Linux 3.14.25
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / spi / spi-tegra114.c
1 /*
2  * SPI driver for NVIDIA's Tegra114 SPI Controller.
3  *
4  * Copyright (c) 2013, NVIDIA CORPORATION.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/delay.h>
22 #include <linux/dmaengine.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/dmapool.h>
25 #include <linux/err.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kernel.h>
30 #include <linux/kthread.h>
31 #include <linux/module.h>
32 #include <linux/platform_device.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/of.h>
35 #include <linux/of_device.h>
36 #include <linux/reset.h>
37 #include <linux/spi/spi.h>
38
39 #define SPI_COMMAND1                            0x000
40 #define SPI_BIT_LENGTH(x)                       (((x) & 0x1f) << 0)
41 #define SPI_PACKED                              (1 << 5)
42 #define SPI_TX_EN                               (1 << 11)
43 #define SPI_RX_EN                               (1 << 12)
44 #define SPI_BOTH_EN_BYTE                        (1 << 13)
45 #define SPI_BOTH_EN_BIT                         (1 << 14)
46 #define SPI_LSBYTE_FE                           (1 << 15)
47 #define SPI_LSBIT_FE                            (1 << 16)
48 #define SPI_BIDIROE                             (1 << 17)
49 #define SPI_IDLE_SDA_DRIVE_LOW                  (0 << 18)
50 #define SPI_IDLE_SDA_DRIVE_HIGH                 (1 << 18)
51 #define SPI_IDLE_SDA_PULL_LOW                   (2 << 18)
52 #define SPI_IDLE_SDA_PULL_HIGH                  (3 << 18)
53 #define SPI_IDLE_SDA_MASK                       (3 << 18)
54 #define SPI_CS_SS_VAL                           (1 << 20)
55 #define SPI_CS_SW_HW                            (1 << 21)
56 /* SPI_CS_POL_INACTIVE bits are default high */
57                                                 /* n from 0 to 3 */
58 #define SPI_CS_POL_INACTIVE(n)                  (1 << (22 + (n)))
59 #define SPI_CS_POL_INACTIVE_MASK                (0xF << 22)
60
61 #define SPI_CS_SEL_0                            (0 << 26)
62 #define SPI_CS_SEL_1                            (1 << 26)
63 #define SPI_CS_SEL_2                            (2 << 26)
64 #define SPI_CS_SEL_3                            (3 << 26)
65 #define SPI_CS_SEL_MASK                         (3 << 26)
66 #define SPI_CS_SEL(x)                           (((x) & 0x3) << 26)
67 #define SPI_CONTROL_MODE_0                      (0 << 28)
68 #define SPI_CONTROL_MODE_1                      (1 << 28)
69 #define SPI_CONTROL_MODE_2                      (2 << 28)
70 #define SPI_CONTROL_MODE_3                      (3 << 28)
71 #define SPI_CONTROL_MODE_MASK                   (3 << 28)
72 #define SPI_MODE_SEL(x)                         (((x) & 0x3) << 28)
73 #define SPI_M_S                                 (1 << 30)
74 #define SPI_PIO                                 (1 << 31)
75
76 #define SPI_COMMAND2                            0x004
77 #define SPI_TX_TAP_DELAY(x)                     (((x) & 0x3F) << 6)
78 #define SPI_RX_TAP_DELAY(x)                     (((x) & 0x3F) << 0)
79
80 #define SPI_CS_TIMING1                          0x008
81 #define SPI_SETUP_HOLD(setup, hold)             (((setup) << 4) | (hold))
82 #define SPI_CS_SETUP_HOLD(reg, cs, val)                 \
83                 ((((val) & 0xFFu) << ((cs) * 8)) |      \
84                 ((reg) & ~(0xFFu << ((cs) * 8))))
85
86 #define SPI_CS_TIMING2                          0x00C
87 #define CYCLES_BETWEEN_PACKETS_0(x)             (((x) & 0x1F) << 0)
88 #define CS_ACTIVE_BETWEEN_PACKETS_0             (1 << 5)
89 #define CYCLES_BETWEEN_PACKETS_1(x)             (((x) & 0x1F) << 8)
90 #define CS_ACTIVE_BETWEEN_PACKETS_1             (1 << 13)
91 #define CYCLES_BETWEEN_PACKETS_2(x)             (((x) & 0x1F) << 16)
92 #define CS_ACTIVE_BETWEEN_PACKETS_2             (1 << 21)
93 #define CYCLES_BETWEEN_PACKETS_3(x)             (((x) & 0x1F) << 24)
94 #define CS_ACTIVE_BETWEEN_PACKETS_3             (1 << 29)
95 #define SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(reg, cs, val)         \
96                 (reg = (((val) & 0x1) << ((cs) * 8 + 5)) |      \
97                         ((reg) & ~(1 << ((cs) * 8 + 5))))
98 #define SPI_SET_CYCLES_BETWEEN_PACKETS(reg, cs, val)            \
99                 (reg = (((val) & 0xF) << ((cs) * 8)) |          \
100                         ((reg) & ~(0xF << ((cs) * 8))))
101
102 #define SPI_TRANS_STATUS                        0x010
103 #define SPI_BLK_CNT(val)                        (((val) >> 0) & 0xFFFF)
104 #define SPI_SLV_IDLE_COUNT(val)                 (((val) >> 16) & 0xFF)
105 #define SPI_RDY                                 (1 << 30)
106
107 #define SPI_FIFO_STATUS                         0x014
108 #define SPI_RX_FIFO_EMPTY                       (1 << 0)
109 #define SPI_RX_FIFO_FULL                        (1 << 1)
110 #define SPI_TX_FIFO_EMPTY                       (1 << 2)
111 #define SPI_TX_FIFO_FULL                        (1 << 3)
112 #define SPI_RX_FIFO_UNF                         (1 << 4)
113 #define SPI_RX_FIFO_OVF                         (1 << 5)
114 #define SPI_TX_FIFO_UNF                         (1 << 6)
115 #define SPI_TX_FIFO_OVF                         (1 << 7)
116 #define SPI_ERR                                 (1 << 8)
117 #define SPI_TX_FIFO_FLUSH                       (1 << 14)
118 #define SPI_RX_FIFO_FLUSH                       (1 << 15)
119 #define SPI_TX_FIFO_EMPTY_COUNT(val)            (((val) >> 16) & 0x7F)
120 #define SPI_RX_FIFO_FULL_COUNT(val)             (((val) >> 23) & 0x7F)
121 #define SPI_FRAME_END                           (1 << 30)
122 #define SPI_CS_INACTIVE                         (1 << 31)
123
124 #define SPI_FIFO_ERROR                          (SPI_RX_FIFO_UNF | \
125                         SPI_RX_FIFO_OVF | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF)
126 #define SPI_FIFO_EMPTY                  (SPI_RX_FIFO_EMPTY | SPI_TX_FIFO_EMPTY)
127
128 #define SPI_TX_DATA                             0x018
129 #define SPI_RX_DATA                             0x01C
130
131 #define SPI_DMA_CTL                             0x020
132 #define SPI_TX_TRIG_1                           (0 << 15)
133 #define SPI_TX_TRIG_4                           (1 << 15)
134 #define SPI_TX_TRIG_8                           (2 << 15)
135 #define SPI_TX_TRIG_16                          (3 << 15)
136 #define SPI_TX_TRIG_MASK                        (3 << 15)
