spi: rockchip: Preset cs-high and clk polarity in setup progress
[platform/kernel/linux-rpi.git] / drivers / spi / spi-sun4i.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2012 - 2014 Allwinner Tech
4  * Pan Nan <pannan@allwinnertech.com>
5  *
6  * Copyright (C) 2014 Maxime Ripard
7  * Maxime Ripard <maxime.ripard@free-electrons.com>
8  */
9
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/interrupt.h>
14 #include <linux/io.h>
15 #include <linux/module.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_runtime.h>
18
19 #include <linux/spi/spi.h>
20
21 #define SUN4I_FIFO_DEPTH                64
22
23 #define SUN4I_RXDATA_REG                0x00
24
25 #define SUN4I_TXDATA_REG                0x04
26
27 #define SUN4I_CTL_REG                   0x08
28 #define SUN4I_CTL_ENABLE                        BIT(0)
29 #define SUN4I_CTL_MASTER                        BIT(1)
30 #define SUN4I_CTL_CPHA                          BIT(2)
31 #define SUN4I_CTL_CPOL                          BIT(3)
32 #define SUN4I_CTL_CS_ACTIVE_LOW                 BIT(4)
33 #define SUN4I_CTL_LMTF                          BIT(6)
34 #define SUN4I_CTL_TF_RST                        BIT(8)
35 #define SUN4I_CTL_RF_RST                        BIT(9)
36 #define SUN4I_CTL_XCH                           BIT(10)
37 #define SUN4I_CTL_CS_MASK                       0x3000
38 #define SUN4I_CTL_CS(cs)                        (((cs) << 12) & SUN4I_CTL_CS_MASK)
39 #define SUN4I_CTL_DHB                           BIT(15)
40 #define SUN4I_CTL_CS_MANUAL                     BIT(16)
41 #define SUN4I_CTL_CS_LEVEL                      BIT(17)
42 #define SUN4I_CTL_TP                            BIT(18)
43
44 #define SUN4I_INT_CTL_REG               0x0c
45 #define SUN4I_INT_CTL_RF_F34                    BIT(4)
46 #define SUN4I_INT_CTL_TF_E34                    BIT(12)
47 #define SUN4I_INT_CTL_TC                        BIT(16)
48
49 #define SUN4I_INT_STA_REG               0x10
50
51 #define SUN4I_DMA_CTL_REG               0x14
52
53 #define SUN4I_WAIT_REG                  0x18
54
55 #define SUN4I_CLK_CTL_REG               0x1c
56 #define SUN4I_CLK_CTL_CDR2_MASK                 0xff
57 #define SUN4I_CLK_CTL_CDR2(div)                 ((div) & SUN4I_CLK_CTL_CDR2_MASK)
58 #define SUN4I_CLK_CTL_CDR1_MASK                 0xf
59 #define SUN4I_CLK_CTL_CDR1(div)                 (((div) & SUN4I_CLK_CTL_CDR1_MASK) << 8)
60 #define SUN4I_CLK_CTL_DRS                       BIT(12)
61
62 #define SUN4I_MAX_XFER_SIZE                     0xffffff
63
64 #define SUN4I_BURST_CNT_REG             0x20
65 #define SUN4I_BURST_CNT(cnt)                    ((cnt) & SUN4I_MAX_XFER_SIZE)
66
67 #define SUN4I_XMIT_CNT_REG              0x24
68 #define SUN4I_XMIT_CNT(cnt)                     ((cnt) & SUN4I_MAX_XFER_SIZE)
69
70
71 #define SUN4I_FIFO_STA_REG              0x28
72 #define SUN4I_FIFO_STA_RF_CNT_MASK              0x7f
73 #define SUN4I_FIFO_STA_RF_CNT_BITS              0
74 #define SUN4I_FIFO_STA_TF_CNT_MASK              0x7f
75 #define SUN4I_FIFO_STA_TF_CNT_BITS              16
76
77 struct sun4i_spi {
78         struct spi_master       *master;
79         void __iomem            *base_addr;
80         struct clk              *hclk;
81         struct clk              *mclk;
82
83         struct completion       done;
84
85         const u8                *tx_buf;
86         u8                      *rx_buf;
