Merge tag 'i2c-for-6.6-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa...
[platform/kernel/linux-starfive.git] / drivers / spi / spi-sun6i.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2012 - 2014 Allwinner Tech
4  * Pan Nan <pannan@allwinnertech.com>
5  *
6  * Copyright (C) 2014 Maxime Ripard
7  * Maxime Ripard <maxime.ripard@free-electrons.com>
8  */
9
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/delay.h>
13 #include <linux/device.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/of.h>
18 #include <linux/platform_device.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/reset.h>
21 #include <linux/dmaengine.h>
22
23 #include <linux/spi/spi.h>
24
25 #define SUN6I_AUTOSUSPEND_TIMEOUT       2000
26
27 #define SUN6I_FIFO_DEPTH                128
28 #define SUN8I_FIFO_DEPTH                64
29
30 #define SUN6I_GBL_CTL_REG               0x04
31 #define SUN6I_GBL_CTL_BUS_ENABLE                BIT(0)
32 #define SUN6I_GBL_CTL_MASTER                    BIT(1)
33 #define SUN6I_GBL_CTL_TP                        BIT(7)
34 #define SUN6I_GBL_CTL_RST                       BIT(31)
35
36 #define SUN6I_TFR_CTL_REG               0x08
37 #define SUN6I_TFR_CTL_CPHA                      BIT(0)
38 #define SUN6I_TFR_CTL_CPOL                      BIT(1)
39 #define SUN6I_TFR_CTL_SPOL                      BIT(2)
40 #define SUN6I_TFR_CTL_CS_MASK                   0x30
41 #define SUN6I_TFR_CTL_CS(cs)                    (((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
42 #define SUN6I_TFR_CTL_CS_MANUAL                 BIT(6)
43 #define SUN6I_TFR_CTL_CS_LEVEL                  BIT(7)
44 #define SUN6I_TFR_CTL_DHB                       BIT(8)
45 #define SUN6I_TFR_CTL_SDC                       BIT(11)
46 #define SUN6I_TFR_CTL_FBS                       BIT(12)
47 #define SUN6I_TFR_CTL_SDM                       BIT(13)
48 #define SUN6I_TFR_CTL_XCH                       BIT(31)
49
50 #define SUN6I_INT_CTL_REG               0x10
51 #define SUN6I_INT_CTL_RF_RDY                    BIT(0)
52 #define SUN6I_INT_CTL_TF_ERQ                    BIT(4)
53 #define SUN6I_INT_CTL_RF_OVF                    BIT(8)
54 #define SUN6I_INT_CTL_TC                        BIT(12)
55
56 #define SUN6I_INT_STA_REG               0x14
57
58 #define SUN6I_FIFO_CTL_REG              0x18
59 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK   0xff
60 #define SUN6I_FIFO_CTL_RF_DRQ_EN                BIT(8)
61 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS   0
62 #define SUN6I_FIFO_CTL_RF_RST                   BIT(15)
63 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK   0xff
64 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS   16
65 #define SUN6I_FIFO_CTL_TF_DRQ_EN                BIT(24)
66 #define SUN6I_FIFO_CTL_TF_RST                   BIT(31)
67
68 #define SUN6I_FIFO_STA_REG              0x1c
69 #define SUN6I_FIFO_STA_RF_CNT_MASK              GENMASK(7, 0)
70 #define SUN6I_FIFO_STA_TF_CNT_MASK              GENMASK(23, 16)
71
72 #define SUN6I_CLK_CTL_REG               0x24
73 #define SUN6I_CLK_CTL_CDR2_MASK                 0xff
74 #define SUN6I_CLK_CTL_CDR2(div)                 (((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
75 #define SUN6I_CLK_CTL_CDR1_MASK                 0xf
76 #define SUN6I_CLK_CTL_CDR1(div)                 (((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
77 #define SUN6I_CLK_CTL_DRS                       BIT(12)
78
79 #define SUN6I_MAX_XFER_SIZE             0xffffff
80
81 #define SUN6I_BURST_CNT_REG             0x30
82
83 #define SUN6I_XMIT_CNT_REG              0x34
84
85 #define SUN6I_BURST_CTL_CNT_REG         0x38
86 #define SUN6I_BURST_CTL_CNT_STC_MASK            GENMASK(23, 0)
87 #define SUN6I_BURST_CTL_CNT_DRM                 BIT(28)
88 #define SUN6I_BURST_CTL_CNT_QUAD_EN             BIT(29)
89
90 #define SUN6I_TXDATA_REG                0x200
91 #define SUN6I_RXDATA_REG                0x300
92
93 struct sun6i_spi_cfg {
94         unsigned long           fifo_depth;
95         bool                    has_clk_ctl;
96         u32                     mode_bits;
97 };
98
99 struct sun6i_spi {
100         struct spi_master       *master;
101         void __iomem            *base_addr;
102         dma_addr_t              dma_addr_rx;
