Merge patch series "Some style cleanups for recent extension additions"
[platform/kernel/linux-starfive.git] / drivers / spi / spi-sun6i.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2012 - 2014 Allwinner Tech
4  * Pan Nan <pannan@allwinnertech.com>
5  *
6  * Copyright (C) 2014 Maxime Ripard
7  * Maxime Ripard <maxime.ripard@free-electrons.com>
8  */
9
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/delay.h>
13 #include <linux/device.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/of_device.h>
18 #include <linux/platform_device.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/reset.h>
21 #include <linux/dmaengine.h>
22
23 #include <linux/spi/spi.h>
24
25 #define SUN6I_AUTOSUSPEND_TIMEOUT       2000
26
27 #define SUN6I_FIFO_DEPTH                128
28 #define SUN8I_FIFO_DEPTH                64
29
30 #define SUN6I_GBL_CTL_REG               0x04
31 #define SUN6I_GBL_CTL_BUS_ENABLE                BIT(0)
32 #define SUN6I_GBL_CTL_MASTER                    BIT(1)
33 #define SUN6I_GBL_CTL_TP                        BIT(7)
34 #define SUN6I_GBL_CTL_RST                       BIT(31)
35
36 #define SUN6I_TFR_CTL_REG               0x08
37 #define SUN6I_TFR_CTL_CPHA                      BIT(0)
38 #define SUN6I_TFR_CTL_CPOL                      BIT(1)
39 #define SUN6I_TFR_CTL_SPOL                      BIT(2)
40 #define SUN6I_TFR_CTL_CS_MASK                   0x30
41 #define SUN6I_TFR_CTL_CS(cs)                    (((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
42 #define SUN6I_TFR_CTL_CS_MANUAL                 BIT(6)
43 #define SUN6I_TFR_CTL_CS_LEVEL                  BIT(7)
44 #define SUN6I_TFR_CTL_DHB                       BIT(8)
45 #define SUN6I_TFR_CTL_FBS                       BIT(12)
46 #define SUN6I_TFR_CTL_XCH                       BIT(31)
47
48 #define SUN6I_INT_CTL_REG               0x10
49 #define SUN6I_INT_CTL_RF_RDY                    BIT(0)
50 #define SUN6I_INT_CTL_TF_ERQ                    BIT(4)
51 #define SUN6I_INT_CTL_RF_OVF                    BIT(8)
52 #define SUN6I_INT_CTL_TC                        BIT(12)
53
54 #define SUN6I_INT_STA_REG               0x14
55
56 #define SUN6I_FIFO_CTL_REG              0x18
57 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK   0xff
58 #define SUN6I_FIFO_CTL_RF_DRQ_EN                BIT(8)
59 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS   0
60 #define SUN6I_FIFO_CTL_RF_RST                   BIT(15)
61 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK   0xff
62 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS   16
63 #define SUN6I_FIFO_CTL_TF_DRQ_EN                BIT(24)
64 #define SUN6I_FIFO_CTL_TF_RST                   BIT(31)
65
66 #define SUN6I_FIFO_STA_REG              0x1c
67 #define SUN6I_FIFO_STA_RF_CNT_MASK              GENMASK(7, 0)
68 #define SUN6I_FIFO_STA_TF_CNT_MASK              GENMASK(23, 16)
69
70 #define SUN6I_CLK_CTL_REG               0x24
71 #define SUN6I_CLK_CTL_CDR2_MASK                 0xff
72 #define SUN6I_CLK_CTL_CDR2(div)                 (((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
73 #define SUN6I_CLK_CTL_CDR1_MASK                 0xf
74 #define SUN6I_CLK_CTL_CDR1(div)                 (((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
75 #define SUN6I_CLK_CTL_DRS                       BIT(12)
76
77 #define SUN6I_MAX_XFER_SIZE             0xffffff
78
79 #define SUN6I_BURST_CNT_REG             0x30
80
81 #define SUN6I_XMIT_CNT_REG              0x34
82
83 #define SUN6I_BURST_CTL_CNT_REG         0x38
84
85 #define SUN6I_TXDATA_REG                0x200
86 #define SUN6I_RXDATA_REG                0x300
87
88 struct sun6i_spi {
89         struct spi_master       *master;
90         void __iomem            *base_addr;
91         dma_addr_t              dma_addr_rx;
92         dma_addr_t              dma_addr_tx;
93         struct clk              *hclk;
94         struct clk              *mclk;
95         struct reset_control    *rstc;
96
97         struct completion       done;
98
99         const u8                *tx_buf;
100         u8                      *rx_buf;
101         int                     len;
102         unsigned long           fifo_depth;
103 };
104
105 static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
106 {
107         return readl(sspi->base_addr + reg);
108 }
109
110 static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
111 {
112         writel(value, sspi->base_addr + reg);
113 }
114
115 static inline u32 sun6i_spi_get_rx_fifo_count(struct sun6i_spi *sspi)
116 {
117         u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
118
