1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (C) 2018 Spreadtrum Communications Inc.
5 #include <linux/dmaengine.h>
6 #include <linux/dma-mapping.h>
7 #include <linux/dma/sprd-dma.h>
8 #include <linux/interrupt.h>
10 #include <linux/iopoll.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
14 #include <linux/of_dma.h>
15 #include <linux/platform_device.h>
16 #include <linux/pm_runtime.h>
17 #include <linux/spi/spi.h>
19 #define SPRD_SPI_TXD 0x0
20 #define SPRD_SPI_CLKD 0x4
21 #define SPRD_SPI_CTL0 0x8
22 #define SPRD_SPI_CTL1 0xc
23 #define SPRD_SPI_CTL2 0x10
24 #define SPRD_SPI_CTL3 0x14
25 #define SPRD_SPI_CTL4 0x18
26 #define SPRD_SPI_CTL5 0x1c
27 #define SPRD_SPI_INT_EN 0x20
28 #define SPRD_SPI_INT_CLR 0x24
29 #define SPRD_SPI_INT_RAW_STS 0x28
30 #define SPRD_SPI_INT_MASK_STS 0x2c
31 #define SPRD_SPI_STS1 0x30
32 #define SPRD_SPI_STS2 0x34
33 #define SPRD_SPI_DSP_WAIT 0x38
34 #define SPRD_SPI_STS3 0x3c
35 #define SPRD_SPI_CTL6 0x40
36 #define SPRD_SPI_STS4 0x44
37 #define SPRD_SPI_FIFO_RST 0x48
38 #define SPRD_SPI_CTL7 0x4c
39 #define SPRD_SPI_STS5 0x50
40 #define SPRD_SPI_CTL8 0x54
41 #define SPRD_SPI_CTL9 0x58
42 #define SPRD_SPI_CTL10 0x5c
43 #define SPRD_SPI_CTL11 0x60
44 #define SPRD_SPI_CTL12 0x64
45 #define SPRD_SPI_STS6 0x68
46 #define SPRD_SPI_STS7 0x6c
47 #define SPRD_SPI_STS8 0x70
48 #define SPRD_SPI_STS9 0x74
50 /* Bits & mask definition for register CTL0 */
51 #define SPRD_SPI_SCK_REV BIT(13)
52 #define SPRD_SPI_NG_TX BIT(1)
53 #define SPRD_SPI_NG_RX BIT(0)
54 #define SPRD_SPI_CHNL_LEN_MASK GENMASK(4, 0)
55 #define SPRD_SPI_CSN_MASK GENMASK(11, 8)
56 #define SPRD_SPI_CS0_VALID BIT(8)
58 /* Bits & mask definition for register SPI_INT_EN */
59 #define SPRD_SPI_TX_END_INT_EN BIT(8)
60 #define SPRD_SPI_RX_END_INT_EN BIT(9)
62 /* Bits & mask definition for register SPI_INT_RAW_STS */
63 #define SPRD_SPI_TX_END_RAW BIT(8)
64 #define SPRD_SPI_RX_END_RAW BIT(9)
66 /* Bits & mask definition for register SPI_INT_CLR */
67 #define SPRD_SPI_TX_END_CLR BIT(8)
68 #define SPRD_SPI_RX_END_CLR BIT(9)
70 /* Bits & mask definition for register INT_MASK_STS */
71 #define SPRD_SPI_MASK_RX_END BIT(9)
72 #define SPRD_SPI_MASK_TX_END BIT(8)
74 /* Bits & mask definition for register STS2 */
75 #define SPRD_SPI_TX_BUSY BIT(8)
77 /* Bits & mask definition for register CTL1 */
78 #define SPRD_SPI_RX_MODE BIT(12)
79 #define SPRD_SPI_TX_MODE BIT(13)
80 #define SPRD_SPI_RTX_MD_MASK GENMASK(13, 12)
82 /* Bits & mask definition for register CTL2 */
83 #define SPRD_SPI_DMA_EN BIT(6)
85 /* Bits & mask definition for register CTL4 */
86 #define SPRD_SPI_START_RX BIT(9)
87 #define SPRD_SPI_ONLY_RECV_MASK GENMASK(8, 0)
89 /* Bits & mask definition for register SPI_INT_CLR */
90 #define SPRD_SPI_RX_END_INT_CLR BIT(9)
91 #define SPRD_SPI_TX_END_INT_CLR BIT(8)
93 /* Bits & mask definition for register SPI_INT_RAW */
94 #define SPRD_SPI_RX_END_IRQ BIT(9)
95 #define SPRD_SPI_TX_END_IRQ BIT(8)
97 /* Bits & mask definition for register CTL12 */
98 #define SPRD_SPI_SW_RX_REQ BIT(0)
99 #define SPRD_SPI_SW_TX_REQ BIT(1)
101 /* Bits & mask definition for register CTL7 */
