_phys, len, DMA_DEV_TO_MEM,
496                                 DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
497         if (!tspi->rx_dma_desc) {
498                 dev_err(tspi->dev, "Not able to get desc for Rx\n");
499                 return -EIO;
500         }
501
502         tspi->rx_dma_desc->callback = tegra_spi_dma_complete;
503         tspi->rx_dma_desc->callback_param = &tspi->rx_dma_complete;
504
505         dmaengine_submit(tspi->rx_dma_desc);
506         dma_async_issue_pending(tspi->rx_dma_chan);
507         return 0;
508 }
509
510 static int tegra_spi_flush_fifos(struct tegra_spi_data *tspi)
511 {
512         unsigned long timeout = jiffies + HZ;
513         u32 status;
514
515         status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
516         if ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
517                 status |= SPI_RX_FIFO_FLUSH | SPI_TX_FIFO_FLUSH;
518                 tegra_spi_writel(tspi, status, SPI_FIFO_STATUS);
519                 while ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
520                         status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
521                         if (time_after(jiffies, timeout)) {
522                                 dev_err(tspi->dev,
523                                         "timeout waiting for fifo flush\n");
524                                 return -EIO;
525                         }
526
527                         udelay(1);
528                 }
529         }
530
531         return 0;
532 }
533
534 static int tegra_spi_start_dma_based_transfer(
535                 struct tegra_spi_data *tspi, struct spi_transfer *t)
536 {
537         u32 val;
538         unsigned int len;
539         int ret = 0;
540         u8 dma_burst;
541         struct dma_slave_config dma_sconfig = {0};
542
543         val = SPI_DMA_BLK_SET(tspi->curr_dma_words - 1);
544         tegra_spi_writel(tspi, val, SPI_DMA_BLK);
545
546         if (tspi->is_packed)
547                 len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word,
548                                         4) * 4;
549         else
550                 len = tspi->curr_dma_words * 4;
551
552         /* Set attention level based on length of transfer */
553         if (len & 0xF) {
554                 val |= SPI_TX_TRIG_1 | SPI_RX_TRIG_1;
555                 dma_burst = 1;
556         } else if (((len) >> 4) & 0x1) {
557                 val |= SPI_TX_TRIG_4 | SPI_RX_TRIG_4;
558                 dma_burst = 4;
559         } else {
560                 val |= SPI_TX_TRIG_8 | SPI_RX_TRIG_8;
561                 dma_burst = 8;
562         }
563
564         if (!tspi->soc_data->has_intr_mask_reg) {
565                 if (tspi->cur_direction & DATA_DIR_TX)
566                         val |= SPI_IE_TX;
567
568                 if (tspi->cur_direction & DATA_DIR_RX)
569                         val |= SPI_IE_RX;
570         }
571
572         tegra_spi_writel(tspi, val, SPI_DMA_CTL);
573         tspi->dma_control_reg = val;
574
575         dma_sconfig.device_fc = true;
576         if (tspi->cur_direction & DATA_DIR_TX) {
577                 dma_sconfig.dst_addr = tspi->phys + SPI_TX_FIFO;
578                 dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
579                 dma_sconfig.dst_maxburst = dma_burst;
580                 ret = dmaengine_slave_config(tspi->tx_dma_chan, &dma_sconfig);
581                 if (ret < 0) {
582                         dev_err(tspi->dev,
583                                 "DMA slave config failed: %d\n", ret);
584                         return ret;
585                 }
586
587                 tegra_spi_copy_client_txbuf_to_spi_txbuf(tspi, t);
588                 ret = tegra_spi_start_tx_dma(tspi, len);
589                 if (ret < 0) {
590                         dev_err(tspi->dev,
591                                 "Starting tx dma failed, err %d\n", ret);
592                         return ret;
593                 }
594         }
595
596         if (tspi->cur_direction & DATA_DIR_RX) {
597                 dma_sconfig.src_addr = tspi->phys + SPI_RX_FIFO;
598                 dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
599                 dma_sconfig.src_maxburst = dma_burst;
600                 ret = dmaengine_slave_config(tspi->rx_dma_chan, &dma_sconfig);
601                 if (ret < 0) {
602                         dev_err(tspi->dev,
603                                 "DMA slave config failed: %d\n", ret);
604                         return ret;
605                 }
606
607                 /* Make the dma buffer to read by dma */
608                 dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
609                                 tspi->dma_buf_size, DMA_FROM_DEVICE);
610
611                 ret = tegra_spi_start_rx_dma(tspi, len);
612                 if (ret < 0) {
613                         dev_err(tspi->dev,
614                                 "Starting rx dma failed, err %d\n", ret);
615                         if (tspi->cur_direction & DATA_DIR_TX)
616                                 dmaengine_terminate_all(tspi->tx_dma_chan);
617                         return ret;
618                 }
619         }
