Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[platform/kernel/linux-rpi.git] / drivers / spi / spi-rspi.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SH RSPI driver
4  *
5  * Copyright (C) 2012, 2013  Renesas Solutions Corp.
6  * Copyright (C) 2014 Glider bvba
7  *
8  * Based on spi-sh.c:
9  * Copyright (C) 2011 Renesas Solutions Corp.
10  */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/errno.h>
16 #include <linux/interrupt.h>
17 #include <linux/platform_device.h>
18 #include <linux/io.h>
19 #include <linux/clk.h>
20 #include <linux/dmaengine.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/of.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/reset.h>
25 #include <linux/sh_dma.h>
26 #include <linux/spi/spi.h>
27 #include <linux/spi/rspi.h>
28 #include <linux/spinlock.h>
29
30 #define RSPI_SPCR               0x00    /* Control Register */
31 #define RSPI_SSLP               0x01    /* Slave Select Polarity Register */
32 #define RSPI_SPPCR              0x02    /* Pin Control Register */
33 #define RSPI_SPSR               0x03    /* Status Register */
34 #define RSPI_SPDR               0x04    /* Data Register */
35 #define RSPI_SPSCR              0x08    /* Sequence Control Register */
36 #define RSPI_SPSSR              0x09    /* Sequence Status Register */
37 #define RSPI_SPBR               0x0a    /* Bit Rate Register */
38 #define RSPI_SPDCR              0x0b    /* Data Control Register */
39 #define RSPI_SPCKD              0x0c    /* Clock Delay Register */
40 #define RSPI_SSLND              0x0d    /* Slave Select Negation Delay Register */
41 #define RSPI_SPND               0x0e    /* Next-Access Delay Register */
42 #define RSPI_SPCR2              0x0f    /* Control Register 2 (SH only) */
43 #define RSPI_SPCMD0             0x10    /* Command Register 0 */
44 #define RSPI_SPCMD1             0x12    /* Command Register 1 */
45 #define RSPI_SPCMD2             0x14    /* Command Register 2 */
46 #define RSPI_SPCMD3             0x16    /* Command Register 3 */
47 #define RSPI_SPCMD4             0x18    /* Command Register 4 */
48 #define RSPI_SPCMD5             0x1a    /* Command Register 5 */
49 #define RSPI_SPCMD6             0x1c    /* Command Register 6 */
50 #define RSPI_SPCMD7             0x1e    /* Command Register 7 */
51 #define RSPI_SPCMD(i)           (RSPI_SPCMD0 + (i) * 2)
52 #define RSPI_NUM_SPCMD          8
53 #define RSPI_RZ_NUM_SPCMD       4
54 #define QSPI_NUM_SPCMD          4
55
56 /* RSPI on RZ only */
57 #define RSPI_SPBFCR             0x20    /* Buffer Control Register */
58 #define RSPI_SPBFDR             0x22    /* Buffer Data Count Setting Register */
59
60 /* QSPI only */
61 #define QSPI_SPBFCR             0x18    /* Buffer Control Register */
62 #define QSPI_SPBDCR             0x1a    /* Buffer Data Count Register */
63 #define QSPI_SPBMUL0            0x1c    /* Transfer Data Length Multiplier Setting Register 0 */
64 #define QSPI_SPBMUL1            0x20    /* Transfer Data Length Multiplier Setting Register 1 */
65 #define QSPI_SPBMUL2            0x24    /* Transfer Data Length Multiplier Setting Register 2 */
66 #define QSPI_SPBMUL3            0x28    /* Transfer Data Length Multiplier Setting Register 3 */
67 #define QSPI_SPBMUL(i)          (QSPI_SPBMUL0 + (i) * 4)
68
69 /* SPCR - Control Register */
70 #define SPCR_SPRIE              0x80    /* Receive Interrupt Enable */
71 #define SPCR_SPE                0x40    /* Function Enable */
72 #define SPCR_SPTIE              0x20    /* Transmit Interrupt Enable */
73 #define SPCR_SPEIE              0x10    /* Error Interrupt Enable */
74 #define SPCR_MSTR               0x08    /* Master/Slave Mode Select */
75 #define SPCR_MODFEN             0x04    /* Mode Fault Error Detection Enable */
76 /* RSPI on SH only */
77 #define SPCR_TXMD               0x02    /* TX Only Mode (vs. Full Duplex) */
78 #define SPCR_SPMS               0x01    /* 3-wire Mode (vs. 4-wire) */
