Merge tag 'powerpc-6.6-6' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[platform/kernel/linux-starfive.git] / drivers / spi / spi-stm32.c
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // STMicroelectronics STM32 SPI Controller driver
4 //
5 // Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 // Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
7
8 #include <linux/bitfield.h>
9 #include <linux/debugfs.h>
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/dmaengine.h>
13 #include <linux/interrupt.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/of_platform.h>
17 #include <linux/pinctrl/consumer.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/reset.h>
20 #include <linux/spi/spi.h>
21
22 #define DRIVER_NAME "spi_stm32"
23
24 /* STM32F4 SPI registers */
25 #define STM32F4_SPI_CR1                 0x00
26 #define STM32F4_SPI_CR2                 0x04
27 #define STM32F4_SPI_SR                  0x08
28 #define STM32F4_SPI_DR                  0x0C
29 #define STM32F4_SPI_I2SCFGR             0x1C
30
31 /* STM32F4_SPI_CR1 bit fields */
32 #define STM32F4_SPI_CR1_CPHA            BIT(0)
33 #define STM32F4_SPI_CR1_CPOL            BIT(1)
34 #define STM32F4_SPI_CR1_MSTR            BIT(2)
35 #define STM32F4_SPI_CR1_BR_SHIFT        3
36 #define STM32F4_SPI_CR1_BR              GENMASK(5, 3)
37 #define STM32F4_SPI_CR1_SPE             BIT(6)
38 #define STM32F4_SPI_CR1_LSBFRST         BIT(7)
39 #define STM32F4_SPI_CR1_SSI             BIT(8)
40 #define STM32F4_SPI_CR1_SSM             BIT(9)
41 #define STM32F4_SPI_CR1_RXONLY          BIT(10)
42 #define STM32F4_SPI_CR1_DFF             BIT(11)
43 #define STM32F4_SPI_CR1_CRCNEXT         BIT(12)
44 #define STM32F4_SPI_CR1_CRCEN           BIT(13)
45 #define STM32F4_SPI_CR1_BIDIOE          BIT(14)
46 #define STM32F4_SPI_CR1_BIDIMODE        BIT(15)
47 #define STM32F4_SPI_CR1_BR_MIN          0
48 #define STM32F4_SPI_CR1_BR_MAX          (GENMASK(5, 3) >> 3)
49
50 /* STM32F4_SPI_CR2 bit fields */
51 #define STM32F4_SPI_CR2_RXDMAEN         BIT(0)
52 #define STM32F4_SPI_CR2_TXDMAEN         BIT(1)
53 #define STM32F4_SPI_CR2_SSOE            BIT(2)
54 #define STM32F4_SPI_CR2_FRF             BIT(4)
55 #define STM32F4_SPI_CR2_ERRIE           BIT(5)
56 #define STM32F4_SPI_CR2_RXNEIE          BIT(6)
57 #define STM32F4_SPI_CR2_TXEIE           BIT(7)
58
59 /* STM32F4_SPI_SR bit fields */
60 #define STM32F4_SPI_SR_RXNE             BIT(0)
61 #define STM32F4_SPI_SR_TXE              BIT(1)
62 #define STM32F4_SPI_SR_CHSIDE           BIT(2)
63 #define STM32F4_SPI_SR_UDR              BIT(3)
64 #define STM32F4_SPI_SR_CRCERR           BIT(4)
65 #define STM32F4_SPI_SR_MODF             BIT(5)
66 #define STM32F4_SPI_SR_OVR              BIT(6)
67 #define STM32F4_SPI_SR_BSY              BIT(7)
68 #define STM32F4_SPI_SR_FRE              BIT(8)
69
70 /* STM32F4_SPI_I2SCFGR bit fields */
71 #define STM32F4_SPI_I2SCFGR_I2SMOD      BIT(11)
72
73 /* STM32F4 SPI Baud Rate min/max divisor */
74 #define STM32F4_SPI_BR_DIV_MIN          (2 << STM32F4_SPI_CR1_BR_MIN)
75 #define STM32F4_SPI_BR_DIV_MAX          (2 << STM32F4_SPI_CR1_BR_MAX)
76
77 /* STM32H7 SPI registers */
78 #define STM32H7_SPI_CR1                 0x00
79 #define STM32H7_SPI_CR2                 0x04
80 #define STM32H7_SPI_CFG1                0x08
81 #define STM32H7_SPI_CFG2                0x0C
82 #define STM32H7_SPI_IER                 0x10
83 #define STM32H7_SPI_SR                  0x14
84 #define STM32H7_SPI_IFCR                0x18
85 #define STM32H7_SPI_TXDR                0x20
86 #define STM32H7_SPI_RXDR                0x30
87 #define STM32H7_SPI_I2SCFGR             0x50
88
89 /* STM32H7_SPI_CR1 bit fields */
90 #define STM32H7_SPI_CR1_SPE             BIT(0)
91 #define STM32H7_SPI_CR1_MASRX           BIT(8)
92 #define STM32H7_SPI_CR1_CSTART          BIT(9)
93 #define STM32H7_SPI_CR1_CSUSP           BIT(10)
94 #define STM32H7_SPI_CR1_HDDIR           BIT(11)
95 #define STM32H7_SPI_CR1_SSI             BIT(12)
96
97 /* STM32H7_SPI_CR2 bit fields */
98 #define STM32H7_SPI_CR2_TSIZE           GENMASK(15, 0)
99 #define STM32H7_SPI_TSIZE_MAX           GENMASK(15, 0)
100
101 /* STM32H7_SPI_CFG1 bit fields */
102 #define STM32H7_SPI_CFG1_DSIZE          GENMASK(4, 0)
103 #define STM32H7_SPI_CFG1_FTHLV          GENMASK(8, 5)
104 #define STM32H7_SPI_CFG1_RXDMAEN        BIT(14)
105 #define STM32H7_SPI_CFG1_TXDMAEN        BIT(15)
106 #define STM32H7_SPI_CFG1_MBR            GENMASK(30, 28)
107 #define STM32H7_SPI_CFG1_MBR_SHIFT      28
108 #define STM32H7_SPI_CFG1_MBR_MIN        0
109 #define STM32H7_SPI_CFG1_MBR_MAX        (GENMASK(30, 28) >> 28)
110
111 /* STM32H7_SPI_CFG2 bit fields */
112 #define STM32H7_SPI_CFG2_MIDI           GENMASK(7, 4)
113 #define STM32H7_SPI_CFG2_COMM           GENMASK(18, 17)
114 #define STM32H7_SPI_CFG2_SP             GENMASK(21, 19)
115 #define STM32H7_SPI_CFG2_MASTER         BIT(22)
116 #define STM32H7_SPI_CFG2_LSBFRST        BIT(23)
117 #define STM32H7_SPI_CFG2_CPHA           BIT(24)
118 #define STM32H7_SPI_CFG2_CPOL           BIT(25)
119 #define STM32H7_SPI_CFG2_SSM            BIT(26)
120 #define STM32H7_SPI_CFG2_SSIOP          BIT(28)
121 #define STM32H7_SPI_CFG2_AFCNTR         BIT(31)
122
123 /* STM32H7_SPI_IER bit fields */
124 #define STM32H7_SPI_IER_RXPIE           BIT(0)
125 #define STM32H7_SPI_IER_TXPIE           BIT(1)
126 #define STM32H7_SPI_IER_DXPIE           BIT(2)
127 #define STM32H7_SPI_IER_EOTIE           BIT(3)
128 #define STM32H7_SPI_IER_TXTFIE          BIT(4)
129 #define STM32H7_SPI_IER_OVRIE           BIT(6)
130 #define STM32H7_SPI_IER_MODFIE          BIT(9)
131 #define STM32H7_SPI_IER_ALL             GENMASK(10, 0)
132
133 /* STM32H7_SPI_SR bit fields */
134 #define STM32H7_SPI_SR_RXP              BIT(0)
135 #define STM32H7_SPI_SR_TXP              BIT(1)
136 #define STM32H7_SPI_SR_EOT              BIT(3)
137 #define STM32H7_SPI_SR_OVR              BIT(6)
138 #define STM32H7_SPI_SR_MODF             BIT(9)
139 #define STM32H7_SPI_SR_SUSP             BIT(11)
140 #define STM32H7_SPI_SR_RXPLVL           GENMASK(14, 13)
141 #define STM32H7_SPI_SR_RXWNE            BIT(15)
142
143 /* STM32H7_SPI_IFCR bit fields */
144 #define STM32H7_SPI_IFCR_ALL            GENMASK(11, 3)
145
146 /* STM32H7_SPI_I2SCFGR bit fields */
147 #define STM32H7_SPI_I2SCFGR_I2SMOD      BIT(0)
148
149 /* STM32H7 SPI Master Baud Rate min/max divisor */
150 #define STM32H7_SPI_MBR_DIV_MIN         (2 << STM32H7_SPI_CFG1_MBR_MIN)
151 #define STM32H7_SPI_MBR_DIV_MAX         (2 << STM32H7_SPI_CFG1_MBR_MAX)
152
153 /* STM32H7 SPI Communication mode */
154 #define STM32H7_SPI_FULL_DUPLEX         0
155 #define STM32H7_SPI_SIMPLEX_TX          1
156 #define STM32H7_SPI_SIMPLEX_RX          2
157 #define STM32H7_SPI_HALF_DUPLEX         3
158
159 /* SPI Communication type */
160 #define SPI_FULL_DUPLEX         0
161 #define SPI_SIMPLEX_TX          1
162 #define SPI_SIMPLEX_RX          2
163 #define SPI_3WIRE_TX            3
164 #define SPI_3WIRE_RX            4
165
166 #define STM32_SPI_AUTOSUSPEND_DELAY             1       /* 1 ms */
167
168 /*
169  * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
170  * without fifo buffers.