620         tspi->is_curr_dma_xfer = true;
621         tspi->dma_control_reg = val;
622
623         val |= SPI_DMA_EN;
624         tegra_spi_writel(tspi, val, SPI_DMA_CTL);
625         return ret;
626 }
627
628 static int tegra_spi_start_cpu_based_transfer(
629                 struct tegra_spi_data *tspi, struct spi_transfer *t)
630 {
631         u32 val;
632         unsigned cur_words;
633
634         if (tspi->cur_direction & DATA_DIR_TX)
635                 cur_words = tegra_spi_fill_tx_fifo_from_client_txbuf(tspi, t);
636         else
637                 cur_words = tspi->curr_dma_words;
638
639         val = SPI_DMA_BLK_SET(cur_words - 1);
640         tegra_spi_writel(tspi, val, SPI_DMA_BLK);
641
642         val = 0;
643         if (tspi->cur_direction & DATA_DIR_TX)
644                 val |= SPI_IE_TX;
645
646         if (tspi->cur_direction & DATA_DIR_RX)
647                 val |= SPI_IE_RX;
648
649         tegra_spi_writel(tspi, val, SPI_DMA_CTL);
650         tspi->dma_control_reg = val;
651
652         tspi->is_curr_dma_xfer = false;
653
654         val = tspi->command1_reg;
655         val |= SPI_PIO;
656         tegra_spi_writel(tspi, val, SPI_COMMAND1);
657         return 0;
658 }
659
660 static int tegra_spi_init_dma_param(struct tegra_spi_data *tspi,
661                         bool dma_to_memory)
662 {
663         struct dma_chan *dma_chan;
664         u32 *dma_buf;
665         dma_addr_t dma_phys;
666
667         dma_chan = dma_request_chan(tspi->dev, dma_to_memory ? "rx" : "tx");
668         if (IS_ERR(dma_chan))
669                 return dev_err_probe(tspi->dev, PTR_ERR(dma_chan),
670                                      "Dma channel is not available\n");
671
672         dma_buf = dma_alloc_coherent(tspi->dev, tspi->dma_buf_size,
673                                 &dma_phys, GFP_KERNEL);
674         if (!dma_buf) {
675                 dev_err(tspi->dev, " Not able to allocate the dma buffer\n");
676                 dma_release_channel(dma_chan);
677                 return -ENOMEM;
678         }
679
680         if (dma_to_memory) {
681                 tspi->rx_dma_chan = dma_chan;
682                 tspi->rx_dma_buf = dma_buf;
683                 tspi->rx_dma_phys = dma_phys;
684         } else {
685                 tspi->tx_dma_chan = dma_chan;
686                 tspi->tx_dma_buf = dma_buf;
687                 tspi->tx_dma_phys = dma_phys;
688         }
689         return 0;
690 }
691
692 static void tegra_spi_deinit_dma_param(struct tegra_spi_data *tspi,
693         bool dma_to_memory)
694 {
695         u32 *dma_buf;
696         dma_addr_t dma_phys;
697         struct dma_chan *dma_chan;
698
699         if (dma_to_memory) {
700                 dma_buf = tspi->rx_dma_buf;
701                 dma_chan = tspi->rx_dma_chan;
702                 dma_phys = tspi->rx_dma_phys;
703                 tspi->rx_dma_chan = NULL;
704                 tspi->rx_dma_buf = NULL;
705         } else {
706                 dma_buf = tspi->tx_dma_buf;
707                 dma_chan = tspi->tx_dma_chan;
708                 dma_phys = tspi->tx_dma_phys;
709                 tspi->tx_dma_buf = NULL;
710                 tspi->tx_dma_chan = NULL;
711         }
712         if (!dma_chan)
713                 return;
714
715         dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
716         dma_release_channel(dma_chan);
717 }
718
719 static int tegra_spi_set_hw_cs_timing(struct spi_device *spi)
720 {
721         struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
722         struct spi_delay *setup = &spi->cs_setup;
723         struct spi_delay *hold = &spi->cs_hold;
724         struct spi_delay *inactive = &spi->cs_inactive;
725         u8 setup_dly, hold_dly;
726         u32 setup_hold;
727         u32 spi_cs_timing;
728         u32 inactive_cycles;
729         u8 cs_state;
730
731         if (setup->unit != SPI_DELAY_UNIT_SCK ||
732             hold->unit != SPI_DELAY_UNIT_SCK ||
733             inactive->unit != SPI_DELAY_UNIT_SCK) {
734                 dev_err(&spi->dev,
735                         "Invalid delay unit %d, should be SPI_DELAY_UNIT_SCK\n",
736                         SPI_DELAY_UNIT_SCK);
737                 return -EINVAL;
738         }
739
740         setup_dly = min_t(u8, setup->value, MAX_SETUP_HOLD_CYCLES);
741         hold_dly = min_t(u8, hold->value, MAX_SETUP_HOLD_CYCLES);
742         if (setup_dly && hold_dly) {
743                 setup_hold = SPI_SETUP_HOLD(setup_dly - 1, hold_dly - 1);
744                 spi_cs_timing = SPI_CS_SETUP_HOLD(tspi->spi_cs_timing1,
745                                                   spi_get_chipselect(spi, 0),
746                                                   setup_hold);
747                 if (tspi->spi_cs_timing1 != spi_cs_timing) {
748                         tspi->spi_cs_timing1 = spi_cs_timing;
749                         tegra_spi_writel(tspi, spi_cs_timing, SPI_CS_TIMING1);
750                 }
751         }
752
753         inactive_cycles = min_t(u8, inactive->value, MAX_INACTIVE_CYCLES);
754         if (inactive_cycles)
755                 inactive_cycles--;
756         cs_state = inactive_cycles ? 0 : 1;
757         spi_cs_timing = tspi->spi_cs_timing2;
