1 // SPDX-License-Identifier: GPL-2.0
3 * SuperH MSIOF SPI Controller Interface
5 * Copyright (c) 2009 Magnus Damm
6 * Copyright (C) 2014 Renesas Electronics Corporation
7 * Copyright (C) 2014-2017 Glider bvba
10 #include <linux/bitmap.h>
11 #include <linux/clk.h>
12 #include <linux/completion.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/dmaengine.h>
16 #include <linux/err.h>
17 #include <linux/interrupt.h>
19 #include <linux/iopoll.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
23 #include <linux/of_device.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/sh_dma.h>
28 #include <linux/spi/sh_msiof.h>
29 #include <linux/spi/spi.h>
31 #include <asm/unaligned.h>
33 struct sh_msiof_chipdata {
34 u32 bits_per_word_mask;
41 struct sh_msiof_spi_priv {
42 struct spi_controller *ctlr;
43 void __iomem *mapbase;
45 struct platform_device *pdev;
46 struct sh_msiof_spi_info *info;
47 struct completion done;
48 struct completion done_txdma;
49 unsigned int tx_fifo_size;
50 unsigned int rx_fifo_size;
51 unsigned int min_div_pow;
54 dma_addr_t tx_dma_addr;
55 dma_addr_t rx_dma_addr;
56 bool native_cs_inited;
61 #define MAX_SS 3 /* Maximum number of native chip selects */
63 #define SITMDR1 0x00 /* Transmit Mode Register 1 */
64 #define SITMDR2 0x04 /* Transmit Mode Register 2 */
65 #define SITMDR3 0x08 /* Transmit Mode Register 3 */
66 #define SIRMDR1 0x10 /* Receive Mode Register 1 */
67 #define SIRMDR2 0x14 /* Receive Mode Register 2 */
68 #define SIRMDR3 0x18 /* Receive Mode Register 3 */
69 #define SITSCR 0x20 /* Transmit Clock Select Register */
70 #define SIRSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */
71 #define SICTR 0x28 /* Control Register */
72 #define SIFCTR 0x30 /* FIFO Control Register */
73 #define SISTR 0x40 /* Status Register */
74 #define SIIER 0x44 /* Interrupt Enable Register */
75 #define SITDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */
76 #define SITDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */
77 #define SITFDR 0x50 /* Transmit FIFO Data Register */
78 #define SIRDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */
79 #define SIRDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */
80 #define SIRFDR 0x60 /* Receive FIFO Data Register */
82 /* SITMDR1 and SIRMDR1 */
83 #define SIMDR1_TRMD BIT(31) /* Transfer Mode (1 = Master mode) */
84 #define SIMDR1_SYNCMD_MASK GENMASK(29, 28) /* SYNC Mode */
85 #define SIMDR1_SYNCMD_SPI (2 << 28) /* Level mode/SPI */
86 #define SIMDR1_SYNCMD_LR (3 << 28) /* L/R mode */
87 #define SIMDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */
88 #define SIMDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */
89 #define SIMDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */
90 #define SIMDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */
91 #define SIMDR1_FLD_MASK GENMASK(3, 2) /* Frame Sync Signal Interval (0-3) */
92 #define SIMDR1_FLD_SHIFT 2
93 #define SIMDR1_XXSTP BIT(0) /* Transmission/Reception Stop on FIFO */
95 #define SITMDR1_PCON BIT(30) /* Transfer Signal Connection */
96 #define SITMDR1_SYNCCH_MASK GENMASK(27, 26) /* Sync Signal Channel Select */
97 #define SITMDR1_SYNCCH_SHIFT 26 /* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */
99 /* SITMDR2 and SIRMDR2 */
100 #define SIMDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */
101 #define SIMDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
102 #define SIMDR2_GRPMASK1 BIT(0) /* Group Output Mask 1 (SH, A1) */
104 /* SITSCR and SIRSCR */
105 #define SISCR_BRPS_MASK GENMASK(12, 8) /* Prescaler Setting (1-32) */
106 #define SISCR_BRPS(i) (((i) - 1) << 8)
107 #define SISCR_BRDV_MASK GENMASK(2, 0) /* Baud Rate Generator's Division Ratio */
108 #define SISCR_BRDV_DIV_2 0
109 #define SISCR_BRDV_DIV_4 1
110 #define SISCR_BRDV_DIV_8 2
111 #define SISCR_BRDV_DIV_16 3
112 #define SISCR_BRDV_DIV_32 4
113 #define SISCR_BRDV_DIV_1 7
116 #define SICTR_TSCKIZ_MASK GENMASK(31, 30) /* Transmit Clock I/O Polarity Select */
117 #define SICTR_TSCKIZ_SCK BIT(31) /* Disable SCK when TX disabled */
118 #define SICTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */
119 #define SICTR_RSCKIZ_MASK GENMASK(29, 28) /* Receive Clock Polarity Select */
120 #define SICTR_RSCKIZ_SCK BIT(29) /* Must match CTR_TSCKIZ_SCK */
121 #define SICTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */
122 #define SICTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */
123 #define SICTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */
124 #define SICTR_TXDIZ_MASK GENMASK(23, 22) /* Pin Output When TX is Disabled */
125 #define SICTR_TXDIZ_LOW (0 << 22) /* 0 */
126 #define SICTR_TXDIZ_HIGH (1 << 22) /* 1 */
127 #define SICTR_TXDIZ_HIZ (2 << 22) /* High-impedance */
128 #define SICTR_TSCKE BIT(15) /* Transmit Serial Clock Output Enable */
129 #define SICTR_TFSE BIT(14) /* Transmit Frame Sync Signal Output Enable */
130 #define SICTR_TXE BIT(9) /* Transmit Enable */
131 #define SICTR_RXE BIT(8) /* Receive Enable */
132 #define SICTR_TXRST BIT(1) /* Transmit Reset */
133 #define SICTR_RXRST BIT(0) /* Receive Reset */
136 #define SIFCTR_TFWM_MASK GENMASK(31, 29) /* Transmit FIFO Watermark */
137 #define SIFCTR_TFWM_64 (0 << 29) /* Transfer Request when 64 empty stages */
138 #define SIFCTR_TFWM_32 (1 << 29) /* Transfer Request when 32 empty stages */
139 #define SIFCTR_TFWM_24 (2 << 29) /* Transfer Request when 24 empty stages */
140 #define SIFCTR_TFWM_16 (3 << 29) /* Transfer Request when 16 empty stages */
141 #define SIFCTR_TFWM_12 (4 << 29) /* Transfer Request when 12 empty stages */
142 #define SIFCTR_TFWM_8 (5 << 29) /* Transfer Request when 8 empty stages */
143 #define SIFCTR_TFWM_4 (6 << 29) /* Transfer Request when 4 empty stages */
144 #define SIFCTR_TFWM_1 (7 << 29) /* Transfer Request when 1 empty stage */
145 #define SIFCTR_TFUA_MASK GENMASK(26, 20) /* Transmit FIFO Usable Area */
146 #define SIFCTR_TFUA_SHIFT 20
147 #define SIFCTR_TFUA(i) ((i) << SIFCTR_TFUA_SHIFT)
148 #define SIFCTR_RFWM_MASK GENMASK(15, 13) /* Receive FIFO Watermark */
149 #define SIFCTR_RFWM_1 (0 << 13) /* Transfer Request when 1 valid stages */
150 #define SIFCTR_RFWM_4 (1 << 13) /* Transfer Request when 4 valid stages */
151 #define SIFCTR_RFWM_8 (2 << 13) /* Transfer Request when 8 valid stages */
152 #define SIFCTR_RFWM_16 (3 << 13) /* Transfer Request when 16 valid stages */
153 #define SIFCTR_RFWM_32 (4 << 13) /* Transfer Request when 32 valid stages */
154 #define SIFCTR_RFWM_64 (5 << 13) /* Transfer Request when 64 valid stages */
155 #define SIFCTR_RFWM_128 (6 << 13) /* Transfer Request when 128 valid stages */
156 #define SIFCTR_RFWM_256 (7 << 13) /* Transfer Request when 256 valid stages */
157 #define SIFCTR_RFUA_MASK GENMASK(12, 4) /* Receive FIFO Usable Area (0x40 = full) */
158 #define SIFCTR_RFUA_SHIFT 4
159 #define SIFCTR_RFUA(i) ((i) << SIFCTR_RFUA_SHIFT)
162 #define SISTR_TFEMP BIT(29) /* Transmit FIFO Empty */
163 #define SISTR_TDREQ BIT(28) /* Transmit Data Transfer Request */
164 #define SISTR_TEOF BIT(23) /* Frame Transmission End */
165 #define SISTR_TFSERR BIT(21) /* Transmit Frame Synchronization Error */
166 #define SISTR_TFOVF BIT(20) /* Transmit FIFO Overflow */
167 #define SISTR_TFUDF BIT(19) /* Transmit FIFO Underflow */
168 #define SISTR_RFFUL BIT(13) /* Receive FIFO Full */
169 #define SISTR_RDREQ BIT(12) /* Receive Data Transfer Request */
170 #define SISTR_REOF BIT(7) /* Frame Reception End */
171 #define SISTR_RFSERR BIT(5) /* Receive Frame Synchronization Error */
172 #define SISTR_RFUDF BIT(4) /* Receive FIFO Underflow */
173 #define SISTR_RFOVF BIT(3) /* Receive FIFO Overflow */
176 #define SIIER_TDMAE BIT(31) /* Transmit Data DMA Transfer Req. Enable */
177 #define SIIER_TFEMPE BIT(29) /* Transmit FIFO Empty Enable */
178 #define SIIER_TDREQE BIT(28) /* Transmit Data Transfer Request Enable */
179 #define SIIER_TEOFE BIT(23) /* Frame Transmission End Enable */
180 #define SIIER_TFSERRE BIT(21) /* Transmit Frame Sync Error Enable */
181 #define SIIER_TFOVFE BIT(20) /* Transmit FIFO Overflow Enable */
182 #define SIIER_TFUDFE BIT(19) /* Transmit FIFO Underflow Enable */
183 #define SIIER_RDMAE BIT(15) /* Receive Data DMA Transfer Req. Enable */
184 #define SIIER_RFFULE BIT(13) /* Receive FIFO Full Enable */
185 #define SIIER_RDREQE BIT(12) /* Receive Data Transfer Request Enable */
186 #define SIIER_REOFE BIT(7) /* Frame Reception End Enable */
187 #define SIIER_RFSERRE BIT(5) /* Receive Frame Sync Error Enable */
188 #define SIIER_RFUDFE BIT(4) /* Receive FIFO Underflow Enable */
189 #define SIIER_RFOVFE BIT(3) /* Receive FIFO Overflow Enable */
192 static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
197 return ioread16(p->mapbase + reg_offs);
199 return ioread32(p->mapbase + reg_offs);
203 static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
209 iowrite16(value, p->mapbase + reg_offs);
212 iowrite32(value, p->mapbase + reg_offs);
217 static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