171  */
172 #define SPI_DMA_MIN_BYTES       16
173
174 /* STM32 SPI driver helpers */
175 #define STM32_SPI_MASTER_MODE(stm32_spi) (!(stm32_spi)->device_mode)
176 #define STM32_SPI_DEVICE_MODE(stm32_spi) ((stm32_spi)->device_mode)
177
178 /**
179  * struct stm32_spi_reg - stm32 SPI register & bitfield desc
180  * @reg:                register offset
181  * @mask:               bitfield mask
182  * @shift:              left shift
183  */
184 struct stm32_spi_reg {
185         int reg;
186         int mask;
187         int shift;
188 };
189
190 /**
191  * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data
192  * @en: enable register and SPI enable bit
193  * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
194  * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
195  * @cpol: clock polarity register and polarity bit
196  * @cpha: clock phase register and phase bit
197  * @lsb_first: LSB transmitted first register and bit
198  * @cs_high: chips select active value
199  * @br: baud rate register and bitfields
200  * @rx: SPI RX data register
201  * @tx: SPI TX data register
202  */
203 struct stm32_spi_regspec {
204         const struct stm32_spi_reg en;
205         const struct stm32_spi_reg dma_rx_en;
206         const struct stm32_spi_reg dma_tx_en;
207         const struct stm32_spi_reg cpol;
208         const struct stm32_spi_reg cpha;
209         const struct stm32_spi_reg lsb_first;
210         const struct stm32_spi_reg cs_high;
211         const struct stm32_spi_reg br;
212         const struct stm32_spi_reg rx;
213         const struct stm32_spi_reg tx;
214 };
215
216 struct stm32_spi;
217
218 /**
219  * struct stm32_spi_cfg - stm32 compatible configuration data
220  * @regs: registers descriptions
221  * @get_fifo_size: routine to get fifo size
222  * @get_bpw_mask: routine to get bits per word mask
223  * @disable: routine to disable controller
224  * @config: routine to configure controller as SPI Master
225  * @set_bpw: routine to configure registers to for bits per word
226  * @set_mode: routine to configure registers to desired mode
227  * @set_data_idleness: optional routine to configure registers to desired idle
228  * time between frames (if driver has this functionality)
229  * @set_number_of_data: optional routine to configure registers to desired
230  * number of data (if driver has this functionality)
231  * @transfer_one_dma_start: routine to start transfer a single spi_transfer
232  * using DMA
233  * @dma_rx_cb: routine to call after DMA RX channel operation is complete
234  * @dma_tx_cb: routine to call after DMA TX channel operation is complete
235  * @transfer_one_irq: routine to configure interrupts for driver
236  * @irq_handler_event: Interrupt handler for SPI controller events
237  * @irq_handler_thread: thread of interrupt handler for SPI controller
238  * @baud_rate_div_min: minimum baud rate divisor
239  * @baud_rate_div_max: maximum baud rate divisor
240  * @has_fifo: boolean to know if fifo is used for driver
241  * @has_device_mode: is this compatible capable to switch on device mode
242  * @flags: compatible specific SPI controller flags used at registration time
243  */
244 struct stm32_spi_cfg {
245         const struct stm32_spi_regspec *regs;
246         int (*get_fifo_size)(struct stm32_spi *spi);
247         int (*get_bpw_mask)(struct stm32_spi *spi);
248         void (*disable)(struct stm32_spi *spi);
249         int (*config)(struct stm32_spi *spi);
250         void (*set_bpw)(struct stm32_spi *spi);
251         int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
252         void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
253         int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
254         void (*transfer_one_dma_start)(struct stm32_spi *spi);
255         void (*dma_rx_cb)(void *data);
256         void (*dma_tx_cb)(void *data);
257         int (*transfer_one_irq)(struct stm32_spi *spi);
258         irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
259         irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
260         unsigned int baud_rate_div_min;
261         unsigned int baud_rate_div_max;
262         bool has_fifo;
263         bool has_device_mode;
264         u16 flags;
265 };
266
267 /**
268  * struct stm32_spi - private data of the SPI controller
269  * @dev: driver model representation of the controller
270  * @ctrl: controller interface
271  * @cfg: compatible configuration data
272  * @base: virtual memory area
273  * @clk: hw kernel clock feeding the SPI clock generator
274  * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
275  * @lock: prevent I/O concurrent access
276  * @irq: SPI controller interrupt line
277  * @fifo_size: size of the embedded fifo in bytes
278  * @cur_midi: master inter-data idleness in ns
279  * @cur_speed: speed configured in Hz
280  * @cur_half_period: time of a half bit in us
281  * @cur_bpw: number of bits in a single SPI data frame
282  * @cur_fthlv: fifo threshold level (data frames in a single data packet)
283  * @cur_comm: SPI communication mode
284  * @cur_xferlen: current transfer length in bytes
285  * @cur_usedma: boolean to know if dma is used in current transfer
286  * @tx_buf: data to be written, or NULL
287  * @rx_buf: data to be read, or NULL
288  * @tx_len: number of data to be written in bytes
289  * @rx_len: number of data to be read in bytes
290  * @dma_tx: dma channel for TX transfer
291  * @dma_rx: dma channel for RX transfer
292  * @phys_addr: SPI registers physical base address
293  * @device_mode: the controller is configured as SPI device
294  */
295 struct stm32_spi {
296         struct device *dev;
297         struct spi_controller *ctrl;
298         const struct stm32_spi_cfg *cfg;
299         void __iomem *base;
300         struct clk *clk;
301         u32 clk_rate;
302         spinlock_t lock; /* prevent I/O concurrent access */
303         int irq;
304         unsigned int fifo_size;
305
306         unsigned int cur_midi;
307         unsigned int cur_speed;
308         unsigned int cur_half_period;
309         unsigned int cur_bpw;
310         unsigned int cur_fthlv;
311         unsigned int cur_comm;
312         unsigned int cur_xferlen;
313         bool cur_usedma;
314
315         const void *tx_buf;
316         void *rx_buf;
317         int tx_len;
318         int rx_len;
319         struct dma_chan *dma_tx;
320         struct dma_chan *dma_rx;
321         dma_addr_t phys_addr;
322
323         bool device_mode;
324 };
325
326 static const struct stm32_spi_regspec stm32f4_spi_regspec = {
327         .en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },
328
329         .dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
330         .dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },
331
332         .cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
333         .cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
334         .lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
335         .cs_high = {},
336         .br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },
337
338         .rx = { STM32F4_SPI_DR },
339         .tx = { STM32F4_SPI_DR },
340 };
341
342 static const struct stm32_spi_regspec stm32h7_spi_regspec = {
343         /* SPI data transfer is enabled but spi_ker_ck is idle.
344          * CFG1 and CFG2 registers are write protected when SPE is enabled.
345          */
346         .en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
347
348         .dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
349         .dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
350
351         .cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
352         .cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
353         .lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
354         .cs_high = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_SSIOP },
355         .br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
356                 STM32H7_SPI_CFG1_MBR_SHIFT },
357
358         .rx = { STM32H7_SPI_RXDR },
359         .tx = { STM32H7_SPI_TXDR },
360 };
361
362 static inline void stm32_spi_set_bits(struct stm32_spi *spi,
363                                       u32 offset, u32 bits)
364 {
365         writel_relaxed(readl_relaxed(spi->base + offset) | bits,
366                        spi->base + offset);
367 }
368
369 static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
370                                       u32 offset, u32 bits)
371 {
372         writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
373                        spi->base + offset);
374 }
375
376 /**
377  * stm32h7_spi_get_fifo_size - Return fifo size
378  * @spi: pointer to the spi controller data structure
379  */
380 static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
381 {
382         unsigned long flags;
383         u32 count = 0;
384
385         spin_lock_irqsave(&spi->lock, flags);
386
387         stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
388
389         while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
390                 writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
391
392         stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
393
394         spin_unlock_irqrestore(&spi->lock, flags);
395
396         dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
397
398         return count;
399 }
400
401 /**
402  * stm32f4_spi_get_bpw_mask - Return bits per word mask
403  * @spi: pointer to the spi controller data structure
404  */
405 static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
406 {
407         dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
408         return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
409 }
410
411 /**
412  * stm32h7_spi_get_bpw_mask - Return bits per word mask
413  * @spi: pointer to the spi controller data structure
414  */
415 static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
416 {
417         unsigned long flags;
418         u32 cfg1, max_bpw;
419
420         spin_lock_irqsave(&spi->lock, flags);
421
422         /*
423          * The most significant bit at DSIZE bit field is reserved when the
424          * maximum data size of periperal instances is limited to 16-bit
425          */
426         stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
427
428         cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
429         max_bpw = FIELD_GET(STM32H7_SPI_CFG1_DSIZE, cfg1) + 1;
430
431         spin_unlock_irqrestore(&spi->lock, flags);
432
433         dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
434
435         return SPI_BPW_RANGE_MASK(4, max_bpw);
436 }
437
438 /**
439  * stm32_spi_prepare_mbr - Determine baud rate divisor value
440  * @spi: pointer to the spi controller data structure
441  * @speed_hz: requested speed
442  * @min_div: minimum baud rate divisor
443  * @max_div: maximum baud rate divisor
444  *
445  * Return baud rate divisor value in case of success or -EINVAL
446  */
447 static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
448                                  u32 min_div, u32 max_div)
449 {
450         u32 div, mbrdiv;
451
452         /* Ensure spi->clk_rate is even */
453         div = DIV_ROUND_CLOSEST(spi->clk_rate & ~0x1, speed_hz);
454
455         /*
456          * SPI framework set xfer->speed_hz to ctrl->max_speed_hz if
457          * xfer->speed_hz is greater than ctrl->max_speed_hz, and it returns
458          * an error when xfer->speed_hz is lower than ctrl->min_speed_hz, so
459          * no need to check it there.