102 #define SPRD_SPI_DATA_LINE2_EN BIT(15)
103 #define SPRD_SPI_MODE_MASK GENMASK(5, 3)
104 #define SPRD_SPI_MODE_OFFSET 3
105 #define SPRD_SPI_3WIRE_MODE 4
106 #define SPRD_SPI_4WIRE_MODE 0
108 /* Bits & mask definition for register CTL8 */
109 #define SPRD_SPI_TX_MAX_LEN_MASK GENMASK(19, 0)
110 #define SPRD_SPI_TX_LEN_H_MASK GENMASK(3, 0)
111 #define SPRD_SPI_TX_LEN_H_OFFSET 16
113 /* Bits & mask definition for register CTL9 */
114 #define SPRD_SPI_TX_LEN_L_MASK GENMASK(15, 0)
116 /* Bits & mask definition for register CTL10 */
117 #define SPRD_SPI_RX_MAX_LEN_MASK GENMASK(19, 0)
118 #define SPRD_SPI_RX_LEN_H_MASK GENMASK(3, 0)
119 #define SPRD_SPI_RX_LEN_H_OFFSET 16
121 /* Bits & mask definition for register CTL11 */
122 #define SPRD_SPI_RX_LEN_L_MASK GENMASK(15, 0)
124 /* Default & maximum word delay cycles */
125 #define SPRD_SPI_MIN_DELAY_CYCLE 14
126 #define SPRD_SPI_MAX_DELAY_CYCLE 130
128 #define SPRD_SPI_FIFO_SIZE 32
129 #define SPRD_SPI_CHIP_CS_NUM 0x4
130 #define SPRD_SPI_CHNL_LEN 2
131 #define SPRD_SPI_DEFAULT_SOURCE 26000000
132 #define SPRD_SPI_MAX_SPEED_HZ 48000000
133 #define SPRD_SPI_AUTOSUSPEND_DELAY 100
134 #define SPRD_SPI_DMA_STEP 8
136 enum sprd_spi_dma_channel {
142 struct sprd_spi_dma {
144 struct dma_chan *dma_chan[SPRD_SPI_MAX];
145 enum dma_slave_buswidth width;
152 phys_addr_t phy_base;
164 struct sprd_spi_dma dma;
165 struct completion xfer_completion;
168 int (*read_bufs)(struct sprd_spi *ss, u32 len);
169 int (*write_bufs)(struct sprd_spi *ss, u32 len);
172 static u32 sprd_spi_transfer_max_timeout(struct sprd_spi *ss,
173 struct spi_transfer *t)
176 * The time spent on transmission of the full FIFO data is the maximum
177 * SPI transmission time.
179 u32 size = t->bits_per_word * SPRD_SPI_FIFO_SIZE;
180 u32 bit_time_us = DIV_ROUND_UP(USEC_PER_SEC, ss->hw_speed_hz);
181 u32 total_time_us = size * bit_time_us;
183 * There is an interval between data and the data in our SPI hardware,
184 * so the total transmission time need add the interval time.
186 u32 interval_cycle = SPRD_SPI_FIFO_SIZE * ss->word_delay;
187 u32 interval_time_us = DIV_ROUND_UP(interval_cycle * USEC_PER_SEC,
190 return total_time_us + interval_time_us;
193 static int sprd_spi_wait_for_tx_end(struct sprd_spi *ss, struct spi_transfer *t)
198 us = sprd_spi_transfer_max_timeout(ss, t);
199 ret = readl_relaxed_poll_timeout(ss->base + SPRD_SPI_INT_RAW_STS, val,
200 val & SPRD_SPI_TX_END_IRQ, 0, us);
202 dev_err(ss->dev, "SPI error, spi send timeout!\n");
206 ret = readl_relaxed_poll_timeout(ss->base + SPRD_SPI_STS2, val,
207 !(val & SPRD_SPI_TX_BUSY), 0, us);
209 dev_err(ss->dev, "SPI error, spi busy timeout!\n");
213 writel_relaxed(SPRD_SPI_TX_END_INT_CLR, ss->base + SPRD_SPI_INT_CLR);
218 static int sprd_spi_wait_for_rx_end(struct sprd_spi *ss, struct spi_transfer *t)
223 us = sprd_spi_transfer_max_timeout(ss, t);
224 ret = readl_relaxed_poll_timeout(ss->base + SPRD_SPI_INT_RAW_STS, val,
225 val & SPRD_SPI_RX_END_IRQ, 0, us);
227 dev_err(ss->dev, "SPI error, spi rx timeout!\n");
231 writel_relaxed(SPRD_SPI_RX_END_INT_CLR, ss->base + SPRD_SPI_INT_CLR);