220 u32 mask = clr | set;
223 data = sh_msiof_read(p, SICTR);
226 sh_msiof_write(p, SICTR, data);
228 return readl_poll_timeout_atomic(p->mapbase + SICTR, data,
229 (data & mask) == set, 1, 100);
232 static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
234 struct sh_msiof_spi_priv *p = data;
236 /* just disable the interrupt and wake up */
237 sh_msiof_write(p, SIIER, 0);
243 static void sh_msiof_spi_reset_regs(struct sh_msiof_spi_priv *p)
245 u32 mask = SICTR_TXRST | SICTR_RXRST;
248 data = sh_msiof_read(p, SICTR);
250 sh_msiof_write(p, SICTR, data);
252 readl_poll_timeout_atomic(p->mapbase + SICTR, data, !(data & mask), 1,
256 static const u32 sh_msiof_spi_div_array[] = {
257 SISCR_BRDV_DIV_1, SISCR_BRDV_DIV_2, SISCR_BRDV_DIV_4,
258 SISCR_BRDV_DIV_8, SISCR_BRDV_DIV_16, SISCR_BRDV_DIV_32,
261 static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
262 struct spi_transfer *t)
264 unsigned long parent_rate = clk_get_rate(p->clk);
265 unsigned int div_pow = p->min_div_pow;
266 u32 spi_hz = t->speed_hz;
270 if (!spi_hz || !parent_rate) {
271 WARN(1, "Invalid clock rate parameters %lu and %u\n",
272 parent_rate, spi_hz);
276 div = DIV_ROUND_UP(parent_rate, spi_hz);
278 /* SISCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
279 if (!div_pow && div <= 32 && div > 2)
283 brps = (div + 1) >> div_pow;
287 for (; brps > 32; div_pow++)
288 brps = (brps + 1) >> 1;
290 /* Set transfer rate composite divisor to 2^5 * 32 = 1024 */
291 dev_err(&p->pdev->dev,
292 "Requested SPI transfer rate %d is too low\n", spi_hz);
297 t->effective_speed_hz = parent_rate / (brps << div_pow);
299 scr = sh_msiof_spi_div_array[div_pow] | SISCR_BRPS(brps);
300 sh_msiof_write(p, SITSCR, scr);
301 if (!(p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
302 sh_msiof_write(p, SIRSCR, scr);
305 static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
308 * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl
312 * b'011 (SYNCDL only) : 300
316 if (dtdl_or_syncdl % 100)
317 return dtdl_or_syncdl / 100 + 5;
319 return dtdl_or_syncdl / 100;
322 static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
329 /* check if DTDL and SYNCDL is allowed value */
330 if (p->info->dtdl > 200 || p->info->syncdl > 300) {
331 dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
335 /* check if the sum of DTDL and SYNCDL becomes an integer value */
336 if ((p->info->dtdl + p->info->syncdl) % 100) {
337 dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
341 val = sh_msiof_get_delay_bit(p->info->dtdl) << SIMDR1_DTDL_SHIFT;
342 val |= sh_msiof_get_delay_bit(p->info->syncdl) << SIMDR1_SYNCDL_SHIFT;
347 static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss,
349 u32 tx_hi_z, u32 lsb_first, u32 cs_high)
355 * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG
361 tmp = SIMDR1_SYNCMD_SPI | 1 << SIMDR1_FLD_SHIFT | SIMDR1_XXSTP;
362 tmp |= !cs_high << SIMDR1_SYNCAC_SHIFT;
363 tmp |= lsb_first << SIMDR1_BITLSB_SHIFT;
364 tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
365 if (spi_controller_is_slave(p->ctlr)) {
366 sh_msiof_write(p, SITMDR1, tmp | SITMDR1_PCON);
368 sh_msiof_write(p, SITMDR1,
369 tmp | SIMDR1_TRMD | SITMDR1_PCON |
370 (ss < MAX_SS ? ss : 0) << SITMDR1_SYNCCH_SHIFT);
372 if (p->ctlr->flags & SPI_CONTROLLER_MUST_TX) {
373 /* These bits are reserved if RX needs TX */
376 sh_msiof_write(p, SIRMDR1, tmp);
379 tmp |= SICTR_TSCKIZ_SCK | cpol << SICTR_TSCKIZ_POL_SHIFT;
380 tmp |= SICTR_RSCKIZ_SCK | cpol << SICTR_RSCKIZ_POL_SHIFT;
384 tmp |= edge << SICTR_TEDG_SHIFT;
385 tmp |= edge << SICTR_REDG_SHIFT;
386 tmp |= tx_hi_z ? SICTR_TXDIZ_HIZ : SICTR_TXDIZ_LOW;
387 sh_msiof_write(p, SICTR, tmp);
390 static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
391 const void *tx_buf, void *rx_buf,
394 u32 dr2 = SIMDR2_BITLEN1(bits) | SIMDR2_WDLEN1(words);
396 if (tx_buf || (p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
397 sh_msiof_write(p, SITMDR2, dr2);
399 sh_msiof_write(p, SITMDR2, dr2 | SIMDR2_GRPMASK1);
402 sh_msiof_write(p, SIRMDR2, dr2);
405 static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
407 sh_msiof_write(p, SISTR,
408 sh_msiof_read(p, SISTR) & ~(SISTR_TDREQ | SISTR_RDREQ));
411 static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
412 const void *tx_buf, int words, int fs)
414 const u8 *buf_8 = tx_buf;
417 for (k = 0; k < words; k++)
418 sh_msiof_write(p, SITFDR, buf_8[k] << fs);
421 static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