460          * However, we need to ensure the following calculations.
461          */
462         if ((div < min_div) || (div > max_div))
463                 return -EINVAL;
464
465         /* Determine the first power of 2 greater than or equal to div */
466         if (div & (div - 1))
467                 mbrdiv = fls(div);
468         else
469                 mbrdiv = fls(div) - 1;
470
471         spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
472
473         spi->cur_half_period = DIV_ROUND_CLOSEST(USEC_PER_SEC, 2 * spi->cur_speed);
474
475         return mbrdiv - 1;
476 }
477
478 /**
479  * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
480  * @spi: pointer to the spi controller data structure
481  * @xfer_len: length of the message to be transferred
482  */
483 static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len)
484 {
485         u32 packet, bpw;
486
487         /* data packet should not exceed 1/2 of fifo space */
488         packet = clamp(xfer_len, 1U, spi->fifo_size / 2);
489
490         /* align packet size with data registers access */
491         bpw = DIV_ROUND_UP(spi->cur_bpw, 8);
492         return DIV_ROUND_UP(packet, bpw);
493 }
494
495 /**
496  * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
497  * @spi: pointer to the spi controller data structure
498  *
499  * Read from tx_buf depends on remaining bytes to avoid to read beyond
500  * tx_buf end.
501  */
502 static void stm32f4_spi_write_tx(struct stm32_spi *spi)
503 {
504         if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
505                                   STM32F4_SPI_SR_TXE)) {
506                 u32 offs = spi->cur_xferlen - spi->tx_len;
507
508                 if (spi->cur_bpw == 16) {
509                         const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
510
511                         writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
512                         spi->tx_len -= sizeof(u16);
513                 } else {
514                         const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
515
516                         writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
517                         spi->tx_len -= sizeof(u8);
518                 }
519         }
520
521         dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
522 }
523
524 /**
525  * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
526  * @spi: pointer to the spi controller data structure
527  *
528  * Read from tx_buf depends on remaining bytes to avoid to read beyond
529  * tx_buf end.
530  */
531 static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
532 {
533         while ((spi->tx_len > 0) &&
534                        (readl_relaxed(spi->base + STM32H7_SPI_SR) &
535                         STM32H7_SPI_SR_TXP)) {
536                 u32 offs = spi->cur_xferlen - spi->tx_len;
537
538                 if (spi->tx_len >= sizeof(u32)) {
539                         const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
540
541                         writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
542                         spi->tx_len -= sizeof(u32);
543                 } else if (spi->tx_len >= sizeof(u16)) {
544                         const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
545
546                         writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
547                         spi->tx_len -= sizeof(u16);
548                 } else {
549                         const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
550
551                         writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
552                         spi->tx_len -= sizeof(u8);
553                 }
554         }
555
556         dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
557 }
558
559 /**
560  * stm32f4_spi_read_rx - Read bytes from Receive Data Register
561  * @spi: pointer to the spi controller data structure
562  *
563  * Write in rx_buf depends on remaining bytes to avoid to write beyond
564  * rx_buf end.
565  */
566 static void stm32f4_spi_read_rx(struct stm32_spi *spi)
567 {
568         if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
569                                   STM32F4_SPI_SR_RXNE)) {
570                 u32 offs = spi->cur_xferlen - spi->rx_len;
571
572                 if (spi->cur_bpw == 16) {
573                         u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
574
575                         *rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
576                         spi->rx_len -= sizeof(u16);
577                 } else {
578                         u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
579
580                         *rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
581                         spi->rx_len -= sizeof(u8);
582                 }
583         }
584
585         dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
586 }
587
588 /**
589  * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
590  * @spi: pointer to the spi controller data structure
591  *
592  * Write in rx_buf depends on remaining bytes to avoid to write beyond
593  * rx_buf end.
594  */
595 static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi)
596 {
597         u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
598         u32 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
599
600         while ((spi->rx_len > 0) &&
601                ((sr & STM32H7_SPI_SR_RXP) ||
602                 ((sr & STM32H7_SPI_SR_EOT) &&
603                  ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
604                 u32 offs = spi->cur_xferlen - spi->rx_len;
605
606                 if ((spi->rx_len >= sizeof(u32)) ||
607                     (sr & STM32H7_SPI_SR_RXWNE)) {
608                         u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
609
610                         *rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
611                         spi->rx_len -= sizeof(u32);
612                 } else if ((spi->rx_len >= sizeof(u16)) ||
613                            (!(sr & STM32H7_SPI_SR_RXWNE) &&
614                             (rxplvl >= 2 || spi->cur_bpw > 8))) {
615                         u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
616
617                         *rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
618                         spi->rx_len -= sizeof(u16);
619                 } else {
620                         u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
621
622                         *rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
623                         spi->rx_len -= sizeof(u8);
624                 }
625
626                 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
627                 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
628         }
629
630         dev_dbg(spi->dev, "%s: %d bytes left (sr=%08x)\n",
631                 __func__, spi->rx_len, sr);
632 }
633
634 /**
635  * stm32_spi_enable - Enable SPI controller
636  * @spi: pointer to the spi controller data structure
637  */
638 static void stm32_spi_enable(struct stm32_spi *spi)
639 {
640         dev_dbg(spi->dev, "enable controller\n");
641
642         stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
643                            spi->cfg->regs->en.mask);
644 }
645
646 /**
647  * stm32f4_spi_disable - Disable SPI controller
648  * @spi: pointer to the spi controller data structure
649  */
650 static void stm32f4_spi_disable(struct stm32_spi *spi)
651 {
652         unsigned long flags;
653         u32 sr;
654
655         dev_dbg(spi->dev, "disable controller\n");
656
657         spin_lock_irqsave(&spi->lock, flags);
658
659         if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
660               STM32F4_SPI_CR1_SPE)) {
661                 spin_unlock_irqrestore(&spi->lock, flags);
662                 return;
663         }
664
665         /* Disable interrupts */
666         stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
667                                                  STM32F4_SPI_CR2_RXNEIE |
668                                                  STM32F4_SPI_CR2_ERRIE);
669
670         /* Wait until BSY = 0 */
671         if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
672                                               sr, !(sr & STM32F4_SPI_SR_BSY),
673                                               10, 100000) < 0) {
674                 dev_warn(spi->dev, "disabling condition timeout\n");
675         }
676
677         if (spi->cur_usedma && spi->dma_tx)
678                 dmaengine_terminate_async(spi->dma_tx);
679         if (spi->cur_usedma && spi->dma_rx)
680                 dmaengine_terminate_async(spi->dma_rx);
681
682         stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);
683
684         stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
685                                                  STM32F4_SPI_CR2_RXDMAEN);
686
687         /* Sequence to clear OVR flag */
688         readl_relaxed(spi->base + STM32F4_SPI_DR);
689         readl_relaxed(spi->base + STM32F4_SPI_SR);
690
691         spin_unlock_irqrestore(&spi->lock, flags);
692 }
693
694 /**
695  * stm32h7_spi_disable - Disable SPI controller
696  * @spi: pointer to the spi controller data structure
697  *
698  * RX-Fifo is flushed when SPI controller is disabled.
699  */
700 static void stm32h7_spi_disable(struct stm32_spi *spi)
701 {
702         unsigned long flags;
703         u32 cr1;
704
705         dev_dbg(spi->dev, "disable controller\n");
706
707         spin_lock_irqsave(&spi->lock, flags);
708
709         cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
710
711         if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
712                 spin_unlock_irqrestore(&spi->lock, flags);
713                 return;
714         }
715
716         /* Add a delay to make sure that transmission is ended. */
717         if (spi->cur_half_period)
718                 udelay(spi->cur_half_period);
719
720         if (spi->cur_usedma && spi->dma_tx)
721                 dmaengine_terminate_async(spi->dma_tx);
722         if (spi->cur_usedma && spi->dma_rx)
723                 dmaengine_terminate_async(spi->dma_rx);
724
725         stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
726
727         stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
728                                                 STM32H7_SPI_CFG1_RXDMAEN);
729
730         /* Disable interrupts and clear status flags */
731         writel_relaxed(0, spi->base + STM32H7_SPI_IER);
732         writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
733
734         spin_unlock_irqrestore(&spi->lock, flags);
735 }
736
737 /**
738  * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
739  * @ctrl: controller interface
740  * @spi_dev: pointer to the spi device
741  * @transfer: pointer to spi transfer
742  *
743  * If driver has fifo and the current transfer size is greater than fifo size,
744  * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
745  */
746 static bool stm32_spi_can_dma(struct spi_controller *ctrl,
747                               struct spi_device *spi_dev,
748                               struct spi_transfer *transfer)
749 {
750         unsigned int dma_size;
751         struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
752
753         if (spi->cfg->has_fifo)
754                 dma_size = spi->fifo_size;
755         else
756                 dma_size = SPI_DMA_MIN_BYTES;
757
758         dev_dbg(spi->dev, "%s: %s\n", __func__,
759                 (transfer->len > dma_size) ? "true" : "false");
760
761         return (transfer->len > dma_size);
762 }
763
764 /**
765  * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
766  * @irq: interrupt line
767  * @dev_id: SPI controller ctrl interface
768  */
769 static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
770 {
771         struct spi_controller *ctrl = dev_id;
772         struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
773         u32 sr, mask = 0;
774         bool end = false;
775
776         spin_lock(&spi->lock);
777
778         sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
779         /*
780          * BSY flag is not handled in interrupt but it is normal behavior when
781          * this flag is set.