236 static void sprd_spi_tx_req(struct sprd_spi *ss)
238 writel_relaxed(SPRD_SPI_SW_TX_REQ, ss->base + SPRD_SPI_CTL12);
241 static void sprd_spi_rx_req(struct sprd_spi *ss)
243 writel_relaxed(SPRD_SPI_SW_RX_REQ, ss->base + SPRD_SPI_CTL12);
246 static void sprd_spi_enter_idle(struct sprd_spi *ss)
248 u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL1);
250 val &= ~SPRD_SPI_RTX_MD_MASK;
251 writel_relaxed(val, ss->base + SPRD_SPI_CTL1);
254 static void sprd_spi_set_transfer_bits(struct sprd_spi *ss, u32 bits)
256 u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL0);
258 /* Set the valid bits for every transaction */
259 val &= ~(SPRD_SPI_CHNL_LEN_MASK << SPRD_SPI_CHNL_LEN);
260 val |= bits << SPRD_SPI_CHNL_LEN;
261 writel_relaxed(val, ss->base + SPRD_SPI_CTL0);
264 static void sprd_spi_set_tx_length(struct sprd_spi *ss, u32 length)
266 u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL8);
268 length &= SPRD_SPI_TX_MAX_LEN_MASK;
269 val &= ~SPRD_SPI_TX_LEN_H_MASK;
270 val |= length >> SPRD_SPI_TX_LEN_H_OFFSET;
271 writel_relaxed(val, ss->base + SPRD_SPI_CTL8);
273 val = length & SPRD_SPI_TX_LEN_L_MASK;
274 writel_relaxed(val, ss->base + SPRD_SPI_CTL9);
277 static void sprd_spi_set_rx_length(struct sprd_spi *ss, u32 length)
279 u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL10);
281 length &= SPRD_SPI_RX_MAX_LEN_MASK;
282 val &= ~SPRD_SPI_RX_LEN_H_MASK;
283 val |= length >> SPRD_SPI_RX_LEN_H_OFFSET;
284 writel_relaxed(val, ss->base + SPRD_SPI_CTL10);
286 val = length & SPRD_SPI_RX_LEN_L_MASK;
287 writel_relaxed(val, ss->base + SPRD_SPI_CTL11);
290 static void sprd_spi_chipselect(struct spi_device *sdev, bool cs)
292 struct spi_controller *sctlr = sdev->controller;
293 struct sprd_spi *ss = spi_controller_get_devdata(sctlr);
296 val = readl_relaxed(ss->base + SPRD_SPI_CTL0);
297 /* The SPI controller will pull down CS pin if cs is 0 */
299 val &= ~SPRD_SPI_CS0_VALID;
300 writel_relaxed(val, ss->base + SPRD_SPI_CTL0);
302 val |= SPRD_SPI_CSN_MASK;
303 writel_relaxed(val, ss->base + SPRD_SPI_CTL0);
307 static int sprd_spi_write_only_receive(struct sprd_spi *ss, u32 len)
311 /* Clear the start receive bit and reset receive data number */
312 val = readl_relaxed(ss->base + SPRD_SPI_CTL4);
313 val &= ~(SPRD_SPI_START_RX | SPRD_SPI_ONLY_RECV_MASK);
314 writel_relaxed(val, ss->base + SPRD_SPI_CTL4);
316 /* Set the receive data length */
317 val = readl_relaxed(ss->base + SPRD_SPI_CTL4);
318 val |= len & SPRD_SPI_ONLY_RECV_MASK;
319 writel_relaxed(val, ss->base + SPRD_SPI_CTL4);
321 /* Trigger to receive data */
322 val = readl_relaxed(ss->base + SPRD_SPI_CTL4);
323 val |= SPRD_SPI_START_RX;
324 writel_relaxed(val, ss->base + SPRD_SPI_CTL4);
329 static int sprd_spi_write_bufs_u8(struct sprd_spi *ss, u32 len)
331 u8 *tx_p = (u8 *)ss->tx_buf;
334 for (i = 0; i < len; i++)
335 writeb_relaxed(tx_p[i], ss->base + SPRD_SPI_TXD);
341 static int sprd_spi_write_bufs_u16(struct sprd_spi *ss, u32 len)
343 u16 *tx_p = (u16 *)ss->tx_buf;
346 for (i = 0; i < len; i++)
347 writew_relaxed(tx_p[i], ss->base + SPRD_SPI_TXD);
349 ss->tx_buf += i << 1;