79 /* QSPI on R-Car Gen2 only */
80 #define SPCR_WSWAP              0x02    /* Word Swap of read-data for DMAC */
81 #define SPCR_BSWAP              0x01    /* Byte Swap of read-data for DMAC */
82
83 /* SSLP - Slave Select Polarity Register */
84 #define SSLP_SSLP(i)            BIT(i)  /* SSLi Signal Polarity Setting */
85
86 /* SPPCR - Pin Control Register */
87 #define SPPCR_MOIFE             0x20    /* MOSI Idle Value Fixing Enable */
88 #define SPPCR_MOIFV             0x10    /* MOSI Idle Fixed Value */
89 #define SPPCR_SPOM              0x04
90 #define SPPCR_SPLP2             0x02    /* Loopback Mode 2 (non-inverting) */
91 #define SPPCR_SPLP              0x01    /* Loopback Mode (inverting) */
92
93 #define SPPCR_IO3FV             0x04    /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
94 #define SPPCR_IO2FV             0x04    /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
95
96 /* SPSR - Status Register */
97 #define SPSR_SPRF               0x80    /* Receive Buffer Full Flag */
98 #define SPSR_TEND               0x40    /* Transmit End */
99 #define SPSR_SPTEF              0x20    /* Transmit Buffer Empty Flag */
100 #define SPSR_PERF               0x08    /* Parity Error Flag */
101 #define SPSR_MODF               0x04    /* Mode Fault Error Flag */
102 #define SPSR_IDLNF              0x02    /* RSPI Idle Flag */
103 #define SPSR_OVRF               0x01    /* Overrun Error Flag (RSPI only) */
104
105 /* SPSCR - Sequence Control Register */
106 #define SPSCR_SPSLN_MASK        0x07    /* Sequence Length Specification */
107
108 /* SPSSR - Sequence Status Register */
109 #define SPSSR_SPECM_MASK        0x70    /* Command Error Mask */
110 #define SPSSR_SPCP_MASK         0x07    /* Command Pointer Mask */
111
112 /* SPDCR - Data Control Register */
113 #define SPDCR_TXDMY             0x80    /* Dummy Data Transmission Enable */
114 #define SPDCR_SPLW1             0x40    /* Access Width Specification (RZ) */
115 #define SPDCR_SPLW0             0x20    /* Access Width Specification (RZ) */
116 #define SPDCR_SPLLWORD          (SPDCR_SPLW1 | SPDCR_SPLW0)
117 #define SPDCR_SPLWORD           SPDCR_SPLW1
118 #define SPDCR_SPLBYTE           SPDCR_SPLW0
119 #define SPDCR_SPLW              0x20    /* Access Width Specification (SH) */
120 #define SPDCR_SPRDTD            0x10    /* Receive Transmit Data Select (SH) */
121 #define SPDCR_SLSEL1            0x08
122 #define SPDCR_SLSEL0            0x04
123 #define SPDCR_SLSEL_MASK        0x0c    /* SSL1 Output Select (SH) */
124 #define SPDCR_SPFC1             0x02
125 #define SPDCR_SPFC0             0x01
126 #define SPDCR_SPFC_MASK         0x03    /* Frame Count Setting (1-4) (SH) */
127
128 /* SPCKD - Clock Delay Register */
129 #define SPCKD_SCKDL_MASK        0x07    /* Clock Delay Setting (1-8) */
130
131 /* SSLND - Slave Select Negation Delay Register */
132 #define SSLND_SLNDL_MASK        0x07    /* SSL Negation Delay Setting (1-8) */
133
134 /* SPND - Next-Access Delay Register */
135 #define SPND_SPNDL_MASK         0x07    /* Next-Access Delay Setting (1-8) */
136
137 /* SPCR2 - Control Register 2 */
138 #define SPCR2_PTE               0x08    /* Parity Self-Test Enable */
139 #define SPCR2_SPIE              0x04    /* Idle Interrupt Enable */
140 #define SPCR2_SPOE              0x02    /* Odd Parity Enable (vs. Even) */
141 #define SPCR2_SPPE              0x01    /* Parity Enable */
142
143 /* SPCMDn - Command Registers */
144 #define SPCMD_SCKDEN            0x8000  /* Clock Delay Setting Enable */
145 #define SPCMD_SLNDEN            0x4000  /* SSL Negation Delay Setting Enable */
146 #define SPCMD_SPNDEN            0x2000  /* Next-Access Delay Enable */
147 #define SPCMD_LSBF              0x1000  /* LSB First */
148 #define SPCMD_SPB_MASK          0x0f00  /* Data Length Setting */
149 #define SPCMD_SPB_8_TO_16(bit)  (((bit - 1) << 8) & SPCMD_SPB_MASK)
150 #define SPCMD_SPB_8BIT          0x0000  /* QSPI only */