758         SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(spi_cs_timing, spi_get_chipselect(spi, 0),
759                                           cs_state);
760         SPI_SET_CYCLES_BETWEEN_PACKETS(spi_cs_timing, spi_get_chipselect(spi, 0),
761                                        inactive_cycles);
762         if (tspi->spi_cs_timing2 != spi_cs_timing) {
763                 tspi->spi_cs_timing2 = spi_cs_timing;
764                 tegra_spi_writel(tspi, spi_cs_timing, SPI_CS_TIMING2);
765         }
766
767         return 0;
768 }
769
770 static u32 tegra_spi_setup_transfer_one(struct spi_device *spi,
771                                         struct spi_transfer *t,
772                                         bool is_first_of_msg,
773                                         bool is_single_xfer)
774 {
775         struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
776         struct tegra_spi_client_data *cdata = spi->controller_data;
777         u32 speed = t->speed_hz;
778         u8 bits_per_word = t->bits_per_word;
779         u32 command1, command2;
780         int req_mode;
781         u32 tx_tap = 0, rx_tap = 0;
782
783         if (speed != tspi->cur_speed) {
784                 clk_set_rate(tspi->clk, speed);
785                 tspi->cur_speed = speed;
786         }
787
788         tspi->cur_spi = spi;
789         tspi->cur_pos = 0;
790         tspi->cur_rx_pos = 0;
791         tspi->cur_tx_pos = 0;
792         tspi->curr_xfer = t;
793
794         if (is_first_of_msg) {
795                 tegra_spi_clear_status(tspi);
796
797                 command1 = tspi->def_command1_reg;
798                 command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
799
800                 command1 &= ~SPI_CONTROL_MODE_MASK;
801                 req_mode = spi->mode & 0x3;
802                 if (req_mode == SPI_MODE_0)
803                         command1 |= SPI_CONTROL_MODE_0;
804                 else if (req_mode == SPI_MODE_1)
805                         command1 |= SPI_CONTROL_MODE_1;
806                 else if (req_mode == SPI_MODE_2)
807                         command1 |= SPI_CONTROL_MODE_2;
808                 else if (req_mode == SPI_MODE_3)
809                         command1 |= SPI_CONTROL_MODE_3;
810
811                 if (spi->mode & SPI_LSB_FIRST)
812                         command1 |= SPI_LSBIT_FE;
813                 else
814                         command1 &= ~SPI_LSBIT_FE;
815
816                 if (spi->mode & SPI_3WIRE)
817                         command1 |= SPI_BIDIROE;
818                 else
819                         command1 &= ~SPI_BIDIROE;
820
821                 if (tspi->cs_control) {
822                         if (tspi->cs_control != spi)
823                                 tegra_spi_writel(tspi, command1, SPI_COMMAND1);
824                         tspi->cs_control = NULL;
825                 } else
826                         tegra_spi_writel(tspi, command1, SPI_COMMAND1);
827
828                 /* GPIO based chip select control */
829                 if (spi_get_csgpiod(spi, 0))
830                         gpiod_set_value(spi_get_csgpiod(spi, 0), 1);
831
832                 if (is_single_xfer && !(t->cs_change)) {
833                         tspi->use_hw_based_cs = true;
834                         command1 &= ~(SPI_CS_SW_HW | SPI_CS_SW_VAL);
835                 } else {
836                         tspi->use_hw_based_cs = false;
837                         command1 |= SPI_CS_SW_HW;
838                         if (spi->mode & SPI_CS_HIGH)
839                                 command1 |= SPI_CS_SW_VAL;
840                         else
841                                 command1 &= ~SPI_CS_SW_VAL;
842                 }
843
844                 if (tspi->last_used_cs != spi_get_chipselect(spi, 0)) {
845                         if (cdata && cdata->tx_clk_tap_delay)
846                                 tx_tap = cdata->tx_clk_tap_delay;
847                         if (cdata && cdata->rx_clk_tap_delay)
848                                 rx_tap = cdata->rx_clk_tap_delay;
849                         command2 = SPI_TX_TAP_DELAY(tx_tap) |
850                                    SPI_RX_TAP_DELAY(rx_tap);
851                         if (command2 != tspi->def_command2_reg)
852                                 tegra_spi_writel(tspi, command2, SPI_COMMAND2);
853                         tspi->last_used_cs = spi_get_chipselect(spi, 0);
854                 }
855
856         } else {
857                 command1 = tspi->command1_reg;
858                 command1 &= ~SPI_BIT_LENGTH(~0);
859                 command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
860         }
861
862         return command1;
863 }
864
865 static int tegra_spi_start_transfer_one(struct spi_device *spi,
866                 struct spi_transfer *t, u32 command1)
867 {
868         struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
869         unsigned total_fifo_words;
870         int ret;
871
872         total_fifo_words = tegra_spi_calculate_curr_xfer_param(spi, tspi, t);
873
874         if (t->rx_nbits == SPI_NBITS_DUAL || t->tx_nbits == SPI_NBITS_DUAL)
875                 command1 |= SPI_BOTH_EN_BIT;
876         else