119         return FIELD_GET(SUN6I_FIFO_STA_RF_CNT_MASK, reg);
120 }
121
122 static inline u32 sun6i_spi_get_tx_fifo_count(struct sun6i_spi *sspi)
123 {
124         u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
125
126         return FIELD_GET(SUN6I_FIFO_STA_TF_CNT_MASK, reg);
127 }
128
129 static inline void sun6i_spi_disable_interrupt(struct sun6i_spi *sspi, u32 mask)
130 {
131         u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
132
133         reg &= ~mask;
134         sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
135 }
136
137 static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi)
138 {
139         u32 len;
140         u8 byte;
141
142         /* See how much data is available */
143         len = sun6i_spi_get_rx_fifo_count(sspi);
144
145         while (len--) {
146                 byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
147                 if (sspi->rx_buf)
148                         *sspi->rx_buf++ = byte;
149         }
150 }
151
152 static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi)
153 {
154         u32 cnt;
155         int len;
156         u8 byte;
157
158         /* See how much data we can fit */
159         cnt = sspi->fifo_depth - sun6i_spi_get_tx_fifo_count(sspi);
160
161         len = min((int)cnt, sspi->len);
162
163         while (len--) {
164                 byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
165                 writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
166                 sspi->len--;
167         }
168 }
169
170 static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
171 {
172         struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
173         u32 reg;
174
175         reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
176         reg &= ~SUN6I_TFR_CTL_CS_MASK;
177         reg |= SUN6I_TFR_CTL_CS(spi->chip_select);
178
179         if (enable)
180                 reg |= SUN6I_TFR_CTL_CS_LEVEL;
181         else
182                 reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
183
184         sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
185 }
186
187 static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
188 {
189         return SUN6I_MAX_XFER_SIZE - 1;
190 }
191
192 static int sun6i_spi_prepare_dma(struct sun6i_spi *sspi,
193                                  struct spi_transfer *tfr)
194 {
195         struct dma_async_tx_descriptor *rxdesc, *txdesc;
196         struct spi_master *master = sspi->master;
197
198         rxdesc = NULL;
199         if (tfr->rx_buf) {
200                 struct dma_slave_config rxconf = {
201                         .direction = DMA_DEV_TO_MEM,
202                         .src_addr = sspi->dma_addr_rx,
203                         .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
204                         .src_maxburst = 8,
205                 };
206
207                 dmaengine_slave_config(master->dma_rx, &rxconf);
208
209                 rxdesc = dmaengine_prep_slave_sg(master->dma_rx,
210                                                  tfr->rx_sg.sgl,
211                                                  tfr->rx_sg.nents,
212                                                  DMA_DEV_TO_MEM,
213                                                  DMA_PREP_INTERRUPT);
214                 if (!rxdesc)
215                         return -EINVAL;
216         }
217
218         txdesc = NULL;
219         if (tfr->tx_buf) {
220                 struct dma_slave_config txconf = {
221                         .direction = DMA_MEM_TO_DEV,
222                         .dst_addr = sspi->dma_addr_tx,
223                         .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
224                         .dst_maxburst = 8,
225                 };
226
227                 dmaengine_slave_config(master->dma_tx, &txconf);
228
229                 txdesc = dmaengine_prep_slave_sg(master->dma_tx,
230                                                  tfr->tx_sg.sgl,
231                                                  tfr->tx_sg.nents,
232                                                  DMA_MEM_TO_DEV,
233                                                  DMA_PREP_INTERRUPT);
234                 if (!txdesc) {
235                         if (rxdesc)
236                                 dmaengine_terminate_sync(master->dma_rx);
237                         return -EINVAL;
238                 }
239         }
240
241         if (tfr->rx_buf) {
242                 dmaengine_submit(rxdesc);
243                 dma_async_issue_pending(master->dma_rx);
244         }