137 #define SPI_RX_TRIG_1                           (0 << 19)
138 #define SPI_RX_TRIG_4                           (1 << 19)
139 #define SPI_RX_TRIG_8                           (2 << 19)
140 #define SPI_RX_TRIG_16                          (3 << 19)
141 #define SPI_RX_TRIG_MASK                        (3 << 19)
142 #define SPI_IE_TX                               (1 << 28)
143 #define SPI_IE_RX                               (1 << 29)
144 #define SPI_CONT                                (1 << 30)
145 #define SPI_DMA                                 (1 << 31)
146 #define SPI_DMA_EN                              SPI_DMA
147
148 #define SPI_DMA_BLK                             0x024
149 #define SPI_DMA_BLK_SET(x)                      (((x) & 0xFFFF) << 0)
150
151 #define SPI_TX_FIFO                             0x108
152 #define SPI_RX_FIFO                             0x188
153 #define MAX_CHIP_SELECT                         4
154 #define SPI_FIFO_DEPTH                          64
155 #define DATA_DIR_TX                             (1 << 0)
156 #define DATA_DIR_RX                             (1 << 1)
157
158 #define SPI_DMA_TIMEOUT                         (msecs_to_jiffies(1000))
159 #define DEFAULT_SPI_DMA_BUF_LEN                 (16*1024)
160 #define TX_FIFO_EMPTY_COUNT_MAX                 SPI_TX_FIFO_EMPTY_COUNT(0x40)
161 #define RX_FIFO_FULL_COUNT_ZERO                 SPI_RX_FIFO_FULL_COUNT(0)
162 #define MAX_HOLD_CYCLES                         16
163 #define SPI_DEFAULT_SPEED                       25000000
164
165 struct tegra_spi_data {
166         struct device                           *dev;
167         struct spi_master                       *master;
168         spinlock_t                              lock;
169
170         struct clk                              *clk;
171         struct reset_control                    *rst;
172         void __iomem                            *base;
173         phys_addr_t                             phys;
174         unsigned                                irq;
175         u32                                     spi_max_frequency;
176         u32                                     cur_speed;
177
178         struct spi_device                       *cur_spi;
179         struct spi_device                       *cs_control;
180         unsigned                                cur_pos;
181         unsigned                                words_per_32bit;
182         unsigned                                bytes_per_word;
183         unsigned                                curr_dma_words;
184         unsigned                                cur_direction;
185
186         unsigned                                cur_rx_pos;
187         unsigned                                cur_tx_pos;
188
189         unsigned                                dma_buf_size;
190         unsigned                                max_buf_size;
191         bool                                    is_curr_dma_xfer;
192
193         struct completion                       rx_dma_complete;
194         struct completion                       tx_dma_complete;
195
196         u32                                     tx_status;
197         u32                                     rx_status;
198         u32                                     status_reg;
199         bool                                    is_packed;
200
201         u32                                     command1_reg;
202         u32                                     dma_control_reg;
203         u32                                     def_command1_reg;
204
205         struct completion                       xfer_completion;
206         struct spi_transfer                     *curr_xfer;
207         struct dma_chan                         *rx_dma_chan;
208         u32                                     *rx_dma_buf;
209         dma_addr_t                              rx_dma_phys;
210         struct dma_async_tx_descriptor          *rx_dma_desc;
211
212         struct dma_chan                         *tx_dma_chan;
213         u32                                     *tx_dma_buf;
214         dma_addr_t                              tx_dma_phys;
215         struct dma_async_tx_descriptor          *tx_dma_desc;
216 };
217
218 static int tegra_spi_runtime_suspend(struct device *dev);
219 static int tegra_spi_runtime_resume(struct device *dev);
220
221 static inline u32 tegra_spi_readl(struct tegra_spi_data *tspi,
222                 unsigned long reg)
223 {
224         return readl(tspi->base + reg);
225 }
226
227 static inline void tegra_spi_writel(struct tegra_spi_data *tspi,
228                 u32 val, unsigned long reg)
229 {
230         writel(val, tspi->base + reg);
231
232         /* Read back register to make sure that register writes completed */
233         if (reg != SPI_TX_FIFO)
234                 readl(tspi->base + SPI_COMMAND1);
235 }
236
237 static void tegra_spi_clear_status(struct tegra_spi_data *tspi)
238 {
239         u32 val;
240
241         /* Write 1 to clear status register */
242         val = tegra_spi_readl(tspi, SPI_TRANS_STATUS);
243         tegra_spi_writel(tspi, val, SPI_TRANS_STATUS);
244
245         /* Clear fifo status error if any */
246         val = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
247         if (val & SPI_ERR)
248                 tegra_spi_writel(tspi, SPI_ERR | SPI_FIFO_ERROR,
249                                 SPI_FIFO_STATUS);
250 }
251
252 static unsigned tegra_spi_calculate_curr_xfer_param(
253         struct spi_device *spi, struct tegra_spi_data *tspi,
254         struct spi_transfer *t)
255 {
256         unsigned remain_len = t->len - tspi->cur_pos;
257         unsigned max_word;
258         unsigned bits_per_word = t->bits_per_word;
259         unsigned max_len;
260         unsigned total_fifo_words;
261
262         tspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8);
263
264         if (bits_per_word == 8 || bits_per_word == 16) {
265                 tspi->is_packed = 1;
266                 tspi->words_per_32bit = 32/bits_per_word;
267         } else {
268                 tspi->is_packed = 0;
269                 tspi->words_per_32bit = 1;
270         }
271
272         if (tspi->is_packed) {
273                 max_len = min(remain_len, tspi->max_buf_size);
274                 tspi->curr_dma_words = max_len/tspi->bytes_per_word;
275                 total_fifo_words = (max_len + 3) / 4;
276         } else {