422 const void *tx_buf, int words, int fs)
424 const u16 *buf_16 = tx_buf;
427 for (k = 0; k < words; k++)
428 sh_msiof_write(p, SITFDR, buf_16[k] << fs);
431 static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
432 const void *tx_buf, int words, int fs)
434 const u16 *buf_16 = tx_buf;
437 for (k = 0; k < words; k++)
438 sh_msiof_write(p, SITFDR, get_unaligned(&buf_16[k]) << fs);
441 static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
442 const void *tx_buf, int words, int fs)
444 const u32 *buf_32 = tx_buf;
447 for (k = 0; k < words; k++)
448 sh_msiof_write(p, SITFDR, buf_32[k] << fs);
451 static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
452 const void *tx_buf, int words, int fs)
454 const u32 *buf_32 = tx_buf;
457 for (k = 0; k < words; k++)
458 sh_msiof_write(p, SITFDR, get_unaligned(&buf_32[k]) << fs);
461 static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
462 const void *tx_buf, int words, int fs)
464 const u32 *buf_32 = tx_buf;
467 for (k = 0; k < words; k++)
468 sh_msiof_write(p, SITFDR, swab32(buf_32[k] << fs));
471 static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
472 const void *tx_buf, int words, int fs)
474 const u32 *buf_32 = tx_buf;
477 for (k = 0; k < words; k++)
478 sh_msiof_write(p, SITFDR, swab32(get_unaligned(&buf_32[k]) << fs));
481 static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
482 void *rx_buf, int words, int fs)
487 for (k = 0; k < words; k++)
488 buf_8[k] = sh_msiof_read(p, SIRFDR) >> fs;
491 static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
492 void *rx_buf, int words, int fs)
494 u16 *buf_16 = rx_buf;
497 for (k = 0; k < words; k++)
498 buf_16[k] = sh_msiof_read(p, SIRFDR) >> fs;
501 static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
502 void *rx_buf, int words, int fs)
504 u16 *buf_16 = rx_buf;
507 for (k = 0; k < words; k++)
508 put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_16[k]);
511 static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
512 void *rx_buf, int words, int fs)
514 u32 *buf_32 = rx_buf;
517 for (k = 0; k < words; k++)
518 buf_32[k] = sh_msiof_read(p, SIRFDR) >> fs;
521 static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
522 void *rx_buf, int words, int fs)
524 u32 *buf_32 = rx_buf;
527 for (k = 0; k < words; k++)
528 put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_32[k]);
531 static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
532 void *rx_buf, int words, int fs)
534 u32 *buf_32 = rx_buf;
537 for (k = 0; k < words; k++)
538 buf_32[k] = swab32(sh_msiof_read(p, SIRFDR) >> fs);
541 static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
542 void *rx_buf, int words, int fs)
544 u32 *buf_32 = rx_buf;
547 for (k = 0; k < words; k++)
548 put_unaligned(swab32(sh_msiof_read(p, SIRFDR) >> fs), &buf_32[k]);
551 static int sh_msiof_spi_setup(struct spi_device *spi)
553 struct sh_msiof_spi_priv *p =
554 spi_controller_get_devdata(spi->controller);
557 if (spi->cs_gpiod || spi_controller_is_slave(p->ctlr))
560 if (p->native_cs_inited &&
561 (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH)))
564 /* Configure native chip select mode/polarity early */
565 clr = SIMDR1_SYNCMD_MASK;
566 set = SIMDR1_SYNCMD_SPI;
567 if (spi->mode & SPI_CS_HIGH)
568 clr |= BIT(SIMDR1_SYNCAC_SHIFT);
570 set |= BIT(SIMDR1_SYNCAC_SHIFT);
571 pm_runtime_get_sync(&p->pdev->dev);
572 tmp = sh_msiof_read(p, SITMDR1) & ~clr;
573 sh_msiof_write(p, SITMDR1, tmp | set | SIMDR1_TRMD | SITMDR1_PCON);
574 tmp = sh_msiof_read(p, SIRMDR1) & ~clr;
575 sh_msiof_write(p, SIRMDR1, tmp | set);
576 pm_runtime_put(&p->pdev->dev);
577 p->native_cs_high = spi->mode & SPI_CS_HIGH;
578 p->native_cs_inited = true;
582 static int sh_msiof_prepare_message(struct spi_controller *ctlr,
583 struct spi_message *msg)
585 struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
586 const struct spi_device *spi = msg->spi;
589 /* Configure pins before asserting CS */
591 ss = ctlr->unused_native_cs;
592 cs_high = p->native_cs_high;
594 ss = spi->chip_select;
595 cs_high = !!(spi->mode & SPI_CS_HIGH);
597 sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL),
598 !!(spi->mode & SPI_CPHA),
599 !!(spi->mode & SPI_3WIRE),
600 !!(spi->mode & SPI_LSB_FIRST), cs_high);
604 static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
606 bool slave = spi_controller_is_slave(p->ctlr);
609 /* setup clock and rx/tx signals */
611 ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TSCKE);