877                 command1 &= ~SPI_BOTH_EN_BIT;
878
879         if (tspi->is_packed)
880                 command1 |= SPI_PACKED;
881         else
882                 command1 &= ~SPI_PACKED;
883
884         command1 &= ~(SPI_CS_SEL_MASK | SPI_TX_EN | SPI_RX_EN);
885         tspi->cur_direction = 0;
886         if (t->rx_buf) {
887                 command1 |= SPI_RX_EN;
888                 tspi->cur_direction |= DATA_DIR_RX;
889         }
890         if (t->tx_buf) {
891                 command1 |= SPI_TX_EN;
892                 tspi->cur_direction |= DATA_DIR_TX;
893         }
894         command1 |= SPI_CS_SEL(spi_get_chipselect(spi, 0));
895         tegra_spi_writel(tspi, command1, SPI_COMMAND1);
896         tspi->command1_reg = command1;
897
898         dev_dbg(tspi->dev, "The def 0x%x and written 0x%x\n",
899                 tspi->def_command1_reg, (unsigned)command1);
900
901         ret = tegra_spi_flush_fifos(tspi);
902         if (ret < 0)
903                 return ret;
904         if (total_fifo_words > SPI_FIFO_DEPTH)
905                 ret = tegra_spi_start_dma_based_transfer(tspi, t);
906         else
907                 ret = tegra_spi_start_cpu_based_transfer(tspi, t);
908         return ret;
909 }
910
911 static struct tegra_spi_client_data
912         *tegra_spi_parse_cdata_dt(struct spi_device *spi)
913 {
914         struct tegra_spi_client_data *cdata;
915         struct device_node *slave_np;
916
917         slave_np = spi->dev.of_node;
918         if (!slave_np) {
919                 dev_dbg(&spi->dev, "device node not found\n");
920                 return NULL;
921         }
922
923         cdata = kzalloc(sizeof(*cdata), GFP_KERNEL);
924         if (!cdata)
925                 return NULL;
926
927         of_property_read_u32(slave_np, "nvidia,tx-clk-tap-delay",
928                              &cdata->tx_clk_tap_delay);
929         of_property_read_u32(slave_np, "nvidia,rx-clk-tap-delay",
930                              &cdata->rx_clk_tap_delay);
931         return cdata;
932 }
933
934 static void tegra_spi_cleanup(struct spi_device *spi)
935 {
936         struct tegra_spi_client_data *cdata = spi->controller_data;
937
938         spi->controller_data = NULL;
939         if (spi->dev.of_node)
940                 kfree(cdata);
941 }
942
943 static int tegra_spi_setup(struct spi_device *spi)
944 {
945         struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
946         struct tegra_spi_client_data *cdata = spi->controller_data;
947         u32 val;
948         unsigned long flags;
949         int ret;
950
951         dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n",
952                 spi->bits_per_word,
953                 spi->mode & SPI_CPOL ? "" : "~",
954                 spi->mode & SPI_CPHA ? "" : "~",
955                 spi->max_speed_hz);
956
957         if (!cdata) {
958                 cdata = tegra_spi_parse_cdata_dt(spi);
959                 spi->controller_data = cdata;
960         }
961
962         ret = pm_runtime_resume_and_get(tspi->dev);
963         if (ret < 0) {
964                 dev_err(tspi->dev, "pm runtime failed, e = %d\n", ret);
965                 if (cdata)
966                         tegra_spi_cleanup(spi);
967                 return ret;
968         }
969
970         if (tspi->soc_data->has_intr_mask_reg) {
971                 val = tegra_spi_readl(tspi, SPI_INTR_MASK);
972                 val &= ~SPI_INTR_ALL_MASK;
973                 tegra_spi_writel(tspi, val, SPI_INTR_MASK);
974         }
975
976         spin_lock_irqsave(&tspi->lock, flags);
977         /* GPIO based chip select control */
978         if (spi_get_csgpiod(spi, 0))
979                 gpiod_set_value(spi_get_csgpiod(spi, 0), 0);
980
981         val = tspi->def_command1_reg;
982         if (spi->mode & SPI_CS_HIGH)
983                 val &= ~SPI_CS_POL_INACTIVE(spi_get_chipselect(spi, 0));
984         else
985                 val |= SPI_CS_POL_INACTIVE(spi_get_chipselect(spi, 0));
986         tspi->def_command1_reg = val;
987         tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
988         spin_unlock_irqrestore(&tspi->lock, flags);
989
990         pm_runtime_put(tspi->dev);
991         return 0;
992 }
993
994 static void tegra_spi_transfer_end(struct spi_device *spi)
995 {
996         struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
997         int cs_val = (spi->mode & SPI_CS_HIGH) ? 0 : 1;
998
999         /* GPIO based chip select control */
1000         if (spi_get_csgpiod(spi, 0))
1001                 gpiod_set_value(spi_get_csgpiod(spi, 0), 0);
1002
1003         if (!tspi->use_hw_based_cs) {
1004                 if (cs_val)
1005                         tspi->command1_reg |= SPI_CS_SW_VAL;
1006                 else
1007                         tspi->command1_reg &= ~SPI_CS_SW_VAL;
1008                 tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
1009         }
1010
1011         tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
1012 }
1013
1014 static void tegra_spi_dump_regs(struct tegra_spi_data *tspi)
1015 {
1016         dev_dbg(tspi->dev, "============ SPI REGISTER DUMP ============\n");
1017         dev_dbg(tspi->dev, "Command1:    0x%08x | Command2:    0x%08x\n",