277                 max_word = (remain_len - 1) / tspi->bytes_per_word + 1;
278                 max_word = min(max_word, tspi->max_buf_size/4);
279                 tspi->curr_dma_words = max_word;
280                 total_fifo_words = max_word;
281         }
282         return total_fifo_words;
283 }
284
285 static unsigned tegra_spi_fill_tx_fifo_from_client_txbuf(
286         struct tegra_spi_data *tspi, struct spi_transfer *t)
287 {
288         unsigned nbytes;
289         unsigned tx_empty_count;
290         u32 fifo_status;
291         unsigned max_n_32bit;
292         unsigned i, count;
293         unsigned int written_words;
294         unsigned fifo_words_left;
295         u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
296
297         fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
298         tx_empty_count = SPI_TX_FIFO_EMPTY_COUNT(fifo_status);
299
300         if (tspi->is_packed) {
301                 fifo_words_left = tx_empty_count * tspi->words_per_32bit;
302                 written_words = min(fifo_words_left, tspi->curr_dma_words);
303                 nbytes = written_words * tspi->bytes_per_word;
304                 max_n_32bit = DIV_ROUND_UP(nbytes, 4);
305                 for (count = 0; count < max_n_32bit; count++) {
306                         u32 x = 0;
307                         for (i = 0; (i < 4) && nbytes; i++, nbytes--)
308                                 x |= (u32)(*tx_buf++) << (i * 8);
309                         tegra_spi_writel(tspi, x, SPI_TX_FIFO);
310                 }
311         } else {
312                 max_n_32bit = min(tspi->curr_dma_words,  tx_empty_count);
313                 written_words = max_n_32bit;
314                 nbytes = written_words * tspi->bytes_per_word;
315                 for (count = 0; count < max_n_32bit; count++) {
316                         u32 x = 0;
317                         for (i = 0; nbytes && (i < tspi->bytes_per_word);
318                                                         i++, nbytes--)
319                                 x |= (u32)(*tx_buf++) << (i * 8);
320                         tegra_spi_writel(tspi, x, SPI_TX_FIFO);
321                 }
322         }
323         tspi->cur_tx_pos += written_words * tspi->bytes_per_word;
324         return written_words;
325 }
326
327 static unsigned int tegra_spi_read_rx_fifo_to_client_rxbuf(
328                 struct tegra_spi_data *tspi, struct spi_transfer *t)
329 {
330         unsigned rx_full_count;
331         u32 fifo_status;
332         unsigned i, count;
333         unsigned int read_words = 0;
334         unsigned len;
335         u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos;
336
337         fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
338         rx_full_count = SPI_RX_FIFO_FULL_COUNT(fifo_status);
339         if (tspi->is_packed) {
340                 len = tspi->curr_dma_words * tspi->bytes_per_word;
341                 for (count = 0; count < rx_full_count; count++) {
342                         u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO);
343                         for (i = 0; len && (i < 4); i++, len--)
344                                 *rx_buf++ = (x >> i*8) & 0xFF;
345                 }
346                 tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
347                 read_words += tspi->curr_dma_words;
348         } else {
349                 u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
350                 for (count = 0; count < rx_full_count; count++) {
351                         u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO) & rx_mask;
352                         for (i = 0; (i < tspi->bytes_per_word); i++)
353                                 *rx_buf++ = (x >> (i*8)) & 0xFF;
354                 }
355                 tspi->cur_rx_pos += rx_full_count * tspi->bytes_per_word;
356                 read_words += rx_full_count;
357         }
358         return read_words;
359 }
360
361 static void tegra_spi_copy_client_txbuf_to_spi_txbuf(
362                 struct tegra_spi_data *tspi, struct spi_transfer *t)
363 {
364         /* Make the dma buffer to read by cpu */
365         dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys,
366                                 tspi->dma_buf_size, DMA_TO_DEVICE);
367
368         if (tspi->is_packed) {
369                 unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
370                 memcpy(tspi->tx_dma_buf, t->tx_buf + tspi->cur_pos, len);
371         } else {
372                 unsigned int i;
373                 unsigned int count;
374                 u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
375                 unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
376
377                 for (count = 0; count < tspi->curr_dma_words; count++) {
378                         u32 x = 0;
379                         for (i = 0; consume && (i < tspi->bytes_per_word);
380                                                         i++, consume--)
381                                 x |= (u32)(*tx_buf++) << (i * 8);
382                         tspi->tx_dma_buf[count] = x;
383                 }
384         }
385         tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
386
387         /* Make the dma buffer to read by dma */
388         dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys,
389                                 tspi->dma_buf_size, DMA_TO_DEVICE);
390 }
391
392 static void tegra_spi_copy_spi_rxbuf_to_client_rxbuf(
393                 struct tegra_spi_data *tspi, struct spi_transfer *t)
394 {
395         /* Make the dma buffer to read by cpu */
396         dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys,
397                 tspi->dma_buf_size, DMA_FROM_DEVICE);
398
399         if (tspi->is_packed) {
400                 unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
401                 memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_dma_buf, len);
402         } else {
403                 unsigned int i;
404                 unsigned int count;
405                 unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos;
406                 u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
407
408                 for (count = 0; count < tspi->curr_dma_words; count++) {
409                         u32 x = tspi->rx_dma_buf[count] & rx_mask;
410                         for (i = 0; (i < tspi->bytes_per_word); i++)
