mt76-6e-usb: mt7921u: Add support Netgear AXE3000(A8000) device
[platform/kernel/linux-rpi.git] / drivers / spi / spi-stm32.c
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // STMicroelectronics STM32 SPI Controller driver (master mode only)
4 //
5 // Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 // Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
7
8 #include <linux/bitfield.h>
9 #include <linux/debugfs.h>
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/dmaengine.h>
13 #include <linux/interrupt.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/of_platform.h>
17 #include <linux/pinctrl/consumer.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/reset.h>
20 #include <linux/spi/spi.h>
21
22 #define DRIVER_NAME "spi_stm32"
23
24 /* STM32F4 SPI registers */
25 #define STM32F4_SPI_CR1                 0x00
26 #define STM32F4_SPI_CR2                 0x04
27 #define STM32F4_SPI_SR                  0x08
28 #define STM32F4_SPI_DR                  0x0C
29 #define STM32F4_SPI_I2SCFGR             0x1C
30
31 /* STM32F4_SPI_CR1 bit fields */
32 #define STM32F4_SPI_CR1_CPHA            BIT(0)
33 #define STM32F4_SPI_CR1_CPOL            BIT(1)
34 #define STM32F4_SPI_CR1_MSTR            BIT(2)
35 #define STM32F4_SPI_CR1_BR_SHIFT        3
36 #define STM32F4_SPI_CR1_BR              GENMASK(5, 3)
37 #define STM32F4_SPI_CR1_SPE             BIT(6)
38 #define STM32F4_SPI_CR1_LSBFRST         BIT(7)
39 #define STM32F4_SPI_CR1_SSI             BIT(8)
40 #define STM32F4_SPI_CR1_SSM             BIT(9)
41 #define STM32F4_SPI_CR1_RXONLY          BIT(10)
42 #define STM32F4_SPI_CR1_DFF             BIT(11)
43 #define STM32F4_SPI_CR1_CRCNEXT         BIT(12)
44 #define STM32F4_SPI_CR1_CRCEN           BIT(13)
45 #define STM32F4_SPI_CR1_BIDIOE          BIT(14)
46 #define STM32F4_SPI_CR1_BIDIMODE        BIT(15)
47 #define STM32F4_SPI_CR1_BR_MIN          0
48 #define STM32F4_SPI_CR1_BR_MAX          (GENMASK(5, 3) >> 3)
49
50 /* STM32F4_SPI_CR2 bit fields */
51 #define STM32F4_SPI_CR2_RXDMAEN         BIT(0)
52 #define STM32F4_SPI_CR2_TXDMAEN         BIT(1)
53 #define STM32F4_SPI_CR2_SSOE            BIT(2)
54 #define STM32F4_SPI_CR2_FRF             BIT(4)
55 #define STM32F4_SPI_CR2_ERRIE           BIT(5)
56 #define STM32F4_SPI_CR2_RXNEIE          BIT(6)
57 #define STM32F4_SPI_CR2_TXEIE           BIT(7)
58
59 /* STM32F4_SPI_SR bit fields */
60 #define STM32F4_SPI_SR_RXNE             BIT(0)
61 #define STM32F4_SPI_SR_TXE              BIT(1)
62 #define STM32F4_SPI_SR_CHSIDE           BIT(2)
63 #define STM32F4_SPI_SR_UDR              BIT(3)
64 #define STM32F4_SPI_SR_CRCERR           BIT(4)
65 #define STM32F4_SPI_SR_MODF             BIT(5)
66 #define STM32F4_SPI_SR_OVR              BIT(6)
67 #define STM32F4_SPI_SR_BSY              BIT(7)
68 #define STM32F4_SPI_SR_FRE              BIT(8)
69
70 /* STM32F4_SPI_I2SCFGR bit fields */
71 #define STM32F4_SPI_I2SCFGR_I2SMOD      BIT(11)
72
73 /* STM32F4 SPI Baud Rate min/max divisor */
74 #define STM32F4_SPI_BR_DIV_MIN          (2 << STM32F4_SPI_CR1_BR_MIN)
75 #define STM32F4_SPI_BR_DIV_MAX          (2 << STM32F4_SPI_CR1_BR_MAX)
76
77 /* STM32H7 SPI registers */
78 #define STM32H7_SPI_CR1                 0x00
79 #define STM32H7_SPI_CR2                 0x04
80 #define STM32H7_SPI_CFG1                0x08
81 #define STM32H7_SPI_CFG2                0x0C
82 #define STM32H7_SPI_IER                 0x10
83 #define STM32H7_SPI_SR                  0x14
84 #define STM32H7_SPI_IFCR                0x18
85 #define STM32H7_SPI_TXDR                0x20
86 #define STM32H7_SPI_RXDR                0x30
87 #define STM32H7_SPI_I2SCFGR             0x50
88
89 /* STM32H7_SPI_CR1 bit fields */
90 #define STM32H7_SPI_CR1_SPE             BIT(0)
91 #define STM32H7_SPI_CR1_MASRX           BIT(8)
92 #define STM32H7_SPI_CR1_CSTART          BIT(9)
93 #define STM32H7_SPI_CR1_CSUSP           BIT(10)
94 #define STM32H7_SPI_CR1_HDDIR           BIT(11)
95 #define STM32H7_SPI_CR1_SSI             BIT(12)
96
97 /* STM32H7_SPI_CR2 bit fields */
98 #define STM32H7_SPI_CR2_TSIZE           GENMASK(15, 0)
99 #define STM32H7_SPI_TSIZE_MAX           GENMASK(15, 0)
100
101 /* STM32H7_SPI_CFG1 bit fields */
102 #define STM32H7_SPI_CFG1_DSIZE          GENMASK(4, 0)
103 #define STM32H7_SPI_CFG1_FTHLV          GENMASK(8, 5)
104 #define STM32H7_SPI_CFG1_RXDMAEN        BIT(14)
105 #define STM32H7_SPI_CFG1_TXDMAEN        BIT(15)
106 #define STM32H7_SPI_CFG1_MBR            GENMASK(30, 28)
107 #define STM32H7_SPI_CFG1_MBR_SHIFT      28
108 #define STM32H7_SPI_CFG1_MBR_MIN        0
109 #define STM32H7_SPI_CFG1_MBR_MAX        (GENMASK(30, 28) >> 28)
110
111 /* STM32H7_SPI_CFG2 bit fields */
112 #define STM32H7_SPI_CFG2_MIDI           GENMASK(7, 4)
113 #define STM32H7_SPI_CFG2_COMM           GENMASK(18, 17)
114 #define STM32H7_SPI_CFG2_SP             GENMASK(21, 19)
115 #define STM32H7_SPI_CFG2_MASTER         BIT(22)
116 #define STM32H7_SPI_CFG2_LSBFRST        BIT(23)
117 #define STM32H7_SPI_CFG2_CPHA           BIT(24)
118 #define STM32H7_SPI_CFG2_CPOL           BIT(25)
119 #define STM32H7_SPI_CFG2_SSM            BIT(26)
120 #define STM32H7_SPI_CFG2_AFCNTR         BIT(31)
121
122 /* STM32H7_SPI_IER bit fields */
123 #define STM32H7_SPI_IER_RXPIE           BIT(0)
124 #define STM32H7_SPI_IER_TXPIE           BIT(1)
125 #define STM32H7_SPI_IER_DXPIE           BIT(2)
126 #define STM32H7_SPI_IER_EOTIE           BIT(3)
127 #define STM32H7_SPI_IER_TXTFIE          BIT(4)
128 #define STM32H7_SPI_IER_OVRIE           BIT(6)
129 #define STM32H7_SPI_IER_MODFIE          BIT(9)
130 #define STM32H7_SPI_IER_ALL             GENMASK(10, 0)
131
132 /* STM32H7_SPI_SR bit fields */
133 #define STM32H7_SPI_SR_RXP              BIT(0)
134 #define STM32H7_SPI_SR_TXP              BIT(1)
135 #define STM32H7_SPI_SR_EOT              BIT(3)
136 #define STM32H7_SPI_SR_OVR              BIT(6)
137 #define STM32H7_SPI_SR_MODF             BIT(9)
138 #define STM32H7_SPI_SR_SUSP             BIT(11)
139 #define STM32H7_SPI_SR_RXPLVL           GENMASK(14, 13)
140 #define STM32H7_SPI_SR_RXWNE            BIT(15)
141
142 /* STM32H7_SPI_IFCR bit fields */
143 #define STM32H7_SPI_IFCR_ALL            GENMASK(11, 3)
144
145 /* STM32H7_SPI_I2SCFGR bit fields */
146 #define STM32H7_SPI_I2SCFGR_I2SMOD      BIT(0)
147
148 /* STM32H7 SPI Master Baud Rate min/max divisor */
149 #define STM32H7_SPI_MBR_DIV_MIN         (2 << STM32H7_SPI_CFG1_MBR_MIN)
150 #define STM32H7_SPI_MBR_DIV_MAX         (2 << STM32H7_SPI_CFG1_MBR_MAX)
151
152 /* STM32H7 SPI Communication mode */
153 #define STM32H7_SPI_FULL_DUPLEX         0
154 #define STM32H7_SPI_SIMPLEX_TX          1
155 #define STM32H7_SPI_SIMPLEX_RX          2
156 #define STM32H7_SPI_HALF_DUPLEX         3
157
158 /* SPI Communication type */
159 #define SPI_FULL_DUPLEX         0
160 #define SPI_SIMPLEX_TX          1
161 #define SPI_SIMPLEX_RX          2
162 #define SPI_3WIRE_TX            3
163 #define SPI_3WIRE_RX            4
164
165 #define STM32_SPI_AUTOSUSPEND_DELAY             1       /* 1 ms */
166
167 /*
168  * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
169  * without fifo buffers.