613 ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_RXE);
615 ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TXE);
617 /* start by setting frame bit */
619 ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TFSE);
624 static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
626 bool slave = spi_controller_is_slave(p->ctlr);
629 /* shut down frame, rx/tx and clock signals */
631 ret = sh_msiof_modify_ctr_wait(p, SICTR_TFSE, 0);
633 ret = sh_msiof_modify_ctr_wait(p, SICTR_TXE, 0);
635 ret = sh_msiof_modify_ctr_wait(p, SICTR_RXE, 0);
637 ret = sh_msiof_modify_ctr_wait(p, SICTR_TSCKE, 0);
642 static int sh_msiof_slave_abort(struct spi_controller *ctlr)
644 struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
646 p->slave_aborted = true;
648 complete(&p->done_txdma);
652 static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p,
653 struct completion *x)
655 if (spi_controller_is_slave(p->ctlr)) {
656 if (wait_for_completion_interruptible(x) ||
658 dev_dbg(&p->pdev->dev, "interrupted\n");
662 if (!wait_for_completion_timeout(x, HZ)) {
663 dev_err(&p->pdev->dev, "timeout\n");
671 static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
672 void (*tx_fifo)(struct sh_msiof_spi_priv *,
673 const void *, int, int),
674 void (*rx_fifo)(struct sh_msiof_spi_priv *,
676 const void *tx_buf, void *rx_buf,
682 /* limit maximum word transfer to rx/tx fifo size */
684 words = min_t(int, words, p->tx_fifo_size);
686 words = min_t(int, words, p->rx_fifo_size);
688 /* the fifo contents need shifting */
689 fifo_shift = 32 - bits;
691 /* default FIFO watermarks for PIO */
692 sh_msiof_write(p, SIFCTR, 0);
694 /* setup msiof transfer mode registers */
695 sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
696 sh_msiof_write(p, SIIER, SIIER_TEOFE | SIIER_REOFE);
700 tx_fifo(p, tx_buf, words, fifo_shift);
702 reinit_completion(&p->done);
703 p->slave_aborted = false;
705 ret = sh_msiof_spi_start(p, rx_buf);
707 dev_err(&p->pdev->dev, "failed to start hardware\n");
711 /* wait for tx fifo to be emptied / rx fifo to be filled */
712 ret = sh_msiof_wait_for_completion(p, &p->done);
718 rx_fifo(p, rx_buf, words, fifo_shift);
720 /* clear status bits */
721 sh_msiof_reset_str(p);
723 ret = sh_msiof_spi_stop(p, rx_buf);
725 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
732 sh_msiof_reset_str(p);
733 sh_msiof_spi_stop(p, rx_buf);
735 sh_msiof_write(p, SIIER, 0);
739 static void sh_msiof_dma_complete(void *arg)
744 static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
745 void *rx, unsigned int len)
748 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
752 /* First prepare and submit the DMA request(s), as this may fail */
754 ier_bits |= SIIER_RDREQE | SIIER_RDMAE;
755 desc_rx = dmaengine_prep_slave_single(p->ctlr->dma_rx,
756 p->rx_dma_addr, len, DMA_DEV_TO_MEM,
757 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
761 desc_rx->callback = sh_msiof_dma_complete;
762 desc_rx->callback_param = &p->done;
763 cookie = dmaengine_submit(desc_rx);
764 if (dma_submit_error(cookie))
769 ier_bits |= SIIER_TDREQE | SIIER_TDMAE;
770 dma_sync_single_for_device(p->ctlr->dma_tx->device->dev,
771 p->tx_dma_addr, len, DMA_TO_DEVICE);
772 desc_tx = dmaengine_prep_slave_single(p->ctlr->dma_tx,
773 p->tx_dma_addr, len, DMA_MEM_TO_DEV,
774 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
780 desc_tx->callback = sh_msiof_dma_complete;
781 desc_tx->callback_param = &p->done_txdma;
782 cookie = dmaengine_submit(desc_tx);
783 if (dma_submit_error(cookie)) {
789 /* 1 stage FIFO watermarks for DMA */
790 sh_msiof_write(p, SIFCTR, SIFCTR_TFWM_1 | SIFCTR_RFWM_1);
792 /* setup msiof transfer mode registers (32-bit words) */
793 sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
795 sh_msiof_write(p, SIIER, ier_bits);
797 reinit_completion(&p->done);
799 reinit_completion(&p->done_txdma);
800 p->slave_aborted = false;
804 dma_async_issue_pending(p->ctlr->dma_rx);
806 dma_async_issue_pending(p->ctlr->dma_tx);
808 ret = sh_msiof_spi_start(p, rx);
810 dev_err(&p->pdev->dev, "failed to start hardware\n");
815 /* wait for tx DMA completion */
816 ret = sh_msiof_wait_for_completion(p, &p->done_txdma);
822 /* wait for rx DMA completion */
823 ret = sh_msiof_wait_for_completion(p, &p->done);
827 sh_msiof_write(p, SIIER, 0);
829 /* wait for tx fifo to be emptied */
830 sh_msiof_write(p, SIIER, SIIER_TEOFE);
831 ret = sh_msiof_wait_for_completion(p, &p->done);
836 /* clear status bits */
837 sh_msiof_reset_str(p);