245
246         if (tfr->tx_buf) {
247                 dmaengine_submit(txdesc);
248                 dma_async_issue_pending(master->dma_tx);
249         }
250
251         return 0;
252 }
253
254 static int sun6i_spi_transfer_one(struct spi_master *master,
255                                   struct spi_device *spi,
256                                   struct spi_transfer *tfr)
257 {
258         struct sun6i_spi *sspi = spi_master_get_devdata(master);
259         unsigned int mclk_rate, div, div_cdr1, div_cdr2, timeout;
260         unsigned int start, end, tx_time;
261         unsigned int trig_level;
262         unsigned int tx_len = 0, rx_len = 0;
263         bool use_dma;
264         int ret = 0;
265         u32 reg;
266
267         if (tfr->len > SUN6I_MAX_XFER_SIZE)
268                 return -EINVAL;
269
270         reinit_completion(&sspi->done);
271         sspi->tx_buf = tfr->tx_buf;
272         sspi->rx_buf = tfr->rx_buf;
273         sspi->len = tfr->len;
274         use_dma = master->can_dma ? master->can_dma(master, spi, tfr) : false;
275
276         /* Clear pending interrupts */
277         sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
278
279         /* Reset FIFO */
280         sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
281                         SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
282
283         reg = 0;
284
285         if (!use_dma) {
286                 /*
287                  * Setup FIFO interrupt trigger level
288                  * Here we choose 3/4 of the full fifo depth, as it's
289                  * the hardcoded value used in old generation of Allwinner
290                  * SPI controller. (See spi-sun4i.c)
291                  */
292                 trig_level = sspi->fifo_depth / 4 * 3;
293         } else {
294                 /*
295                  * Setup FIFO DMA request trigger level
296                  * We choose 1/2 of the full fifo depth, that value will
297                  * be used as DMA burst length.
298                  */
299                 trig_level = sspi->fifo_depth / 2;
300
301                 if (tfr->tx_buf)
302                         reg |= SUN6I_FIFO_CTL_TF_DRQ_EN;
303                 if (tfr->rx_buf)
304                         reg |= SUN6I_FIFO_CTL_RF_DRQ_EN;
305         }
306
307         reg |= (trig_level << SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS) |
308                (trig_level << SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS);
309
310         sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG, reg);
311
312         /*
313          * Setup the transfer control register: Chip Select,
314          * polarities, etc.
315          */
316         reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
317
318         if (spi->mode & SPI_CPOL)
319                 reg |= SUN6I_TFR_CTL_CPOL;
320         else
321                 reg &= ~SUN6I_TFR_CTL_CPOL;
322
323         if (spi->mode & SPI_CPHA)
324                 reg |= SUN6I_TFR_CTL_CPHA;
325         else
326                 reg &= ~SUN6I_TFR_CTL_CPHA;
327
328         if (spi->mode & SPI_LSB_FIRST)
329                 reg |= SUN6I_TFR_CTL_FBS;
330         else
331                 reg &= ~SUN6I_TFR_CTL_FBS;
332
333         /*
334          * If it's a TX only transfer, we don't want to fill the RX
335          * FIFO with bogus data
336          */
337         if (sspi->rx_buf) {
338                 reg &= ~SUN6I_TFR_CTL_DHB;
339                 rx_len = tfr->len;
340         } else {
341                 reg |= SUN6I_TFR_CTL_DHB;
342         }
343
344         /* We want to control the chip select manually */
345         reg |= SUN6I_TFR_CTL_CS_MANUAL;
346
347         sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
348
349         /* Ensure that we have a parent clock fast enough */
350         mclk_rate = clk_get_rate(sspi->mclk);
351         if (mclk_rate < (2 * tfr->speed_hz)) {
352                 clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
353                 mclk_rate = clk_get_rate(sspi->mclk);
354         }
355
356         /*
357          * Setup clock divider.
358          *
359          * We have two choices there. Either we can use the clock
360          * divide rate 1, which is calculated thanks to this formula:
361          * SPI_CLK = MOD_CLK / (2 ^ cdr)
362          * Or we can use CDR2, which is calculated with the formula:
363          * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
364          * Wether we use the former or the latter is set through the
365          * DRS bit.