103         dma_addr_t              dma_addr_tx;
104         struct clk              *hclk;
105         struct clk              *mclk;
106         struct reset_control    *rstc;
107
108         struct completion       done;
109         struct completion       dma_rx_done;
110
111         const u8                *tx_buf;
112         u8                      *rx_buf;
113         int                     len;
114         const struct sun6i_spi_cfg *cfg;
115 };
116
117 static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
118 {
119         return readl(sspi->base_addr + reg);
120 }
121
122 static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
123 {
124         writel(value, sspi->base_addr + reg);
125 }
126
127 static inline u32 sun6i_spi_get_rx_fifo_count(struct sun6i_spi *sspi)
128 {
129         u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
130
131         return FIELD_GET(SUN6I_FIFO_STA_RF_CNT_MASK, reg);
132 }
133
134 static inline u32 sun6i_spi_get_tx_fifo_count(struct sun6i_spi *sspi)
135 {
136         u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
137
138         return FIELD_GET(SUN6I_FIFO_STA_TF_CNT_MASK, reg);
139 }
140
141 static inline void sun6i_spi_disable_interrupt(struct sun6i_spi *sspi, u32 mask)
142 {
143         u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
144
145         reg &= ~mask;
146         sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
147 }
148
149 static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi)
150 {
151         u32 len;
152         u8 byte;
153
154         /* See how much data is available */
155         len = sun6i_spi_get_rx_fifo_count(sspi);
156
157         while (len--) {
158                 byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
159                 if (sspi->rx_buf)
160                         *sspi->rx_buf++ = byte;
161         }
162 }
163
164 static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi)
165 {
166         u32 cnt;
167         int len;
168         u8 byte;
169
170         /* See how much data we can fit */
171         cnt = sspi->cfg->fifo_depth - sun6i_spi_get_tx_fifo_count(sspi);
172
173         len = min((int)cnt, sspi->len);
174
175         while (len--) {
176                 byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
177                 writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
178                 sspi->len--;
179         }
180 }
181
182 static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
183 {
184         struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
185         u32 reg;
186
187         reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
188         reg &= ~SUN6I_TFR_CTL_CS_MASK;
189         reg |= SUN6I_TFR_CTL_CS(spi_get_chipselect(spi, 0));
190
191         if (enable)
192                 reg |= SUN6I_TFR_CTL_CS_LEVEL;
193         else
194                 reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
195
196         sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
197 }
198
199 static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
200 {
201         return SUN6I_MAX_XFER_SIZE - 1;
202 }
203
204 static void sun6i_spi_dma_rx_cb(void *param)
205 {
206         struct sun6i_spi *sspi = param;
207
208         complete(&sspi->dma_rx_done);
209 }
210
211 static int sun6i_spi_prepare_dma(struct sun6i_spi *sspi,
212                                  struct spi_transfer *tfr)
213 {
214         struct dma_async_tx_descriptor *rxdesc, *txdesc;
215         struct spi_master *master = sspi->master;
216
217         rxdesc = NULL;
218         if (tfr->rx_buf) {
219                 struct dma_slave_config rxconf = {
220                         .direction = DMA_DEV_TO_MEM,
221                         .src_addr = sspi->dma_addr_rx,
222                         .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
223                         .src_maxburst = 8,
224                 };
225
226                 dmaengine_slave_config(master->dma_rx, &rxconf);
227
228                 rxdesc = dmaengine_prep_slave_sg(master->dma_rx,
229                                                  tfr->rx_sg.sgl,
230                                                  tfr->rx_sg.nents,
231                                                  DMA_DEV_TO_MEM,