170  */
171 #define SPI_DMA_MIN_BYTES       16
172
173 /**
174  * struct stm32_spi_reg - stm32 SPI register & bitfield desc
175  * @reg:                register offset
176  * @mask:               bitfield mask
177  * @shift:              left shift
178  */
179 struct stm32_spi_reg {
180         int reg;
181         int mask;
182         int shift;
183 };
184
185 /**
186  * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data
187  * @en: enable register and SPI enable bit
188  * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
189  * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
190  * @cpol: clock polarity register and polarity bit
191  * @cpha: clock phase register and phase bit
192  * @lsb_first: LSB transmitted first register and bit
193  * @br: baud rate register and bitfields
194  * @rx: SPI RX data register
195  * @tx: SPI TX data register
196  */
197 struct stm32_spi_regspec {
198         const struct stm32_spi_reg en;
199         const struct stm32_spi_reg dma_rx_en;
200         const struct stm32_spi_reg dma_tx_en;
201         const struct stm32_spi_reg cpol;
202         const struct stm32_spi_reg cpha;
203         const struct stm32_spi_reg lsb_first;
204         const struct stm32_spi_reg br;
205         const struct stm32_spi_reg rx;
206         const struct stm32_spi_reg tx;
207 };
208
209 struct stm32_spi;
210
211 /**
212  * struct stm32_spi_cfg - stm32 compatible configuration data
213  * @regs: registers descriptions
214  * @get_fifo_size: routine to get fifo size
215  * @get_bpw_mask: routine to get bits per word mask
216  * @disable: routine to disable controller
217  * @config: routine to configure controller as SPI Master
218  * @set_bpw: routine to configure registers to for bits per word
219  * @set_mode: routine to configure registers to desired mode
220  * @set_data_idleness: optional routine to configure registers to desired idle
221  * time between frames (if driver has this functionality)
222  * @set_number_of_data: optional routine to configure registers to desired
223  * number of data (if driver has this functionality)
224  * @can_dma: routine to determine if the transfer is eligible for DMA use
225  * @transfer_one_dma_start: routine to start transfer a single spi_transfer
226  * using DMA
227  * @dma_rx_cb: routine to call after DMA RX channel operation is complete
228  * @dma_tx_cb: routine to call after DMA TX channel operation is complete
229  * @transfer_one_irq: routine to configure interrupts for driver
230  * @irq_handler_event: Interrupt handler for SPI controller events
231  * @irq_handler_thread: thread of interrupt handler for SPI controller
232  * @baud_rate_div_min: minimum baud rate divisor
233  * @baud_rate_div_max: maximum baud rate divisor
234  * @has_fifo: boolean to know if fifo is used for driver
235  * @has_startbit: boolean to know if start bit is used to start transfer
236  */
237 struct stm32_spi_cfg {
238         const struct stm32_spi_regspec *regs;
239         int (*get_fifo_size)(struct stm32_spi *spi);
240         int (*get_bpw_mask)(struct stm32_spi *spi);
241         void (*disable)(struct stm32_spi *spi);
242         int (*config)(struct stm32_spi *spi);
243         void (*set_bpw)(struct stm32_spi *spi);
244         int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
245         void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
246         int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
247         void (*transfer_one_dma_start)(struct stm32_spi *spi);
248         void (*dma_rx_cb)(void *data);
249         void (*dma_tx_cb)(void *data);
250         int (*transfer_one_irq)(struct stm32_spi *spi);
251         irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
252         irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
253         unsigned int baud_rate_div_min;
254         unsigned int baud_rate_div_max;
255         bool has_fifo;
256 };
257
258 /**
259  * struct stm32_spi - private data of the SPI controller
260  * @dev: driver model representation of the controller
261  * @master: controller master interface
262  * @cfg: compatible configuration data
263  * @base: virtual memory area
264  * @clk: hw kernel clock feeding the SPI clock generator
265  * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
266  * @lock: prevent I/O concurrent access
267  * @irq: SPI controller interrupt line
268  * @fifo_size: size of the embedded fifo in bytes
269  * @cur_midi: master inter-data idleness in ns
270  * @cur_speed: speed configured in Hz
271  * @cur_bpw: number of bits in a single SPI data frame
272  * @cur_fthlv: fifo threshold level (data frames in a single data packet)
273  * @cur_comm: SPI communication mode
274  * @cur_xferlen: current transfer length in bytes
275  * @cur_usedma: boolean to know if dma is used in current transfer
276  * @tx_buf: data to be written, or NULL
277  * @rx_buf: data to be read, or NULL
278  * @tx_len: number of data to be written in bytes
279  * @rx_len: number of data to be read in bytes
280  * @dma_tx: dma channel for TX transfer
281  * @dma_rx: dma channel for RX transfer
282  * @phys_addr: SPI registers physical base address
283  */
284 struct stm32_spi {
285         struct device *dev;
286         struct spi_master *master;
287         const struct stm32_spi_cfg *cfg;
288         void __iomem *base;
289         struct clk *clk;
290         u32 clk_rate;
291         spinlock_t lock; /* prevent I/O concurrent access */
292         int irq;
293         unsigned int fifo_size;
294
295         unsigned int cur_midi;
296         unsigned int cur_speed;
297         unsigned int cur_bpw;
298         unsigned int cur_fthlv;
299         unsigned int cur_comm;
300         unsigned int cur_xferlen;
301         bool cur_usedma;
302
303         const void *tx_buf;
304         void *rx_buf;
305         int tx_len;
306         int rx_len;
307         struct dma_chan *dma_tx;
308         struct dma_chan *dma_rx;
309         dma_addr_t phys_addr;
310 };
311
312 static const struct stm32_spi_regspec stm32f4_spi_regspec = {
313         .en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },
314
315         .dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
316         .dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },
317
318         .cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
319         .cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
320         .lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
321         .br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },
322
323         .rx = { STM32F4_SPI_DR },
324         .tx = { STM32F4_SPI_DR },
325 };
326
327 static const struct stm32_spi_regspec stm32h7_spi_regspec = {
328         /* SPI data transfer is enabled but spi_ker_ck is idle.
329          * CFG1 and CFG2 registers are write protected when SPE is enabled.
330          */
331         .en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
332
333         .dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
334         .dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
335
336         .cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
337         .cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
338         .lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
339         .br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
340                 STM32H7_SPI_CFG1_MBR_SHIFT },
341
342         .rx = { STM32H7_SPI_RXDR },
343         .tx = { STM32H7_SPI_TXDR },
344 };
345
346 static inline void stm32_spi_set_bits(struct stm32_spi *spi,
347                                       u32 offset, u32 bits)
348 {
349         writel_relaxed(readl_relaxed(spi->base + offset) | bits,
350                        spi->base + offset);
351 }
352
353 static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
354                                       u32 offset, u32 bits)
355 {
356         writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
357                        spi->base + offset);
358 }
359
360 /**
361  * stm32h7_spi_get_fifo_size - Return fifo size
362  * @spi: pointer to the spi controller data structure
363  */
364 static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
365 {
366         unsigned long flags;
367         u32 count = 0;
368
369         spin_lock_irqsave(&spi->lock, flags);
370
371         stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
372
373         while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
374                 writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
375
376         stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
377
378         spin_unlock_irqrestore(&spi->lock, flags);
379
380         dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
381
382         return count;
383 }
384
385 /**
386  * stm32f4_spi_get_bpw_mask - Return bits per word mask
387  * @spi: pointer to the spi controller data structure
388  */
389 static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
390 {
391         dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
392         return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
393 }
394
395 /**
396  * stm32h7_spi_get_bpw_mask - Return bits per word mask
397  * @spi: pointer to the spi controller data structure
398  */
399 static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
400 {
401         unsigned long flags;
402         u32 cfg1, max_bpw;
403
404         spin_lock_irqsave(&spi->lock, flags);
405
406         /*
407          * The most significant bit at DSIZE bit field is reserved when the
408          * maximum data size of periperal instances is limited to 16-bit
409          */
410         stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
411
412         cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
413         max_bpw = FIELD_GET(STM32H7_SPI_CFG1_DSIZE, cfg1) + 1;
414
415         spin_unlock_irqrestore(&spi->lock, flags);
416
417         dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
418
419         return SPI_BPW_RANGE_MASK(4, max_bpw);
420 }
421
422 /**
423  * stm32_spi_prepare_mbr - Determine baud rate divisor value
424  * @spi: pointer to the spi controller data structure
425  * @speed_hz: requested speed
426  * @min_div: minimum baud rate divisor
427  * @max_div: maximum baud rate divisor
428  *
429  * Return baud rate divisor value in case of success or -EINVAL
430  */
431 static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
432                                  u32 min_div, u32 max_div)
433 {
434         u32 div, mbrdiv;
435
436         /* Ensure spi->clk_rate is even */
437         div = DIV_ROUND_CLOSEST(spi->clk_rate & ~0x1, speed_hz);
438
439         /*
440          * SPI framework set xfer->speed_hz to master->max_speed_hz if
441          * xfer->speed_hz is greater than master->max_speed_hz, and it returns
442          * an error when xfer->speed_hz is lower than master->min_speed_hz, so
443          * no need to check it there.