353 static int sprd_spi_write_bufs_u32(struct sprd_spi *ss, u32 len)
355 u32 *tx_p = (u32 *)ss->tx_buf;
358 for (i = 0; i < len; i++)
359 writel_relaxed(tx_p[i], ss->base + SPRD_SPI_TXD);
361 ss->tx_buf += i << 2;
365 static int sprd_spi_read_bufs_u8(struct sprd_spi *ss, u32 len)
367 u8 *rx_p = (u8 *)ss->rx_buf;
370 for (i = 0; i < len; i++)
371 rx_p[i] = readb_relaxed(ss->base + SPRD_SPI_TXD);
377 static int sprd_spi_read_bufs_u16(struct sprd_spi *ss, u32 len)
379 u16 *rx_p = (u16 *)ss->rx_buf;
382 for (i = 0; i < len; i++)
383 rx_p[i] = readw_relaxed(ss->base + SPRD_SPI_TXD);
385 ss->rx_buf += i << 1;
389 static int sprd_spi_read_bufs_u32(struct sprd_spi *ss, u32 len)
391 u32 *rx_p = (u32 *)ss->rx_buf;
394 for (i = 0; i < len; i++)
395 rx_p[i] = readl_relaxed(ss->base + SPRD_SPI_TXD);
397 ss->rx_buf += i << 2;
401 static int sprd_spi_txrx_bufs(struct spi_device *sdev, struct spi_transfer *t)
403 struct sprd_spi *ss = spi_controller_get_devdata(sdev->controller);
404 u32 trans_len = ss->trans_len, len;
405 int ret, write_size = 0, read_size = 0;
408 len = trans_len > SPRD_SPI_FIFO_SIZE ? SPRD_SPI_FIFO_SIZE :
410 if (ss->trans_mode & SPRD_SPI_TX_MODE) {
411 sprd_spi_set_tx_length(ss, len);
412 write_size += ss->write_bufs(ss, len);
415 * For our 3 wires mode or dual TX line mode, we need
416 * to request the controller to transfer.
418 if (ss->hw_mode & SPI_3WIRE || ss->hw_mode & SPI_TX_DUAL)
421 ret = sprd_spi_wait_for_tx_end(ss, t);
423 sprd_spi_set_rx_length(ss, len);
426 * For our 3 wires mode or dual TX line mode, we need
427 * to request the controller to read.
429 if (ss->hw_mode & SPI_3WIRE || ss->hw_mode & SPI_TX_DUAL)
432 write_size += ss->write_bufs(ss, len);
434 ret = sprd_spi_wait_for_rx_end(ss, t);
440 if (ss->trans_mode & SPRD_SPI_RX_MODE)
441 read_size += ss->read_bufs(ss, len);
446 if (ss->trans_mode & SPRD_SPI_TX_MODE)
451 sprd_spi_enter_idle(ss);
456 static void sprd_spi_irq_enable(struct sprd_spi *ss)
460 /* Clear interrupt status before enabling interrupt. */
461 writel_relaxed(SPRD_SPI_TX_END_CLR | SPRD_SPI_RX_END_CLR,
462 ss->base + SPRD_SPI_INT_CLR);
463 /* Enable SPI interrupt only in DMA mode. */
464 val = readl_relaxed(ss->base + SPRD_SPI_INT_EN);
465 writel_relaxed(val | SPRD_SPI_TX_END_INT_EN |
466 SPRD_SPI_RX_END_INT_EN,
467 ss->base + SPRD_SPI_INT_EN);
470 static void sprd_spi_irq_disable(struct sprd_spi *ss)
472 writel_relaxed(0, ss->base + SPRD_SPI_INT_EN);
475 static void sprd_spi_dma_enable(struct sprd_spi *ss, bool enable)
477 u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL2);
480 val |= SPRD_SPI_DMA_EN;
482 val &= ~SPRD_SPI_DMA_EN;
484 writel_relaxed(val, ss->base + SPRD_SPI_CTL2);
487 static int sprd_spi_dma_submit(struct dma_chan *dma_chan,
488 struct dma_slave_config *c,
490 enum dma_transfer_direction dir)
492 struct dma_async_tx_descriptor *desc;
497 ret = dmaengine_slave_config(dma_chan, c);
501 flags = SPRD_DMA_FLAGS(SPRD_DMA_CHN_MODE_NONE, SPRD_DMA_NO_TRG,
502 SPRD_DMA_FRAG_REQ, SPRD_DMA_TRANS_INT);
503 desc = dmaengine_prep_slave_sg(dma_chan, sg->sgl, sg->nents, dir, flags);