232                                                  DMA_PREP_INTERRUPT);
233                 if (!rxdesc)
234                         return -EINVAL;
235                 rxdesc->callback_param = sspi;
236                 rxdesc->callback = sun6i_spi_dma_rx_cb;
237         }
238
239         txdesc = NULL;
240         if (tfr->tx_buf) {
241                 struct dma_slave_config txconf = {
242                         .direction = DMA_MEM_TO_DEV,
243                         .dst_addr = sspi->dma_addr_tx,
244                         .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
245                         .dst_maxburst = 8,
246                 };
247
248                 dmaengine_slave_config(master->dma_tx, &txconf);
249
250                 txdesc = dmaengine_prep_slave_sg(master->dma_tx,
251                                                  tfr->tx_sg.sgl,
252                                                  tfr->tx_sg.nents,
253                                                  DMA_MEM_TO_DEV,
254                                                  DMA_PREP_INTERRUPT);
255                 if (!txdesc) {
256                         if (rxdesc)
257                                 dmaengine_terminate_sync(master->dma_rx);
258                         return -EINVAL;
259                 }
260         }
261
262         if (tfr->rx_buf) {
263                 dmaengine_submit(rxdesc);
264                 dma_async_issue_pending(master->dma_rx);
265         }
266
267         if (tfr->tx_buf) {
268                 dmaengine_submit(txdesc);
269                 dma_async_issue_pending(master->dma_tx);
270         }
271
272         return 0;
273 }
274
275 static int sun6i_spi_transfer_one(struct spi_master *master,
276                                   struct spi_device *spi,
277                                   struct spi_transfer *tfr)
278 {
279         struct sun6i_spi *sspi = spi_master_get_devdata(master);
280         unsigned int div, div_cdr1, div_cdr2, timeout;
281         unsigned int start, end, tx_time;
282         unsigned int trig_level;
283         unsigned int tx_len = 0, rx_len = 0, nbits = 0;
284         bool use_dma;
285         int ret = 0;
286         u32 reg;
287
288         if (tfr->len > SUN6I_MAX_XFER_SIZE)
289                 return -EINVAL;
290
291         reinit_completion(&sspi->done);
292         reinit_completion(&sspi->dma_rx_done);
293         sspi->tx_buf = tfr->tx_buf;
294         sspi->rx_buf = tfr->rx_buf;
295         sspi->len = tfr->len;
296         use_dma = master->can_dma ? master->can_dma(master, spi, tfr) : false;
297
298         /* Clear pending interrupts */
299         sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
300
301         /* Reset FIFO */
302         sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
303                         SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
304
305         reg = 0;
306
307         if (!use_dma) {
308                 /*
309                  * Setup FIFO interrupt trigger level
310                  * Here we choose 3/4 of the full fifo depth, as it's
311                  * the hardcoded value used in old generation of Allwinner
312                  * SPI controller. (See spi-sun4i.c)
313                  */
314                 trig_level = sspi->cfg->fifo_depth / 4 * 3;
315         } else {
316                 /*
317                  * Setup FIFO DMA request trigger level
318                  * We choose 1/2 of the full fifo depth, that value will
319                  * be used as DMA burst length.
320                  */
321                 trig_level = sspi->cfg->fifo_depth / 2;
322
323                 if (tfr->tx_buf)
324                         reg |= SUN6I_FIFO_CTL_TF_DRQ_EN;
325                 if (tfr->rx_buf)
326                         reg |= SUN6I_FIFO_CTL_RF_DRQ_EN;
327         }
328
329         reg |= (trig_level << SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS) |
330                (trig_level << SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS);
331
332         sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG, reg);
333
334         /*
335          * Setup the transfer control register: Chip Select,
336          * polarities, etc.