444          * However, we need to ensure the following calculations.
445          */
446         if ((div < min_div) || (div > max_div))
447                 return -EINVAL;
448
449         /* Determine the first power of 2 greater than or equal to div */
450         if (div & (div - 1))
451                 mbrdiv = fls(div);
452         else
453                 mbrdiv = fls(div) - 1;
454
455         spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
456
457         return mbrdiv - 1;
458 }
459
460 /**
461  * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
462  * @spi: pointer to the spi controller data structure
463  * @xfer_len: length of the message to be transferred
464  */
465 static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len)
466 {
467         u32 packet, bpw;
468
469         /* data packet should not exceed 1/2 of fifo space */
470         packet = clamp(xfer_len, 1U, spi->fifo_size / 2);
471
472         /* align packet size with data registers access */
473         bpw = DIV_ROUND_UP(spi->cur_bpw, 8);
474         return DIV_ROUND_UP(packet, bpw);
475 }
476
477 /**
478  * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
479  * @spi: pointer to the spi controller data structure
480  *
481  * Read from tx_buf depends on remaining bytes to avoid to read beyond
482  * tx_buf end.
483  */
484 static void stm32f4_spi_write_tx(struct stm32_spi *spi)
485 {
486         if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
487                                   STM32F4_SPI_SR_TXE)) {
488                 u32 offs = spi->cur_xferlen - spi->tx_len;
489
490                 if (spi->cur_bpw == 16) {
491                         const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
492
493                         writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
494                         spi->tx_len -= sizeof(u16);
495                 } else {
496                         const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
497
498                         writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
499                         spi->tx_len -= sizeof(u8);
500                 }
501         }
502
503         dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
504 }
505
506 /**
507  * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
508  * @spi: pointer to the spi controller data structure
509  *
510  * Read from tx_buf depends on remaining bytes to avoid to read beyond
511  * tx_buf end.
512  */
513 static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
514 {
515         while ((spi->tx_len > 0) &&
516                        (readl_relaxed(spi->base + STM32H7_SPI_SR) &
517                         STM32H7_SPI_SR_TXP)) {
518                 u32 offs = spi->cur_xferlen - spi->tx_len;
519
520                 if (spi->tx_len >= sizeof(u32)) {
521                         const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
522
523                         writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
524                         spi->tx_len -= sizeof(u32);
525                 } else if (spi->tx_len >= sizeof(u16)) {
526                         const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
527
528                         writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
529                         spi->tx_len -= sizeof(u16);
530                 } else {
531                         const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
532
533                         writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
534                         spi->tx_len -= sizeof(u8);
535                 }
536         }
537
538         dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
539 }
540
541 /**
542  * stm32f4_spi_read_rx - Read bytes from Receive Data Register
543  * @spi: pointer to the spi controller data structure
544  *
545  * Write in rx_buf depends on remaining bytes to avoid to write beyond
546  * rx_buf end.
547  */
548 static void stm32f4_spi_read_rx(struct stm32_spi *spi)
549 {
550         if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
551                                   STM32F4_SPI_SR_RXNE)) {
552                 u32 offs = spi->cur_xferlen - spi->rx_len;
553
554                 if (spi->cur_bpw == 16) {
555                         u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
556
557                         *rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
558                         spi->rx_len -= sizeof(u16);
559                 } else {
560                         u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
561
562                         *rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
563                         spi->rx_len -= sizeof(u8);
564                 }
565         }
566
567         dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
568 }
569
570 /**
571  * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
572  * @spi: pointer to the spi controller data structure
573  *
574  * Write in rx_buf depends on remaining bytes to avoid to write beyond
575  * rx_buf end.
576  */
577 static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi)
578 {
579         u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
580         u32 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
581
582         while ((spi->rx_len > 0) &&
583                ((sr & STM32H7_SPI_SR_RXP) ||
584                 ((sr & STM32H7_SPI_SR_EOT) &&
585                  ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
586                 u32 offs = spi->cur_xferlen - spi->rx_len;
587
588                 if ((spi->rx_len >= sizeof(u32)) ||
589                     (sr & STM32H7_SPI_SR_RXWNE)) {
590                         u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
591
592                         *rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
593                         spi->rx_len -= sizeof(u32);
594                 } else if ((spi->rx_len >= sizeof(u16)) ||
595                            (!(sr & STM32H7_SPI_SR_RXWNE) &&
596                             (rxplvl >= 2 || spi->cur_bpw > 8))) {
597                         u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
598
599                         *rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
600                         spi->rx_len -= sizeof(u16);
601                 } else {
602                         u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
603
604                         *rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
605                         spi->rx_len -= sizeof(u8);
606                 }
607
608                 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
609                 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
610         }
611
612         dev_dbg(spi->dev, "%s: %d bytes left (sr=%08x)\n",
613                 __func__, spi->rx_len, sr);
614 }
615
616 /**
617  * stm32_spi_enable - Enable SPI controller
618  * @spi: pointer to the spi controller data structure
619  */
620 static void stm32_spi_enable(struct stm32_spi *spi)
621 {
622         dev_dbg(spi->dev, "enable controller\n");
623
624         stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
625                            spi->cfg->regs->en.mask);
626 }
627
628 /**
629  * stm32f4_spi_disable - Disable SPI controller
630  * @spi: pointer to the spi controller data structure
631  */
632 static void stm32f4_spi_disable(struct stm32_spi *spi)
633 {
634         unsigned long flags;
635         u32 sr;
636
637         dev_dbg(spi->dev, "disable controller\n");
638
639         spin_lock_irqsave(&spi->lock, flags);
640
641         if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
642               STM32F4_SPI_CR1_SPE)) {
643                 spin_unlock_irqrestore(&spi->lock, flags);
644                 return;
645         }
646
647         /* Disable interrupts */
648         stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
649                                                  STM32F4_SPI_CR2_RXNEIE |
650                                                  STM32F4_SPI_CR2_ERRIE);
651
652         /* Wait until BSY = 0 */
653         if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
654                                               sr, !(sr & STM32F4_SPI_SR_BSY),
655                                               10, 100000) < 0) {
656                 dev_warn(spi->dev, "disabling condition timeout\n");
657         }
658
659         if (spi->cur_usedma && spi->dma_tx)
660                 dmaengine_terminate_all(spi->dma_tx);
661         if (spi->cur_usedma && spi->dma_rx)
662                 dmaengine_terminate_all(spi->dma_rx);
663
664         stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);
665
666         stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
667                                                  STM32F4_SPI_CR2_RXDMAEN);
668
669         /* Sequence to clear OVR flag */
670         readl_relaxed(spi->base + STM32F4_SPI_DR);
671         readl_relaxed(spi->base + STM32F4_SPI_SR);
672
673         spin_unlock_irqrestore(&spi->lock, flags);
674 }
675
676 /**
677  * stm32h7_spi_disable - Disable SPI controller
678  * @spi: pointer to the spi controller data structure
679  *
680  * RX-Fifo is flushed when SPI controller is disabled.