839 ret = sh_msiof_spi_stop(p, rx);
841 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
846 dma_sync_single_for_cpu(p->ctlr->dma_rx->device->dev,
847 p->rx_dma_addr, len, DMA_FROM_DEVICE);
852 sh_msiof_reset_str(p);
853 sh_msiof_spi_stop(p, rx);
856 dmaengine_terminate_sync(p->ctlr->dma_tx);
859 dmaengine_terminate_sync(p->ctlr->dma_rx);
860 sh_msiof_write(p, SIIER, 0);
864 static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
866 /* src or dst can be unaligned, but not both */
867 if ((unsigned long)src & 3) {
869 *dst++ = swab32(get_unaligned(src));
872 } else if ((unsigned long)dst & 3) {
874 put_unaligned(swab32(*src++), dst);
879 *dst++ = swab32(*src++);
883 static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
885 /* src or dst can be unaligned, but not both */
886 if ((unsigned long)src & 3) {
888 *dst++ = swahw32(get_unaligned(src));
891 } else if ((unsigned long)dst & 3) {
893 put_unaligned(swahw32(*src++), dst);
898 *dst++ = swahw32(*src++);
902 static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
904 memcpy(dst, src, words * 4);
907 static int sh_msiof_transfer_one(struct spi_controller *ctlr,
908 struct spi_device *spi,
909 struct spi_transfer *t)
911 struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
912 void (*copy32)(u32 *, const u32 *, unsigned int);
913 void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
914 void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
915 const void *tx_buf = t->tx_buf;
916 void *rx_buf = t->rx_buf;
917 unsigned int len = t->len;
918 unsigned int bits = t->bits_per_word;
919 unsigned int bytes_per_word;
925 /* reset registers */
926 sh_msiof_spi_reset_regs(p);
928 /* setup clocks (clock already enabled in chipselect()) */
929 if (!spi_controller_is_slave(p->ctlr))
930 sh_msiof_spi_set_clk_regs(p, t);
932 while (ctlr->dma_tx && len > 15) {
934 * DMA supports 32-bit words only, hence pack 8-bit and 16-bit
935 * words, with byte resp. word swapping.
940 l = min(round_down(len, 4), p->tx_fifo_size * 4);
942 l = min(round_down(len, 4), p->rx_fifo_size * 4);
945 copy32 = copy_bswap32;
946 } else if (bits <= 16) {
947 copy32 = copy_wswap32;
949 copy32 = copy_plain32;
953 copy32(p->tx_dma_page, tx_buf, l / 4);
955 ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
956 if (ret == -EAGAIN) {
957 dev_warn_once(&p->pdev->dev,
958 "DMA not available, falling back to PIO\n");
965 copy32(rx_buf, p->rx_dma_page, l / 4);
976 if (bits <= 8 && len > 15) {
983 /* setup bytes per word and fifo read/write functions */
986 tx_fifo = sh_msiof_spi_write_fifo_8;
987 rx_fifo = sh_msiof_spi_read_fifo_8;
988 } else if (bits <= 16) {
990 if ((unsigned long)tx_buf & 0x01)
991 tx_fifo = sh_msiof_spi_write_fifo_16u;
993 tx_fifo = sh_msiof_spi_write_fifo_16;
995 if ((unsigned long)rx_buf & 0x01)
996 rx_fifo = sh_msiof_spi_read_fifo_16u;
998 rx_fifo = sh_msiof_spi_read_fifo_16;
1001 if ((unsigned long)tx_buf & 0x03)
1002 tx_fifo = sh_msiof_spi_write_fifo_s32u;
1004 tx_fifo = sh_msiof_spi_write_fifo_s32;
1006 if ((unsigned long)rx_buf & 0x03)
1007 rx_fifo = sh_msiof_spi_read_fifo_s32u;
1009 rx_fifo = sh_msiof_spi_read_fifo_s32;
1012 if ((unsigned long)tx_buf & 0x03)
1013 tx_fifo = sh_msiof_spi_write_fifo_32u;
1015 tx_fifo = sh_msiof_spi_write_fifo_32;
1017 if ((unsigned long)rx_buf & 0x03)
1018 rx_fifo = sh_msiof_spi_read_fifo_32u;
1020 rx_fifo = sh_msiof_spi_read_fifo_32;
1023 /* transfer in fifo sized chunks */
1024 words = len / bytes_per_word;
1027 n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
1033 tx_buf += n * bytes_per_word;
1035 rx_buf += n * bytes_per_word;
1038 if (words == 0 && (len % bytes_per_word)) {
1039 words = len % bytes_per_word;
1040 bits = t->bits_per_word;
1042 tx_fifo = sh_msiof_spi_write_fifo_8;
1043 rx_fifo = sh_msiof_spi_read_fifo_8;
1050 static const struct sh_msiof_chipdata sh_data = {
1051 .bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32),
1058 static const struct sh_msiof_chipdata rcar_gen2_data = {
1059 .bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1060 SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1063 .ctlr_flags = SPI_CONTROLLER_MUST_TX,
1067 static const struct sh_msiof_chipdata rcar_gen3_data = {
1068 .bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1069 SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1072 .ctlr_flags = SPI_CONTROLLER_MUST_TX,
1076 static const struct of_device_id sh_msiof_match[] = {
1077 { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