1018                 tegra_spi_readl(tspi, SPI_COMMAND1),
1019                 tegra_spi_readl(tspi, SPI_COMMAND2));
1020         dev_dbg(tspi->dev, "DMA_CTL:     0x%08x | DMA_BLK:     0x%08x\n",
1021                 tegra_spi_readl(tspi, SPI_DMA_CTL),
1022                 tegra_spi_readl(tspi, SPI_DMA_BLK));
1023         dev_dbg(tspi->dev, "TRANS_STAT:  0x%08x | FIFO_STATUS: 0x%08x\n",
1024                 tegra_spi_readl(tspi, SPI_TRANS_STATUS),
1025                 tegra_spi_readl(tspi, SPI_FIFO_STATUS));
1026 }
1027
1028 static int tegra_spi_transfer_one_message(struct spi_master *master,
1029                         struct spi_message *msg)
1030 {
1031         bool is_first_msg = true;
1032         struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1033         struct spi_transfer *xfer;
1034         struct spi_device *spi = msg->spi;
1035         int ret;
1036         bool skip = false;
1037         int single_xfer;
1038
1039         msg->status = 0;
1040         msg->actual_length = 0;
1041
1042         single_xfer = list_is_singular(&msg->transfers);
1043         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1044                 u32 cmd1;
1045
1046                 reinit_completion(&tspi->xfer_completion);
1047
1048                 cmd1 = tegra_spi_setup_transfer_one(spi, xfer, is_first_msg,
1049                                                     single_xfer);
1050
1051                 if (!xfer->len) {
1052                         ret = 0;
1053                         skip = true;
1054                         goto complete_xfer;
1055                 }
1056
1057                 ret = tegra_spi_start_transfer_one(spi, xfer, cmd1);
1058                 if (ret < 0) {
1059                         dev_err(tspi->dev,
1060                                 "spi can not start transfer, err %d\n", ret);
1061                         goto complete_xfer;
1062                 }
1063
1064                 is_first_msg = false;
1065                 ret = wait_for_completion_timeout(&tspi->xfer_completion,
1066                                                 SPI_DMA_TIMEOUT);
1067                 if (WARN_ON(ret == 0)) {
1068                         dev_err(tspi->dev, "spi transfer timeout\n");
1069                         if (tspi->is_curr_dma_xfer &&
1070                             (tspi->cur_direction & DATA_DIR_TX))
1071                                 dmaengine_terminate_all(tspi->tx_dma_chan);
1072                         if (tspi->is_curr_dma_xfer &&
1073                             (tspi->cur_direction & DATA_DIR_RX))
1074                                 dmaengine_terminate_all(tspi->rx_dma_chan);
1075                         ret = -EIO;
1076                         tegra_spi_dump_regs(tspi);
1077                         tegra_spi_flush_fifos(tspi);
1078                         reset_control_assert(tspi->rst);
1079                         udelay(2);
1080                         reset_control_deassert(tspi->rst);
1081                         tspi->last_used_cs = master->num_chipselect + 1;
1082                         goto complete_xfer;
1083                 }
1084
1085                 if (tspi->tx_status ||  tspi->rx_status) {
1086                         dev_err(tspi->dev, "Error in Transfer\n");
1087                         ret = -EIO;
1088                         tegra_spi_dump_regs(tspi);
1089                         goto complete_xfer;
1090                 }
1091                 msg->actual_length += xfer->len;
1092
1093 complete_xfer:
1094                 if (ret < 0 || skip) {
1095                         tegra_spi_transfer_end(spi);
1096                         spi_transfer_delay_exec(xfer);
1097                         goto exit;
1098                 } else if (list_is_last(&xfer->transfer_list,
1099                                         &msg->transfers)) {
1100                         if (xfer->cs_change)
1101                                 tspi->cs_control = spi;
1102                         else {
1103                                 tegra_spi_transfer_end(spi);
1104                                 spi_transfer_delay_exec(xfer);
1105                         }
1106                 } else if (xfer->cs_change) {
1107                         tegra_spi_transfer_end(spi);
1108                         spi_transfer_delay_exec(xfer);
1109                 }
1110
1111         }
1112         ret = 0;
1113 exit:
1114         msg->status = ret;
1115         spi_finalize_current_message(master);
1116         return ret;
1117 }
1118
1119 static irqreturn_t handle_cpu_based_xfer(struct tegra_spi_data *tspi)
1120 {
1121         struct spi_transfer *t = tspi->curr_xfer;
1122         unsigned long flags;
1123
1124         spin_lock_irqsave(&tspi->lock, flags);
1125         if (tspi->tx_status ||  tspi->rx_status) {
1126                 dev_err(tspi->dev, "CpuXfer ERROR bit set 0x%x\n",
1127                         tspi->status_reg);
1128                 dev_err(tspi->dev, "CpuXfer 0x%08x:0x%08x\n",
1129                         tspi->command1_reg, tspi->dma_control_reg);
1130                 tegra_spi_dump_regs(tspi);
1131                 tegra_spi_flush_fifos(tspi);
1132                 complete(&tspi->xfer_completion);