782          */
783         sr &= ~STM32F4_SPI_SR_BSY;
784
785         if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
786                                  spi->cur_comm == SPI_3WIRE_TX)) {
787                 /* OVR flag shouldn't be handled for TX only mode */
788                 sr &= ~(STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE);
789                 mask |= STM32F4_SPI_SR_TXE;
790         }
791
792         if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX ||
793                                 spi->cur_comm == SPI_SIMPLEX_RX ||
794                                 spi->cur_comm == SPI_3WIRE_RX)) {
795                 /* TXE flag is set and is handled when RXNE flag occurs */
796                 sr &= ~STM32F4_SPI_SR_TXE;
797                 mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
798         }
799
800         if (!(sr & mask)) {
801                 dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
802                 spin_unlock(&spi->lock);
803                 return IRQ_NONE;
804         }
805
806         if (sr & STM32F4_SPI_SR_OVR) {
807                 dev_warn(spi->dev, "Overrun: received value discarded\n");
808
809                 /* Sequence to clear OVR flag */
810                 readl_relaxed(spi->base + STM32F4_SPI_DR);
811                 readl_relaxed(spi->base + STM32F4_SPI_SR);
812
813                 /*
814                  * If overrun is detected, it means that something went wrong,
815                  * so stop the current transfer. Transfer can wait for next
816                  * RXNE but DR is already read and end never happens.
817                  */
818                 end = true;
819                 goto end_irq;
820         }
821
822         if (sr & STM32F4_SPI_SR_TXE) {
823                 if (spi->tx_buf)
824                         stm32f4_spi_write_tx(spi);
825                 if (spi->tx_len == 0)
826                         end = true;
827         }
828
829         if (sr & STM32F4_SPI_SR_RXNE) {
830                 stm32f4_spi_read_rx(spi);
831                 if (spi->rx_len == 0)
832                         end = true;
833                 else if (spi->tx_buf)/* Load data for discontinuous mode */
834                         stm32f4_spi_write_tx(spi);
835         }
836
837 end_irq:
838         if (end) {
839                 /* Immediately disable interrupts to do not generate new one */
840                 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
841                                         STM32F4_SPI_CR2_TXEIE |
842                                         STM32F4_SPI_CR2_RXNEIE |
843                                         STM32F4_SPI_CR2_ERRIE);
844                 spin_unlock(&spi->lock);
845                 return IRQ_WAKE_THREAD;
846         }
847
848         spin_unlock(&spi->lock);
849         return IRQ_HANDLED;
850 }
851
852 /**
853  * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
854  * @irq: interrupt line
855  * @dev_id: SPI controller interface
856  */
857 static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
858 {
859         struct spi_controller *ctrl = dev_id;
860         struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
861
862         spi_finalize_current_transfer(ctrl);
863         stm32f4_spi_disable(spi);
864
865         return IRQ_HANDLED;
866 }
867
868 /**
869  * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
870  * @irq: interrupt line
871  * @dev_id: SPI controller interface
872  */
873 static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
874 {
875         struct spi_controller *ctrl = dev_id;
876         struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
877         u32 sr, ier, mask;
878         unsigned long flags;
879         bool end = false;
880
881         spin_lock_irqsave(&spi->lock, flags);
882
883         sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
884         ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
885
886         mask = ier;
887         /*
888          * EOTIE enables irq from EOT, SUSP and TXC events. We need to set
889          * SUSP to acknowledge it later. TXC is automatically cleared
890          */
891
892         mask |= STM32H7_SPI_SR_SUSP;
893         /*
894          * DXPIE is set in Full-Duplex, one IT will be raised if TXP and RXP
895          * are set. So in case of Full-Duplex, need to poll TXP and RXP event.
896          */
897         if ((spi->cur_comm == SPI_FULL_DUPLEX) && !spi->cur_usedma)
898                 mask |= STM32H7_SPI_SR_TXP | STM32H7_SPI_SR_RXP;
899
900         if (!(sr & mask)) {
901                 dev_warn(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
902                          sr, ier);
903                 spin_unlock_irqrestore(&spi->lock, flags);
904                 return IRQ_NONE;
905         }
906
907         if (sr & STM32H7_SPI_SR_SUSP) {
908                 static DEFINE_RATELIMIT_STATE(rs,
909                                               DEFAULT_RATELIMIT_INTERVAL * 10,
910                                               1);
911                 ratelimit_set_flags(&rs, RATELIMIT_MSG_ON_RELEASE);
912                 if (__ratelimit(&rs))
913                         dev_dbg_ratelimited(spi->dev, "Communication suspended\n");
914                 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
915                         stm32h7_spi_read_rxfifo(spi);
916                 /*
917                  * If communication is suspended while using DMA, it means
918                  * that something went wrong, so stop the current transfer
919                  */
920                 if (spi->cur_usedma)
921                         end = true;
922         }
923
924         if (sr & STM32H7_SPI_SR_MODF) {
925                 dev_warn(spi->dev, "Mode fault: transfer aborted\n");
926                 end = true;
927         }
928
929         if (sr & STM32H7_SPI_SR_OVR) {
930                 dev_err(spi->dev, "Overrun: RX data lost\n");
931                 end = true;
932         }
933
934         if (sr & STM32H7_SPI_SR_EOT) {
935                 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
936                         stm32h7_spi_read_rxfifo(spi);
937                 if (!spi->cur_usedma ||
938                     (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX))
939                         end = true;
940         }
941
942         if (sr & STM32H7_SPI_SR_TXP)
943                 if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
944                         stm32h7_spi_write_txfifo(spi);
945
946         if (sr & STM32H7_SPI_SR_RXP)
947                 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
948                         stm32h7_spi_read_rxfifo(spi);
949
950         writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR);
951
952         spin_unlock_irqrestore(&spi->lock, flags);
953
954         if (end) {
955                 stm32h7_spi_disable(spi);
956                 spi_finalize_current_transfer(ctrl);
957         }
958
959         return IRQ_HANDLED;
960 }
961
962 /**
963  * stm32_spi_prepare_msg - set up the controller to transfer a single message
964  * @ctrl: controller interface
965  * @msg: pointer to spi message
966  */
967 static int stm32_spi_prepare_msg(struct spi_controller *ctrl,
968                                  struct spi_message *msg)
969 {
970         struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
971         struct spi_device *spi_dev = msg->spi;
972         struct device_node *np = spi_dev->dev.of_node;
973         unsigned long flags;
974         u32 clrb = 0, setb = 0;
975
976         /* SPI slave device may need time between data frames */
977         spi->cur_midi = 0;
978         if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
979                 dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
980
981         if (spi_dev->mode & SPI_CPOL)
982                 setb |= spi->cfg->regs->cpol.mask;
983         else
984                 clrb |= spi->cfg->regs->cpol.mask;
985
986         if (spi_dev->mode & SPI_CPHA)
987                 setb |= spi->cfg->regs->cpha.mask;
988         else
989                 clrb |= spi->cfg->regs->cpha.mask;
990
991         if (spi_dev->mode & SPI_LSB_FIRST)
992                 setb |= spi->cfg->regs->lsb_first.mask;
993         else
994                 clrb |= spi->cfg->regs->lsb_first.mask;
995
996         if (STM32_SPI_DEVICE_MODE(spi) && spi_dev->mode & SPI_CS_HIGH)
997                 setb |= spi->cfg->regs->cs_high.mask;
998         else
999                 clrb |= spi->cfg->regs->cs_high.mask;
1000
1001         dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
1002                 !!(spi_dev->mode & SPI_CPOL),
1003                 !!(spi_dev->mode & SPI_CPHA),
1004                 !!(spi_dev->mode & SPI_LSB_FIRST),
1005                 !!(spi_dev->mode & SPI_CS_HIGH));
1006
1007         /* On STM32H7, messages should not exceed a maximum size setted
1008          * afterward via the set_number_of_data function. In order to
1009          * ensure that, split large messages into several messages
1010          */
1011         if (spi->cfg->set_number_of_data) {
1012                 int ret;
1013
1014                 ret = spi_split_transfers_maxwords(ctrl, msg,
1015                                                    STM32H7_SPI_TSIZE_MAX,
1016                                                    GFP_KERNEL | GFP_DMA);
1017                 if (ret)
1018                         return ret;
1019         }
1020
1021         spin_lock_irqsave(&spi->lock, flags);
1022
1023         /* CPOL, CPHA and LSB FIRST bits have common register */
1024         if (clrb || setb)
1025                 writel_relaxed(
1026                         (readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
1027                          ~clrb) | setb,
1028                         spi->base + spi->cfg->regs->cpol.reg);
1029
1030         spin_unlock_irqrestore(&spi->lock, flags);
1031
1032         return 0;
1033 }
1034
1035 /**
1036  * stm32f4_spi_dma_tx_cb - dma callback
1037  * @data: pointer to the spi controller data structure
1038  *
1039  * DMA callback is called when the transfer is complete for DMA TX channel.