87         int                     len;
88 };
89
90 static inline u32 sun4i_spi_read(struct sun4i_spi *sspi, u32 reg)
91 {
92         return readl(sspi->base_addr + reg);
93 }
94
95 static inline void sun4i_spi_write(struct sun4i_spi *sspi, u32 reg, u32 value)
96 {
97         writel(value, sspi->base_addr + reg);
98 }
99
100 static inline u32 sun4i_spi_get_tx_fifo_count(struct sun4i_spi *sspi)
101 {
102         u32 reg = sun4i_spi_read(sspi, SUN4I_FIFO_STA_REG);
103
104         reg >>= SUN4I_FIFO_STA_TF_CNT_BITS;
105
106         return reg & SUN4I_FIFO_STA_TF_CNT_MASK;
107 }
108
109 static inline void sun4i_spi_enable_interrupt(struct sun4i_spi *sspi, u32 mask)
110 {
111         u32 reg = sun4i_spi_read(sspi, SUN4I_INT_CTL_REG);
112
113         reg |= mask;
114         sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, reg);
115 }
116
117 static inline void sun4i_spi_disable_interrupt(struct sun4i_spi *sspi, u32 mask)
118 {
119         u32 reg = sun4i_spi_read(sspi, SUN4I_INT_CTL_REG);
120
121         reg &= ~mask;
122         sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, reg);
123 }
124
125 static inline void sun4i_spi_drain_fifo(struct sun4i_spi *sspi, int len)
126 {
127         u32 reg, cnt;
128         u8 byte;
129
130         /* See how much data is available */
131         reg = sun4i_spi_read(sspi, SUN4I_FIFO_STA_REG);
132         reg &= SUN4I_FIFO_STA_RF_CNT_MASK;
133         cnt = reg >> SUN4I_FIFO_STA_RF_CNT_BITS;
134
135         if (len > cnt)
136                 len = cnt;
137
138         while (len--) {
139                 byte = readb(sspi->base_addr + SUN4I_RXDATA_REG);
140                 if (sspi->rx_buf)
141                         *sspi->rx_buf++ = byte;
142         }
143 }
144
145 static inline void sun4i_spi_fill_fifo(struct sun4i_spi *sspi, int len)
146 {
147         u32 cnt;
148         u8 byte;
149
150         /* See how much data we can fit */
151         cnt = SUN4I_FIFO_DEPTH - sun4i_spi_get_tx_fifo_count(sspi);
152
153         len = min3(len, (int)cnt, sspi->len);
154
155         while (len--) {
156                 byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
157                 writeb(byte, sspi->base_addr + SUN4I_TXDATA_REG);
158                 sspi->len--;
159         }
160 }
161
162 static void sun4i_spi_set_cs(struct spi_device *spi, bool enable)
163 {
164         struct sun4i_spi *sspi = spi_master_get_devdata(spi->master);
165         u32 reg;
166
167         reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
168
169         reg &= ~SUN4I_CTL_CS_MASK;
170         reg |= SUN4I_CTL_CS(spi->chip_select);
171
172         /* We want to control the chip select manually */
173         reg |= SUN4I_CTL_CS_MANUAL;
174
175         if (enable)
176                 reg |= SUN4I_CTL_CS_LEVEL;
177         else
178                 reg &= ~SUN4I_CTL_CS_LEVEL;
179
180         /*
181          * Even though this looks irrelevant since we are supposed to
182          * be controlling the chip select manually, this bit also
183          * controls the levels of the chip select for inactive
184          * devices.
185          *
186          * If we don't set it, the chip select level will go low by
187          * default when the device is idle, which is not really
188          * expected in the common case where the chip select is active
189          * low.