151 #define SPCMD_SPB_16BIT         0x0100
152 #define SPCMD_SPB_20BIT         0x0000
153 #define SPCMD_SPB_24BIT         0x0100
154 #define SPCMD_SPB_32BIT         0x0200
155 #define SPCMD_SSLKP             0x0080  /* SSL Signal Level Keeping */
156 #define SPCMD_SPIMOD_MASK       0x0060  /* SPI Operating Mode (QSPI only) */
157 #define SPCMD_SPIMOD1           0x0040
158 #define SPCMD_SPIMOD0           0x0020
159 #define SPCMD_SPIMOD_SINGLE     0
160 #define SPCMD_SPIMOD_DUAL       SPCMD_SPIMOD0
161 #define SPCMD_SPIMOD_QUAD       SPCMD_SPIMOD1
162 #define SPCMD_SPRW              0x0010  /* SPI Read/Write Access (Dual/Quad) */
163 #define SPCMD_SSLA(i)           ((i) << 4)      /* SSL Assert Signal Setting */
164 #define SPCMD_BRDV_MASK         0x000c  /* Bit Rate Division Setting */
165 #define SPCMD_BRDV(brdv)        ((brdv) << 2)
166 #define SPCMD_CPOL              0x0002  /* Clock Polarity Setting */
167 #define SPCMD_CPHA              0x0001  /* Clock Phase Setting */
168
169 /* SPBFCR - Buffer Control Register */
170 #define SPBFCR_TXRST            0x80    /* Transmit Buffer Data Reset */
171 #define SPBFCR_RXRST            0x40    /* Receive Buffer Data Reset */
172 #define SPBFCR_TXTRG_MASK       0x30    /* Transmit Buffer Data Triggering Number */
173 #define SPBFCR_RXTRG_MASK       0x07    /* Receive Buffer Data Triggering Number */
174 /* QSPI on R-Car Gen2 */
175 #define SPBFCR_TXTRG_1B         0x00    /* 31 bytes (1 byte available) */
176 #define SPBFCR_TXTRG_32B        0x30    /* 0 byte (32 bytes available) */
177 #define SPBFCR_RXTRG_1B         0x00    /* 1 byte (31 bytes available) */
178 #define SPBFCR_RXTRG_32B        0x07    /* 32 bytes (0 byte available) */
179
180 #define QSPI_BUFFER_SIZE        32u
181
182 struct rspi_data {
183         void __iomem *addr;
184         u32 speed_hz;
185         struct spi_controller *ctlr;
186         struct platform_device *pdev;
187         wait_queue_head_t wait;
188         spinlock_t lock;                /* Protects RMW-access to RSPI_SSLP */
189         struct clk *clk;
190         u16 spcmd;
191         u8 spsr;
192         u8 sppcr;
193         int rx_irq, tx_irq;
194         const struct spi_ops *ops;
195
196         unsigned dma_callbacked:1;
197         unsigned byte_access:1;
198 };
199
200 static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
201 {
202         iowrite8(data, rspi->addr + offset);
203 }
204
205 static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
206 {
207         iowrite16(data, rspi->addr + offset);
208 }
209
210 static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
211 {
212         iowrite32(data, rspi->addr + offset);
213 }
214
215 static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
216 {
217         return ioread8(rspi->addr + offset);
218 }
219
220 static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
221 {
222         return ioread16(rspi->addr + offset);
223 }
224
225 static void rspi_write_data(const struct rspi_data *rspi, u16 data)
226 {
227         if (rspi->byte_access)
228                 rspi_write8(rspi, data, RSPI_SPDR);
229         else /* 16 bit */
230                 rspi_write16(rspi, data, RSPI_SPDR);
231 }
232
233 static u16 rspi_read_data(const struct rspi_data *rspi)
234 {
235         if (rspi->byte_access)
236                 return rspi_read8(rspi, RSPI_SPDR);
237         else /* 16 bit */
238                 return rspi_read16(rspi, RSPI_SPDR);
239 }
240
241 /* optional functions */
242 struct spi_ops {
243         int (*set_config_register)(struct rspi_data *rspi, int access_size);
244         int (*transfer_one)(struct spi_controller *ctlr,
245                             struct spi_device *spi, struct spi_transfer *xfer);
246         u16 extra_mode_bits;
247         u16 min_div;
248         u16 max_div;
249         u16 flags;
250         u16 fifo_size;
251         u8 num_hw_ss;
252 };
253