366          *
367          * First try CDR2, and if we can't reach the expected
368          * frequency, fall back to CDR1.
369          */
370         div_cdr1 = DIV_ROUND_UP(mclk_rate, tfr->speed_hz);
371         div_cdr2 = DIV_ROUND_UP(div_cdr1, 2);
372         if (div_cdr2 <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
373                 reg = SUN6I_CLK_CTL_CDR2(div_cdr2 - 1) | SUN6I_CLK_CTL_DRS;
374                 tfr->effective_speed_hz = mclk_rate / (2 * div_cdr2);
375         } else {
376                 div = min(SUN6I_CLK_CTL_CDR1_MASK, order_base_2(div_cdr1));
377                 reg = SUN6I_CLK_CTL_CDR1(div);
378                 tfr->effective_speed_hz = mclk_rate / (1 << div);
379         }
380
381         sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
382         /* Finally enable the bus - doing so before might raise SCK to HIGH */
383         reg = sun6i_spi_read(sspi, SUN6I_GBL_CTL_REG);
384         reg |= SUN6I_GBL_CTL_BUS_ENABLE;
385         sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG, reg);
386
387         /* Setup the transfer now... */
388         if (sspi->tx_buf)
389                 tx_len = tfr->len;
390
391         /* Setup the counters */
392         sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, tfr->len);
393         sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, tx_len);
394         sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG, tx_len);
395
396         if (!use_dma) {
397                 /* Fill the TX FIFO */
398                 sun6i_spi_fill_fifo(sspi);
399         } else {
400                 ret = sun6i_spi_prepare_dma(sspi, tfr);
401                 if (ret) {
402                         dev_warn(&master->dev,
403                                  "%s: prepare DMA failed, ret=%d",
404                                  dev_name(&spi->dev), ret);
405                         return ret;
406                 }
407         }
408
409         /* Enable the interrupts */
410         reg = SUN6I_INT_CTL_TC;
411
412         if (!use_dma) {
413                 if (rx_len > sspi->fifo_depth)
414                         reg |= SUN6I_INT_CTL_RF_RDY;
415                 if (tx_len > sspi->fifo_depth)
416                         reg |= SUN6I_INT_CTL_TF_ERQ;
417         }
418
419         sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
420
421         /* Start the transfer */
422         reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
423         sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
424
425         tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
426         start = jiffies;
427         timeout = wait_for_completion_timeout(&sspi->done,
428                                               msecs_to_jiffies(tx_time));
429         end = jiffies;
430         if (!timeout) {
431                 dev_warn(&master->dev,
432                          "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
433                          dev_name(&spi->dev), tfr->len, tfr->speed_hz,
434                          jiffies_to_msecs(end - start), tx_time);
435                 ret = -ETIMEDOUT;
436         }
437
438         sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
439
440         if (ret && use_dma) {
441                 dmaengine_terminate_sync(master->dma_rx);
442                 dmaengine_terminate_sync(master->dma_tx);
443         }
444
445         return ret;
446 }
447
448 static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
449 {
450         struct sun6i_spi *sspi = dev_id;
451         u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
452
453         /* Transfer complete */
454         if (status & SUN6I_INT_CTL_TC) {
455                 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
456                 sun6i_spi_drain_fifo(sspi);
457                 complete(&sspi->done);
458                 return IRQ_HANDLED;
459         }
460
461         /* Receive FIFO 3/4 full */
462         if (status & SUN6I_INT_CTL_RF_RDY) {
463                 sun6i_spi_drain_fifo(sspi);
464                 /* Only clear the interrupt _after_ draining the FIFO */
465                 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_RF_RDY);
466                 return IRQ_HANDLED;
467         }
468
469         /* Transmit FIFO 3/4 empty */
470         if (status & SUN6I_INT_CTL_TF_ERQ) {
471                 sun6i_spi_fill_fifo(sspi);
472
473                 if (!sspi->len)
474                         /* nothing left to transmit */
475                         sun6i_spi_disable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