681  */
682 static void stm32h7_spi_disable(struct stm32_spi *spi)
683 {
684         unsigned long flags;
685         u32 cr1;
686
687         dev_dbg(spi->dev, "disable controller\n");
688
689         spin_lock_irqsave(&spi->lock, flags);
690
691         cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
692
693         if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
694                 spin_unlock_irqrestore(&spi->lock, flags);
695                 return;
696         }
697
698         if (spi->cur_usedma && spi->dma_tx)
699                 dmaengine_terminate_all(spi->dma_tx);
700         if (spi->cur_usedma && spi->dma_rx)
701                 dmaengine_terminate_all(spi->dma_rx);
702
703         stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
704
705         stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
706                                                 STM32H7_SPI_CFG1_RXDMAEN);
707
708         /* Disable interrupts and clear status flags */
709         writel_relaxed(0, spi->base + STM32H7_SPI_IER);
710         writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
711
712         spin_unlock_irqrestore(&spi->lock, flags);
713 }
714
715 /**
716  * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
717  * @master: controller master interface
718  * @spi_dev: pointer to the spi device
719  * @transfer: pointer to spi transfer
720  *
721  * If driver has fifo and the current transfer size is greater than fifo size,
722  * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
723  */
724 static bool stm32_spi_can_dma(struct spi_master *master,
725                               struct spi_device *spi_dev,
726                               struct spi_transfer *transfer)
727 {
728         unsigned int dma_size;
729         struct stm32_spi *spi = spi_master_get_devdata(master);
730
731         if (spi->cfg->has_fifo)
732                 dma_size = spi->fifo_size;
733         else
734                 dma_size = SPI_DMA_MIN_BYTES;
735
736         dev_dbg(spi->dev, "%s: %s\n", __func__,
737                 (transfer->len > dma_size) ? "true" : "false");
738
739         return (transfer->len > dma_size);
740 }
741
742 /**
743  * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
744  * @irq: interrupt line
745  * @dev_id: SPI controller master interface
746  */
747 static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
748 {
749         struct spi_master *master = dev_id;
750         struct stm32_spi *spi = spi_master_get_devdata(master);
751         u32 sr, mask = 0;
752         bool end = false;
753
754         spin_lock(&spi->lock);
755
756         sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
757         /*
758          * BSY flag is not handled in interrupt but it is normal behavior when
759          * this flag is set.
760          */
761         sr &= ~STM32F4_SPI_SR_BSY;
762
763         if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
764                                  spi->cur_comm == SPI_3WIRE_TX)) {
765                 /* OVR flag shouldn't be handled for TX only mode */
766                 sr &= ~STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE;
767                 mask |= STM32F4_SPI_SR_TXE;
768         }
769
770         if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX ||
771                                 spi->cur_comm == SPI_SIMPLEX_RX ||
772                                 spi->cur_comm == SPI_3WIRE_RX)) {
773                 /* TXE flag is set and is handled when RXNE flag occurs */
774                 sr &= ~STM32F4_SPI_SR_TXE;
775                 mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
776         }
777
778         if (!(sr & mask)) {
779                 dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
780                 spin_unlock(&spi->lock);
781                 return IRQ_NONE;
782         }
783
784         if (sr & STM32F4_SPI_SR_OVR) {
785                 dev_warn(spi->dev, "Overrun: received value discarded\n");
786
787                 /* Sequence to clear OVR flag */
788                 readl_relaxed(spi->base + STM32F4_SPI_DR);
789                 readl_relaxed(spi->base + STM32F4_SPI_SR);
790
791                 /*
792                  * If overrun is detected, it means that something went wrong,
793                  * so stop the current transfer. Transfer can wait for next
794                  * RXNE but DR is already read and end never happens.
795                  */
796                 end = true;
797                 goto end_irq;
798         }
799
800         if (sr & STM32F4_SPI_SR_TXE) {
801                 if (spi->tx_buf)
802                         stm32f4_spi_write_tx(spi);
803                 if (spi->tx_len == 0)
804                         end = true;
805         }
806
807         if (sr & STM32F4_SPI_SR_RXNE) {
808                 stm32f4_spi_read_rx(spi);
809                 if (spi->rx_len == 0)
810                         end = true;
811                 else if (spi->tx_buf)/* Load data for discontinuous mode */
812                         stm32f4_spi_write_tx(spi);
813         }
814
815 end_irq:
816         if (end) {
817                 /* Immediately disable interrupts to do not generate new one */
818                 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
819                                         STM32F4_SPI_CR2_TXEIE |
820                                         STM32F4_SPI_CR2_RXNEIE |
821                                         STM32F4_SPI_CR2_ERRIE);
822                 spin_unlock(&spi->lock);
823                 return IRQ_WAKE_THREAD;
824         }
825
826         spin_unlock(&spi->lock);
827         return IRQ_HANDLED;
828 }
829
830 /**
831  * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
832  * @irq: interrupt line
833  * @dev_id: SPI controller master interface
834  */
835 static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
836 {
837         struct spi_master *master = dev_id;
838         struct stm32_spi *spi = spi_master_get_devdata(master);
839
840         spi_finalize_current_transfer(master);
841         stm32f4_spi_disable(spi);
842
843         return IRQ_HANDLED;
844 }
845
846 /**
847  * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
848  * @irq: interrupt line
849  * @dev_id: SPI controller master interface
850  */
851 static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
852 {
853         struct spi_master *master = dev_id;
854         struct stm32_spi *spi = spi_master_get_devdata(master);
855         u32 sr, ier, mask;
856         unsigned long flags;
857         bool end = false;
858
859         spin_lock_irqsave(&spi->lock, flags);
860
861         sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
862         ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
863
864         mask = ier;
865         /*
866          * EOTIE enables irq from EOT, SUSP and TXC events. We need to set
867          * SUSP to acknowledge it later. TXC is automatically cleared
868          */
869
870         mask |= STM32H7_SPI_SR_SUSP;
871         /*
872          * DXPIE is set in Full-Duplex, one IT will be raised if TXP and RXP
873          * are set. So in case of Full-Duplex, need to poll TXP and RXP event.
874          */
875         if ((spi->cur_comm == SPI_FULL_DUPLEX) && !spi->cur_usedma)
876                 mask |= STM32H7_SPI_SR_TXP | STM32H7_SPI_SR_RXP;
877
878         if (!(sr & mask)) {
879                 dev_warn(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
880                          sr, ier);
881                 spin_unlock_irqrestore(&spi->lock, flags);
882                 return IRQ_NONE;
883         }
884
885         if (sr & STM32H7_SPI_SR_SUSP) {
886                 static DEFINE_RATELIMIT_STATE(rs,
887                                               DEFAULT_RATELIMIT_INTERVAL * 10,
888                                               1);
889                 ratelimit_set_flags(&rs, RATELIMIT_MSG_ON_RELEASE);
890                 if (__ratelimit(&rs))
891                         dev_dbg_ratelimited(spi->dev, "Communication suspended\n");
892                 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
893                         stm32h7_spi_read_rxfifo(spi);
894                 /*
895                  * If communication is suspended while using DMA, it means
896                  * that something went wrong, so stop the current transfer
897                  */
898                 if (spi->cur_usedma)
899                         end = true;
900         }
901
902         if (sr & STM32H7_SPI_SR_MODF) {
903                 dev_warn(spi->dev, "Mode fault: transfer aborted\n");
904                 end = true;
905         }
906
907         if (sr & STM32H7_SPI_SR_OVR) {
908                 dev_err(spi->dev, "Overrun: RX data lost\n");
909                 end = true;
910         }
911
912         if (sr & STM32H7_SPI_SR_EOT) {
913                 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
914                         stm32h7_spi_read_rxfifo(spi);
915                 if (!spi->cur_usedma ||
916                     (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX))
917                         end = true;
918         }
919
920         if (sr & STM32H7_SPI_SR_TXP)
921                 if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
922                         stm32h7_spi_write_txfifo(spi);
923
924         if (sr & STM32H7_SPI_SR_RXP)
925                 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
926                         stm32h7_spi_read_rxfifo(spi);
927
928         writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR);
929
930         spin_unlock_irqrestore(&spi->lock, flags);
931
932         if (end) {
933                 stm32h7_spi_disable(spi);
934                 spi_finalize_current_transfer(master);
935         }
936
937         return IRQ_HANDLED;
938 }
939
940 /**
941  * stm32_spi_prepare_msg - set up the controller to transfer a single message
942  * @master: controller master interface
943  * @msg: pointer to spi message
944  */
945 static int stm32_spi_prepare_msg(struct spi_master *master,
946                                  struct spi_message *msg)
947 {
948         struct stm32_spi *spi = spi_master_get_devdata(master);
949         struct spi_device *spi_dev = msg->spi;
950         struct device_node *np = spi_dev->dev.of_node;
951         unsigned long flags;
952         u32 clrb = 0, setb = 0;
953
954         /* SPI slave device may need time between data frames */
955         spi->cur_midi = 0;
956         if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
957                 dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
958
959         if (spi_dev->mode & SPI_CPOL)
960                 setb |= spi->cfg->regs->cpol.mask;
961         else
962                 clrb |= spi->cfg->regs->cpol.mask;
963
964         if (spi_dev->mode & SPI_CPHA)
965                 setb |= spi->cfg->regs->cpha.mask;
966         else
967                 clrb |= spi->cfg->regs->cpha.mask;
968
969         if (spi_dev->mode & SPI_LSB_FIRST)
970                 setb |= spi->cfg->regs->lsb_first.mask;
971         else
972                 clrb |= spi->cfg->regs->lsb_first.mask;
973
974         dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
975                 !!(spi_dev->mode & SPI_CPOL),
976                 !!(spi_dev->mode & SPI_CPHA),
977                 !!(spi_dev->mode & SPI_LSB_FIRST),
978                 !!(spi_dev->mode & SPI_CS_HIGH));
979
980         /* On STM32H7, messages should not exceed a maximum size setted
981          * afterward via the set_number_of_data function. In order to
982          * ensure that, split large messages into several messages
983          */
984         if (spi->cfg->set_number_of_data) {
985                 int ret;
986
987                 ret = spi_split_transfers_maxsize(master, msg,
988                                                   STM32H7_SPI_TSIZE_MAX,
989                                                   GFP_KERNEL | GFP_DMA);
990                 if (ret)
991                         return ret;
992         }
993
994         spin_lock_irqsave(&spi->lock, flags);
995
996         /* CPOL, CPHA and LSB FIRST bits have common register */
997         if (clrb || setb)
998                 writel_relaxed(
999                         (readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
1000                          ~clrb) | setb,
1001                         spi->base + spi->cfg->regs->cpol.reg);
1002
1003         spin_unlock_irqrestore(&spi->lock, flags);
1004
1005         return 0;
1006 }
1007
1008 /**
1009  * stm32f4_spi_dma_tx_cb - dma callback
1010  * @data: pointer to the spi controller data structure
1011  *
1012  * DMA callback is called when the transfer is complete for DMA TX channel.