337          */
338         reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
339
340         if (spi->mode & SPI_CPOL)
341                 reg |= SUN6I_TFR_CTL_CPOL;
342         else
343                 reg &= ~SUN6I_TFR_CTL_CPOL;
344
345         if (spi->mode & SPI_CPHA)
346                 reg |= SUN6I_TFR_CTL_CPHA;
347         else
348                 reg &= ~SUN6I_TFR_CTL_CPHA;
349
350         if (spi->mode & SPI_LSB_FIRST)
351                 reg |= SUN6I_TFR_CTL_FBS;
352         else
353                 reg &= ~SUN6I_TFR_CTL_FBS;
354
355         /*
356          * If it's a TX only transfer, we don't want to fill the RX
357          * FIFO with bogus data
358          */
359         if (sspi->rx_buf) {
360                 reg &= ~SUN6I_TFR_CTL_DHB;
361                 rx_len = tfr->len;
362         } else {
363                 reg |= SUN6I_TFR_CTL_DHB;
364         }
365
366         /* We want to control the chip select manually */
367         reg |= SUN6I_TFR_CTL_CS_MANUAL;
368
369         sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
370
371         if (sspi->cfg->has_clk_ctl) {
372                 unsigned int mclk_rate = clk_get_rate(sspi->mclk);
373
374                 /* Ensure that we have a parent clock fast enough */
375                 if (mclk_rate < (2 * tfr->speed_hz)) {
376                         clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
377                         mclk_rate = clk_get_rate(sspi->mclk);
378                 }
379
380                 /*
381                  * Setup clock divider.
382                  *
383                  * We have two choices there. Either we can use the clock
384                  * divide rate 1, which is calculated thanks to this formula:
385                  * SPI_CLK = MOD_CLK / (2 ^ cdr)
386                  * Or we can use CDR2, which is calculated with the formula:
387                  * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
388                  * Wether we use the former or the latter is set through the
389                  * DRS bit.
390                  *
391                  * First try CDR2, and if we can't reach the expected
392                  * frequency, fall back to CDR1.
393                  */
394                 div_cdr1 = DIV_ROUND_UP(mclk_rate, tfr->speed_hz);
395                 div_cdr2 = DIV_ROUND_UP(div_cdr1, 2);
396                 if (div_cdr2 <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
397                         reg = SUN6I_CLK_CTL_CDR2(div_cdr2 - 1) | SUN6I_CLK_CTL_DRS;
398                         tfr->effective_speed_hz = mclk_rate / (2 * div_cdr2);
399                 } else {
400                         div = min(SUN6I_CLK_CTL_CDR1_MASK, order_base_2(div_cdr1));
401                         reg = SUN6I_CLK_CTL_CDR1(div);
402                         tfr->effective_speed_hz = mclk_rate / (1 << div);
403                 }
404
405                 sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
406         } else {
407                 clk_set_rate(sspi->mclk, tfr->speed_hz);
408                 tfr->effective_speed_hz = clk_get_rate(sspi->mclk);
409
410                 /*
411                  * Configure work mode.
412                  *
413                  * There are three work modes depending on the controller clock
414                  * frequency:
415                  * - normal sample mode           : CLK <= 24MHz SDM=1 SDC=0
416                  * - delay half-cycle sample mode : CLK <= 40MHz SDM=0 SDC=0
417                  * - delay one-cycle sample mode  : CLK >= 80MHz SDM=0 SDC=1
418                  */
419                 reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
420                 reg &= ~(SUN6I_TFR_CTL_SDM | SUN6I_TFR_CTL_SDC);
421
422                 if (tfr->effective_speed_hz <= 24000000)
423                         reg |= SUN6I_TFR_CTL_SDM;
424                 else if (tfr->effective_speed_hz >= 80000000)
425                         reg |= SUN6I_TFR_CTL_SDC;
426
427                 sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
428         }
429
430         /* Finally enable the bus - doing so before might raise SCK to HIGH */
431         reg = sun6i_spi_read(sspi, SUN6I_GBL_CTL_REG);
432         reg |= SUN6I_GBL_CTL_BUS_ENABLE;
433         sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG, reg);
434
435         /* Setup the transfer now... */
436         if (sspi->tx_buf) {
437                 tx_len = tfr->len;
438                 nbits = tfr->tx_nbits;
439         } else if (tfr->rx_buf) {
440                 nbits = tfr->rx_nbits;
441         }
442
443         switch (nbits) {
444         case SPI_NBITS_DUAL:
445                 reg = SUN6I_BURST_CTL_CNT_DRM;