1040  */
1041 static void stm32f4_spi_dma_tx_cb(void *data)
1042 {
1043         struct stm32_spi *spi = data;
1044
1045         if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1046                 spi_finalize_current_transfer(spi->ctrl);
1047                 stm32f4_spi_disable(spi);
1048         }
1049 }
1050
1051 /**
1052  * stm32_spi_dma_rx_cb - dma callback
1053  * @data: pointer to the spi controller data structure
1054  *
1055  * DMA callback is called when the transfer is complete for DMA RX channel.
1056  */
1057 static void stm32_spi_dma_rx_cb(void *data)
1058 {
1059         struct stm32_spi *spi = data;
1060
1061         spi_finalize_current_transfer(spi->ctrl);
1062         spi->cfg->disable(spi);
1063 }
1064
1065 /**
1066  * stm32_spi_dma_config - configure dma slave channel depending on current
1067  *                        transfer bits_per_word.
1068  * @spi: pointer to the spi controller data structure
1069  * @dma_conf: pointer to the dma_slave_config structure
1070  * @dir: direction of the dma transfer
1071  */
1072 static void stm32_spi_dma_config(struct stm32_spi *spi,
1073                                  struct dma_slave_config *dma_conf,
1074                                  enum dma_transfer_direction dir)
1075 {
1076         enum dma_slave_buswidth buswidth;
1077         u32 maxburst;
1078
1079         if (spi->cur_bpw <= 8)
1080                 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1081         else if (spi->cur_bpw <= 16)
1082                 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1083         else
1084                 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1085
1086         if (spi->cfg->has_fifo) {
1087                 /* Valid for DMA Half or Full Fifo threshold */
1088                 if (spi->cur_fthlv == 2)
1089                         maxburst = 1;
1090                 else
1091                         maxburst = spi->cur_fthlv;
1092         } else {
1093                 maxburst = 1;
1094         }
1095
1096         memset(dma_conf, 0, sizeof(struct dma_slave_config));
1097         dma_conf->direction = dir;
1098         if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1099                 dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1100                 dma_conf->src_addr_width = buswidth;
1101                 dma_conf->src_maxburst = maxburst;
1102
1103                 dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1104                         buswidth, maxburst);
1105         } else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1106                 dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1107                 dma_conf->dst_addr_width = buswidth;
1108                 dma_conf->dst_maxburst = maxburst;
1109
1110                 dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1111                         buswidth, maxburst);
1112         }
1113 }
1114
1115 /**
1116  * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
1117  *                                interrupts
1118  * @spi: pointer to the spi controller data structure
1119  *
1120  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1121  * in progress.
1122  */
1123 static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
1124 {
1125         unsigned long flags;
1126         u32 cr2 = 0;
1127
1128         /* Enable the interrupts relative to the current communication mode */
1129         if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1130                 cr2 |= STM32F4_SPI_CR2_TXEIE;
1131         } else if (spi->cur_comm == SPI_FULL_DUPLEX ||
1132                                 spi->cur_comm == SPI_SIMPLEX_RX ||
1133                                 spi->cur_comm == SPI_3WIRE_RX) {
1134                 /* In transmit-only mode, the OVR flag is set in the SR register
1135                  * since the received data are never read. Therefore set OVR
1136                  * interrupt only when rx buffer is available.
1137                  */
1138                 cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
1139         } else {
1140                 return -EINVAL;
1141         }
1142
1143         spin_lock_irqsave(&spi->lock, flags);
1144
1145         stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);
1146
1147         stm32_spi_enable(spi);
1148
1149         /* starting data transfer when buffer is loaded */
1150         if (spi->tx_buf)
1151                 stm32f4_spi_write_tx(spi);
1152
1153         spin_unlock_irqrestore(&spi->lock, flags);
1154
1155         return 1;
1156 }
1157
1158 /**
1159  * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1160  *                                interrupts
1161  * @spi: pointer to the spi controller data structure
1162  *
1163  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1164  * in progress.
1165  */
1166 static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1167 {
1168         unsigned long flags;
1169         u32 ier = 0;
1170
1171         /* Enable the interrupts relative to the current communication mode */
1172         if (spi->tx_buf && spi->rx_buf) /* Full Duplex */
1173                 ier |= STM32H7_SPI_IER_DXPIE;
1174         else if (spi->tx_buf)           /* Half-Duplex TX dir or Simplex TX */
1175                 ier |= STM32H7_SPI_IER_TXPIE;
1176         else if (spi->rx_buf)           /* Half-Duplex RX dir or Simplex RX */
1177                 ier |= STM32H7_SPI_IER_RXPIE;
1178
1179         /* Enable the interrupts relative to the end of transfer */
1180         ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1181                STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1182
1183         spin_lock_irqsave(&spi->lock, flags);
1184
1185         stm32_spi_enable(spi);
1186
1187         /* Be sure to have data in fifo before starting data transfer */
1188         if (spi->tx_buf)
1189                 stm32h7_spi_write_txfifo(spi);
1190
1191         if (STM32_SPI_MASTER_MODE(spi))
1192                 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1193
1194         writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1195
1196         spin_unlock_irqrestore(&spi->lock, flags);
1197
1198         return 1;
1199 }
1200
1201 /**
1202  * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
1203  *                                      transfer using DMA
1204  * @spi: pointer to the spi controller data structure
1205  */
1206 static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
1207 {
1208         /* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1209         if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1210             spi->cur_comm == SPI_FULL_DUPLEX) {
1211                 /*
1212                  * In transmit-only mode, the OVR flag is set in the SR register
1213                  * since the received data are never read. Therefore set OVR
1214                  * interrupt only when rx buffer is available.
1215                  */
1216                 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
1217         }
1218
1219         stm32_spi_enable(spi);
1220 }
1221
1222 /**
1223  * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1224  *                                      transfer using DMA
1225  * @spi: pointer to the spi controller data structure
1226  */
1227 static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1228 {
1229         uint32_t ier = STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1230
1231         /* Enable the interrupts */
1232         if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX)
1233                 ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE;
1234
1235         stm32_spi_set_bits(spi, STM32H7_SPI_IER, ier);
1236
1237         stm32_spi_enable(spi);
1238
1239         if (STM32_SPI_MASTER_MODE(spi))
1240                 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1241 }
1242
1243 /**
1244  * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1245  * @spi: pointer to the spi controller data structure
1246  * @xfer: pointer to the spi_transfer structure
1247  *
1248  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1249  * in progress.