507 cookie = dmaengine_submit(desc);
508 if (dma_submit_error(cookie))
509 return dma_submit_error(cookie);
511 dma_async_issue_pending(dma_chan);
516 static int sprd_spi_dma_rx_config(struct sprd_spi *ss, struct spi_transfer *t)
518 struct dma_chan *dma_chan = ss->dma.dma_chan[SPRD_SPI_RX];
519 struct dma_slave_config config = {
520 .src_addr = ss->phy_base,
521 .src_addr_width = ss->dma.width,
522 .dst_addr_width = ss->dma.width,
523 .dst_maxburst = ss->dma.fragmens_len,
527 ret = sprd_spi_dma_submit(dma_chan, &config, &t->rx_sg, DMA_DEV_TO_MEM);
531 return ss->dma.rx_len;
534 static int sprd_spi_dma_tx_config(struct sprd_spi *ss, struct spi_transfer *t)
536 struct dma_chan *dma_chan = ss->dma.dma_chan[SPRD_SPI_TX];
537 struct dma_slave_config config = {
538 .dst_addr = ss->phy_base,
539 .src_addr_width = ss->dma.width,
540 .dst_addr_width = ss->dma.width,
541 .src_maxburst = ss->dma.fragmens_len,
545 ret = sprd_spi_dma_submit(dma_chan, &config, &t->tx_sg, DMA_MEM_TO_DEV);
552 static int sprd_spi_dma_request(struct sprd_spi *ss)
554 ss->dma.dma_chan[SPRD_SPI_RX] = dma_request_chan(ss->dev, "rx_chn");
555 if (IS_ERR_OR_NULL(ss->dma.dma_chan[SPRD_SPI_RX]))
556 return dev_err_probe(ss->dev, PTR_ERR(ss->dma.dma_chan[SPRD_SPI_RX]),
557 "request RX DMA channel failed!\n");
559 ss->dma.dma_chan[SPRD_SPI_TX] = dma_request_chan(ss->dev, "tx_chn");
560 if (IS_ERR_OR_NULL(ss->dma.dma_chan[SPRD_SPI_TX])) {
561 dma_release_channel(ss->dma.dma_chan[SPRD_SPI_RX]);
562 return dev_err_probe(ss->dev, PTR_ERR(ss->dma.dma_chan[SPRD_SPI_TX]),
563 "request TX DMA channel failed!\n");
569 static void sprd_spi_dma_release(struct sprd_spi *ss)
571 if (ss->dma.dma_chan[SPRD_SPI_RX])
572 dma_release_channel(ss->dma.dma_chan[SPRD_SPI_RX]);
574 if (ss->dma.dma_chan[SPRD_SPI_TX])
575 dma_release_channel(ss->dma.dma_chan[SPRD_SPI_TX]);
578 static int sprd_spi_dma_txrx_bufs(struct spi_device *sdev,
579 struct spi_transfer *t)
581 struct sprd_spi *ss = spi_master_get_devdata(sdev->master);
582 u32 trans_len = ss->trans_len;
583 int ret, write_size = 0;
585 reinit_completion(&ss->xfer_completion);
586 sprd_spi_irq_enable(ss);
587 if (ss->trans_mode & SPRD_SPI_TX_MODE) {
588 write_size = sprd_spi_dma_tx_config(ss, t);
589 sprd_spi_set_tx_length(ss, trans_len);
592 * For our 3 wires mode or dual TX line mode, we need
593 * to request the controller to transfer.
595 if (ss->hw_mode & SPI_3WIRE || ss->hw_mode & SPI_TX_DUAL)
598 sprd_spi_set_rx_length(ss, trans_len);
601 * For our 3 wires mode or dual TX line mode, we need
602 * to request the controller to read.
604 if (ss->hw_mode & SPI_3WIRE || ss->hw_mode & SPI_TX_DUAL)
607 write_size = ss->write_bufs(ss, trans_len);
610 if (write_size < 0) {
612 dev_err(ss->dev, "failed to write, ret = %d\n", ret);
616 if (ss->trans_mode & SPRD_SPI_RX_MODE) {
618 * Set up the DMA receive data length, which must be an
619 * integral multiple of fragment length. But when the length
620 * of received data is less than fragment length, DMA can be
621 * configured to receive data according to the actual length
624 ss->dma.rx_len = t->len > ss->dma.fragmens_len ?