190          */
191         if (spi->mode & SPI_CS_HIGH)
192                 reg &= ~SUN4I_CTL_CS_ACTIVE_LOW;
193         else
194                 reg |= SUN4I_CTL_CS_ACTIVE_LOW;
195
196         sun4i_spi_write(sspi, SUN4I_CTL_REG, reg);
197 }
198
199 static size_t sun4i_spi_max_transfer_size(struct spi_device *spi)
200 {
201         return SUN4I_MAX_XFER_SIZE - 1;
202 }
203
204 static int sun4i_spi_transfer_one(struct spi_master *master,
205                                   struct spi_device *spi,
206                                   struct spi_transfer *tfr)
207 {
208         struct sun4i_spi *sspi = spi_master_get_devdata(master);
209         unsigned int mclk_rate, div, timeout;
210         unsigned int start, end, tx_time;
211         unsigned int tx_len = 0;
212         int ret = 0;
213         u32 reg;
214
215         /* We don't support transfer larger than the FIFO */
216         if (tfr->len > SUN4I_MAX_XFER_SIZE)
217                 return -EMSGSIZE;
218
219         if (tfr->tx_buf && tfr->len >= SUN4I_MAX_XFER_SIZE)
220                 return -EMSGSIZE;
221
222         reinit_completion(&sspi->done);
223         sspi->tx_buf = tfr->tx_buf;
224         sspi->rx_buf = tfr->rx_buf;
225         sspi->len = tfr->len;
226
227         /* Clear pending interrupts */
228         sun4i_spi_write(sspi, SUN4I_INT_STA_REG, ~0);
229
230
231         reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
232
233         /* Reset FIFOs */
234         sun4i_spi_write(sspi, SUN4I_CTL_REG,
235                         reg | SUN4I_CTL_RF_RST | SUN4I_CTL_TF_RST);
236
237         /*
238          * Setup the transfer control register: Chip Select,
239          * polarities, etc.
240          */
241         if (spi->mode & SPI_CPOL)
242                 reg |= SUN4I_CTL_CPOL;
243         else
244                 reg &= ~SUN4I_CTL_CPOL;
245
246         if (spi->mode & SPI_CPHA)
247                 reg |= SUN4I_CTL_CPHA;
248         else
249                 reg &= ~SUN4I_CTL_CPHA;
250
251         if (spi->mode & SPI_LSB_FIRST)
252                 reg |= SUN4I_CTL_LMTF;
253         else
254                 reg &= ~SUN4I_CTL_LMTF;
255
256
257         /*
258          * If it's a TX only transfer, we don't want to fill the RX
259          * FIFO with bogus data
260          */
261         if (sspi->rx_buf)
262                 reg &= ~SUN4I_CTL_DHB;
263         else
264                 reg |= SUN4I_CTL_DHB;
265
266         sun4i_spi_write(sspi, SUN4I_CTL_REG, reg);
267
268         /* Ensure that we have a parent clock fast enough */
269         mclk_rate = clk_get_rate(sspi->mclk);
270         if (mclk_rate < (2 * tfr->speed_hz)) {
271                 clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
272                 mclk_rate = clk_get_rate(sspi->mclk);
273         }
274
275         /*
276          * Setup clock divider.
277          *
278          * We have two choices there. Either we can use the clock
279          * divide rate 1, which is calculated thanks to this formula:
280          * SPI_CLK = MOD_CLK / (2 ^ (cdr + 1))
281          * Or we can use CDR2, which is calculated with the formula:
282          * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
283          * Wether we use the former or the latter is set through the
284          * DRS bit.
285          *
286          * First try CDR2, and if we can't reach the expected
287          * frequency, fall back to CDR1.
288          */
289         div = mclk_rate / (2 * tfr->speed_hz);
290         if (div <= (SUN4I_CLK_CTL_CDR2_MASK + 1)) {
291                 if (div > 0)
292                         div--;
293
294                 reg = SUN4I_CLK_CTL_CDR2(div) | SUN4I_CLK_CTL_DRS;
295         } else {
296                 div = ilog2(mclk_rate) - ilog2(tfr->speed_hz);
297                 reg = SUN4I_CLK_CTL_CDR1(div);
298         }
299
300         sun4i_spi_write(sspi, SUN4I_CLK_CTL_REG, reg);
301
302         /* Setup the transfer now... */
303         if (sspi->tx_buf)
304                 tx_len = tfr->len;
305
306         /* Setup the counters */
307         sun4i_spi_write(sspi, SUN4I_BURST_CNT_REG, SUN4I_BURST_CNT(tfr->len));
308         sun4i_spi_write(sspi, SUN4I_XMIT_CNT_REG, SUN4I_XMIT_CNT(tx_len));
309
310         /*
311          * Fill the TX FIFO