1133                 spin_unlock_irqrestore(&tspi->lock, flags);
1134                 reset_control_assert(tspi->rst);
1135                 udelay(2);
1136                 reset_control_deassert(tspi->rst);
1137                 return IRQ_HANDLED;
1138         }
1139
1140         if (tspi->cur_direction & DATA_DIR_RX)
1141                 tegra_spi_read_rx_fifo_to_client_rxbuf(tspi, t);
1142
1143         if (tspi->cur_direction & DATA_DIR_TX)
1144                 tspi->cur_pos = tspi->cur_tx_pos;
1145         else
1146                 tspi->cur_pos = tspi->cur_rx_pos;
1147
1148         if (tspi->cur_pos == t->len) {
1149                 complete(&tspi->xfer_completion);
1150                 goto exit;
1151         }
1152
1153         tegra_spi_calculate_curr_xfer_param(tspi->cur_spi, tspi, t);
1154         tegra_spi_start_cpu_based_transfer(tspi, t);
1155 exit:
1156         spin_unlock_irqrestore(&tspi->lock, flags);
1157         return IRQ_HANDLED;
1158 }
1159
1160 static irqreturn_t handle_dma_based_xfer(struct tegra_spi_data *tspi)
1161 {
1162         struct spi_transfer *t = tspi->curr_xfer;
1163         long wait_status;
1164         int err = 0;
1165         unsigned total_fifo_words;
1166         unsigned long flags;
1167
1168         /* Abort dmas if any error */
1169         if (tspi->cur_direction & DATA_DIR_TX) {
1170                 if (tspi->tx_status) {
1171                         dmaengine_terminate_all(tspi->tx_dma_chan);
1172                         err += 1;
1173                 } else {
1174                         wait_status = wait_for_completion_interruptible_timeout(
1175                                 &tspi->tx_dma_complete, SPI_DMA_TIMEOUT);
1176                         if (wait_status <= 0) {
1177                                 dmaengine_terminate_all(tspi->tx_dma_chan);
1178                                 dev_err(tspi->dev, "TxDma Xfer failed\n");
1179                                 err += 1;
1180                         }
1181                 }
1182         }
1183
1184         if (tspi->cur_direction & DATA_DIR_RX) {
1185                 if (tspi->rx_status) {
1186                         dmaengine_terminate_all(tspi->rx_dma_chan);
1187                         err += 2;
1188                 } else {
1189                         wait_status = wait_for_completion_interruptible_timeout(
1190                                 &tspi->rx_dma_complete, SPI_DMA_TIMEOUT);
1191                         if (wait_status <= 0) {
1192                                 dmaengine_terminate_all(tspi->rx_dma_chan);
1193                                 dev_err(tspi->dev, "RxDma Xfer failed\n");
1194                                 err += 2;
1195                         }
1196                 }
1197         }
1198
1199         spin_lock_irqsave(&tspi->lock, flags);
1200         if (err) {
1201                 dev_err(tspi->dev, "DmaXfer: ERROR bit set 0x%x\n",
1202                         tspi->status_reg);
1203                 dev_err(tspi->dev, "DmaXfer 0x%08x:0x%08x\n",
1204                         tspi->command1_reg, tspi->dma_control_reg);
1205                 tegra_spi_dump_regs(tspi);
1206                 tegra_spi_flush_fifos(tspi);
1207                 complete(&tspi->xfer_completion);
1208                 spin_unlock_irqrestore(&tspi->lock, flags);
1209                 reset_control_assert(tspi->rst);
1210                 udelay(2);
1211                 reset_control_deassert(tspi->rst);
1212                 return IRQ_HANDLED;
1213         }
1214
1215         if (tspi->cur_direction & DATA_DIR_RX)
1216                 tegra_spi_copy_spi_rxbuf_to_client_rxbuf(tspi, t);
1217
1218         if (tspi->cur_direction & DATA_DIR_TX)
1219                 tspi->cur_pos = tspi->cur_tx_pos;
1220         else
1221                 tspi->cur_pos = tspi->cur_rx_pos;
1222
1223         if (tspi->cur_pos == t->len) {
1224                 complete(&tspi->xfer_completion);
1225                 goto exit;
1226         }
1227
1228         /* Continue transfer in current message */
1229         total_fifo_words = tegra_spi_calculate_curr_xfer_param(tspi->cur_spi,
1230                                                         tspi, t);
1231         if (total_fifo_words > SPI_FIFO_DEPTH)
1232                 err = tegra_spi_start_dma_based_transfer(tspi, t);
1233         else
1234                 err = tegra_spi_start_cpu_based_transfer(tspi, t);
1235
1236 exit:
1237         spin_unlock_irqrestore(&tspi->lock, flags);
1238         return IRQ_HANDLED;
1239 }
1240
1241 static irqreturn_t tegra_spi_isr_thread(int irq, void *context_data)
1242 {
1243         struct tegra_spi_data *tspi = context_data;
1244
1245         if (!tspi->is_curr_dma_xfer)
1246                 return handle_cpu_based_xfer(tspi);
1247         return handle_dma_based_xfer(tspi);
1248 }
1249
1250 static irqreturn_t tegra_spi_isr(int irq, void *context_data)
1251 {
1252         struct tegra_spi_data *tspi = context_data;
1253
1254         tspi->status_reg = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
1255         if (tspi->cur_direction & DATA_DIR_TX)
1256                 tspi->tx_status = tspi->status_reg &
1257                                         (SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF);