625 (t->len - t->len % ss->dma.fragmens_len) :
627 ret = sprd_spi_dma_rx_config(ss, t);
630 "failed to configure rx DMA, ret = %d\n", ret);
635 sprd_spi_dma_enable(ss, true);
636 wait_for_completion(&(ss->xfer_completion));
638 if (ss->trans_mode & SPRD_SPI_TX_MODE)
641 ret = ss->dma.rx_len;
644 sprd_spi_dma_enable(ss, false);
645 sprd_spi_enter_idle(ss);
646 sprd_spi_irq_disable(ss);
651 static void sprd_spi_set_speed(struct sprd_spi *ss, u32 speed_hz)
654 * From SPI datasheet, the prescale calculation formula:
655 * prescale = SPI source clock / (2 * SPI_freq) - 1;
657 u32 clk_div = DIV_ROUND_UP(ss->src_clk, speed_hz << 1) - 1;
659 /* Save the real hardware speed */
660 ss->hw_speed_hz = (ss->src_clk >> 1) / (clk_div + 1);
661 writel_relaxed(clk_div, ss->base + SPRD_SPI_CLKD);
664 static int sprd_spi_init_hw(struct sprd_spi *ss, struct spi_transfer *t)
666 struct spi_delay *d = &t->word_delay;
667 u16 word_delay, interval;
670 if (d->unit != SPI_DELAY_UNIT_SCK)
673 val = readl_relaxed(ss->base + SPRD_SPI_CTL0);
674 val &= ~(SPRD_SPI_SCK_REV | SPRD_SPI_NG_TX | SPRD_SPI_NG_RX);
675 /* Set default chip selection, clock phase and clock polarity */
676 val |= ss->hw_mode & SPI_CPHA ? SPRD_SPI_NG_RX : SPRD_SPI_NG_TX;
677 val |= ss->hw_mode & SPI_CPOL ? SPRD_SPI_SCK_REV : 0;
678 writel_relaxed(val, ss->base + SPRD_SPI_CTL0);
681 * Set the intervals of two SPI frames, and the inteval calculation
682 * formula as below per datasheet:
683 * interval time (source clock cycles) = interval * 4 + 10.
685 word_delay = clamp_t(u16, d->value, SPRD_SPI_MIN_DELAY_CYCLE,
686 SPRD_SPI_MAX_DELAY_CYCLE);
687 interval = DIV_ROUND_UP(word_delay - 10, 4);
688 ss->word_delay = interval * 4 + 10;
689 writel_relaxed(interval, ss->base + SPRD_SPI_CTL5);
692 writel_relaxed(1, ss->base + SPRD_SPI_FIFO_RST);
693 writel_relaxed(0, ss->base + SPRD_SPI_FIFO_RST);
695 /* Set SPI work mode */
696 val = readl_relaxed(ss->base + SPRD_SPI_CTL7);
697 val &= ~SPRD_SPI_MODE_MASK;
699 if (ss->hw_mode & SPI_3WIRE)
700 val |= SPRD_SPI_3WIRE_MODE << SPRD_SPI_MODE_OFFSET;
702 val |= SPRD_SPI_4WIRE_MODE << SPRD_SPI_MODE_OFFSET;
704 if (ss->hw_mode & SPI_TX_DUAL)
705 val |= SPRD_SPI_DATA_LINE2_EN;
707 val &= ~SPRD_SPI_DATA_LINE2_EN;
709 writel_relaxed(val, ss->base + SPRD_SPI_CTL7);
714 static int sprd_spi_setup_transfer(struct spi_device *sdev,
715 struct spi_transfer *t)
717 struct sprd_spi *ss = spi_controller_get_devdata(sdev->controller);
718 u8 bits_per_word = t->bits_per_word;
723 ss->tx_buf = t->tx_buf;
724 ss->rx_buf = t->rx_buf;
726 ss->hw_mode = sdev->mode;
727 ret = sprd_spi_init_hw(ss, t);
731 /* Set tansfer speed and valid bits */
732 sprd_spi_set_speed(ss, t->speed_hz);
733 sprd_spi_set_transfer_bits(ss, bits_per_word);
735 if (bits_per_word > 16)
736 bits_per_word = round_up(bits_per_word, 16);
738 bits_per_word = round_up(bits_per_word, 8);
740 switch (bits_per_word) {
742 ss->trans_len = t->len;
743 ss->read_bufs = sprd_spi_read_bufs_u8;
744 ss->write_bufs = sprd_spi_write_bufs_u8;
745 ss->dma.width = DMA_SLAVE_BUSWIDTH_1_BYTE;
746 ss->dma.fragmens_len = SPRD_SPI_DMA_STEP;
749 ss->trans_len = t->len >> 1;
750 ss->read_bufs = sprd_spi_read_bufs_u16;
751 ss->write_bufs = sprd_spi_write_bufs_u16;
752 ss->dma.width = DMA_SLAVE_BUSWIDTH_2_BYTES;
753 ss->dma.fragmens_len = SPRD_SPI_DMA_STEP << 1;
756 ss->trans_len = t->len >> 2;
757 ss->read_bufs = sprd_spi_read_bufs_u32;
758 ss->write_bufs = sprd_spi_write_bufs_u32;
759 ss->dma.width = DMA_SLAVE_BUSWIDTH_4_BYTES;
760 ss->dma.fragmens_len = SPRD_SPI_DMA_STEP << 2;
766 /* Set transfer read or write mode */
767 val = readl_relaxed(ss->base + SPRD_SPI_CTL1);
768 val &= ~SPRD_SPI_RTX_MD_MASK;
770 mode |= SPRD_SPI_TX_MODE;
772 mode |= SPRD_SPI_RX_MODE;
774 writel_relaxed(val | mode, ss->base + SPRD_SPI_CTL1);
776 ss->trans_mode = mode;
779 * If in only receive mode, we need to trigger the SPI controller to
780 * receive data automatically.