1250  */
1251 static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1252                                       struct spi_transfer *xfer)
1253 {
1254         struct dma_slave_config tx_dma_conf, rx_dma_conf;
1255         struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1256         unsigned long flags;
1257
1258         spin_lock_irqsave(&spi->lock, flags);
1259
1260         rx_dma_desc = NULL;
1261         if (spi->rx_buf && spi->dma_rx) {
1262                 stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
1263                 dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1264
1265                 /* Enable Rx DMA request */
1266                 stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1267                                    spi->cfg->regs->dma_rx_en.mask);
1268
1269                 rx_dma_desc = dmaengine_prep_slave_sg(
1270                                         spi->dma_rx, xfer->rx_sg.sgl,
1271                                         xfer->rx_sg.nents,
1272                                         rx_dma_conf.direction,
1273                                         DMA_PREP_INTERRUPT);
1274         }
1275
1276         tx_dma_desc = NULL;
1277         if (spi->tx_buf && spi->dma_tx) {
1278                 stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
1279                 dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1280
1281                 tx_dma_desc = dmaengine_prep_slave_sg(
1282                                         spi->dma_tx, xfer->tx_sg.sgl,
1283                                         xfer->tx_sg.nents,
1284                                         tx_dma_conf.direction,
1285                                         DMA_PREP_INTERRUPT);
1286         }
1287
1288         if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1289             (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1290                 goto dma_desc_error;
1291
1292         if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1293                 goto dma_desc_error;
1294
1295         if (rx_dma_desc) {
1296                 rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1297                 rx_dma_desc->callback_param = spi;
1298
1299                 if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1300                         dev_err(spi->dev, "Rx DMA submit failed\n");
1301                         goto dma_desc_error;
1302                 }
1303                 /* Enable Rx DMA channel */
1304                 dma_async_issue_pending(spi->dma_rx);
1305         }
1306
1307         if (tx_dma_desc) {
1308                 if (spi->cur_comm == SPI_SIMPLEX_TX ||
1309                     spi->cur_comm == SPI_3WIRE_TX) {
1310                         tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1311                         tx_dma_desc->callback_param = spi;
1312                 }
1313
1314                 if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1315                         dev_err(spi->dev, "Tx DMA submit failed\n");
1316                         goto dma_submit_error;
1317                 }
1318                 /* Enable Tx DMA channel */
1319                 dma_async_issue_pending(spi->dma_tx);
1320
1321                 /* Enable Tx DMA request */
1322                 stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1323                                    spi->cfg->regs->dma_tx_en.mask);
1324         }
1325
1326         spi->cfg->transfer_one_dma_start(spi);
1327
1328         spin_unlock_irqrestore(&spi->lock, flags);
1329
1330         return 1;
1331
1332 dma_submit_error:
1333         if (spi->dma_rx)
1334                 dmaengine_terminate_sync(spi->dma_rx);
1335
1336 dma_desc_error:
1337         stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1338                            spi->cfg->regs->dma_rx_en.mask);
1339
1340         spin_unlock_irqrestore(&spi->lock, flags);
1341
1342         dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1343
1344         spi->cur_usedma = false;
1345         return spi->cfg->transfer_one_irq(spi);
1346 }
1347
1348 /**
1349  * stm32f4_spi_set_bpw - Configure bits per word
1350  * @spi: pointer to the spi controller data structure
1351  */
1352 static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
1353 {
1354         if (spi->cur_bpw == 16)
1355                 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1356         else
1357                 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1358 }
1359
1360 /**
1361  * stm32h7_spi_set_bpw - configure bits per word
1362  * @spi: pointer to the spi controller data structure
1363  */
1364 static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1365 {
1366         u32 bpw, fthlv;
1367         u32 cfg1_clrb = 0, cfg1_setb = 0;
1368
1369         bpw = spi->cur_bpw - 1;
1370
1371         cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
1372         cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_DSIZE, bpw);
1373
1374         spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen);
1375         fthlv = spi->cur_fthlv - 1;
1376
1377         cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
1378         cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_FTHLV, fthlv);
1379
1380         writel_relaxed(
1381                 (readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1382                  ~cfg1_clrb) | cfg1_setb,
1383                 spi->base + STM32H7_SPI_CFG1);
1384 }
1385
1386 /**
1387  * stm32_spi_set_mbr - Configure baud rate divisor in master mode
1388  * @spi: pointer to the spi controller data structure
1389  * @mbrdiv: baud rate divisor value
1390  */
1391 static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1392 {
1393         u32 clrb = 0, setb = 0;
1394
1395         clrb |= spi->cfg->regs->br.mask;
1396         setb |= (mbrdiv << spi->cfg->regs->br.shift) & spi->cfg->regs->br.mask;
1397
1398         writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1399                         ~clrb) | setb,
1400                        spi->base + spi->cfg->regs->br.reg);
1401 }
1402
1403 /**
1404  * stm32_spi_communication_type - return transfer communication type
1405  * @spi_dev: pointer to the spi device
1406  * @transfer: pointer to spi transfer
1407  */
1408 static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1409                                                  struct spi_transfer *transfer)
1410 {
1411         unsigned int type = SPI_FULL_DUPLEX;
1412
1413         if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1414                 /*
1415                  * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1416                  * is forbidden and unvalidated by SPI subsystem so depending
1417                  * on the valid buffer, we can determine the direction of the
1418                  * transfer.
1419                  */
1420                 if (!transfer->tx_buf)
1421                         type = SPI_3WIRE_RX;
1422                 else
1423                         type = SPI_3WIRE_TX;
1424         } else {
1425                 if (!transfer->tx_buf)
1426                         type = SPI_SIMPLEX_RX;
1427                 else if (!transfer->rx_buf)
1428                         type = SPI_SIMPLEX_TX;
1429         }
1430
1431         return type;
1432 }
1433
1434 /**
1435  * stm32f4_spi_set_mode - configure communication mode
1436  * @spi: pointer to the spi controller data structure
1437  * @comm_type: type of communication to configure
1438  */
1439 static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1440 {
1441         if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1442                 stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1443                                         STM32F4_SPI_CR1_BIDIMODE |
1444                                         STM32F4_SPI_CR1_BIDIOE);
1445         } else if (comm_type == SPI_FULL_DUPLEX ||
1446                                 comm_type == SPI_SIMPLEX_RX) {
1447                 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1448                                         STM32F4_SPI_CR1_BIDIMODE |
1449                                         STM32F4_SPI_CR1_BIDIOE);
1450         } else if (comm_type == SPI_3WIRE_RX) {
1451                 stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1452                                         STM32F4_SPI_CR1_BIDIMODE);
1453                 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1454                                         STM32F4_SPI_CR1_BIDIOE);
1455         } else {
1456                 return -EINVAL;
1457         }
1458
1459         return 0;
1460 }
1461
1462 /**
1463  * stm32h7_spi_set_mode - configure communication mode
1464  * @spi: pointer to the spi controller data structure
1465  * @comm_type: type of communication to configure
1466  */
1467 static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1468 {
1469         u32 mode;
1470         u32 cfg2_clrb = 0, cfg2_setb = 0;
1471
1472         if (comm_type == SPI_3WIRE_RX) {
1473                 mode = STM32H7_SPI_HALF_DUPLEX;
1474                 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1475         } else if (comm_type == SPI_3WIRE_TX) {
1476                 mode = STM32H7_SPI_HALF_DUPLEX;
1477                 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1478         } else if (comm_type == SPI_SIMPLEX_RX) {
1479                 mode = STM32H7_SPI_SIMPLEX_RX;
1480         } else if (comm_type == SPI_SIMPLEX_TX) {
1481                 mode = STM32H7_SPI_SIMPLEX_TX;
1482         } else {
1483                 mode = STM32H7_SPI_FULL_DUPLEX;
1484         }
1485
1486         cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
1487         cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_COMM, mode);
1488
1489         writel_relaxed(
1490                 (readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1491                  ~cfg2_clrb) | cfg2_setb,
1492                 spi->base + STM32H7_SPI_CFG2);
1493
1494         return 0;
1495 }
1496
1497 /**
1498  * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1499  *                             consecutive data frames in master mode
1500  * @spi: pointer to the spi controller data structure
1501  * @len: transfer len
1502  */
1503 static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1504 {
1505         u32 cfg2_clrb = 0, cfg2_setb = 0;
1506
1507         cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1508         if ((len > 1) && (spi->cur_midi > 0)) {
1509                 u32 sck_period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->cur_speed);
1510                 u32 midi = min_t(u32,
1511                                  DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1512                                  FIELD_GET(STM32H7_SPI_CFG2_MIDI,
1513                                  STM32H7_SPI_CFG2_MIDI));
1514
1515
1516                 dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1517                         sck_period_ns, midi, midi * sck_period_ns);
1518                 cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_MIDI, midi);
1519         }
1520
1521         writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1522                         ~cfg2_clrb) | cfg2_setb,
1523                        spi->base + STM32H7_SPI_CFG2);
1524 }
1525
1526 /**
1527  * stm32h7_spi_number_of_data - configure number of data at current transfer
1528  * @spi: pointer to the spi controller data structure
1529  * @nb_words: transfer length (in words)
1530  */
1531 static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1532 {
1533         if (nb_words <= STM32H7_SPI_TSIZE_MAX) {
1534                 writel_relaxed(FIELD_PREP(STM32H7_SPI_CR2_TSIZE, nb_words),
1535                                spi->base + STM32H7_SPI_CR2);
1536         } else {
1537                 return -EMSGSIZE;
1538         }
1539
1540         return 0;
1541 }
1542
1543 /**
1544  * stm32_spi_transfer_one_setup - common setup to transfer a single
1545  *                                spi_transfer either using DMA or
1546  *                                interrupts.
1547  * @spi: pointer to the spi controller data structure
1548  * @spi_dev: pointer to the spi device
1549  * @transfer: pointer to spi transfer
1550  */
1551 static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1552                                         struct spi_device *spi_dev,
1553                                         struct spi_transfer *transfer)
1554 {
1555         unsigned long flags;
1556         unsigned int comm_type;
1557         int nb_words, ret = 0;
1558         int mbr;
1559
1560         spin_lock_irqsave(&spi->lock, flags);
1561
1562         spi->cur_xferlen = transfer->len;
1563
1564         spi->cur_bpw = transfer->bits_per_word;
1565         spi->cfg->set_bpw(spi);
1566
1567         /* Update spi->cur_speed with real clock speed */
1568         if (STM32_SPI_MASTER_MODE(spi)) {
1569                 mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
1570                                             spi->cfg->baud_rate_div_min,
1571                                             spi->cfg->baud_rate_div_max);
1572                 if (mbr < 0) {
1573                         ret = mbr;
1574                         goto out;
1575                 }
1576
1577                 transfer->speed_hz = spi->cur_speed;
1578                 stm32_spi_set_mbr(spi, mbr);
1579         }
1580
1581         comm_type = stm32_spi_communication_type(spi_dev, transfer);
1582         ret = spi->cfg->set_mode(spi, comm_type);
1583         if (ret < 0)
1584                 goto out;
1585
1586         spi->cur_comm = comm_type;
1587
1588         if (STM32_SPI_MASTER_MODE(spi) && spi->cfg->set_data_idleness)
1589                 spi->cfg->set_data_idleness(spi, transfer->len);
1590
1591         if (spi->cur_bpw <= 8)
1592                 nb_words = transfer->len;
1593         else if (spi->cur_bpw <= 16)
1594                 nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1595         else
1596                 nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
1597
1598         if (spi->cfg->set_number_of_data) {
1599                 ret = spi->cfg->set_number_of_data(spi, nb_words);
1600                 if (ret < 0)
1601                         goto out;
1602         }
1603
1604         dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1605                 spi->cur_comm);
1606         dev_dbg(spi->dev,
1607                 "data frame of %d-bit, data packet of %d data frames\n",
1608                 spi->cur_bpw, spi->cur_fthlv);
1609         if (STM32_SPI_MASTER_MODE(spi))
1610                 dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
1611         dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1612                 spi->cur_xferlen, nb_words);
1613         dev_dbg(spi->dev, "dma %s\n",
1614                 (spi->cur_usedma) ? "enabled" : "disabled");
1615
1616 out:
1617         spin_unlock_irqrestore(&spi->lock, flags);
1618
1619         return ret;
1620 }
1621
1622 /**
1623  * stm32_spi_transfer_one - transfer a single spi_transfer
1624  * @ctrl: controller interface
1625  * @spi_dev: pointer to the spi device
1626  * @transfer: pointer to spi transfer
1627  *
1628  * It must return 0 if the transfer is finished or 1 if the transfer is still
1629  * in progress.