411                                 *rx_buf++ = (x >> (i*8)) & 0xFF;
412                 }
413         }
414         tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
415
416         /* Make the dma buffer to read by dma */
417         dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
418                 tspi->dma_buf_size, DMA_FROM_DEVICE);
419 }
420
421 static void tegra_spi_dma_complete(void *args)
422 {
423         struct completion *dma_complete = args;
424
425         complete(dma_complete);
426 }
427
428 static int tegra_spi_start_tx_dma(struct tegra_spi_data *tspi, int len)
429 {
430         reinit_completion(&tspi->tx_dma_complete);
431         tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan,
432                                 tspi->tx_dma_phys, len, DMA_MEM_TO_DEV,
433                                 DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
434         if (!tspi->tx_dma_desc) {
435                 dev_err(tspi->dev, "Not able to get desc for Tx\n");
436                 return -EIO;
437         }
438
439         tspi->tx_dma_desc->callback = tegra_spi_dma_complete;
440         tspi->tx_dma_desc->callback_param = &tspi->tx_dma_complete;
441
442         dmaengine_submit(tspi->tx_dma_desc);
443         dma_async_issue_pending(tspi->tx_dma_chan);
444         return 0;
445 }
446
447 static int tegra_spi_start_rx_dma(struct tegra_spi_data *tspi, int len)
448 {
449         reinit_completion(&tspi->rx_dma_complete);
450         tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan,
451                                 tspi->rx_dma_phys, len, DMA_DEV_TO_MEM,
452                                 DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
453         if (!tspi->rx_dma_desc) {
454                 dev_err(tspi->dev, "Not able to get desc for Rx\n");
455                 return -EIO;
456         }
457
458         tspi->rx_dma_desc->callback = tegra_spi_dma_complete;
459         tspi->rx_dma_desc->callback_param = &tspi->rx_dma_complete;
460
461         dmaengine_submit(tspi->rx_dma_desc);
462         dma_async_issue_pending(tspi->rx_dma_chan);
463         return 0;
464 }
465
466 static int tegra_spi_start_dma_based_transfer(
467                 struct tegra_spi_data *tspi, struct spi_transfer *t)
468 {
469         u32 val;
470         unsigned int len;
471         int ret = 0;
472         u32 status;
473
474         /* Make sure that Rx and Tx fifo are empty */
475         status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
476         if ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
477                 dev_err(tspi->dev, "Rx/Tx fifo are not empty status 0x%08x\n",
478                         (unsigned)status);
479                 return -EIO;
480         }
481
482         val = SPI_DMA_BLK_SET(tspi->curr_dma_words - 1);
483         tegra_spi_writel(tspi, val, SPI_DMA_BLK);
484
485         if (tspi->is_packed)
486                 len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word,
487                                         4) * 4;
488         else
489                 len = tspi->curr_dma_words * 4;
490
491         /* Set attention level based on length of transfer */
492         if (len & 0xF)
493                 val |= SPI_TX_TRIG_1 | SPI_RX_TRIG_1;
494         else if (((len) >> 4) & 0x1)
495                 val |= SPI_TX_TRIG_4 | SPI_RX_TRIG_4;
496         else
497                 val |= SPI_TX_TRIG_8 | SPI_RX_TRIG_8;
498
499         if (tspi->cur_direction & DATA_DIR_TX)
500                 val |= SPI_IE_TX;
501
502         if (tspi->cur_direction & DATA_DIR_RX)
503                 val |= SPI_IE_RX;
504
505         tegra_spi_writel(tspi, val, SPI_DMA_CTL);
506         tspi->dma_control_reg = val;
507
508         if (tspi->cur_direction & DATA_DIR_TX) {
509                 tegra_spi_copy_client_txbuf_to_spi_txbuf(tspi, t);
510                 ret = tegra_spi_start_tx_dma(tspi, len);
511                 if (ret < 0) {
512                         dev_err(tspi->dev,
513                                 "Starting tx dma failed, err %d\n", ret);
514                         return ret;
515                 }
516         }
517
518         if (tspi->cur_direction & DATA_DIR_RX) {
519                 /* Make the dma buffer to read by dma */
520                 dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
521                                 tspi->dma_buf_size, DMA_FROM_DEVICE);
522
523                 ret = tegra_spi_start_rx_dma(tspi, len);
524                 if (ret < 0) {
525                         dev_err(tspi->dev,
526                                 "Starting rx dma failed, err %d\n", ret);
527                         if (tspi->cur_direction & DATA_DIR_TX)
528                                 dmaengine_terminate_all(tspi->tx_dma_chan);
529                         return ret;
530                 }
531         }
532         tspi->is_curr_dma_xfer = true;
533         tspi->dma_control_reg = val;
534
535         val |= SPI_DMA_EN;
536         tegra_spi_writel(tspi, val, SPI_DMA_CTL);
537         return ret;
538 }
539
540 static int tegra_spi_start_cpu_based_transfer(
541                 struct tegra_spi_data *tspi, struct spi_transfer *t)
542 {
543         u32 val;
544         unsigned cur_words;
545
546         if (tspi->cur_direction & DATA_DIR_TX)
547                 cur_words = tegra_spi_fill_tx_fifo_from_client_txbuf(tspi, t);
548         else
549                 cur_words = tspi->curr_dma_words;
550
551         val = SPI_DMA_BLK_SET(cur_words - 1);
552         tegra_spi_writel(tspi, val, SPI_DMA_BLK);
553
554         val = 0;
555         if (tspi->cur_direction & DATA_DIR_TX)
556                 val |= SPI_IE_TX;
557
558         if (tspi->cur_direction & DATA_DIR_RX)
559                 val |= SPI_IE_RX;
560
561         tegra_spi_writel(tspi, val, SPI_DMA_CTL);
562         tspi->dma_control_reg = val;
563
564         tspi->is_curr_dma_xfer = false;
565
566         val |= SPI_DMA_EN;
567         tegra_spi_writel(tspi, val, SPI_DMA_CTL);
568         return 0;
569 }
570
571 static int tegra_spi_init_dma_param(struct tegra_spi_data *tspi,
572                         bool dma_to_memory)
573 {
574         struct dma_chan *dma_chan;
575         u32 *dma_buf;
576         dma_addr_t dma_phys;
577         int ret;
578         struct dma_slave_config dma_sconfig;
579
580         dma_chan = dma_request_slave_channel_reason(tspi->dev,