1258
1259         if (tspi->cur_direction & DATA_DIR_RX)
1260                 tspi->rx_status = tspi->status_reg &
1261                                         (SPI_RX_FIFO_OVF | SPI_RX_FIFO_UNF);
1262         tegra_spi_clear_status(tspi);
1263
1264         return IRQ_WAKE_THREAD;
1265 }
1266
1267 static struct tegra_spi_soc_data tegra114_spi_soc_data = {
1268         .has_intr_mask_reg = false,
1269 };
1270
1271 static struct tegra_spi_soc_data tegra124_spi_soc_data = {
1272         .has_intr_mask_reg = false,
1273 };
1274
1275 static struct tegra_spi_soc_data tegra210_spi_soc_data = {
1276         .has_intr_mask_reg = true,
1277 };
1278
1279 static const struct of_device_id tegra_spi_of_match[] = {
1280         {
1281                 .compatible = "nvidia,tegra114-spi",
1282                 .data       = &tegra114_spi_soc_data,
1283         }, {
1284                 .compatible = "nvidia,tegra124-spi",
1285                 .data       = &tegra124_spi_soc_data,
1286         }, {
1287                 .compatible = "nvidia,tegra210-spi",
1288                 .data       = &tegra210_spi_soc_data,
1289         },
1290         {}
1291 };
1292 MODULE_DEVICE_TABLE(of, tegra_spi_of_match);
1293
1294 static int tegra_spi_probe(struct platform_device *pdev)
1295 {
1296         struct spi_master       *master;
1297         struct tegra_spi_data   *tspi;
1298         struct resource         *r;
1299         int ret, spi_irq;
1300         int bus_num;
1301
1302         master = spi_alloc_master(&pdev->dev, sizeof(*tspi));
1303         if (!master) {
1304                 dev_err(&pdev->dev, "master allocation failed\n");
1305                 return -ENOMEM;
1306         }
1307         platform_set_drvdata(pdev, master);
1308         tspi = spi_master_get_devdata(master);
1309
1310         if (of_property_read_u32(pdev->dev.of_node, "spi-max-frequency",
1311                                  &master->max_speed_hz))
1312                 master->max_speed_hz = 25000000; /* 25MHz */
1313
1314         /* the spi->mode bits understood by this driver: */
1315         master->use_gpio_descriptors = true;
1316         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST |
1317                             SPI_TX_DUAL | SPI_RX_DUAL | SPI_3WIRE;
1318         master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1319         master->setup = tegra_spi_setup;
1320         master->cleanup = tegra_spi_cleanup;
1321         master->transfer_one_message = tegra_spi_transfer_one_message;
1322         master->set_cs_timing = tegra_spi_set_hw_cs_timing;
1323         master->num_chipselect = MAX_CHIP_SELECT;
1324         master->auto_runtime_pm = true;
1325         bus_num = of_alias_get_id(pdev->dev.of_node, "spi");
1326         if (bus_num >= 0)
1327                 master->bus_num = bus_num;
1328
1329         tspi->master = master;
1330         tspi->dev = &pdev->dev;
1331         spin_lock_init(&tspi->lock);
1332
1333         tspi->soc_data = of_device_get_match_data(&pdev->dev);
1334         if (!tspi->soc_data) {
1335                 dev_err(&pdev->dev, "unsupported tegra\n");
1336                 ret = -ENODEV;
1337                 goto exit_free_master;
1338         }
1339
1340         tspi->base = devm_platform_get_and_ioremap_resource(pdev, 0, &r);
1341         if (IS_ERR(tspi->base)) {
1342                 ret = PTR_ERR(tspi->base);
1343                 goto exit_free_master;
1344         }
1345         tspi->phys = r->start;
1346
1347         spi_irq = platform_get_irq(pdev, 0);
1348         if (spi_irq < 0) {
1349                 ret = spi_irq;
1350                 goto exit_free_master;
1351         }
1352         tspi->irq = spi_irq;
1353
1354         tspi->clk = devm_clk_get(&pdev->dev, "spi");
1355         if (IS_ERR(tspi->clk)) {
1356                 dev_err(&pdev->dev, "can not get clock\n");
1357                 ret = PTR_ERR(tspi->clk);
1358                 goto exit_free_master;
1359         }
1360
1361         tspi->rst = devm_reset_control_get_exclusive(&pdev->dev, "spi");
1362         if (IS_ERR(tspi->rst)) {
1363                 dev_err(&pdev->dev, "can not get reset\n");
1364                 ret = PTR_ERR(tspi->rst);
1365                 goto exit_free_master;
1366         }
1367
1368         tspi->max_buf_size = SPI_FIFO_DEPTH << 2;
1369         tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN;
1370
1371         ret = tegra_spi_init_dma_param(tspi, true);
1372         if (ret < 0)
1373                 goto exit_free_master;
1374         ret = tegra_spi_init_dma_param(tspi, false);
1375         if (ret < 0)
1376                 goto exit_rx_dma_free;
1377         tspi->max_buf_size = tspi->dma_buf_size;
1378         init_completion(&tspi->tx_dma_complete);
1379         init_completion(&tspi->rx_dma_complete);
1380
1381         init_completion(&tspi->xfer_completion);
1382
1383         pm_runtime_enable(&pdev->dev);
1384         if (!pm_runtime_enabled(&pdev->dev)) {
1385                 ret = tegra_spi_runtime_resume(&pdev->dev);
1386                 if (ret)
1387                         goto exit_pm_disable;
1388         }
1389
1390         ret = pm_runtime_resume_and_get(&pdev->dev);
1391         if (ret < 0) {