254 static void rspi_set_rate(struct rspi_data *rspi)
255 {
256         unsigned long clksrc;
257         int brdv = 0, spbr;
258
259         clksrc = clk_get_rate(rspi->clk);
260         spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz) - 1;
261         while (spbr > 255 && brdv < 3) {
262                 brdv++;
263                 spbr = DIV_ROUND_UP(spbr + 1, 2) - 1;
264         }
265
266         rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
267         rspi->spcmd |= SPCMD_BRDV(brdv);
268         rspi->speed_hz = DIV_ROUND_UP(clksrc, (2U << brdv) * (spbr + 1));
269 }
270
271 /*
272  * functions for RSPI on legacy SH
273  */
274 static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
275 {
276         /* Sets output mode, MOSI signal, and (optionally) loopback */
277         rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
278
279         /* Sets transfer bit rate */
280         rspi_set_rate(rspi);
281
282         /* Disable dummy transmission, set 16-bit word access, 1 frame */
283         rspi_write8(rspi, 0, RSPI_SPDCR);
284         rspi->byte_access = 0;
285
286         /* Sets RSPCK, SSL, next-access delay value */
287         rspi_write8(rspi, 0x00, RSPI_SPCKD);
288         rspi_write8(rspi, 0x00, RSPI_SSLND);
289         rspi_write8(rspi, 0x00, RSPI_SPND);
290
291         /* Sets parity, interrupt mask */
292         rspi_write8(rspi, 0x00, RSPI_SPCR2);
293
294         /* Resets sequencer */
295         rspi_write8(rspi, 0, RSPI_SPSCR);
296         rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
297         rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
298
299         /* Sets RSPI mode */
300         rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
301
302         return 0;
303 }
304
305 /*
306  * functions for RSPI on RZ
307  */
308 static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
309 {
310         /* Sets output mode, MOSI signal, and (optionally) loopback */
311         rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
312
313         /* Sets transfer bit rate */
314         rspi_set_rate(rspi);
315
316         /* Disable dummy transmission, set byte access */
317         rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
318         rspi->byte_access = 1;
319
320         /* Sets RSPCK, SSL, next-access delay value */
321         rspi_write8(rspi, 0x00, RSPI_SPCKD);
322         rspi_write8(rspi, 0x00, RSPI_SSLND);
323         rspi_write8(rspi, 0x00, RSPI_SPND);
324
325         /* Resets sequencer */
326         rspi_write8(rspi, 0, RSPI_SPSCR);
327         rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
328         rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
329
330         /* Sets RSPI mode */
331         rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
332
333         return 0;
334 }
335
336 /*
337  * functions for QSPI
338  */
339 static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
340 {
341         unsigned long clksrc;
342         int brdv = 0, spbr;
343
344         /* Sets output mode, MOSI signal, and (optionally) loopback */
345         rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
346
347         /* Sets transfer bit rate */
348         clksrc = clk_get_rate(rspi->clk);
349         if (rspi->speed_hz >= clksrc) {
350                 spbr = 0;
351                 rspi->speed_hz = clksrc;
352         } else {
353                 spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz);
354                 while (spbr > 255 && brdv < 3) {
355                         brdv++;
356                         spbr = DIV_ROUND_UP(spbr, 2);
357                 }
358                 spbr = clamp(spbr, 0, 255);
359                 rspi->speed_hz = DIV_ROUND_UP(clksrc, (2U << brdv) * spbr);
360         }
361         rspi_write8(rspi, spbr, RSPI_SPBR);
362         rspi->spcmd |= SPCMD_BRDV(brdv);
363
364         /* Disable dummy transmission, set byte access */