581                                         dma_to_memory ? "rx" : "tx");
582         if (IS_ERR(dma_chan)) {
583                 ret = PTR_ERR(dma_chan);
584                 if (ret != -EPROBE_DEFER)
585                         dev_err(tspi->dev,
586                                 "Dma channel is not available: %d\n", ret);
587                 return ret;
588         }
589
590         dma_buf = dma_alloc_coherent(tspi->dev, tspi->dma_buf_size,
591                                 &dma_phys, GFP_KERNEL);
592         if (!dma_buf) {
593                 dev_err(tspi->dev, " Not able to allocate the dma buffer\n");
594                 dma_release_channel(dma_chan);
595                 return -ENOMEM;
596         }
597
598         if (dma_to_memory) {
599                 dma_sconfig.src_addr = tspi->phys + SPI_RX_FIFO;
600                 dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
601                 dma_sconfig.src_maxburst = 0;
602         } else {
603                 dma_sconfig.dst_addr = tspi->phys + SPI_TX_FIFO;
604                 dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
605                 dma_sconfig.dst_maxburst = 0;
606         }
607
608         ret = dmaengine_slave_config(dma_chan, &dma_sconfig);
609         if (ret)
610                 goto scrub;
611         if (dma_to_memory) {
612                 tspi->rx_dma_chan = dma_chan;
613                 tspi->rx_dma_buf = dma_buf;
614                 tspi->rx_dma_phys = dma_phys;
615         } else {
616                 tspi->tx_dma_chan = dma_chan;
617                 tspi->tx_dma_buf = dma_buf;
618                 tspi->tx_dma_phys = dma_phys;
619         }
620         return 0;
621
622 scrub:
623         dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
624         dma_release_channel(dma_chan);
625         return ret;
626 }
627
628 static void tegra_spi_deinit_dma_param(struct tegra_spi_data *tspi,
629         bool dma_to_memory)
630 {
631         u32 *dma_buf;
632         dma_addr_t dma_phys;
633         struct dma_chan *dma_chan;
634
635         if (dma_to_memory) {
636                 dma_buf = tspi->rx_dma_buf;
637                 dma_chan = tspi->rx_dma_chan;
638                 dma_phys = tspi->rx_dma_phys;
639                 tspi->rx_dma_chan = NULL;
640                 tspi->rx_dma_buf = NULL;
641         } else {
642                 dma_buf = tspi->tx_dma_buf;
643                 dma_chan = tspi->tx_dma_chan;
644                 dma_phys = tspi->tx_dma_phys;
645                 tspi->tx_dma_buf = NULL;
646                 tspi->tx_dma_chan = NULL;
647         }
648         if (!dma_chan)
649                 return;
650
651         dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
652         dma_release_channel(dma_chan);
653 }
654
655 static u32 tegra_spi_setup_transfer_one(struct spi_device *spi,
656                 struct spi_transfer *t, bool is_first_of_msg)
657 {
658         struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
659         u32 speed = t->speed_hz;
660         u8 bits_per_word = t->bits_per_word;
661         u32 command1;
662         int req_mode;
663
664         if (speed != tspi->cur_speed) {
665                 clk_set_rate(tspi->clk, speed);
666                 tspi->cur_speed = speed;
667         }
668
669         tspi->cur_spi = spi;
670         tspi->cur_pos = 0;
671         tspi->cur_rx_pos = 0;
672         tspi->cur_tx_pos = 0;
673         tspi->curr_xfer = t;
674
675         if (is_first_of_msg) {
676                 tegra_spi_clear_status(tspi);
677
678                 command1 = tspi->def_command1_reg;
679                 command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
680
681                 command1 &= ~SPI_CONTROL_MODE_MASK;
682                 req_mode = spi->mode & 0x3;
683                 if (req_mode == SPI_MODE_0)
684                         command1 |= SPI_CONTROL_MODE_0;
685                 else if (req_mode == SPI_MODE_1)
686                         command1 |= SPI_CONTROL_MODE_1;
687                 else if (req_mode == SPI_MODE_2)
688                         command1 |= SPI_CONTROL_MODE_2;
689                 else if (req_mode == SPI_MODE_3)
690                         command1 |= SPI_CONTROL_MODE_3;
691
692                 if (tspi->cs_control) {
693                         if (tspi->cs_control != spi)
694                                 tegra_spi_writel(tspi, command1, SPI_COMMAND1);
695                         tspi->cs_control = NULL;
696                 } else
697                         tegra_spi_writel(tspi, command1, SPI_COMMAND1);
698
699                 command1 |= SPI_CS_SW_HW;
700                 if (spi->mode & SPI_CS_HIGH)
701                         command1 |= SPI_CS_SS_VAL;
702                 else
703                         command1 &= ~SPI_CS_SS_VAL;
704
705                 tegra_spi_writel(tspi, 0, SPI_COMMAND2);
706         } else {
707                 command1 = tspi->command1_reg;
708                 command1 &= ~SPI_BIT_LENGTH(~0);
709                 command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
710         }
711
712         return command1;
713 }
714
715 static int tegra_spi_start_transfer_one(struct spi_device *spi,
716                 struct spi_transfer *t, u32 command1)
717 {
718         struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
719         unsigned total_fifo_words;
720         int ret;
721
722         total_fifo_words = tegra_spi_calculate_curr_xfer_param(spi, tspi, t);
723
724         if (tspi->is_packed)
725                 command1 |= SPI_PACKED;
726
727         command1 &= ~(SPI_CS_SEL_MASK | SPI_TX_EN | SPI_RX_EN);
728         tspi->cur_direction = 0;
729         if (t->rx_buf) {
730                 command1 |= SPI_RX_EN;
731                 tspi->cur_direction |= DATA_DIR_RX;
732         }
733         if (t->tx_buf) {
734                 command1 |= SPI_TX_EN;
735                 tspi->cur_direction |= DATA_DIR_TX;
736         }
737         command1 |= SPI_CS_SEL(spi->chip_select);
738         tegra_spi_writel(tspi, command1, SPI_COMMAND1);
739         tspi->command1_reg = command1;
740
741         dev_dbg(tspi->dev, "The def 0x%x and written 0x%x\n",
742                 tspi->def_command1_reg, (unsigned)command1);
743
744         if (total_fifo_words > SPI_FIFO_DEPTH)
745                 ret = tegra_spi_start_dma_based_transfer(tspi, t);
746         else