312          * Filling the FIFO fully causes timeout for some reason
313          * at least on spi2 on A10s
314          */
315         sun4i_spi_fill_fifo(sspi, SUN4I_FIFO_DEPTH - 1);
316
317         /* Enable the interrupts */
318         sun4i_spi_enable_interrupt(sspi, SUN4I_INT_CTL_TC |
319                                          SUN4I_INT_CTL_RF_F34);
320         /* Only enable Tx FIFO interrupt if we really need it */
321         if (tx_len > SUN4I_FIFO_DEPTH)
322                 sun4i_spi_enable_interrupt(sspi, SUN4I_INT_CTL_TF_E34);
323
324         /* Start the transfer */
325         reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
326         sun4i_spi_write(sspi, SUN4I_CTL_REG, reg | SUN4I_CTL_XCH);
327
328         tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
329         start = jiffies;
330         timeout = wait_for_completion_timeout(&sspi->done,
331                                               msecs_to_jiffies(tx_time));
332         end = jiffies;
333         if (!timeout) {
334                 dev_warn(&master->dev,
335                          "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
336                          dev_name(&spi->dev), tfr->len, tfr->speed_hz,
337                          jiffies_to_msecs(end - start), tx_time);
338                 ret = -ETIMEDOUT;
339                 goto out;
340         }
341
342
343 out:
344         sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, 0);
345
346         return ret;
347 }
348
349 static irqreturn_t sun4i_spi_handler(int irq, void *dev_id)
350 {
351         struct sun4i_spi *sspi = dev_id;
352         u32 status = sun4i_spi_read(sspi, SUN4I_INT_STA_REG);
353
354         /* Transfer complete */
355         if (status & SUN4I_INT_CTL_TC) {
356                 sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_TC);
357                 sun4i_spi_drain_fifo(sspi, SUN4I_FIFO_DEPTH);
358                 complete(&sspi->done);
359                 return IRQ_HANDLED;
360         }
361
362         /* Receive FIFO 3/4 full */
363         if (status & SUN4I_INT_CTL_RF_F34) {
364                 sun4i_spi_drain_fifo(sspi, SUN4I_FIFO_DEPTH);
365                 /* Only clear the interrupt _after_ draining the FIFO */
366                 sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_RF_F34);
367                 return IRQ_HANDLED;
368         }
369
370         /* Transmit FIFO 3/4 empty */
371         if (status & SUN4I_INT_CTL_TF_E34) {
372                 sun4i_spi_fill_fifo(sspi, SUN4I_FIFO_DEPTH);
373
374                 if (!sspi->len)
375                         /* nothing left to transmit */
376                         sun4i_spi_disable_interrupt(sspi, SUN4I_INT_CTL_TF_E34);
377
378                 /* Only clear the interrupt _after_ re-seeding the FIFO */
379                 sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_TF_E34);
380
381                 return IRQ_HANDLED;
382         }
383
384         return IRQ_NONE;
385 }
386
387 static int sun4i_spi_runtime_resume(struct device *dev)
388 {
389         struct spi_master *master = dev_get_drvdata(dev);
390         struct sun4i_spi *sspi = spi_master_get_devdata(master);
391         int ret;
392
393         ret = clk_prepare_enable(sspi->hclk);
394         if (ret) {
395                 dev_err(dev, "Couldn't enable AHB clock\n");
396                 goto out;
397         }
398
399         ret = clk_prepare_enable(sspi->mclk);
400         if (ret) {
401                 dev_err(dev, "Couldn't enable module clock\n");
402                 goto err;
403         }
404
405         sun4i_spi_write(sspi, SUN4I_CTL_REG,
406                         SUN4I_CTL_ENABLE | SUN4I_CTL_MASTER | SUN4I_CTL_TP);
407
408         return 0;
409
410 err:
411         clk_disable_unprepare(sspi->hclk);
412 out:
413         return ret;
414 }
415
416 static int sun4i_spi_runtime_suspend(struct device *dev)
417 {
418         struct spi_master *master = dev_get_drvdata(dev);
419         struct sun4i_spi *sspi = spi_master_get_devdata(master);
420
421         clk_disable_unprepare(sspi->mclk);
422         clk_disable_unprepare(sspi->hclk);
423
424         return 0;
425 }
426
427 static int sun4i_spi_probe(struct platform_device *pdev)
428 {
429         struct spi_master *master;
430         struct sun4i_spi *sspi;