365         rspi_write8(rspi, 0, RSPI_SPDCR);
366         rspi->byte_access = 1;
367
368         /* Sets RSPCK, SSL, next-access delay value */
369         rspi_write8(rspi, 0x00, RSPI_SPCKD);
370         rspi_write8(rspi, 0x00, RSPI_SSLND);
371         rspi_write8(rspi, 0x00, RSPI_SPND);
372
373         /* Data Length Setting */
374         if (access_size == 8)
375                 rspi->spcmd |= SPCMD_SPB_8BIT;
376         else if (access_size == 16)
377                 rspi->spcmd |= SPCMD_SPB_16BIT;
378         else
379                 rspi->spcmd |= SPCMD_SPB_32BIT;
380
381         rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
382
383         /* Resets transfer data length */
384         rspi_write32(rspi, 0, QSPI_SPBMUL0);
385
386         /* Resets transmit and receive buffer */
387         rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
388         /* Sets buffer to allow normal operation */
389         rspi_write8(rspi, 0x00, QSPI_SPBFCR);
390
391         /* Resets sequencer */
392         rspi_write8(rspi, 0, RSPI_SPSCR);
393         rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
394
395         /* Sets RSPI mode */
396         rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
397
398         return 0;
399 }
400
401 static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg)
402 {
403         u8 data;
404
405         data = rspi_read8(rspi, reg);
406         data &= ~mask;
407         data |= (val & mask);
408         rspi_write8(rspi, data, reg);
409 }
410
411 static unsigned int qspi_set_send_trigger(struct rspi_data *rspi,
412                                           unsigned int len)
413 {
414         unsigned int n;
415
416         n = min(len, QSPI_BUFFER_SIZE);
417
418         if (len >= QSPI_BUFFER_SIZE) {
419                 /* sets triggering number to 32 bytes */
420                 qspi_update(rspi, SPBFCR_TXTRG_MASK,
421                              SPBFCR_TXTRG_32B, QSPI_SPBFCR);
422         } else {
423                 /* sets triggering number to 1 byte */
424                 qspi_update(rspi, SPBFCR_TXTRG_MASK,
425                              SPBFCR_TXTRG_1B, QSPI_SPBFCR);
426         }
427
428         return n;
429 }
430
431 static int qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
432 {
433         unsigned int n;
434
435         n = min(len, QSPI_BUFFER_SIZE);
436
437         if (len >= QSPI_BUFFER_SIZE) {
438                 /* sets triggering number to 32 bytes */
439                 qspi_update(rspi, SPBFCR_RXTRG_MASK,
440                              SPBFCR_RXTRG_32B, QSPI_SPBFCR);
441         } else {
442                 /* sets triggering number to 1 byte */
443                 qspi_update(rspi, SPBFCR_RXTRG_MASK,
444                              SPBFCR_RXTRG_1B, QSPI_SPBFCR);
445         }
446         return n;
447 }
448
449 static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
450 {
451         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
452 }
453
454 static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
455 {
456         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
457 }
458
459 static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
460                                    u8 enable_bit)
461 {
462         int ret;
463
464         rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
465         if (rspi->spsr & wait_mask)
466                 return 0;
467
468         rspi_enable_irq(rspi, enable_bit);
469         ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
470         if (ret == 0 && !(rspi->spsr & wait_mask))
471                 return -ETIMEDOUT;
472
473         return 0;
474 }
475
476 static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
477 {
478         return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
479 }
480
481 static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
482 {
483         return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