476
477                 /* Only clear the interrupt _after_ re-seeding the FIFO */
478                 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TF_ERQ);
479
480                 return IRQ_HANDLED;
481         }
482
483         return IRQ_NONE;
484 }
485
486 static int sun6i_spi_runtime_resume(struct device *dev)
487 {
488         struct spi_master *master = dev_get_drvdata(dev);
489         struct sun6i_spi *sspi = spi_master_get_devdata(master);
490         int ret;
491
492         ret = clk_prepare_enable(sspi->hclk);
493         if (ret) {
494                 dev_err(dev, "Couldn't enable AHB clock\n");
495                 goto out;
496         }
497
498         ret = clk_prepare_enable(sspi->mclk);
499         if (ret) {
500                 dev_err(dev, "Couldn't enable module clock\n");
501                 goto err;
502         }
503
504         ret = reset_control_deassert(sspi->rstc);
505         if (ret) {
506                 dev_err(dev, "Couldn't deassert the device from reset\n");
507                 goto err2;
508         }
509
510         sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
511                         SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
512
513         return 0;
514
515 err2:
516         clk_disable_unprepare(sspi->mclk);
517 err:
518         clk_disable_unprepare(sspi->hclk);
519 out:
520         return ret;
521 }
522
523 static int sun6i_spi_runtime_suspend(struct device *dev)
524 {
525         struct spi_master *master = dev_get_drvdata(dev);
526         struct sun6i_spi *sspi = spi_master_get_devdata(master);
527
528         reset_control_assert(sspi->rstc);
529         clk_disable_unprepare(sspi->mclk);
530         clk_disable_unprepare(sspi->hclk);
531
532         return 0;
533 }
534
535 static bool sun6i_spi_can_dma(struct spi_master *master,
536                               struct spi_device *spi,
537                               struct spi_transfer *xfer)
538 {
539         struct sun6i_spi *sspi = spi_master_get_devdata(master);
540
541         /*
542          * If the number of spi words to transfer is less or equal than
543          * the fifo length we can just fill the fifo and wait for a single
544          * irq, so don't bother setting up dma
545          */
546         return xfer->len > sspi->fifo_depth;
547 }
548
549 static int sun6i_spi_probe(struct platform_device *pdev)
550 {
551         struct spi_master *master;
552         struct sun6i_spi *sspi;
553         struct resource *mem;
554         int ret = 0, irq;
555
556         master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
557         if (!master) {
558                 dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
559                 return -ENOMEM;
560         }
561
562         platform_set_drvdata(pdev, master);
563         sspi = spi_master_get_devdata(master);
564
565         sspi->base_addr = devm_platform_get_and_ioremap_resource(pdev, 0, &mem);
566         if (IS_ERR(sspi->base_addr)) {
567                 ret = PTR_ERR(sspi->base_addr);
568                 goto err_free_master;
569         }
570
571         irq = platform_get_irq(pdev, 0);
572         if (irq < 0) {
573                 ret = -ENXIO;
574                 goto err_free_master;
575         }
576
577         ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
578                                0, "sun6i-spi", sspi);
579         if (ret) {
580                 dev_err(&pdev->dev, "Cannot request IRQ\n");
581                 goto err_free_master;
582         }
583
584         sspi->master = master;
585         sspi->fifo_depth = (unsigned long)of_device_get_match_data(&pdev->dev);
586
587         master->max_speed_hz = 100 * 1000 * 1000;
588         master->min_speed_hz = 3 * 1000;
589         master->use_gpio_descriptors = true;
590         master->set_cs = sun6i_spi_set_cs;
591         master->transfer_one = sun6i_spi_transfer_one;
592         master->num_chipselect = 4;
593         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
594         master->bits_per_word_mask = SPI_BPW_MASK(8);
595         master->dev.of_node = pdev->dev.of_node;
596         master->auto_runtime_pm = true;
597         master->max_transfer_size = sun6i_spi_max_transfer_size;
598
599         sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
600         if (IS_ERR(sspi->hclk)) {
601                 dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
602                 ret = PTR_ERR(sspi->hclk);
603                 goto err_free_master;
604         }
605