1013  */
1014 static void stm32f4_spi_dma_tx_cb(void *data)
1015 {
1016         struct stm32_spi *spi = data;
1017
1018         if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1019                 spi_finalize_current_transfer(spi->master);
1020                 stm32f4_spi_disable(spi);
1021         }
1022 }
1023
1024 /**
1025  * stm32_spi_dma_rx_cb - dma callback
1026  * @data: pointer to the spi controller data structure
1027  *
1028  * DMA callback is called when the transfer is complete for DMA RX channel.
1029  */
1030 static void stm32_spi_dma_rx_cb(void *data)
1031 {
1032         struct stm32_spi *spi = data;
1033
1034         spi_finalize_current_transfer(spi->master);
1035         spi->cfg->disable(spi);
1036 }
1037
1038 /**
1039  * stm32_spi_dma_config - configure dma slave channel depending on current
1040  *                        transfer bits_per_word.
1041  * @spi: pointer to the spi controller data structure
1042  * @dma_conf: pointer to the dma_slave_config structure
1043  * @dir: direction of the dma transfer
1044  */
1045 static void stm32_spi_dma_config(struct stm32_spi *spi,
1046                                  struct dma_slave_config *dma_conf,
1047                                  enum dma_transfer_direction dir)
1048 {
1049         enum dma_slave_buswidth buswidth;
1050         u32 maxburst;
1051
1052         if (spi->cur_bpw <= 8)
1053                 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1054         else if (spi->cur_bpw <= 16)
1055                 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1056         else
1057                 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1058
1059         if (spi->cfg->has_fifo) {
1060                 /* Valid for DMA Half or Full Fifo threshold */
1061                 if (spi->cur_fthlv == 2)
1062                         maxburst = 1;
1063                 else
1064                         maxburst = spi->cur_fthlv;
1065         } else {
1066                 maxburst = 1;
1067         }
1068
1069         memset(dma_conf, 0, sizeof(struct dma_slave_config));
1070         dma_conf->direction = dir;
1071         if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1072                 dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1073                 dma_conf->src_addr_width = buswidth;
1074                 dma_conf->src_maxburst = maxburst;
1075
1076                 dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1077                         buswidth, maxburst);
1078         } else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1079                 dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1080                 dma_conf->dst_addr_width = buswidth;
1081                 dma_conf->dst_maxburst = maxburst;
1082
1083                 dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1084                         buswidth, maxburst);
1085         }
1086 }
1087
1088 /**
1089  * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
1090  *                                interrupts
1091  * @spi: pointer to the spi controller data structure
1092  *
1093  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1094  * in progress.
1095  */
1096 static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
1097 {
1098         unsigned long flags;
1099         u32 cr2 = 0;
1100
1101         /* Enable the interrupts relative to the current communication mode */
1102         if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1103                 cr2 |= STM32F4_SPI_CR2_TXEIE;
1104         } else if (spi->cur_comm == SPI_FULL_DUPLEX ||
1105                                 spi->cur_comm == SPI_SIMPLEX_RX ||
1106                                 spi->cur_comm == SPI_3WIRE_RX) {
1107                 /* In transmit-only mode, the OVR flag is set in the SR register
1108                  * since the received data are never read. Therefore set OVR
1109                  * interrupt only when rx buffer is available.
1110                  */
1111                 cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
1112         } else {
1113                 return -EINVAL;
1114         }
1115
1116         spin_lock_irqsave(&spi->lock, flags);
1117
1118         stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);
1119
1120         stm32_spi_enable(spi);
1121
1122         /* starting data transfer when buffer is loaded */
1123         if (spi->tx_buf)
1124                 stm32f4_spi_write_tx(spi);
1125
1126         spin_unlock_irqrestore(&spi->lock, flags);
1127
1128         return 1;
1129 }
1130
1131 /**
1132  * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1133  *                                interrupts
1134  * @spi: pointer to the spi controller data structure
1135  *
1136  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1137  * in progress.
1138  */
1139 static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1140 {
1141         unsigned long flags;
1142         u32 ier = 0;
1143
1144         /* Enable the interrupts relative to the current communication mode */
1145         if (spi->tx_buf && spi->rx_buf) /* Full Duplex */
1146                 ier |= STM32H7_SPI_IER_DXPIE;
1147         else if (spi->tx_buf)           /* Half-Duplex TX dir or Simplex TX */
1148                 ier |= STM32H7_SPI_IER_TXPIE;
1149         else if (spi->rx_buf)           /* Half-Duplex RX dir or Simplex RX */
1150                 ier |= STM32H7_SPI_IER_RXPIE;
1151
1152         /* Enable the interrupts relative to the end of transfer */
1153         ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1154                STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1155
1156         spin_lock_irqsave(&spi->lock, flags);
1157
1158         stm32_spi_enable(spi);
1159
1160         /* Be sure to have data in fifo before starting data transfer */
1161         if (spi->tx_buf)
1162                 stm32h7_spi_write_txfifo(spi);
1163
1164         stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1165
1166         writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1167
1168         spin_unlock_irqrestore(&spi->lock, flags);
1169
1170         return 1;
1171 }
1172
1173 /**
1174  * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
1175  *                                      transfer using DMA
1176  * @spi: pointer to the spi controller data structure
1177  */
1178 static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
1179 {
1180         /* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1181         if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1182             spi->cur_comm == SPI_FULL_DUPLEX) {
1183                 /*
1184                  * In transmit-only mode, the OVR flag is set in the SR register
1185                  * since the received data are never read. Therefore set OVR
1186                  * interrupt only when rx buffer is available.
1187                  */
1188                 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
1189         }
1190
1191         stm32_spi_enable(spi);
1192 }
1193
1194 /**
1195  * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1196  *                                      transfer using DMA
1197  * @spi: pointer to the spi controller data structure
1198  */
1199 static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1200 {
1201         uint32_t ier = STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1202
1203         /* Enable the interrupts */
1204         if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX)
1205                 ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE;
1206
1207         stm32_spi_set_bits(spi, STM32H7_SPI_IER, ier);
1208
1209         stm32_spi_enable(spi);
1210
1211         stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1212 }
1213
1214 /**
1215  * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1216  * @spi: pointer to the spi controller data structure
1217  * @xfer: pointer to the spi_transfer structure
1218  *
1219  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1220  * in progress.