484 }
485
486 static int rspi_data_out(struct rspi_data *rspi, u8 data)
487 {
488         int error = rspi_wait_for_tx_empty(rspi);
489         if (error < 0) {
490                 dev_err(&rspi->ctlr->dev, "transmit timeout\n");
491                 return error;
492         }
493         rspi_write_data(rspi, data);
494         return 0;
495 }
496
497 static int rspi_data_in(struct rspi_data *rspi)
498 {
499         int error;
500         u8 data;
501
502         error = rspi_wait_for_rx_full(rspi);
503         if (error < 0) {
504                 dev_err(&rspi->ctlr->dev, "receive timeout\n");
505                 return error;
506         }
507         data = rspi_read_data(rspi);
508         return data;
509 }
510
511 static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
512                              unsigned int n)
513 {
514         while (n-- > 0) {
515                 if (tx) {
516                         int ret = rspi_data_out(rspi, *tx++);
517                         if (ret < 0)
518                                 return ret;
519                 }
520                 if (rx) {
521                         int ret = rspi_data_in(rspi);
522                         if (ret < 0)
523                                 return ret;
524                         *rx++ = ret;
525                 }
526         }
527
528         return 0;
529 }
530
531 static void rspi_dma_complete(void *arg)
532 {
533         struct rspi_data *rspi = arg;
534
535         rspi->dma_callbacked = 1;
536         wake_up_interruptible(&rspi->wait);
537 }
538
539 static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
540                              struct sg_table *rx)
541 {
542         struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
543         u8 irq_mask = 0;
544         unsigned int other_irq = 0;
545         dma_cookie_t cookie;
546         int ret;
547
548         /* First prepare and submit the DMA request(s), as this may fail */
549         if (rx) {
550                 desc_rx = dmaengine_prep_slave_sg(rspi->ctlr->dma_rx, rx->sgl,
551                                         rx->nents, DMA_DEV_TO_MEM,
552                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
553                 if (!desc_rx) {
554                         ret = -EAGAIN;
555                         goto no_dma_rx;
556                 }
557
558                 desc_rx->callback = rspi_dma_complete;
559                 desc_rx->callback_param = rspi;
560                 cookie = dmaengine_submit(desc_rx);
561                 if (dma_submit_error(cookie)) {
562                         ret = cookie;
563                         goto no_dma_rx;
564                 }
565
566                 irq_mask |= SPCR_SPRIE;
567         }
568
569         if (tx) {
570                 desc_tx = dmaengine_prep_slave_sg(rspi->ctlr->dma_tx, tx->sgl,
571                                         tx->nents, DMA_MEM_TO_DEV,
572                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
573                 if (!desc_tx) {
574                         ret = -EAGAIN;
575                         goto no_dma_tx;
576                 }
577
578                 if (rx) {
579                         /* No callback */
580                         desc_tx->callback = NULL;
581                 } else {
582                         desc_tx->callback = rspi_dma_complete;
583                         desc_tx->callback_param = rspi;
584                 }
585                 cookie = dmaengine_submit(desc_tx);
586                 if (dma_submit_error(cookie)) {
587                         ret = cookie;
588                         goto no_dma_tx;
589                 }
590
591                 irq_mask |= SPCR_SPTIE;
592         }
593
594         /*
595          * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
596          * called. So, this driver disables the IRQ while DMA transfer.