1078 { .compatible = "renesas,msiof-r8a7743", .data = &rcar_gen2_data },
1079 { .compatible = "renesas,msiof-r8a7745", .data = &rcar_gen2_data },
1080 { .compatible = "renesas,msiof-r8a7790", .data = &rcar_gen2_data },
1081 { .compatible = "renesas,msiof-r8a7791", .data = &rcar_gen2_data },
1082 { .compatible = "renesas,msiof-r8a7792", .data = &rcar_gen2_data },
1083 { .compatible = "renesas,msiof-r8a7793", .data = &rcar_gen2_data },
1084 { .compatible = "renesas,msiof-r8a7794", .data = &rcar_gen2_data },
1085 { .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
1086 { .compatible = "renesas,msiof-r8a7796", .data = &rcar_gen3_data },
1087 { .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
1088 { .compatible = "renesas,rcar-gen4-msiof", .data = &rcar_gen3_data },
1089 { .compatible = "renesas,sh-msiof", .data = &sh_data }, /* Deprecated */
1092 MODULE_DEVICE_TABLE(of, sh_msiof_match);
1095 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1097 struct sh_msiof_spi_info *info;
1098 struct device_node *np = dev->of_node;
1101 info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
1105 info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE
1108 /* Parse the MSIOF properties */
1109 if (info->mode == MSIOF_SPI_MASTER)
1110 of_property_read_u32(np, "num-cs", &num_cs);
1111 of_property_read_u32(np, "renesas,tx-fifo-size",
1112 &info->tx_fifo_override);
1113 of_property_read_u32(np, "renesas,rx-fifo-size",
1114 &info->rx_fifo_override);
1115 of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1116 of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1118 info->num_chipselect = num_cs;
1123 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1129 static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1130 enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1132 dma_cap_mask_t mask;
1133 struct dma_chan *chan;
1134 struct dma_slave_config cfg;
1138 dma_cap_set(DMA_SLAVE, mask);
1140 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1141 (void *)(unsigned long)id, dev,
1142 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1144 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1148 memset(&cfg, 0, sizeof(cfg));
1149 cfg.direction = dir;
1150 if (dir == DMA_MEM_TO_DEV) {
1151 cfg.dst_addr = port_addr;
1152 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1154 cfg.src_addr = port_addr;
1155 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1158 ret = dmaengine_slave_config(chan, &cfg);
1160 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1161 dma_release_channel(chan);
1168 static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1170 struct platform_device *pdev = p->pdev;
1171 struct device *dev = &pdev->dev;
1172 const struct sh_msiof_spi_info *info = p->info;
1173 unsigned int dma_tx_id, dma_rx_id;
1174 const struct resource *res;
1175 struct spi_controller *ctlr;
1176 struct device *tx_dev, *rx_dev;
1179 /* In the OF case we will get the slave IDs from the DT */
1182 } else if (info && info->dma_tx_id && info->dma_rx_id) {
1183 dma_tx_id = info->dma_tx_id;
1184 dma_rx_id = info->dma_rx_id;
1186 /* The driver assumes no error */
1190 /* The DMA engine uses the second register set, if present */
1191 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1193 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1196 ctlr->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1197 dma_tx_id, res->start + SITFDR);
1201 ctlr->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1202 dma_rx_id, res->start + SIRFDR);
1206 p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1207 if (!p->tx_dma_page)
1210 p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1211 if (!p->rx_dma_page)
1214 tx_dev = ctlr->dma_tx->device->dev;
1215 p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1217 if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1220 rx_dev = ctlr->dma_rx->device->dev;
1221 p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1223 if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1226 dev_info(dev, "DMA available");
1230 dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1232 free_page((unsigned long)p->rx_dma_page);
1234 free_page((unsigned long)p->tx_dma_page);
1236 dma_release_channel(ctlr->dma_rx);
1238 dma_release_channel(ctlr->dma_tx);
1239 ctlr->dma_tx = NULL;
1243 static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1245 struct spi_controller *ctlr = p->ctlr;
1250 dma_unmap_single(ctlr->dma_rx->device->dev, p->rx_dma_addr, PAGE_SIZE,