606         sspi->mclk = devm_clk_get(&pdev->dev, "mod");
607         if (IS_ERR(sspi->mclk)) {
608                 dev_err(&pdev->dev, "Unable to acquire module clock\n");
609                 ret = PTR_ERR(sspi->mclk);
610                 goto err_free_master;
611         }
612
613         init_completion(&sspi->done);
614
615         sspi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
616         if (IS_ERR(sspi->rstc)) {
617                 dev_err(&pdev->dev, "Couldn't get reset controller\n");
618                 ret = PTR_ERR(sspi->rstc);
619                 goto err_free_master;
620         }
621
622         master->dma_tx = dma_request_chan(&pdev->dev, "tx");
623         if (IS_ERR(master->dma_tx)) {
624                 /* Check tx to see if we need defer probing driver */
625                 if (PTR_ERR(master->dma_tx) == -EPROBE_DEFER) {
626                         ret = -EPROBE_DEFER;
627                         goto err_free_master;
628                 }
629                 dev_warn(&pdev->dev, "Failed to request TX DMA channel\n");
630                 master->dma_tx = NULL;
631         }
632
633         master->dma_rx = dma_request_chan(&pdev->dev, "rx");
634         if (IS_ERR(master->dma_rx)) {
635                 if (PTR_ERR(master->dma_rx) == -EPROBE_DEFER) {
636                         ret = -EPROBE_DEFER;
637                         goto err_free_dma_tx;
638                 }
639                 dev_warn(&pdev->dev, "Failed to request RX DMA channel\n");
640                 master->dma_rx = NULL;
641         }
642
643         if (master->dma_tx && master->dma_rx) {
644                 sspi->dma_addr_tx = mem->start + SUN6I_TXDATA_REG;
645                 sspi->dma_addr_rx = mem->start + SUN6I_RXDATA_REG;
646                 master->can_dma = sun6i_spi_can_dma;
647         }
648
649         /*
650          * This wake-up/shutdown pattern is to be able to have the
651          * device woken up, even if runtime_pm is disabled
652          */
653         ret = sun6i_spi_runtime_resume(&pdev->dev);
654         if (ret) {
655                 dev_err(&pdev->dev, "Couldn't resume the device\n");
656                 goto err_free_dma_rx;
657         }
658
659         pm_runtime_set_autosuspend_delay(&pdev->dev, SUN6I_AUTOSUSPEND_TIMEOUT);
660         pm_runtime_use_autosuspend(&pdev->dev);
661         pm_runtime_set_active(&pdev->dev);
662         pm_runtime_enable(&pdev->dev);
663
664         ret = devm_spi_register_master(&pdev->dev, master);
665         if (ret) {
666                 dev_err(&pdev->dev, "cannot register SPI master\n");
667                 goto err_pm_disable;
668         }
669
670         return 0;
671
672 err_pm_disable:
673         pm_runtime_disable(&pdev->dev);
674         sun6i_spi_runtime_suspend(&pdev->dev);
675 err_free_dma_rx:
676         if (master->dma_rx)
677                 dma_release_channel(master->dma_rx);
678 err_free_dma_tx:
679         if (master->dma_tx)
680                 dma_release_channel(master->dma_tx);
681 err_free_master:
682         spi_master_put(master);
683         return ret;
684 }
685
686 static int sun6i_spi_remove(struct platform_device *pdev)
687 {
688         struct spi_master *master = platform_get_drvdata(pdev);
689
690         pm_runtime_force_suspend(&pdev->dev);
691
692         if (master->dma_tx)
693                 dma_release_channel(master->dma_tx);
694         if (master->dma_rx)
695                 dma_release_channel(master->dma_rx);
696         return 0;
697 }
698
699 static const struct of_device_id sun6i_spi_match[] = {
700         { .compatible = "allwinner,sun6i-a31-spi", .data = (void *)SUN6I_FIFO_DEPTH },
701         { .compatible = "allwinner,sun8i-h3-spi",  .data = (void *)SUN8I_FIFO_DEPTH },
702         {}
703 };
704 MODULE_DEVICE_TABLE(of, sun6i_spi_match);
705
706 static const struct dev_pm_ops sun6i_spi_pm_ops = {
707         .runtime_resume         = sun6i_spi_runtime_resume,
708         .runtime_suspend        = sun6i_spi_runtime_suspend,
709 };
710
711 static struct platform_driver sun6i_spi_driver = {
712         .probe  = sun6i_spi_probe,
713         .remove = sun6i_spi_remove,
714         .driver = {
715                 .name           = "sun6i-spi",
716                 .of_match_table = sun6i_spi_match,
717                 .pm             = &sun6i_spi_pm_ops,
718         },
719 };
720 module_platform_driver(sun6i_spi_driver);
721
722 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
723 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
724 MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
725 MODULE_LICENSE("GPL");