446                 break;
447         case SPI_NBITS_QUAD:
448                 reg = SUN6I_BURST_CTL_CNT_QUAD_EN;
449                 break;
450         case SPI_NBITS_SINGLE:
451         default:
452                 reg = FIELD_PREP(SUN6I_BURST_CTL_CNT_STC_MASK, tx_len);
453         }
454
455         /* Setup the counters */
456         sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG, reg);
457         sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, tfr->len);
458         sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, tx_len);
459
460         if (!use_dma) {
461                 /* Fill the TX FIFO */
462                 sun6i_spi_fill_fifo(sspi);
463         } else {
464                 ret = sun6i_spi_prepare_dma(sspi, tfr);
465                 if (ret) {
466                         dev_warn(&master->dev,
467                                  "%s: prepare DMA failed, ret=%d",
468                                  dev_name(&spi->dev), ret);
469                         return ret;
470                 }
471         }
472
473         /* Enable the interrupts */
474         reg = SUN6I_INT_CTL_TC;
475
476         if (!use_dma) {
477                 if (rx_len > sspi->cfg->fifo_depth)
478                         reg |= SUN6I_INT_CTL_RF_RDY;
479                 if (tx_len > sspi->cfg->fifo_depth)
480                         reg |= SUN6I_INT_CTL_TF_ERQ;
481         }
482
483         sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
484
485         /* Start the transfer */
486         reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
487         sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
488
489         tx_time = spi_controller_xfer_timeout(master, tfr);
490         start = jiffies;
491         timeout = wait_for_completion_timeout(&sspi->done,
492                                               msecs_to_jiffies(tx_time));
493
494         if (!use_dma) {
495                 sun6i_spi_drain_fifo(sspi);
496         } else {
497                 if (timeout && rx_len) {
498                         /*
499                          * Even though RX on the peripheral side has finished
500                          * RX DMA might still be in flight
501                          */
502                         timeout = wait_for_completion_timeout(&sspi->dma_rx_done,
503                                                               timeout);
504                         if (!timeout)
505                                 dev_warn(&master->dev, "RX DMA timeout\n");
506                 }
507         }
508
509         end = jiffies;
510         if (!timeout) {
511                 dev_warn(&master->dev,
512                          "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
513                          dev_name(&spi->dev), tfr->len, tfr->speed_hz,
514                          jiffies_to_msecs(end - start), tx_time);
515                 ret = -ETIMEDOUT;
516         }
517
518         sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
519
520         if (ret && use_dma) {
521                 dmaengine_terminate_sync(master->dma_rx);
522                 dmaengine_terminate_sync(master->dma_tx);
523         }
524
525         return ret;
526 }
527
528 static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
529 {
530         struct sun6i_spi *sspi = dev_id;
531         u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
532
533         /* Transfer complete */
534         if (status & SUN6I_INT_CTL_TC) {
535                 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
536                 complete(&sspi->done);
537                 return IRQ_HANDLED;
538         }
539
540         /* Receive FIFO 3/4 full */
541         if (status & SUN6I_INT_CTL_RF_RDY) {
542                 sun6i_spi_drain_fifo(sspi);
543                 /* Only clear the interrupt _after_ draining the FIFO */
544                 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_RF_RDY);
545                 return IRQ_HANDLED;
546         }
547
548         /* Transmit FIFO 3/4 empty */
549         if (status & SUN6I_INT_CTL_TF_ERQ) {
550                 sun6i_spi_fill_fifo(sspi);
551
552                 if (!sspi->len)
553                         /* nothing left to transmit */
554                         sun6i_spi_disable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
555
556                 /* Only clear the interrupt _after_ re-seeding the FIFO */
557                 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TF_ERQ);
558
559                 return IRQ_HANDLED;
560         }
561
562         return IRQ_NONE;
563 }
564
565 static int sun6i_spi_runtime_resume(struct device *dev)
566 {
567         struct spi_master *master = dev_get_drvdata(dev);