1252 dma_unmap_single(ctlr->dma_tx->device->dev, p->tx_dma_addr, PAGE_SIZE,
1254 free_page((unsigned long)p->rx_dma_page);
1255 free_page((unsigned long)p->tx_dma_page);
1256 dma_release_channel(ctlr->dma_rx);
1257 dma_release_channel(ctlr->dma_tx);
1260 static int sh_msiof_spi_probe(struct platform_device *pdev)
1262 struct spi_controller *ctlr;
1263 const struct sh_msiof_chipdata *chipdata;
1264 struct sh_msiof_spi_info *info;
1265 struct sh_msiof_spi_priv *p;
1266 unsigned long clksrc;
1270 chipdata = of_device_get_match_data(&pdev->dev);
1272 info = sh_msiof_spi_parse_dt(&pdev->dev);
1274 chipdata = (const void *)pdev->id_entry->driver_data;
1275 info = dev_get_platdata(&pdev->dev);
1279 dev_err(&pdev->dev, "failed to obtain device info\n");
1283 if (info->mode == MSIOF_SPI_SLAVE)
1284 ctlr = spi_alloc_slave(&pdev->dev,
1285 sizeof(struct sh_msiof_spi_priv));
1287 ctlr = spi_alloc_master(&pdev->dev,
1288 sizeof(struct sh_msiof_spi_priv));
1292 p = spi_controller_get_devdata(ctlr);
1294 platform_set_drvdata(pdev, p);
1297 p->min_div_pow = chipdata->min_div_pow;
1299 init_completion(&p->done);
1300 init_completion(&p->done_txdma);
1302 p->clk = devm_clk_get(&pdev->dev, NULL);
1303 if (IS_ERR(p->clk)) {
1304 dev_err(&pdev->dev, "cannot get clock\n");
1305 ret = PTR_ERR(p->clk);
1309 i = platform_get_irq(pdev, 0);
1315 p->mapbase = devm_platform_ioremap_resource(pdev, 0);
1316 if (IS_ERR(p->mapbase)) {
1317 ret = PTR_ERR(p->mapbase);
1321 ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1322 dev_name(&pdev->dev), p);
1324 dev_err(&pdev->dev, "unable to request irq\n");
1329 pm_runtime_enable(&pdev->dev);
1331 /* Platform data may override FIFO sizes */
1332 p->tx_fifo_size = chipdata->tx_fifo_size;
1333 p->rx_fifo_size = chipdata->rx_fifo_size;
1334 if (p->info->tx_fifo_override)
1335 p->tx_fifo_size = p->info->tx_fifo_override;
1336 if (p->info->rx_fifo_override)
1337 p->rx_fifo_size = p->info->rx_fifo_override;
1339 /* init controller code */
1340 ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1341 ctlr->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1342 clksrc = clk_get_rate(p->clk);
1343 ctlr->min_speed_hz = DIV_ROUND_UP(clksrc, 1024);
1344 ctlr->max_speed_hz = DIV_ROUND_UP(clksrc, 1 << p->min_div_pow);
1345 ctlr->flags = chipdata->ctlr_flags;
1346 ctlr->bus_num = pdev->id;
1347 ctlr->num_chipselect = p->info->num_chipselect;
1348 ctlr->dev.of_node = pdev->dev.of_node;
1349 ctlr->setup = sh_msiof_spi_setup;
1350 ctlr->prepare_message = sh_msiof_prepare_message;
1351 ctlr->slave_abort = sh_msiof_slave_abort;
1352 ctlr->bits_per_word_mask = chipdata->bits_per_word_mask;
1353 ctlr->auto_runtime_pm = true;
1354 ctlr->transfer_one = sh_msiof_transfer_one;
1355 ctlr->use_gpio_descriptors = true;
1356 ctlr->max_native_cs = MAX_SS;
1358 ret = sh_msiof_request_dma(p);
1360 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1362 ret = devm_spi_register_controller(&pdev->dev, ctlr);
1364 dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
1371 sh_msiof_release_dma(p);
1372 pm_runtime_disable(&pdev->dev);
1374 spi_controller_put(ctlr);
1378 static int sh_msiof_spi_remove(struct platform_device *pdev)
1380 struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1382 sh_msiof_release_dma(p);
1383 pm_runtime_disable(&pdev->dev);
1387 static const struct platform_device_id spi_driver_ids[] = {
1388 { "spi_sh_msiof", (kernel_ulong_t)&sh_data },
1391 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1393 #ifdef CONFIG_PM_SLEEP
1394 static int sh_msiof_spi_suspend(struct device *dev)
1396 struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
1398 return spi_controller_suspend(p->ctlr);
1401 static int sh_msiof_spi_resume(struct device *dev)
1403 struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
1405 return spi_controller_resume(p->ctlr);
1408 static SIMPLE_DEV_PM_OPS(sh_msiof_spi_pm_ops, sh_msiof_spi_suspend,
1409 sh_msiof_spi_resume);
1410 #define DEV_PM_OPS (&sh_msiof_spi_pm_ops)
1412 #define DEV_PM_OPS NULL
1413 #endif /* CONFIG_PM_SLEEP */
1415 static struct platform_driver sh_msiof_spi_drv = {
1416 .probe = sh_msiof_spi_probe,
1417 .remove = sh_msiof_spi_remove,
1418 .id_table = spi_driver_ids,
1420 .name = "spi_sh_msiof",
1422 .of_match_table = of_match_ptr(sh_msiof_match),
1425 module_platform_driver(sh_msiof_spi_drv);
1427 MODULE_DESCRIPTION("SuperH MSIOF SPI Controller Interface Driver");
1428 MODULE_AUTHOR("Magnus Damm");
1429 MODULE_LICENSE("GPL v2");