1392                 dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
1393                 goto exit_pm_disable;
1394         }
1395
1396         reset_control_assert(tspi->rst);
1397         udelay(2);
1398         reset_control_deassert(tspi->rst);
1399         tspi->def_command1_reg  = SPI_M_S;
1400         tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
1401         tspi->spi_cs_timing1 = tegra_spi_readl(tspi, SPI_CS_TIMING1);
1402         tspi->spi_cs_timing2 = tegra_spi_readl(tspi, SPI_CS_TIMING2);
1403         tspi->def_command2_reg = tegra_spi_readl(tspi, SPI_COMMAND2);
1404         tspi->last_used_cs = master->num_chipselect + 1;
1405         pm_runtime_put(&pdev->dev);
1406         ret = request_threaded_irq(tspi->irq, tegra_spi_isr,
1407                                    tegra_spi_isr_thread, IRQF_ONESHOT,
1408                                    dev_name(&pdev->dev), tspi);
1409         if (ret < 0) {
1410                 dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
1411                         tspi->irq);
1412                 goto exit_pm_disable;
1413         }
1414
1415         master->dev.of_node = pdev->dev.of_node;
1416         ret = devm_spi_register_master(&pdev->dev, master);
1417         if (ret < 0) {
1418                 dev_err(&pdev->dev, "can not register to master err %d\n", ret);
1419                 goto exit_free_irq;
1420         }
1421         return ret;
1422
1423 exit_free_irq:
1424         free_irq(spi_irq, tspi);
1425 exit_pm_disable:
1426         pm_runtime_disable(&pdev->dev);
1427         if (!pm_runtime_status_suspended(&pdev->dev))
1428                 tegra_spi_runtime_suspend(&pdev->dev);
1429         tegra_spi_deinit_dma_param(tspi, false);
1430 exit_rx_dma_free:
1431         tegra_spi_deinit_dma_param(tspi, true);
1432 exit_free_master:
1433         spi_master_put(master);
1434         return ret;
1435 }
1436
1437 static void tegra_spi_remove(struct platform_device *pdev)
1438 {
1439         struct spi_master *master = platform_get_drvdata(pdev);
1440         struct tegra_spi_data   *tspi = spi_master_get_devdata(master);
1441
1442         free_irq(tspi->irq, tspi);
1443
1444         if (tspi->tx_dma_chan)
1445                 tegra_spi_deinit_dma_param(tspi, false);
1446
1447         if (tspi->rx_dma_chan)
1448                 tegra_spi_deinit_dma_param(tspi, true);
1449
1450         pm_runtime_disable(&pdev->dev);
1451         if (!pm_runtime_status_suspended(&pdev->dev))
1452                 tegra_spi_runtime_suspend(&pdev->dev);
1453 }
1454
1455 #ifdef CONFIG_PM_SLEEP
1456 static int tegra_spi_suspend(struct device *dev)
1457 {
1458         struct spi_master *master = dev_get_drvdata(dev);
1459
1460         return spi_master_suspend(master);
1461 }
1462
1463 static int tegra_spi_resume(struct device *dev)
1464 {
1465         struct spi_master *master = dev_get_drvdata(dev);
1466         struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1467         int ret;
1468
1469         ret = pm_runtime_resume_and_get(dev);
1470         if (ret < 0) {
1471                 dev_err(dev, "pm runtime failed, e = %d\n", ret);
1472                 return ret;
1473         }
1474         tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
1475         tegra_spi_writel(tspi, tspi->def_command2_reg, SPI_COMMAND2);
1476         tspi->last_used_cs = master->num_chipselect + 1;
1477         pm_runtime_put(dev);
1478
1479         return spi_master_resume(master);
1480 }
1481 #endif
1482
1483 static int tegra_spi_runtime_suspend(struct device *dev)
1484 {
1485         struct spi_master *master = dev_get_drvdata(dev);
1486         struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1487
1488         /* Flush all write which are in PPSB queue by reading back */
1489         tegra_spi_readl(tspi, SPI_COMMAND1);
1490
1491         clk_disable_unprepare(tspi->clk);
1492         return 0;
1493 }
1494
1495 static int tegra_spi_runtime_resume(struct device *dev)
1496 {
1497         struct spi_master *master = dev_get_drvdata(dev);
1498         struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1499         int ret;
1500
1501         ret = clk_prepare_enable(tspi->clk);
1502         if (ret < 0) {
1503                 dev_err(tspi->dev, "clk_prepare failed: %d\n", ret);
1504                 return ret;
1505         }
1506         return 0;
1507 }
1508
1509 static const struct dev_pm_ops tegra_spi_pm_ops = {
1510         SET_RUNTIME_PM_OPS(tegra_spi_runtime_suspend,
1511                 tegra_spi_runtime_resume, NULL)
1512         SET_SYSTEM_SLEEP_PM_OPS(tegra_spi_suspend, tegra_spi_resume)
1513 };
1514 static struct platform_driver tegra_spi_driver = {
1515         .driver = {
1516                 .name           = "spi-tegra114",
1517                 .pm             = &tegra_spi_pm_ops,
1518                 .of_match_table = tegra_spi_of_match,
1519         },
1520         .probe =        tegra_spi_probe,
1521         .remove_new =   tegra_spi_remove,
1522 };
1523 module_platform_driver(tegra_spi_driver);
1524
1525 MODULE_ALIAS("platform:spi-tegra114");
1526 MODULE_DESCRIPTION("NVIDIA Tegra114 SPI Controller Driver");
1527 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1528 MODULE_LICENSE("GPL v2");