747                 ret = tegra_spi_start_cpu_based_transfer(tspi, t);
748         return ret;
749 }
750
751 static int tegra_spi_setup(struct spi_device *spi)
752 {
753         struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
754         u32 val;
755         unsigned long flags;
756         int ret;
757
758         dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n",
759                 spi->bits_per_word,
760                 spi->mode & SPI_CPOL ? "" : "~",
761                 spi->mode & SPI_CPHA ? "" : "~",
762                 spi->max_speed_hz);
763
764         BUG_ON(spi->chip_select >= MAX_CHIP_SELECT);
765
766         /* Set speed to the spi max fequency if spi device has not set */
767         spi->max_speed_hz = spi->max_speed_hz ? : tspi->spi_max_frequency;
768
769         ret = pm_runtime_get_sync(tspi->dev);
770         if (ret < 0) {
771                 dev_err(tspi->dev, "pm runtime failed, e = %d\n", ret);
772                 return ret;
773         }
774
775         spin_lock_irqsave(&tspi->lock, flags);
776         val = tspi->def_command1_reg;
777         if (spi->mode & SPI_CS_HIGH)
778                 val &= ~SPI_CS_POL_INACTIVE(spi->chip_select);
779         else
780                 val |= SPI_CS_POL_INACTIVE(spi->chip_select);
781         tspi->def_command1_reg = val;
782         tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
783         spin_unlock_irqrestore(&tspi->lock, flags);
784
785         pm_runtime_put(tspi->dev);
786         return 0;
787 }
788
789 static void tegra_spi_transfer_delay(int delay)
790 {
791         if (!delay)
792                 return;
793
794         if (delay >= 1000)
795                 mdelay(delay / 1000);
796
797         udelay(delay % 1000);
798 }
799
800 static int tegra_spi_transfer_one_message(struct spi_master *master,
801                         struct spi_message *msg)
802 {
803         bool is_first_msg = true;
804         struct tegra_spi_data *tspi = spi_master_get_devdata(master);
805         struct spi_transfer *xfer;
806         struct spi_device *spi = msg->spi;
807         int ret;
808         bool skip = false;
809
810         msg->status = 0;
811         msg->actual_length = 0;
812
813         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
814                 u32 cmd1;
815
816                 reinit_completion(&tspi->xfer_completion);
817
818                 cmd1 = tegra_spi_setup_transfer_one(spi, xfer, is_first_msg);
819
820                 if (!xfer->len) {
821                         ret = 0;
822                         skip = true;
823                         goto complete_xfer;
824                 }
825
826                 ret = tegra_spi_start_transfer_one(spi, xfer, cmd1);
827                 if (ret < 0) {
828                         dev_err(tspi->dev,
829                                 "spi can not start transfer, err %d\n", ret);
830                         goto complete_xfer;
831                 }
832
833                 is_first_msg = false;
834                 ret = wait_for_completion_timeout(&tspi->xfer_completion,
835                                                 SPI_DMA_TIMEOUT);
836                 if (WARN_ON(ret == 0)) {
837                         dev_err(tspi->dev,
838                                 "spi trasfer timeout, err %d\n", ret);
839                         ret = -EIO;
840                         goto complete_xfer;
841                 }
842
843                 if (tspi->tx_status ||  tspi->rx_status) {
844                         dev_err(tspi->dev, "Error in Transfer\n");
845                         ret = -EIO;
846                         goto complete_xfer;
847                 }
848                 msg->actual_length += xfer->len;
849
850 complete_xfer:
851                 if (ret < 0 || skip) {
852                         tegra_spi_writel(tspi, tspi->def_command1_reg,
853                                         SPI_COMMAND1);
854                         tegra_spi_transfer_delay(xfer->delay_usecs);
855                         goto exit;
856                 } else if (msg->transfers.prev == &xfer->transfer_list) {
857                         /* This is the last transfer in message */
858                         if (xfer->cs_change)
859                                 tspi->cs_control = spi;
860                         else {
861                                 tegra_spi_writel(tspi, tspi->def_command1_reg,
862                                                 SPI_COMMAND1);
863                                 tegra_spi_transfer_delay(xfer->delay_usecs);
864                         }
865                 } else if (xfer->cs_change) {
866                         tegra_spi_writel(tspi, tspi->def_command1_reg,
867                                         SPI_COMMAND1);
868                         tegra_spi_transfer_delay(xfer->delay_usecs);
869                 }
870
871         }
872         ret = 0;
873 exit:
874         msg->status = ret;
875         spi_finalize_current_message(master);
876         return ret;
877 }
878
879 static irqreturn_t handle_cpu_based_xfer(struct tegra_spi_data *tspi)
880 {
881         struct spi_transfer *t = tspi->curr_xfer;
882         unsigned long flags;
883
884         spin_lock_irqsave(&tspi->lock, flags);
885         if (tspi->tx_status ||  tspi->rx_status) {
886                 dev_err(tspi->dev, "CpuXfer ERROR bit set 0x%x\n",
887                         tspi->status_reg);
888                 dev_err(tspi->dev, "CpuXfer 0x%08x:0x%08x\n",
889                         tspi->command1_reg, tspi->dma_control_reg);
890                 reset_control_assert(tspi->rst);
891                 udelay(2);
892                 reset_control_deassert(tspi->rst);
893                 complete(&tspi->xfer_completion);
894                 goto exit;
895         }
896
897         if (tspi->cur_direction & DATA_DIR_RX)
898                 tegra_spi_read_rx_fifo_to_client_rxbuf(tspi, t);
899
900         if (tspi->cur_direction & DATA_DIR_TX)
901                 tspi->cur_pos = tspi->cur_tx_pos;
902         else
903                 tspi->cur_pos = tspi->cur_rx_pos;
904
905         if (tspi->cur_pos == t->len) {
906                 complete(&tspi->xfer_completion);
907                 goto exit;
908         }
909
910         tegra_spi_calculate_curr_xfer_param(tspi->cur_spi, tspi, t);
911         tegra_spi_start_cpu_based_transfer(tspi, t);
912 exit:
913         spin_unlock_irqrestore(&tspi->lock, flags);