1221  */
1222 static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1223                                       struct spi_transfer *xfer)
1224 {
1225         struct dma_slave_config tx_dma_conf, rx_dma_conf;
1226         struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1227         unsigned long flags;
1228
1229         spin_lock_irqsave(&spi->lock, flags);
1230
1231         rx_dma_desc = NULL;
1232         if (spi->rx_buf && spi->dma_rx) {
1233                 stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
1234                 dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1235
1236                 /* Enable Rx DMA request */
1237                 stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1238                                    spi->cfg->regs->dma_rx_en.mask);
1239
1240                 rx_dma_desc = dmaengine_prep_slave_sg(
1241                                         spi->dma_rx, xfer->rx_sg.sgl,
1242                                         xfer->rx_sg.nents,
1243                                         rx_dma_conf.direction,
1244                                         DMA_PREP_INTERRUPT);
1245         }
1246
1247         tx_dma_desc = NULL;
1248         if (spi->tx_buf && spi->dma_tx) {
1249                 stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
1250                 dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1251
1252                 tx_dma_desc = dmaengine_prep_slave_sg(
1253                                         spi->dma_tx, xfer->tx_sg.sgl,
1254                                         xfer->tx_sg.nents,
1255                                         tx_dma_conf.direction,
1256                                         DMA_PREP_INTERRUPT);
1257         }
1258
1259         if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1260             (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1261                 goto dma_desc_error;
1262
1263         if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1264                 goto dma_desc_error;
1265
1266         if (rx_dma_desc) {
1267                 rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1268                 rx_dma_desc->callback_param = spi;
1269
1270                 if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1271                         dev_err(spi->dev, "Rx DMA submit failed\n");
1272                         goto dma_desc_error;
1273                 }
1274                 /* Enable Rx DMA channel */
1275                 dma_async_issue_pending(spi->dma_rx);
1276         }
1277
1278         if (tx_dma_desc) {
1279                 if (spi->cur_comm == SPI_SIMPLEX_TX ||
1280                     spi->cur_comm == SPI_3WIRE_TX) {
1281                         tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1282                         tx_dma_desc->callback_param = spi;
1283                 }
1284
1285                 if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1286                         dev_err(spi->dev, "Tx DMA submit failed\n");
1287                         goto dma_submit_error;
1288                 }
1289                 /* Enable Tx DMA channel */
1290                 dma_async_issue_pending(spi->dma_tx);
1291
1292                 /* Enable Tx DMA request */
1293                 stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1294                                    spi->cfg->regs->dma_tx_en.mask);
1295         }
1296
1297         spi->cfg->transfer_one_dma_start(spi);
1298
1299         spin_unlock_irqrestore(&spi->lock, flags);
1300
1301         return 1;
1302
1303 dma_submit_error:
1304         if (spi->dma_rx)
1305                 dmaengine_terminate_all(spi->dma_rx);
1306
1307 dma_desc_error:
1308         stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1309                            spi->cfg->regs->dma_rx_en.mask);
1310
1311         spin_unlock_irqrestore(&spi->lock, flags);
1312
1313         dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1314
1315         spi->cur_usedma = false;
1316         return spi->cfg->transfer_one_irq(spi);
1317 }
1318
1319 /**
1320  * stm32f4_spi_set_bpw - Configure bits per word
1321  * @spi: pointer to the spi controller data structure
1322  */
1323 static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
1324 {
1325         if (spi->cur_bpw == 16)
1326                 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1327         else
1328                 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1329 }
1330
1331 /**
1332  * stm32h7_spi_set_bpw - configure bits per word
1333  * @spi: pointer to the spi controller data structure
1334  */
1335 static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1336 {
1337         u32 bpw, fthlv;
1338         u32 cfg1_clrb = 0, cfg1_setb = 0;
1339
1340         bpw = spi->cur_bpw - 1;
1341
1342         cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
1343         cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_DSIZE, bpw);
1344
1345         spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen);
1346         fthlv = spi->cur_fthlv - 1;
1347
1348         cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
1349         cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_FTHLV, fthlv);
1350
1351         writel_relaxed(
1352                 (readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1353                  ~cfg1_clrb) | cfg1_setb,
1354                 spi->base + STM32H7_SPI_CFG1);
1355 }
1356
1357 /**
1358  * stm32_spi_set_mbr - Configure baud rate divisor in master mode
1359  * @spi: pointer to the spi controller data structure
1360  * @mbrdiv: baud rate divisor value
1361  */
1362 static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1363 {
1364         u32 clrb = 0, setb = 0;
1365
1366         clrb |= spi->cfg->regs->br.mask;
1367         setb |= (mbrdiv << spi->cfg->regs->br.shift) & spi->cfg->regs->br.mask;
1368
1369         writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1370                         ~clrb) | setb,
1371                        spi->base + spi->cfg->regs->br.reg);
1372 }
1373
1374 /**
1375  * stm32_spi_communication_type - return transfer communication type
1376  * @spi_dev: pointer to the spi device
1377  * @transfer: pointer to spi transfer
1378  */
1379 static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1380                                                  struct spi_transfer *transfer)
1381 {
1382         unsigned int type = SPI_FULL_DUPLEX;
1383
1384         if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1385                 /*
1386                  * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1387                  * is forbidden and unvalidated by SPI subsystem so depending
1388                  * on the valid buffer, we can determine the direction of the
1389                  * transfer.
1390                  */
1391                 if (!transfer->tx_buf)
1392                         type = SPI_3WIRE_RX;
1393                 else
1394                         type = SPI_3WIRE_TX;
1395         } else {
1396                 if (!transfer->tx_buf)
1397                         type = SPI_SIMPLEX_RX;
1398                 else if (!transfer->rx_buf)
1399                         type = SPI_SIMPLEX_TX;
1400         }
1401
1402         return type;
1403 }
1404
1405 /**
1406  * stm32f4_spi_set_mode - configure communication mode
1407  * @spi: pointer to the spi controller data structure
1408  * @comm_type: type of communication to configure
1409  */
1410 static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1411 {
1412         if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1413                 stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1414                                         STM32F4_SPI_CR1_BIDIMODE |
1415                                         STM32F4_SPI_CR1_BIDIOE);
1416         } else if (comm_type == SPI_FULL_DUPLEX ||
1417                                 comm_type == SPI_SIMPLEX_RX) {
1418                 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1419                                         STM32F4_SPI_CR1_BIDIMODE |
1420                                         STM32F4_SPI_CR1_BIDIOE);
1421         } else if (comm_type == SPI_3WIRE_RX) {
1422                 stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1423                                         STM32F4_SPI_CR1_BIDIMODE);
1424                 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1425                                         STM32F4_SPI_CR1_BIDIOE);
1426         } else {
1427                 return -EINVAL;
1428         }
1429
1430         return 0;
1431 }
1432
1433 /**
1434  * stm32h7_spi_set_mode - configure communication mode
1435  * @spi: pointer to the spi controller data structure
1436  * @comm_type: type of communication to configure
1437  */
1438 static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1439 {
1440         u32 mode;
1441         u32 cfg2_clrb = 0, cfg2_setb = 0;
1442
1443         if (comm_type == SPI_3WIRE_RX) {
1444                 mode = STM32H7_SPI_HALF_DUPLEX;
1445                 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1446         } else if (comm_type == SPI_3WIRE_TX) {
1447                 mode = STM32H7_SPI_HALF_DUPLEX;
1448                 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1449         } else if (comm_type == SPI_SIMPLEX_RX) {
1450                 mode = STM32H7_SPI_SIMPLEX_RX;
1451         } else if (comm_type == SPI_SIMPLEX_TX) {
1452                 mode = STM32H7_SPI_SIMPLEX_TX;
1453         } else {
1454                 mode = STM32H7_SPI_FULL_DUPLEX;
1455         }
1456
1457         cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
1458         cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_COMM, mode);
1459
1460         writel_relaxed(
1461                 (readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1462                  ~cfg2_clrb) | cfg2_setb,
1463                 spi->base + STM32H7_SPI_CFG2);
1464
1465         return 0;
1466 }
1467
1468 /**
1469  * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1470  *                             consecutive data frames in master mode
1471  * @spi: pointer to the spi controller data structure
1472  * @len: transfer len
1473  */
1474 static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1475 {
1476         u32 cfg2_clrb = 0, cfg2_setb = 0;
1477
1478         cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1479         if ((len > 1) && (spi->cur_midi > 0)) {
1480                 u32 sck_period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->cur_speed);
1481                 u32 midi = min_t(u32,
1482                                  DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1483                                  FIELD_GET(STM32H7_SPI_CFG2_MIDI,
1484                                  STM32H7_SPI_CFG2_MIDI));
1485
1486
1487                 dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1488                         sck_period_ns, midi, midi * sck_period_ns);
1489                 cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_MIDI, midi);
1490         }
1491
1492         writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1493                         ~cfg2_clrb) | cfg2_setb,
1494                        spi->base + STM32H7_SPI_CFG2);
1495 }
1496
1497 /**
1498  * stm32h7_spi_number_of_data - configure number of data at current transfer
1499  * @spi: pointer to the spi controller data structure
1500  * @nb_words: transfer length (in words)
1501  */
1502 static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1503 {
1504         if (nb_words <= STM32H7_SPI_TSIZE_MAX) {
1505                 writel_relaxed(FIELD_PREP(STM32H7_SPI_CR2_TSIZE, nb_words),
1506                                spi->base + STM32H7_SPI_CR2);
1507         } else {
1508                 return -EMSGSIZE;
1509         }
1510
1511         return 0;
1512 }
1513
1514 /**
1515  * stm32_spi_transfer_one_setup - common setup to transfer a single
1516  *                                spi_transfer either using DMA or
1517  *                                interrupts.