431         int ret = 0, irq;
432
433         master = spi_alloc_master(&pdev->dev, sizeof(struct sun4i_spi));
434         if (!master) {
435                 dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
436                 return -ENOMEM;
437         }
438
439         platform_set_drvdata(pdev, master);
440         sspi = spi_master_get_devdata(master);
441
442         sspi->base_addr = devm_platform_ioremap_resource(pdev, 0);
443         if (IS_ERR(sspi->base_addr)) {
444                 ret = PTR_ERR(sspi->base_addr);
445                 goto err_free_master;
446         }
447
448         irq = platform_get_irq(pdev, 0);
449         if (irq < 0) {
450                 ret = -ENXIO;
451                 goto err_free_master;
452         }
453
454         ret = devm_request_irq(&pdev->dev, irq, sun4i_spi_handler,
455                                0, "sun4i-spi", sspi);
456         if (ret) {
457                 dev_err(&pdev->dev, "Cannot request IRQ\n");
458                 goto err_free_master;
459         }
460
461         sspi->master = master;
462         master->max_speed_hz = 100 * 1000 * 1000;
463         master->min_speed_hz = 3 * 1000;
464         master->set_cs = sun4i_spi_set_cs;
465         master->transfer_one = sun4i_spi_transfer_one;
466         master->num_chipselect = 4;
467         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
468         master->bits_per_word_mask = SPI_BPW_MASK(8);
469         master->dev.of_node = pdev->dev.of_node;
470         master->auto_runtime_pm = true;
471         master->max_transfer_size = sun4i_spi_max_transfer_size;
472
473         sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
474         if (IS_ERR(sspi->hclk)) {
475                 dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
476                 ret = PTR_ERR(sspi->hclk);
477                 goto err_free_master;
478         }
479
480         sspi->mclk = devm_clk_get(&pdev->dev, "mod");
481         if (IS_ERR(sspi->mclk)) {
482                 dev_err(&pdev->dev, "Unable to acquire module clock\n");
483                 ret = PTR_ERR(sspi->mclk);
484                 goto err_free_master;
485         }
486
487         init_completion(&sspi->done);
488
489         /*
490          * This wake-up/shutdown pattern is to be able to have the
491          * device woken up, even if runtime_pm is disabled
492          */
493         ret = sun4i_spi_runtime_resume(&pdev->dev);
494         if (ret) {
495                 dev_err(&pdev->dev, "Couldn't resume the device\n");
496                 goto err_free_master;
497         }
498
499         pm_runtime_set_active(&pdev->dev);
500         pm_runtime_enable(&pdev->dev);
501         pm_runtime_idle(&pdev->dev);
502
503         ret = devm_spi_register_master(&pdev->dev, master);
504         if (ret) {
505                 dev_err(&pdev->dev, "cannot register SPI master\n");
506                 goto err_pm_disable;
507         }
508
509         return 0;
510
511 err_pm_disable:
512         pm_runtime_disable(&pdev->dev);
513         sun4i_spi_runtime_suspend(&pdev->dev);
514 err_free_master:
515         spi_master_put(master);
516         return ret;
517 }
518
519 static int sun4i_spi_remove(struct platform_device *pdev)
520 {
521         pm_runtime_force_suspend(&pdev->dev);
522
523         return 0;
524 }
525
526 static const struct of_device_id sun4i_spi_match[] = {
527         { .compatible = "allwinner,sun4i-a10-spi", },
528         {}
529 };
530 MODULE_DEVICE_TABLE(of, sun4i_spi_match);
531
532 static const struct dev_pm_ops sun4i_spi_pm_ops = {
533         .runtime_resume         = sun4i_spi_runtime_resume,
534         .runtime_suspend        = sun4i_spi_runtime_suspend,
535 };
536
537 static struct platform_driver sun4i_spi_driver = {
538         .probe  = sun4i_spi_probe,
539         .remove = sun4i_spi_remove,
540         .driver = {
541                 .name           = "sun4i-spi",
542                 .of_match_table = sun4i_spi_match,
543                 .pm             = &sun4i_spi_pm_ops,
544         },
545 };
546 module_platform_driver(sun4i_spi_driver);
547
548 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
549 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
550 MODULE_DESCRIPTION("Allwinner A1X/A20 SPI controller driver");
551 MODULE_LICENSE("GPL");