914         return IRQ_HANDLED;
915 }
916
917 static irqreturn_t handle_dma_based_xfer(struct tegra_spi_data *tspi)
918 {
919         struct spi_transfer *t = tspi->curr_xfer;
920         long wait_status;
921         int err = 0;
922         unsigned total_fifo_words;
923         unsigned long flags;
924
925         /* Abort dmas if any error */
926         if (tspi->cur_direction & DATA_DIR_TX) {
927                 if (tspi->tx_status) {
928                         dmaengine_terminate_all(tspi->tx_dma_chan);
929                         err += 1;
930                 } else {
931                         wait_status = wait_for_completion_interruptible_timeout(
932                                 &tspi->tx_dma_complete, SPI_DMA_TIMEOUT);
933                         if (wait_status <= 0) {
934                                 dmaengine_terminate_all(tspi->tx_dma_chan);
935                                 dev_err(tspi->dev, "TxDma Xfer failed\n");
936                                 err += 1;
937                         }
938                 }
939         }
940
941         if (tspi->cur_direction & DATA_DIR_RX) {
942                 if (tspi->rx_status) {
943                         dmaengine_terminate_all(tspi->rx_dma_chan);
944                         err += 2;
945                 } else {
946                         wait_status = wait_for_completion_interruptible_timeout(
947                                 &tspi->rx_dma_complete, SPI_DMA_TIMEOUT);
948                         if (wait_status <= 0) {
949                                 dmaengine_terminate_all(tspi->rx_dma_chan);
950                                 dev_err(tspi->dev, "RxDma Xfer failed\n");
951                                 err += 2;
952                         }
953                 }
954         }
955
956         spin_lock_irqsave(&tspi->lock, flags);
957         if (err) {
958                 dev_err(tspi->dev, "DmaXfer: ERROR bit set 0x%x\n",
959                         tspi->status_reg);
960                 dev_err(tspi->dev, "DmaXfer 0x%08x:0x%08x\n",
961                         tspi->command1_reg, tspi->dma_control_reg);
962                 reset_control_assert(tspi->rst);
963                 udelay(2);
964                 reset_control_deassert(tspi->rst);
965                 complete(&tspi->xfer_completion);
966                 spin_unlock_irqrestore(&tspi->lock, flags);
967                 return IRQ_HANDLED;
968         }
969
970         if (tspi->cur_direction & DATA_DIR_RX)
971                 tegra_spi_copy_spi_rxbuf_to_client_rxbuf(tspi, t);
972
973         if (tspi->cur_direction & DATA_DIR_TX)
974                 tspi->cur_pos = tspi->cur_tx_pos;
975         else
976                 tspi->cur_pos = tspi->cur_rx_pos;
977
978         if (tspi->cur_pos == t->len) {
979                 complete(&tspi->xfer_completion);
980                 goto exit;
981         }
982
983         /* Continue transfer in current message */
984         total_fifo_words = tegra_spi_calculate_curr_xfer_param(tspi->cur_spi,
985                                                         tspi, t);
986         if (total_fifo_words > SPI_FIFO_DEPTH)
987                 err = tegra_spi_start_dma_based_transfer(tspi, t);
988         else
989                 err = tegra_spi_start_cpu_based_transfer(tspi, t);
990
991 exit:
992         spin_unlock_irqrestore(&tspi->lock, flags);
993         return IRQ_HANDLED;
994 }
995
996 static irqreturn_t tegra_spi_isr_thread(int irq, void *context_data)
997 {
998         struct tegra_spi_data *tspi = context_data;
999
1000         if (!tspi->is_curr_dma_xfer)
1001                 return handle_cpu_based_xfer(tspi);
1002         return handle_dma_based_xfer(tspi);
1003 }
1004
1005 static irqreturn_t tegra_spi_isr(int irq, void *context_data)
1006 {
1007         struct tegra_spi_data *tspi = context_data;
1008
1009         tspi->status_reg = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
1010         if (tspi->cur_direction & DATA_DIR_TX)
1011                 tspi->tx_status = tspi->status_reg &
1012                                         (SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF);
1013
1014         if (tspi->cur_direction & DATA_DIR_RX)
1015                 tspi->rx_status = tspi->status_reg &
1016                                         (SPI_RX_FIFO_OVF | SPI_RX_FIFO_UNF);
1017         tegra_spi_clear_status(tspi);
1018
1019         return IRQ_WAKE_THREAD;
1020 }
1021
1022 static void tegra_spi_parse_dt(struct platform_device *pdev,
1023         struct tegra_spi_data *tspi)
1024 {
1025         struct device_node *np = pdev->dev.of_node;
1026
1027         if (of_property_read_u32(np, "spi-max-frequency",
1028                                 &tspi->spi_max_frequency))
1029                 tspi->spi_max_frequency = 25000000; /* 25MHz */
1030 }
1031
1032 static struct of_device_id tegra_spi_of_match[] = {
1033         { .compatible = "nvidia,tegra114-spi", },
1034         {}
1035 };
1036 MODULE_DEVICE_TABLE(of, tegra_spi_of_match);
1037
1038 static int tegra_spi_probe(struct platform_device *pdev)
1039 {
1040         struct spi_master       *master;
1041         struct tegra_spi_data   *tspi;
1042         struct resource         *r;
1043         int ret, spi_irq;
1044
1045         master = spi_alloc_master(&pdev->dev, sizeof(*tspi));
1046         if (!master) {
1047                 dev_err(&pdev->dev, "master allocation failed\n");
1048                 return -ENOMEM;
1049         }
1050         platform_set_drvdata(pdev, master);
1051         tspi = spi_master_get_devdata(master);
1052
1053         /* Parse DT */
1054         tegra_spi_parse_dt(pdev, tspi);
1055
1056         /* the spi->mode bits understood by this driver: */
1057         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1058         master->setup = tegra_spi_setup;
1059         master->transfer_one_message = tegra_spi_transfer_one_message;
1060         master->num_chipselect = MAX_CHIP_SELECT;
1061         master->bus_num = -1;
1062         master->auto_runtime_pm = true;
1063
1064         tspi->master = master;
1065         tspi->dev = &pdev->dev;
1066         spin_lock_init(&tspi->lock);
1067
1068         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1069         tspi->base = devm_ioremap_resource(&pdev->dev, r);
1070         if (IS_ERR(tspi->base)) {
1071                 ret = PTR_ERR(tspi->base);
1072                 goto exit_free_master;