568         struct sun6i_spi *sspi = spi_master_get_devdata(master);
569         int ret;
570
571         ret = clk_prepare_enable(sspi->hclk);
572         if (ret) {
573                 dev_err(dev, "Couldn't enable AHB clock\n");
574                 goto out;
575         }
576
577         ret = clk_prepare_enable(sspi->mclk);
578         if (ret) {
579                 dev_err(dev, "Couldn't enable module clock\n");
580                 goto err;
581         }
582
583         ret = reset_control_deassert(sspi->rstc);
584         if (ret) {
585                 dev_err(dev, "Couldn't deassert the device from reset\n");
586                 goto err2;
587         }
588
589         sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
590                         SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
591
592         return 0;
593
594 err2:
595         clk_disable_unprepare(sspi->mclk);
596 err:
597         clk_disable_unprepare(sspi->hclk);
598 out:
599         return ret;
600 }
601
602 static int sun6i_spi_runtime_suspend(struct device *dev)
603 {
604         struct spi_master *master = dev_get_drvdata(dev);
605         struct sun6i_spi *sspi = spi_master_get_devdata(master);
606
607         reset_control_assert(sspi->rstc);
608         clk_disable_unprepare(sspi->mclk);
609         clk_disable_unprepare(sspi->hclk);
610
611         return 0;
612 }
613
614 static bool sun6i_spi_can_dma(struct spi_master *master,
615                               struct spi_device *spi,
616                               struct spi_transfer *xfer)
617 {
618         struct sun6i_spi *sspi = spi_master_get_devdata(master);
619
620         /*
621          * If the number of spi words to transfer is less or equal than
622          * the fifo length we can just fill the fifo and wait for a single
623          * irq, so don't bother setting up dma
624          */
625         return xfer->len > sspi->cfg->fifo_depth;
626 }
627
628 static int sun6i_spi_probe(struct platform_device *pdev)
629 {
630         struct spi_master *master;
631         struct sun6i_spi *sspi;
632         struct resource *mem;
633         int ret = 0, irq;
634
635         master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
636         if (!master) {
637                 dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
638                 return -ENOMEM;
639         }
640
641         platform_set_drvdata(pdev, master);
642         sspi = spi_master_get_devdata(master);
643
644         sspi->base_addr = devm_platform_get_and_ioremap_resource(pdev, 0, &mem);
645         if (IS_ERR(sspi->base_addr)) {
646                 ret = PTR_ERR(sspi->base_addr);
647                 goto err_free_master;
648         }
649
650         irq = platform_get_irq(pdev, 0);
651         if (irq < 0) {
652                 ret = -ENXIO;
653                 goto err_free_master;
654         }
655
656         ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
657                                0, "sun6i-spi", sspi);
658         if (ret) {
659                 dev_err(&pdev->dev, "Cannot request IRQ\n");
660                 goto err_free_master;
661         }
662
663         sspi->master = master;
664         sspi->cfg = of_device_get_match_data(&pdev->dev);
665
666         master->max_speed_hz = 100 * 1000 * 1000;
667         master->min_speed_hz = 3 * 1000;
668         master->use_gpio_descriptors = true;
669         master->set_cs = sun6i_spi_set_cs;
670         master->transfer_one = sun6i_spi_transfer_one;
671         master->num_chipselect = 4;
672         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST |
673                             sspi->cfg->mode_bits;
674         master->bits_per_word_mask = SPI_BPW_MASK(8);
675         master->dev.of_node = pdev->dev.of_node;
676         master->auto_runtime_pm = true;
677         master->max_transfer_size = sun6i_spi_max_transfer_size;
678
679         sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
680         if (IS_ERR(sspi->hclk)) {
681                 dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
682                 ret = PTR_ERR(sspi->hclk);
683                 goto err_free_master;
684         }
685
686         sspi->mclk = devm_clk_get(&pdev->dev, "mod");
687         if (IS_ERR(sspi->mclk)) {
688                 dev_err(&pdev->dev, "Unable to acquire module clock\n");
689                 ret = PTR_ERR(sspi->mclk);
690                 goto err_free_master;
691         }
692
693         init_completion(&sspi->done);
694         init_completion(&sspi->dma_rx_done);
695
696         sspi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
697         if (IS_ERR(sspi->rstc)) {
698                 dev_err(&pdev->dev, "Couldn't get reset controller\n");