782 if (ss->trans_mode == SPRD_SPI_RX_MODE)
783 ss->write_bufs = sprd_spi_write_only_receive;
788 static int sprd_spi_transfer_one(struct spi_controller *sctlr,
789 struct spi_device *sdev,
790 struct spi_transfer *t)
794 ret = sprd_spi_setup_transfer(sdev, t);
798 if (sctlr->can_dma(sctlr, sdev, t))
799 ret = sprd_spi_dma_txrx_bufs(sdev, t);
801 ret = sprd_spi_txrx_bufs(sdev, t);
809 spi_finalize_current_transfer(sctlr);
814 static irqreturn_t sprd_spi_handle_irq(int irq, void *data)
816 struct sprd_spi *ss = (struct sprd_spi *)data;
817 u32 val = readl_relaxed(ss->base + SPRD_SPI_INT_MASK_STS);
819 if (val & SPRD_SPI_MASK_TX_END) {
820 writel_relaxed(SPRD_SPI_TX_END_CLR, ss->base + SPRD_SPI_INT_CLR);
821 if (!(ss->trans_mode & SPRD_SPI_RX_MODE))
822 complete(&ss->xfer_completion);
827 if (val & SPRD_SPI_MASK_RX_END) {
828 writel_relaxed(SPRD_SPI_RX_END_CLR, ss->base + SPRD_SPI_INT_CLR);
829 if (ss->dma.rx_len < ss->len) {
830 ss->rx_buf += ss->dma.rx_len;
832 ss->read_bufs(ss, ss->len - ss->dma.rx_len);
834 complete(&ss->xfer_completion);
842 static int sprd_spi_irq_init(struct platform_device *pdev, struct sprd_spi *ss)
846 ss->irq = platform_get_irq(pdev, 0);
850 ret = devm_request_irq(&pdev->dev, ss->irq, sprd_spi_handle_irq,
853 dev_err(&pdev->dev, "failed to request spi irq %d, ret = %d\n",
859 static int sprd_spi_clk_init(struct platform_device *pdev, struct sprd_spi *ss)
861 struct clk *clk_spi, *clk_parent;
863 clk_spi = devm_clk_get(&pdev->dev, "spi");
864 if (IS_ERR(clk_spi)) {
865 dev_warn(&pdev->dev, "can't get the spi clock\n");
869 clk_parent = devm_clk_get(&pdev->dev, "source");
870 if (IS_ERR(clk_parent)) {
871 dev_warn(&pdev->dev, "can't get the source clock\n");
875 ss->clk = devm_clk_get(&pdev->dev, "enable");
876 if (IS_ERR(ss->clk)) {
877 dev_err(&pdev->dev, "can't get the enable clock\n");
878 return PTR_ERR(ss->clk);
881 if (!clk_set_parent(clk_spi, clk_parent))
882 ss->src_clk = clk_get_rate(clk_spi);
884 ss->src_clk = SPRD_SPI_DEFAULT_SOURCE;
889 static bool sprd_spi_can_dma(struct spi_controller *sctlr,
890 struct spi_device *spi, struct spi_transfer *t)
892 struct sprd_spi *ss = spi_controller_get_devdata(sctlr);
894 return ss->dma.enable && (t->len > SPRD_SPI_FIFO_SIZE);
897 static int sprd_spi_dma_init(struct platform_device *pdev, struct sprd_spi *ss)
901 ret = sprd_spi_dma_request(ss);
903 if (ret == -EPROBE_DEFER)
907 "failed to request dma, enter no dma mode, ret = %d\n",
913 ss->dma.enable = true;
918 static int sprd_spi_probe(struct platform_device *pdev)
920 struct spi_controller *sctlr;
921 struct resource *res;
925 pdev->id = of_alias_get_id(pdev->dev.of_node, "spi");
926 sctlr = spi_alloc_master(&pdev->dev, sizeof(*ss));
930 ss = spi_controller_get_devdata(sctlr);
931 ss->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
932 if (IS_ERR(ss->base)) {
933 ret = PTR_ERR(ss->base);
934 goto free_controller;
937 ss->phy_base = res->start;
938 ss->dev = &pdev->dev;
939 sctlr->dev.of_node = pdev->dev.of_node;