1073         }
1074         tspi->phys = r->start;
1075
1076         spi_irq = platform_get_irq(pdev, 0);
1077         tspi->irq = spi_irq;
1078         ret = request_threaded_irq(tspi->irq, tegra_spi_isr,
1079                         tegra_spi_isr_thread, IRQF_ONESHOT,
1080                         dev_name(&pdev->dev), tspi);
1081         if (ret < 0) {
1082                 dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
1083                                         tspi->irq);
1084                 goto exit_free_master;
1085         }
1086
1087         tspi->clk = devm_clk_get(&pdev->dev, "spi");
1088         if (IS_ERR(tspi->clk)) {
1089                 dev_err(&pdev->dev, "can not get clock\n");
1090                 ret = PTR_ERR(tspi->clk);
1091                 goto exit_free_irq;
1092         }
1093
1094         tspi->rst = devm_reset_control_get(&pdev->dev, "spi");
1095         if (IS_ERR(tspi->rst)) {
1096                 dev_err(&pdev->dev, "can not get reset\n");
1097                 ret = PTR_ERR(tspi->rst);
1098                 goto exit_free_irq;
1099         }
1100
1101         tspi->max_buf_size = SPI_FIFO_DEPTH << 2;
1102         tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN;
1103
1104         ret = tegra_spi_init_dma_param(tspi, true);
1105         if (ret < 0)
1106                 goto exit_free_irq;
1107         ret = tegra_spi_init_dma_param(tspi, false);
1108         if (ret < 0)
1109                 goto exit_rx_dma_free;
1110         tspi->max_buf_size = tspi->dma_buf_size;
1111         init_completion(&tspi->tx_dma_complete);
1112         init_completion(&tspi->rx_dma_complete);
1113
1114         init_completion(&tspi->xfer_completion);
1115
1116         pm_runtime_enable(&pdev->dev);
1117         if (!pm_runtime_enabled(&pdev->dev)) {
1118                 ret = tegra_spi_runtime_resume(&pdev->dev);
1119                 if (ret)
1120                         goto exit_pm_disable;
1121         }
1122
1123         ret = pm_runtime_get_sync(&pdev->dev);
1124         if (ret < 0) {
1125                 dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
1126                 goto exit_pm_disable;
1127         }
1128         tspi->def_command1_reg  = SPI_M_S;
1129         tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
1130         pm_runtime_put(&pdev->dev);
1131
1132         master->dev.of_node = pdev->dev.of_node;
1133         ret = devm_spi_register_master(&pdev->dev, master);
1134         if (ret < 0) {
1135                 dev_err(&pdev->dev, "can not register to master err %d\n", ret);
1136                 goto exit_pm_disable;
1137         }
1138         return ret;
1139
1140 exit_pm_disable:
1141         pm_runtime_disable(&pdev->dev);
1142         if (!pm_runtime_status_suspended(&pdev->dev))
1143                 tegra_spi_runtime_suspend(&pdev->dev);
1144         tegra_spi_deinit_dma_param(tspi, false);
1145 exit_rx_dma_free:
1146         tegra_spi_deinit_dma_param(tspi, true);
1147 exit_free_irq:
1148         free_irq(spi_irq, tspi);
1149 exit_free_master:
1150         spi_master_put(master);
1151         return ret;
1152 }
1153
1154 static int tegra_spi_remove(struct platform_device *pdev)
1155 {
1156         struct spi_master *master = platform_get_drvdata(pdev);
1157         struct tegra_spi_data   *tspi = spi_master_get_devdata(master);
1158
1159         free_irq(tspi->irq, tspi);
1160
1161         if (tspi->tx_dma_chan)
1162                 tegra_spi_deinit_dma_param(tspi, false);
1163
1164         if (tspi->rx_dma_chan)
1165                 tegra_spi_deinit_dma_param(tspi, true);
1166
1167         pm_runtime_disable(&pdev->dev);
1168         if (!pm_runtime_status_suspended(&pdev->dev))
1169                 tegra_spi_runtime_suspend(&pdev->dev);
1170
1171         return 0;
1172 }
1173
1174 #ifdef CONFIG_PM_SLEEP
1175 static int tegra_spi_suspend(struct device *dev)
1176 {
1177         struct spi_master *master = dev_get_drvdata(dev);
1178
1179         return spi_master_suspend(master);
1180 }
1181
1182 static int tegra_spi_resume(struct device *dev)
1183 {
1184         struct spi_master *master = dev_get_drvdata(dev);
1185         struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1186         int ret;
1187
1188         ret = pm_runtime_get_sync(dev);
1189         if (ret < 0) {
1190                 dev_err(dev, "pm runtime failed, e = %d\n", ret);
1191                 return ret;
1192         }
1193         tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
1194         pm_runtime_put(dev);
1195
1196         return spi_master_resume(master);
1197 }
1198 #endif
1199
1200 static int tegra_spi_runtime_suspend(struct device *dev)
1201 {
1202         struct spi_master *master = dev_get_drvdata(dev);
1203         struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1204
1205         /* Flush all write which are in PPSB queue by reading back */
1206         tegra_spi_readl(tspi, SPI_COMMAND1);
1207
1208         clk_disable_unprepare(tspi->clk);
1209         return 0;
1210 }
1211
1212 static int tegra_spi_runtime_resume(struct device *dev)
1213 {
1214         struct spi_master *master = dev_get_drvdata(dev);
1215         struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1216         int ret;
1217
1218         ret = clk_prepare_enable(tspi->clk);
1219         if (ret < 0) {
1220                 dev_err(tspi->dev, "clk_prepare failed: %d\n", ret);
1221                 return ret;
1222         }
1223         return 0;
1224 }
1225
1226 static const struct dev_pm_ops tegra_spi_pm_ops = {
1227         SET_RUNTIME_PM_OPS(tegra_spi_runtime_suspend,
1228                 tegra_spi_runtime_resume, NULL)
1229         SET_SYSTEM_SLEEP_PM_OPS(tegra_spi_suspend, tegra_spi_resume)
1230 };
1231 static struct platform_driver tegra_spi_driver = {
1232         .driver = {
1233                 .name           = "spi-tegra114",
1234                 .owner          = THIS_MODULE,
1235                 .pm             = &tegra_spi_pm_ops,
1236                 .of_match_table = tegra_spi_of_match,
1237         },
1238         .probe =        tegra_spi_probe,
1239         .remove =       tegra_spi_remove,
1240 };
1241 module_platform_driver(tegra_spi_driver);
1242
1243 MODULE_ALIAS("platform:spi-tegra114");
1244 MODULE_DESCRIPTION("NVIDIA Tegra114 SPI Controller Driver");
1245 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1246 MODULE_LICENSE("GPL v2");