1518  * @spi: pointer to the spi controller data structure
1519  * @spi_dev: pointer to the spi device
1520  * @transfer: pointer to spi transfer
1521  */
1522 static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1523                                         struct spi_device *spi_dev,
1524                                         struct spi_transfer *transfer)
1525 {
1526         unsigned long flags;
1527         unsigned int comm_type;
1528         int nb_words, ret = 0;
1529         int mbr;
1530
1531         spin_lock_irqsave(&spi->lock, flags);
1532
1533         spi->cur_xferlen = transfer->len;
1534
1535         spi->cur_bpw = transfer->bits_per_word;
1536         spi->cfg->set_bpw(spi);
1537
1538         /* Update spi->cur_speed with real clock speed */
1539         mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
1540                                     spi->cfg->baud_rate_div_min,
1541                                     spi->cfg->baud_rate_div_max);
1542         if (mbr < 0) {
1543                 ret = mbr;
1544                 goto out;
1545         }
1546
1547         transfer->speed_hz = spi->cur_speed;
1548         stm32_spi_set_mbr(spi, mbr);
1549
1550         comm_type = stm32_spi_communication_type(spi_dev, transfer);
1551         ret = spi->cfg->set_mode(spi, comm_type);
1552         if (ret < 0)
1553                 goto out;
1554
1555         spi->cur_comm = comm_type;
1556
1557         if (spi->cfg->set_data_idleness)
1558                 spi->cfg->set_data_idleness(spi, transfer->len);
1559
1560         if (spi->cur_bpw <= 8)
1561                 nb_words = transfer->len;
1562         else if (spi->cur_bpw <= 16)
1563                 nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1564         else
1565                 nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
1566
1567         if (spi->cfg->set_number_of_data) {
1568                 ret = spi->cfg->set_number_of_data(spi, nb_words);
1569                 if (ret < 0)
1570                         goto out;
1571         }
1572
1573         dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1574                 spi->cur_comm);
1575         dev_dbg(spi->dev,
1576                 "data frame of %d-bit, data packet of %d data frames\n",
1577                 spi->cur_bpw, spi->cur_fthlv);
1578         dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
1579         dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1580                 spi->cur_xferlen, nb_words);
1581         dev_dbg(spi->dev, "dma %s\n",
1582                 (spi->cur_usedma) ? "enabled" : "disabled");
1583
1584 out:
1585         spin_unlock_irqrestore(&spi->lock, flags);
1586
1587         return ret;
1588 }
1589
1590 /**
1591  * stm32_spi_transfer_one - transfer a single spi_transfer
1592  * @master: controller master interface
1593  * @spi_dev: pointer to the spi device
1594  * @transfer: pointer to spi transfer
1595  *
1596  * It must return 0 if the transfer is finished or 1 if the transfer is still
1597  * in progress.
1598  */
1599 static int stm32_spi_transfer_one(struct spi_master *master,
1600                                   struct spi_device *spi_dev,
1601                                   struct spi_transfer *transfer)
1602 {
1603         struct stm32_spi *spi = spi_master_get_devdata(master);
1604         int ret;
1605
1606         spi->tx_buf = transfer->tx_buf;
1607         spi->rx_buf = transfer->rx_buf;
1608         spi->tx_len = spi->tx_buf ? transfer->len : 0;
1609         spi->rx_len = spi->rx_buf ? transfer->len : 0;
1610
1611         spi->cur_usedma = (master->can_dma &&
1612                            master->can_dma(master, spi_dev, transfer));
1613
1614         ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1615         if (ret) {
1616                 dev_err(spi->dev, "SPI transfer setup failed\n");
1617                 return ret;
1618         }
1619
1620         if (spi->cur_usedma)
1621                 return stm32_spi_transfer_one_dma(spi, transfer);
1622         else
1623                 return spi->cfg->transfer_one_irq(spi);
1624 }
1625
1626 /**
1627  * stm32_spi_unprepare_msg - relax the hardware
1628  * @master: controller master interface
1629  * @msg: pointer to the spi message
1630  */
1631 static int stm32_spi_unprepare_msg(struct spi_master *master,
1632                                    struct spi_message *msg)
1633 {
1634         struct stm32_spi *spi = spi_master_get_devdata(master);
1635
1636         spi->cfg->disable(spi);
1637
1638         return 0;
1639 }
1640
1641 /**
1642  * stm32f4_spi_config - Configure SPI controller as SPI master
1643  * @spi: pointer to the spi controller data structure
1644  */
1645 static int stm32f4_spi_config(struct stm32_spi *spi)
1646 {
1647         unsigned long flags;
1648
1649         spin_lock_irqsave(&spi->lock, flags);
1650
1651         /* Ensure I2SMOD bit is kept cleared */
1652         stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
1653                            STM32F4_SPI_I2SCFGR_I2SMOD);
1654
1655         /*
1656          * - SS input value high
1657          * - transmitter half duplex direction
1658          * - Set the master mode (default Motorola mode)
1659          * - Consider 1 master/n slaves configuration and
1660          *   SS input value is determined by the SSI bit
1661          */
1662         stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
1663                                                  STM32F4_SPI_CR1_BIDIOE |
1664                                                  STM32F4_SPI_CR1_MSTR |
1665                                                  STM32F4_SPI_CR1_SSM);
1666
1667         spin_unlock_irqrestore(&spi->lock, flags);
1668
1669         return 0;
1670 }
1671
1672 /**
1673  * stm32h7_spi_config - Configure SPI controller as SPI master
1674  * @spi: pointer to the spi controller data structure
1675  */
1676 static int stm32h7_spi_config(struct stm32_spi *spi)
1677 {
1678         unsigned long flags;
1679
1680         spin_lock_irqsave(&spi->lock, flags);
1681
1682         /* Ensure I2SMOD bit is kept cleared */
1683         stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1684                            STM32H7_SPI_I2SCFGR_I2SMOD);
1685
1686         /*
1687          * - SS input value high
1688          * - transmitter half duplex direction
1689          * - automatic communication suspend when RX-Fifo is full
1690          */
1691         stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI |
1692                                                  STM32H7_SPI_CR1_HDDIR |
1693                                                  STM32H7_SPI_CR1_MASRX);
1694
1695         /*
1696          * - Set the master mode (default Motorola mode)
1697          * - Consider 1 master/n slaves configuration and
1698          *   SS input value is determined by the SSI bit
1699          * - keep control of all associated GPIOs
1700          */
1701         stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER |
1702                                                   STM32H7_SPI_CFG2_SSM |
1703                                                   STM32H7_SPI_CFG2_AFCNTR);
1704
1705         spin_unlock_irqrestore(&spi->lock, flags);
1706
1707         return 0;
1708 }
1709
1710 static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1711         .regs = &stm32f4_spi_regspec,
1712         .get_bpw_mask = stm32f4_spi_get_bpw_mask,
1713         .disable = stm32f4_spi_disable,
1714         .config = stm32f4_spi_config,
1715         .set_bpw = stm32f4_spi_set_bpw,
1716         .set_mode = stm32f4_spi_set_mode,
1717         .transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
1718         .dma_tx_cb = stm32f4_spi_dma_tx_cb,
1719         .dma_rx_cb = stm32_spi_dma_rx_cb,
1720         .transfer_one_irq = stm32f4_spi_transfer_one_irq,
1721         .irq_handler_event = stm32f4_spi_irq_event,
1722         .irq_handler_thread = stm32f4_spi_irq_thread,
1723         .baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
1724         .baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
1725         .has_fifo = false,
1726 };
1727
1728 static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1729         .regs = &stm32h7_spi_regspec,
1730         .get_fifo_size = stm32h7_spi_get_fifo_size,
1731         .get_bpw_mask = stm32h7_spi_get_bpw_mask,
1732         .disable = stm32h7_spi_disable,
1733         .config = stm32h7_spi_config,
1734         .set_bpw = stm32h7_spi_set_bpw,
1735         .set_mode = stm32h7_spi_set_mode,
1736         .set_data_idleness = stm32h7_spi_data_idleness,
1737         .set_number_of_data = stm32h7_spi_number_of_data,
1738         .transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
1739         .dma_rx_cb = stm32_spi_dma_rx_cb,
1740         /*
1741          * dma_tx_cb is not necessary since in case of TX, dma is followed by
1742          * SPI access hence handling is performed within the SPI interrupt
1743          */
1744         .transfer_one_irq = stm32h7_spi_transfer_one_irq,
1745         .irq_handler_thread = stm32h7_spi_irq_thread,
1746         .baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
1747         .baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
1748         .has_fifo = true,
1749 };
1750
1751 static const struct of_device_id stm32_spi_of_match[] = {
1752         { .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
1753         { .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
1754         {},
1755 };
1756 MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
1757
1758 static int stm32_spi_probe(struct platform_device *pdev)
1759 {
1760         struct spi_master *master;
1761         struct stm32_spi *spi;
1762         struct resource *res;
1763         struct reset_control *rst;
1764         int ret;
1765
1766         master = devm_spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
1767         if (!master) {