940 sctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_3WIRE | SPI_TX_DUAL;
941 sctlr->bus_num = pdev->id;
942 sctlr->set_cs = sprd_spi_chipselect;
943 sctlr->transfer_one = sprd_spi_transfer_one;
944 sctlr->can_dma = sprd_spi_can_dma;
945 sctlr->auto_runtime_pm = true;
946 sctlr->max_speed_hz = min_t(u32, ss->src_clk >> 1,
947 SPRD_SPI_MAX_SPEED_HZ);
949 init_completion(&ss->xfer_completion);
950 platform_set_drvdata(pdev, sctlr);
951 ret = sprd_spi_clk_init(pdev, ss);
953 goto free_controller;
955 ret = sprd_spi_irq_init(pdev, ss);
957 goto free_controller;
959 ret = sprd_spi_dma_init(pdev, ss);
961 goto free_controller;
963 ret = clk_prepare_enable(ss->clk);
967 ret = pm_runtime_set_active(&pdev->dev);
971 pm_runtime_set_autosuspend_delay(&pdev->dev,
972 SPRD_SPI_AUTOSUSPEND_DELAY);
973 pm_runtime_use_autosuspend(&pdev->dev);
974 pm_runtime_enable(&pdev->dev);
975 ret = pm_runtime_get_sync(&pdev->dev);
977 dev_err(&pdev->dev, "failed to resume SPI controller\n");
981 ret = devm_spi_register_controller(&pdev->dev, sctlr);
985 pm_runtime_mark_last_busy(&pdev->dev);
986 pm_runtime_put_autosuspend(&pdev->dev);
991 pm_runtime_put_noidle(&pdev->dev);
992 pm_runtime_disable(&pdev->dev);
994 clk_disable_unprepare(ss->clk);
996 sprd_spi_dma_release(ss);
998 spi_controller_put(sctlr);
1003 static void sprd_spi_remove(struct platform_device *pdev)
1005 struct spi_controller *sctlr = platform_get_drvdata(pdev);
1006 struct sprd_spi *ss = spi_controller_get_devdata(sctlr);
1009 ret = pm_runtime_get_sync(ss->dev);
1011 dev_err(ss->dev, "failed to resume SPI controller\n");
1013 spi_controller_suspend(sctlr);
1017 sprd_spi_dma_release(ss);
1018 clk_disable_unprepare(ss->clk);
1020 pm_runtime_put_noidle(&pdev->dev);
1021 pm_runtime_disable(&pdev->dev);
1024 static int __maybe_unused sprd_spi_runtime_suspend(struct device *dev)
1026 struct spi_controller *sctlr = dev_get_drvdata(dev);
1027 struct sprd_spi *ss = spi_controller_get_devdata(sctlr);
1030 sprd_spi_dma_release(ss);
1032 clk_disable_unprepare(ss->clk);
1037 static int __maybe_unused sprd_spi_runtime_resume(struct device *dev)
1039 struct spi_controller *sctlr = dev_get_drvdata(dev);
1040 struct sprd_spi *ss = spi_controller_get_devdata(sctlr);
1043 ret = clk_prepare_enable(ss->clk);
1047 if (!ss->dma.enable)
1050 ret = sprd_spi_dma_request(ss);
1052 clk_disable_unprepare(ss->clk);
1057 static const struct dev_pm_ops sprd_spi_pm_ops = {
1058 SET_RUNTIME_PM_OPS(sprd_spi_runtime_suspend,
1059 sprd_spi_runtime_resume, NULL)
1062 static const struct of_device_id sprd_spi_of_match[] = {
1063 { .compatible = "sprd,sc9860-spi", },
1066 MODULE_DEVICE_TABLE(of, sprd_spi_of_match);
1068 static struct platform_driver sprd_spi_driver = {
1071 .of_match_table = sprd_spi_of_match,
1072 .pm = &sprd_spi_pm_ops,
1074 .probe = sprd_spi_probe,
1075 .remove_new = sprd_spi_remove,
1078 module_platform_driver(sprd_spi_driver);
1080 MODULE_DESCRIPTION("Spreadtrum SPI Controller driver");
1081 MODULE_AUTHOR("Lanqing Liu <lanqing.liu@spreadtrum.com>");
1082 MODULE_LICENSE("GPL v2");