1630  */
1631 static int stm32_spi_transfer_one(struct spi_controller *ctrl,
1632                                   struct spi_device *spi_dev,
1633                                   struct spi_transfer *transfer)
1634 {
1635         struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
1636         int ret;
1637
1638         spi->tx_buf = transfer->tx_buf;
1639         spi->rx_buf = transfer->rx_buf;
1640         spi->tx_len = spi->tx_buf ? transfer->len : 0;
1641         spi->rx_len = spi->rx_buf ? transfer->len : 0;
1642
1643         spi->cur_usedma = (ctrl->can_dma &&
1644                            ctrl->can_dma(ctrl, spi_dev, transfer));
1645
1646         ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1647         if (ret) {
1648                 dev_err(spi->dev, "SPI transfer setup failed\n");
1649                 return ret;
1650         }
1651
1652         if (spi->cur_usedma)
1653                 return stm32_spi_transfer_one_dma(spi, transfer);
1654         else
1655                 return spi->cfg->transfer_one_irq(spi);
1656 }
1657
1658 /**
1659  * stm32_spi_unprepare_msg - relax the hardware
1660  * @ctrl: controller interface
1661  * @msg: pointer to the spi message
1662  */
1663 static int stm32_spi_unprepare_msg(struct spi_controller *ctrl,
1664                                    struct spi_message *msg)
1665 {
1666         struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
1667
1668         spi->cfg->disable(spi);
1669
1670         return 0;
1671 }
1672
1673 /**
1674  * stm32f4_spi_config - Configure SPI controller as SPI master
1675  * @spi: pointer to the spi controller data structure
1676  */
1677 static int stm32f4_spi_config(struct stm32_spi *spi)
1678 {
1679         unsigned long flags;
1680
1681         spin_lock_irqsave(&spi->lock, flags);
1682
1683         /* Ensure I2SMOD bit is kept cleared */
1684         stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
1685                            STM32F4_SPI_I2SCFGR_I2SMOD);
1686
1687         /*
1688          * - SS input value high
1689          * - transmitter half duplex direction
1690          * - Set the master mode (default Motorola mode)
1691          * - Consider 1 master/n slaves configuration and
1692          *   SS input value is determined by the SSI bit
1693          */
1694         stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
1695                                                  STM32F4_SPI_CR1_BIDIOE |
1696                                                  STM32F4_SPI_CR1_MSTR |
1697                                                  STM32F4_SPI_CR1_SSM);
1698
1699         spin_unlock_irqrestore(&spi->lock, flags);
1700
1701         return 0;
1702 }
1703
1704 /**
1705  * stm32h7_spi_config - Configure SPI controller
1706  * @spi: pointer to the spi controller data structure
1707  */
1708 static int stm32h7_spi_config(struct stm32_spi *spi)
1709 {
1710         unsigned long flags;
1711         u32 cr1 = 0, cfg2 = 0;
1712
1713         spin_lock_irqsave(&spi->lock, flags);
1714
1715         /* Ensure I2SMOD bit is kept cleared */
1716         stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1717                            STM32H7_SPI_I2SCFGR_I2SMOD);
1718
1719         if (STM32_SPI_DEVICE_MODE(spi)) {
1720                 /* Use native device select */
1721                 cfg2 &= ~STM32H7_SPI_CFG2_SSM;
1722         } else {
1723                 /*
1724                  * - Transmitter half duplex direction
1725                  * - Automatic communication suspend when RX-Fifo is full
1726                  * - SS input value high
1727                  */
1728                 cr1 |= STM32H7_SPI_CR1_HDDIR | STM32H7_SPI_CR1_MASRX | STM32H7_SPI_CR1_SSI;
1729
1730                 /*
1731                  * - Set the master mode (default Motorola mode)
1732                  * - Consider 1 master/n devices configuration and
1733                  *   SS input value is determined by the SSI bit
1734                  * - keep control of all associated GPIOs
1735                  */
1736                 cfg2 |= STM32H7_SPI_CFG2_MASTER | STM32H7_SPI_CFG2_SSM | STM32H7_SPI_CFG2_AFCNTR;
1737         }
1738
1739         stm32_spi_set_bits(spi, STM32H7_SPI_CR1, cr1);
1740         stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, cfg2);
1741
1742         spin_unlock_irqrestore(&spi->lock, flags);
1743
1744         return 0;
1745 }
1746
1747 static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1748         .regs = &stm32f4_spi_regspec,
1749         .get_bpw_mask = stm32f4_spi_get_bpw_mask,
1750         .disable = stm32f4_spi_disable,
1751         .config = stm32f4_spi_config,
1752         .set_bpw = stm32f4_spi_set_bpw,
1753         .set_mode = stm32f4_spi_set_mode,
1754         .transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
1755         .dma_tx_cb = stm32f4_spi_dma_tx_cb,
1756         .dma_rx_cb = stm32_spi_dma_rx_cb,
1757         .transfer_one_irq = stm32f4_spi_transfer_one_irq,
1758         .irq_handler_event = stm32f4_spi_irq_event,
1759         .irq_handler_thread = stm32f4_spi_irq_thread,
1760         .baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
1761         .baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
1762         .has_fifo = false,
1763         .has_device_mode = false,
1764         .flags = SPI_CONTROLLER_MUST_TX,
1765 };
1766
1767 static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1768         .regs = &stm32h7_spi_regspec,
1769         .get_fifo_size = stm32h7_spi_get_fifo_size,
1770         .get_bpw_mask = stm32h7_spi_get_bpw_mask,
1771         .disable = stm32h7_spi_disable,
1772         .config = stm32h7_spi_config,
1773         .set_bpw = stm32h7_spi_set_bpw,
1774         .set_mode = stm32h7_spi_set_mode,
1775         .set_data_idleness = stm32h7_spi_data_idleness,
1776         .set_number_of_data = stm32h7_spi_number_of_data,
1777         .transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
1778         .dma_rx_cb = stm32_spi_dma_rx_cb,
1779         /*
1780          * dma_tx_cb is not necessary since in case of TX, dma is followed by
1781          * SPI access hence handling is performed within the SPI interrupt
1782          */
1783         .transfer_one_irq = stm32h7_spi_transfer_one_irq,
1784         .irq_handler_thread = stm32h7_spi_irq_thread,
1785         .baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
1786         .baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
1787         .has_fifo = true,
1788         .has_device_mode = true,
1789 };
1790
1791 static const struct of_device_id stm32_spi_of_match[] = {
1792         { .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
1793         { .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
1794         {},
1795 };
1796 MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
1797
1798 static int stm32h7_spi_device_abort(struct spi_controller *ctrl)
1799 {
1800         spi_finalize_current_transfer(ctrl);
1801         return 0;
1802 }
1803
1804 static int stm32_spi_probe(struct platform_device *pdev)
1805 {
1806         struct spi_controller *ctrl;
1807         struct stm32_spi *spi;
1808         struct resource *res;
1809         struct reset_control *rst;
1810         struct device_node *np = pdev->dev.of_node;
1811         bool device_mode;
1812         int ret;
1813         const struct stm32_spi_cfg *cfg = of_device_get_match_data(&pdev->dev);
1814
1815         device_mode = of_property_read_bool(np, "spi-slave");
1816         if (!cfg->has_device_mode && device_mode) {
1817                 dev_err(&pdev->dev, "spi-slave not supported\n");
1818                 return -EPERM;
1819         }
1820
1821         if (device_mode)
1822                 ctrl = devm_spi_alloc_slave(&pdev->dev, sizeof(struct stm32_spi));
1823         else
1824                 ctrl = devm_spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
1825         if (!ctrl) {
1826                 dev_err(&pdev->dev, "spi controller allocation failed\n");
1827                 return -ENOMEM;
1828         }
1829         platform_set_drvdata(pdev, ctrl);
1830
1831         spi = spi_controller_get_devdata(ctrl);
1832         spi->dev = &pdev->dev;
1833         spi->ctrl = ctrl;
1834         spi->device_mode = device_mode;
1835         spin_lock_init(&spi->lock);
1836
1837         spi->cfg = cfg;
1838
1839         spi->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1840         if (IS_ERR(spi->base))
1841                 return PTR_ERR(spi->base);
1842
1843         spi->phys_addr = (dma_addr_t)res->start;
1844
1845         spi->irq = platform_get_irq(pdev, 0);
1846         if (spi->irq <= 0)
1847                 return spi->irq;
1848
1849         ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
1850                                         spi->cfg->irq_handler_event,
1851                                         spi->cfg->irq_handler_thread,