1768                 dev_err(&pdev->dev, "spi master allocation failed\n");
1769                 return -ENOMEM;
1770         }
1771         platform_set_drvdata(pdev, master);
1772
1773         spi = spi_master_get_devdata(master);
1774         spi->dev = &pdev->dev;
1775         spi->master = master;
1776         spin_lock_init(&spi->lock);
1777
1778         spi->cfg = (const struct stm32_spi_cfg *)
1779                 of_match_device(pdev->dev.driver->of_match_table,
1780                                 &pdev->dev)->data;
1781
1782         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1783         spi->base = devm_ioremap_resource(&pdev->dev, res);
1784         if (IS_ERR(spi->base))
1785                 return PTR_ERR(spi->base);
1786
1787         spi->phys_addr = (dma_addr_t)res->start;
1788
1789         spi->irq = platform_get_irq(pdev, 0);
1790         if (spi->irq <= 0)
1791                 return dev_err_probe(&pdev->dev, spi->irq,
1792                                      "failed to get irq\n");
1793
1794         ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
1795                                         spi->cfg->irq_handler_event,
1796                                         spi->cfg->irq_handler_thread,
1797                                         IRQF_ONESHOT, pdev->name, master);
1798         if (ret) {
1799                 dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
1800                         ret);
1801                 return ret;
1802         }
1803
1804         spi->clk = devm_clk_get(&pdev->dev, NULL);
1805         if (IS_ERR(spi->clk)) {
1806                 ret = PTR_ERR(spi->clk);
1807                 dev_err(&pdev->dev, "clk get failed: %d\n", ret);
1808                 return ret;
1809         }
1810
1811         ret = clk_prepare_enable(spi->clk);
1812         if (ret) {
1813                 dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
1814                 return ret;
1815         }
1816         spi->clk_rate = clk_get_rate(spi->clk);
1817         if (!spi->clk_rate) {
1818                 dev_err(&pdev->dev, "clk rate = 0\n");
1819                 ret = -EINVAL;
1820                 goto err_clk_disable;
1821         }
1822
1823         rst = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
1824         if (rst) {
1825                 if (IS_ERR(rst)) {
1826                         ret = dev_err_probe(&pdev->dev, PTR_ERR(rst),
1827                                             "failed to get reset\n");
1828                         goto err_clk_disable;
1829                 }
1830
1831                 reset_control_assert(rst);
1832                 udelay(2);
1833                 reset_control_deassert(rst);
1834         }
1835
1836         if (spi->cfg->has_fifo)
1837                 spi->fifo_size = spi->cfg->get_fifo_size(spi);
1838
1839         ret = spi->cfg->config(spi);
1840         if (ret) {
1841                 dev_err(&pdev->dev, "controller configuration failed: %d\n",
1842                         ret);
1843                 goto err_clk_disable;
1844         }
1845
1846         master->dev.of_node = pdev->dev.of_node;
1847         master->auto_runtime_pm = true;
1848         master->bus_num = pdev->id;
1849         master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1850                             SPI_3WIRE;
1851         master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
1852         master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
1853         master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
1854         master->use_gpio_descriptors = true;
1855         master->prepare_message = stm32_spi_prepare_msg;
1856         master->transfer_one = stm32_spi_transfer_one;
1857         master->unprepare_message = stm32_spi_unprepare_msg;
1858         master->flags = SPI_MASTER_MUST_TX;
1859
1860         spi->dma_tx = dma_request_chan(spi->dev, "tx");
1861         if (IS_ERR(spi->dma_tx)) {
1862                 ret = PTR_ERR(spi->dma_tx);
1863                 spi->dma_tx = NULL;
1864                 if (ret == -EPROBE_DEFER)
1865                         goto err_clk_disable;
1866
1867                 dev_warn(&pdev->dev, "failed to request tx dma channel\n");
1868         } else {
1869                 master->dma_tx = spi->dma_tx;
1870         }
1871
1872         spi->dma_rx = dma_request_chan(spi->dev, "rx");
1873         if (IS_ERR(spi->dma_rx)) {
1874                 ret = PTR_ERR(spi->dma_rx);
1875                 spi->dma_rx = NULL;
1876                 if (ret == -EPROBE_DEFER)
1877                         goto err_dma_release;
1878
1879                 dev_warn(&pdev->dev, "failed to request rx dma channel\n");
1880         } else {
1881                 master->dma_rx = spi->dma_rx;
1882         }
1883
1884         if (spi->dma_tx || spi->dma_rx)
1885                 master->can_dma = stm32_spi_can_dma;
1886
1887         pm_runtime_set_autosuspend_delay(&pdev->dev,
1888                                          STM32_SPI_AUTOSUSPEND_DELAY);
1889         pm_runtime_use_autosuspend(&pdev->dev);
1890         pm_runtime_set_active(&pdev->dev);
1891         pm_runtime_get_noresume(&pdev->dev);
1892         pm_runtime_enable(&pdev->dev);
1893
1894         ret = spi_register_master(master);
1895         if (ret) {
1896                 dev_err(&pdev->dev, "spi master registration failed: %d\n",
1897                         ret);
1898                 goto err_pm_disable;
1899         }
1900
1901         pm_runtime_mark_last_busy(&pdev->dev);
1902         pm_runtime_put_autosuspend(&pdev->dev);
1903
1904         dev_info(&pdev->dev, "driver initialized\n");
1905
1906         return 0;
1907
1908 err_pm_disable:
1909         pm_runtime_disable(&pdev->dev);
1910         pm_runtime_put_noidle(&pdev->dev);
1911         pm_runtime_set_suspended(&pdev->dev);
1912         pm_runtime_dont_use_autosuspend(&pdev->dev);
1913 err_dma_release:
1914         if (spi->dma_tx)
1915                 dma_release_channel(spi->dma_tx);
1916         if (spi->dma_rx)
1917                 dma_release_channel(spi->dma_rx);
1918 err_clk_disable:
1919         clk_disable_unprepare(spi->clk);
1920
1921         return ret;
1922 }
1923
1924 static int stm32_spi_remove(struct platform_device *pdev)
1925 {
1926         struct spi_master *master = platform_get_drvdata(pdev);
1927         struct stm32_spi *spi = spi_master_get_devdata(master);
1928
1929         pm_runtime_get_sync(&pdev->dev);
1930
1931         spi_unregister_master(master);
1932         spi->cfg->disable(spi);
1933
1934         pm_runtime_disable(&pdev->dev);
1935         pm_runtime_put_noidle(&pdev->dev);
1936         pm_runtime_set_suspended(&pdev->dev);
1937         pm_runtime_dont_use_autosuspend(&pdev->dev);
1938
1939         if (master->dma_tx)
1940                 dma_release_channel(master->dma_tx);
1941         if (master->dma_rx)
1942                 dma_release_channel(master->dma_rx);
1943
1944         clk_disable_unprepare(spi->clk);
1945
1946
1947         pinctrl_pm_select_sleep_state(&pdev->dev);
1948
1949         return 0;
1950 }
1951
1952 static int __maybe_unused stm32_spi_runtime_suspend(struct device *dev)
1953 {
1954         struct spi_master *master = dev_get_drvdata(dev);
1955         struct stm32_spi *spi = spi_master_get_devdata(master);
1956
1957         clk_disable_unprepare(spi->clk);
1958
1959         return pinctrl_pm_select_sleep_state(dev);
1960 }
1961
1962 static int __maybe_unused stm32_spi_runtime_resume(struct device *dev)
1963 {
1964         struct spi_master *master = dev_get_drvdata(dev);
1965         struct stm32_spi *spi = spi_master_get_devdata(master);
1966         int ret;
1967
1968         ret = pinctrl_pm_select_default_state(dev);
1969         if (ret)
1970                 return ret;
1971
1972         return clk_prepare_enable(spi->clk);
1973 }
1974
1975 static int __maybe_unused stm32_spi_suspend(struct device *dev)
1976 {
1977         struct spi_master *master = dev_get_drvdata(dev);
1978         int ret;
1979
1980         ret = spi_master_suspend(master);
1981         if (ret)
1982                 return ret;
1983
1984         return pm_runtime_force_suspend(dev);
1985 }
1986
1987 static int __maybe_unused stm32_spi_resume(struct device *dev)
1988 {
1989         struct spi_master *master = dev_get_drvdata(dev);
1990         struct stm32_spi *spi = spi_master_get_devdata(master);
1991         int ret;
1992
1993         ret = pm_runtime_force_resume(dev);
1994         if (ret)
1995                 return ret;
1996
1997         ret = spi_master_resume(master);
1998         if (ret) {
1999                 clk_disable_unprepare(spi->clk);
2000                 return ret;
2001         }
2002
2003         ret = pm_runtime_get_sync(dev);
2004         if (ret < 0) {
2005                 pm_runtime_put_noidle(dev);
2006                 dev_err(dev, "Unable to power device:%d\n", ret);
2007                 return ret;
2008         }
2009
2010         spi->cfg->config(spi);
2011
2012         pm_runtime_mark_last_busy(dev);
2013         pm_runtime_put_autosuspend(dev);
2014
2015         return 0;
2016 }
2017
2018 static const struct dev_pm_ops stm32_spi_pm_ops = {
2019         SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2020         SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2021                            stm32_spi_runtime_resume, NULL)
2022 };
2023
2024 static struct platform_driver stm32_spi_driver = {
2025         .probe = stm32_spi_probe,
2026         .remove = stm32_spi_remove,
2027         .driver = {
2028                 .name = DRIVER_NAME,
2029                 .pm = &stm32_spi_pm_ops,
2030                 .of_match_table = stm32_spi_of_match,
2031         },
2032 };
2033
2034 module_platform_driver(stm32_spi_driver);
2035
2036 MODULE_ALIAS("platform:" DRIVER_NAME);
2037 MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2038 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
2039 MODULE_LICENSE("GPL v2");