699                 ret = PTR_ERR(sspi->rstc);
700                 goto err_free_master;
701         }
702
703         master->dma_tx = dma_request_chan(&pdev->dev, "tx");
704         if (IS_ERR(master->dma_tx)) {
705                 /* Check tx to see if we need defer probing driver */
706                 if (PTR_ERR(master->dma_tx) == -EPROBE_DEFER) {
707                         ret = -EPROBE_DEFER;
708                         goto err_free_master;
709                 }
710                 dev_warn(&pdev->dev, "Failed to request TX DMA channel\n");
711                 master->dma_tx = NULL;
712         }
713
714         master->dma_rx = dma_request_chan(&pdev->dev, "rx");
715         if (IS_ERR(master->dma_rx)) {
716                 if (PTR_ERR(master->dma_rx) == -EPROBE_DEFER) {
717                         ret = -EPROBE_DEFER;
718                         goto err_free_dma_tx;
719                 }
720                 dev_warn(&pdev->dev, "Failed to request RX DMA channel\n");
721                 master->dma_rx = NULL;
722         }
723
724         if (master->dma_tx && master->dma_rx) {
725                 sspi->dma_addr_tx = mem->start + SUN6I_TXDATA_REG;
726                 sspi->dma_addr_rx = mem->start + SUN6I_RXDATA_REG;
727                 master->can_dma = sun6i_spi_can_dma;
728         }
729
730         /*
731          * This wake-up/shutdown pattern is to be able to have the
732          * device woken up, even if runtime_pm is disabled
733          */
734         ret = sun6i_spi_runtime_resume(&pdev->dev);
735         if (ret) {
736                 dev_err(&pdev->dev, "Couldn't resume the device\n");
737                 goto err_free_dma_rx;
738         }
739
740         pm_runtime_set_autosuspend_delay(&pdev->dev, SUN6I_AUTOSUSPEND_TIMEOUT);
741         pm_runtime_use_autosuspend(&pdev->dev);
742         pm_runtime_set_active(&pdev->dev);
743         pm_runtime_enable(&pdev->dev);
744
745         ret = devm_spi_register_master(&pdev->dev, master);
746         if (ret) {
747                 dev_err(&pdev->dev, "cannot register SPI master\n");
748                 goto err_pm_disable;
749         }
750
751         return 0;
752
753 err_pm_disable:
754         pm_runtime_disable(&pdev->dev);
755         sun6i_spi_runtime_suspend(&pdev->dev);
756 err_free_dma_rx:
757         if (master->dma_rx)
758                 dma_release_channel(master->dma_rx);
759 err_free_dma_tx:
760         if (master->dma_tx)
761                 dma_release_channel(master->dma_tx);
762 err_free_master:
763         spi_master_put(master);
764         return ret;
765 }
766
767 static void sun6i_spi_remove(struct platform_device *pdev)
768 {
769         struct spi_master *master = platform_get_drvdata(pdev);
770
771         pm_runtime_force_suspend(&pdev->dev);
772
773         if (master->dma_tx)
774                 dma_release_channel(master->dma_tx);
775         if (master->dma_rx)
776                 dma_release_channel(master->dma_rx);
777 }
778
779 static const struct sun6i_spi_cfg sun6i_a31_spi_cfg = {
780         .fifo_depth     = SUN6I_FIFO_DEPTH,
781         .has_clk_ctl    = true,
782 };
783
784 static const struct sun6i_spi_cfg sun8i_h3_spi_cfg = {
785         .fifo_depth     = SUN8I_FIFO_DEPTH,
786         .has_clk_ctl    = true,
787 };
788
789 static const struct sun6i_spi_cfg sun50i_r329_spi_cfg = {
790         .fifo_depth     = SUN8I_FIFO_DEPTH,
791         .mode_bits      = SPI_RX_DUAL | SPI_TX_DUAL | SPI_RX_QUAD | SPI_TX_QUAD,
792 };
793
794 static const struct of_device_id sun6i_spi_match[] = {
795         { .compatible = "allwinner,sun6i-a31-spi", .data = &sun6i_a31_spi_cfg },
796         { .compatible = "allwinner,sun8i-h3-spi",  .data = &sun8i_h3_spi_cfg },
797         {
798                 .compatible = "allwinner,sun50i-r329-spi",
799                 .data = &sun50i_r329_spi_cfg
800         },
801         {}
802 };
803 MODULE_DEVICE_TABLE(of, sun6i_spi_match);
804
805 static const struct dev_pm_ops sun6i_spi_pm_ops = {
806         .runtime_resume         = sun6i_spi_runtime_resume,
807         .runtime_suspend        = sun6i_spi_runtime_suspend,
808 };
809
810 static struct platform_driver sun6i_spi_driver = {
811         .probe  = sun6i_spi_probe,
812         .remove_new = sun6i_spi_remove,
813         .driver = {
814                 .name           = "sun6i-spi",
815                 .of_match_table = sun6i_spi_match,
816                 .pm             = &sun6i_spi_pm_ops,
817         },
818 };
819 module_platform_driver(sun6i_spi_driver);
820
821 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
822 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
823 MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
824 MODULE_LICENSE("GPL");