1852                                         IRQF_ONESHOT, pdev->name, ctrl);
1853         if (ret) {
1854                 dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
1855                         ret);
1856                 return ret;
1857         }
1858
1859         spi->clk = devm_clk_get(&pdev->dev, NULL);
1860         if (IS_ERR(spi->clk)) {
1861                 ret = PTR_ERR(spi->clk);
1862                 dev_err(&pdev->dev, "clk get failed: %d\n", ret);
1863                 return ret;
1864         }
1865
1866         ret = clk_prepare_enable(spi->clk);
1867         if (ret) {
1868                 dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
1869                 return ret;
1870         }
1871         spi->clk_rate = clk_get_rate(spi->clk);
1872         if (!spi->clk_rate) {
1873                 dev_err(&pdev->dev, "clk rate = 0\n");
1874                 ret = -EINVAL;
1875                 goto err_clk_disable;
1876         }
1877
1878         rst = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
1879         if (rst) {
1880                 if (IS_ERR(rst)) {
1881                         ret = dev_err_probe(&pdev->dev, PTR_ERR(rst),
1882                                             "failed to get reset\n");
1883                         goto err_clk_disable;
1884                 }
1885
1886                 reset_control_assert(rst);
1887                 udelay(2);
1888                 reset_control_deassert(rst);
1889         }
1890
1891         if (spi->cfg->has_fifo)
1892                 spi->fifo_size = spi->cfg->get_fifo_size(spi);
1893
1894         ret = spi->cfg->config(spi);
1895         if (ret) {
1896                 dev_err(&pdev->dev, "controller configuration failed: %d\n",
1897                         ret);
1898                 goto err_clk_disable;
1899         }
1900
1901         ctrl->dev.of_node = pdev->dev.of_node;
1902         ctrl->auto_runtime_pm = true;
1903         ctrl->bus_num = pdev->id;
1904         ctrl->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1905                           SPI_3WIRE;
1906         ctrl->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
1907         ctrl->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
1908         ctrl->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
1909         ctrl->use_gpio_descriptors = true;
1910         ctrl->prepare_message = stm32_spi_prepare_msg;
1911         ctrl->transfer_one = stm32_spi_transfer_one;
1912         ctrl->unprepare_message = stm32_spi_unprepare_msg;
1913         ctrl->flags = spi->cfg->flags;
1914         if (STM32_SPI_DEVICE_MODE(spi))
1915                 ctrl->slave_abort = stm32h7_spi_device_abort;
1916
1917         spi->dma_tx = dma_request_chan(spi->dev, "tx");
1918         if (IS_ERR(spi->dma_tx)) {
1919                 ret = PTR_ERR(spi->dma_tx);
1920                 spi->dma_tx = NULL;
1921                 if (ret == -EPROBE_DEFER)
1922                         goto err_clk_disable;
1923
1924                 dev_warn(&pdev->dev, "failed to request tx dma channel\n");
1925         } else {
1926                 ctrl->dma_tx = spi->dma_tx;
1927         }
1928
1929         spi->dma_rx = dma_request_chan(spi->dev, "rx");
1930         if (IS_ERR(spi->dma_rx)) {
1931                 ret = PTR_ERR(spi->dma_rx);
1932                 spi->dma_rx = NULL;
1933                 if (ret == -EPROBE_DEFER)
1934                         goto err_dma_release;
1935
1936                 dev_warn(&pdev->dev, "failed to request rx dma channel\n");
1937         } else {
1938                 ctrl->dma_rx = spi->dma_rx;
1939         }
1940
1941         if (spi->dma_tx || spi->dma_rx)
1942                 ctrl->can_dma = stm32_spi_can_dma;
1943
1944         pm_runtime_set_autosuspend_delay(&pdev->dev,
1945                                          STM32_SPI_AUTOSUSPEND_DELAY);
1946         pm_runtime_use_autosuspend(&pdev->dev);
1947         pm_runtime_set_active(&pdev->dev);
1948         pm_runtime_get_noresume(&pdev->dev);
1949         pm_runtime_enable(&pdev->dev);
1950
1951         ret = spi_register_controller(ctrl);
1952         if (ret) {
1953                 dev_err(&pdev->dev, "spi controller registration failed: %d\n",
1954                         ret);
1955                 goto err_pm_disable;
1956         }
1957
1958         pm_runtime_mark_last_busy(&pdev->dev);
1959         pm_runtime_put_autosuspend(&pdev->dev);
1960
1961         dev_info(&pdev->dev, "driver initialized (%s mode)\n",
1962                  STM32_SPI_MASTER_MODE(spi) ? "master" : "device");
1963
1964         return 0;
1965
1966 err_pm_disable:
1967         pm_runtime_disable(&pdev->dev);
1968         pm_runtime_put_noidle(&pdev->dev);
1969         pm_runtime_set_suspended(&pdev->dev);
1970         pm_runtime_dont_use_autosuspend(&pdev->dev);
1971 err_dma_release:
1972         if (spi->dma_tx)
1973                 dma_release_channel(spi->dma_tx);
1974         if (spi->dma_rx)
1975                 dma_release_channel(spi->dma_rx);
1976 err_clk_disable:
1977         clk_disable_unprepare(spi->clk);
1978
1979         return ret;
1980 }
1981
1982 static void stm32_spi_remove(struct platform_device *pdev)
1983 {
1984         struct spi_controller *ctrl = platform_get_drvdata(pdev);
1985         struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
1986
1987         pm_runtime_get_sync(&pdev->dev);
1988
1989         spi_unregister_controller(ctrl);
1990         spi->cfg->disable(spi);
1991
1992         pm_runtime_disable(&pdev->dev);
1993         pm_runtime_put_noidle(&pdev->dev);
1994         pm_runtime_set_suspended(&pdev->dev);
1995         pm_runtime_dont_use_autosuspend(&pdev->dev);
1996
1997         if (ctrl->dma_tx)
1998                 dma_release_channel(ctrl->dma_tx);
1999         if (ctrl->dma_rx)
2000                 dma_release_channel(ctrl->dma_rx);
2001
2002         clk_disable_unprepare(spi->clk);
2003
2004
2005         pinctrl_pm_select_sleep_state(&pdev->dev);
2006 }
2007
2008 static int __maybe_unused stm32_spi_runtime_suspend(struct device *dev)
2009 {
2010         struct spi_controller *ctrl = dev_get_drvdata(dev);
2011         struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
2012
2013         clk_disable_unprepare(spi->clk);
2014
2015         return pinctrl_pm_select_sleep_state(dev);
2016 }
2017
2018 static int __maybe_unused stm32_spi_runtime_resume(struct device *dev)
2019 {
2020         struct spi_controller *ctrl = dev_get_drvdata(dev);
2021         struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
2022         int ret;
2023
2024         ret = pinctrl_pm_select_default_state(dev);
2025         if (ret)
2026                 return ret;
2027
2028         return clk_prepare_enable(spi->clk);
2029 }
2030
2031 static int __maybe_unused stm32_spi_suspend(struct device *dev)
2032 {
2033         struct spi_controller *ctrl = dev_get_drvdata(dev);
2034         int ret;
2035
2036         ret = spi_controller_suspend(ctrl);
2037         if (ret)
2038                 return ret;
2039
2040         return pm_runtime_force_suspend(dev);
2041 }
2042
2043 static int __maybe_unused stm32_spi_resume(struct device *dev)
2044 {
2045         struct spi_controller *ctrl = dev_get_drvdata(dev);
2046         struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
2047         int ret;
2048
2049         ret = pm_runtime_force_resume(dev);
2050         if (ret)
2051                 return ret;
2052
2053         ret = spi_controller_resume(ctrl);
2054         if (ret) {
2055                 clk_disable_unprepare(spi->clk);
2056                 return ret;
2057         }
2058
2059         ret = pm_runtime_resume_and_get(dev);
2060         if (ret < 0) {
2061                 dev_err(dev, "Unable to power device:%d\n", ret);
2062                 return ret;
2063         }
2064
2065         spi->cfg->config(spi);
2066
2067         pm_runtime_mark_last_busy(dev);
2068         pm_runtime_put_autosuspend(dev);
2069
2070         return 0;
2071 }
2072
2073 static const struct dev_pm_ops stm32_spi_pm_ops = {
2074         SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2075         SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2076                            stm32_spi_runtime_resume, NULL)
2077 };
2078
2079 static struct platform_driver stm32_spi_driver = {
2080         .probe = stm32_spi_probe,
2081         .remove_new = stm32_spi_remove,
2082         .driver = {
2083                 .name = DRIVER_NAME,
2084                 .pm = &stm32_spi_pm_ops,
2085                 .of_match_table = stm32_spi_of_match,
2086         },
2087 };
2088
2089 module_platform_driver(stm32_spi_driver);
2090
2091 MODULE_ALIAS("platform:" DRIVER_NAME);
2092 MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2093 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
2094 MODULE_LICENSE("GPL v2");