597          */
598         if (tx)
599                 disable_irq(other_irq = rspi->tx_irq);
600         if (rx && rspi->rx_irq != other_irq)
601                 disable_irq(rspi->rx_irq);
602
603         rspi_enable_irq(rspi, irq_mask);
604         rspi->dma_callbacked = 0;
605
606         /* Now start DMA */
607         if (rx)
608                 dma_async_issue_pending(rspi->ctlr->dma_rx);
609         if (tx)
610                 dma_async_issue_pending(rspi->ctlr->dma_tx);
611
612         ret = wait_event_interruptible_timeout(rspi->wait,
613                                                rspi->dma_callbacked, HZ);
614         if (ret > 0 && rspi->dma_callbacked) {
615                 ret = 0;
616                 if (tx)
617                         dmaengine_synchronize(rspi->ctlr->dma_tx);
618                 if (rx)
619                         dmaengine_synchronize(rspi->ctlr->dma_rx);
620         } else {
621                 if (!ret) {
622                         dev_err(&rspi->ctlr->dev, "DMA timeout\n");
623                         ret = -ETIMEDOUT;
624                 }
625                 if (tx)
626                         dmaengine_terminate_sync(rspi->ctlr->dma_tx);
627                 if (rx)
628                         dmaengine_terminate_sync(rspi->ctlr->dma_rx);
629         }
630
631         rspi_disable_irq(rspi, irq_mask);
632
633         if (tx)
634                 enable_irq(rspi->tx_irq);
635         if (rx && rspi->rx_irq != other_irq)
636                 enable_irq(rspi->rx_irq);
637
638         return ret;
639
640 no_dma_tx:
641         if (rx)
642                 dmaengine_terminate_sync(rspi->ctlr->dma_rx);
643 no_dma_rx:
644         if (ret == -EAGAIN) {
645                 dev_warn_once(&rspi->ctlr->dev,
646                               "DMA not available, falling back to PIO\n");
647         }
648         return ret;
649 }
650
651 static void rspi_receive_init(const struct rspi_data *rspi)
652 {
653         u8 spsr;
654
655         spsr = rspi_read8(rspi, RSPI_SPSR);
656         if (spsr & SPSR_SPRF)
657                 rspi_read_data(rspi);   /* dummy read */
658         if (spsr & SPSR_OVRF)
659                 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
660                             RSPI_SPSR);
661 }
662
663 static void rspi_rz_receive_init(const struct rspi_data *rspi)
664 {
665         rspi_receive_init(rspi);
666         rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
667         rspi_write8(rspi, 0, RSPI_SPBFCR);
668 }
669
670 static void qspi_receive_init(const struct rspi_data *rspi)
671 {
672         u8 spsr;
673
674         spsr = rspi_read8(rspi, RSPI_SPSR);
675         if (spsr & SPSR_SPRF)
676                 rspi_read_data(rspi);   /* dummy read */
677         rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
678         rspi_write8(rspi, 0, QSPI_SPBFCR);
679 }
680
681 static bool __rspi_can_dma(const struct rspi_data *rspi,
682                            const struct spi_transfer *xfer)
683 {
684         return xfer->len > rspi->ops->fifo_size;
685 }
686
687 static bool rspi_can_dma(struct spi_controller *ctlr, struct spi_device *spi,
688                          struct spi_transfer *xfer)
689 {
690         struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
691
692         return __rspi_can_dma(rspi, xfer);
693 }
694
695 static int rspi_dma_check_then_transfer(struct rspi_data *rspi,
696                                          struct spi_transfer *xfer)
697 {
698         if (!rspi->ctlr->can_dma || !__rspi_can_dma(rspi, xfer))
699                 return -EAGAIN;
700
701         /* rx_buf can be NULL on RSPI on SH in TX-only Mode */
702         return rspi_dma_transfer(rspi, &xfer->tx_sg,
703                                 xfer->rx_buf ? &xfer->rx_sg : NULL);
704 }
705
706 static int rspi_common_transfer(struct rspi_data *rspi,
707                                 struct spi_transfer *xfer)
708 {
709         int ret;
710
711         xfer->effective_speed_hz = rspi->speed_hz;
712
713         ret = rspi_dma_check_then_transfer(rspi, xfer);
714         if (ret != -EAGAIN)
715                 return ret;
716
717         ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
718         if (ret < 0)
719                 return ret;
720
721         /* Wait for the last transmission */
722         rspi_wait_for_tx_empty(rspi);
723
724         return 0;
725 }
726
727 static int rspi_transfer_one(struct spi_controller *ctlr,
728                              struct spi_device *spi, struct spi_transfer *xfer)
729 {
730         struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
731         u8 spcr;
732
733         spcr = rspi_read8(rspi, RSPI_SPCR);
734         if (xfer->rx_buf) {
735                 rspi_receive_init(rspi);
736                 spcr &= ~SPCR_TXMD;
737         } else {
738                 spcr |= SPCR_TXMD;
739         }
740         rspi_write8(rspi, spcr, RSPI_SPCR);
741
742         return rspi_common_transfer(rspi, xfer);
743 }
744
745 static int rspi_rz_transfer_one(struct spi_controller *ctlr,
746                                 struct spi_device *spi,
747                                 struct spi_transfer *xfer)
748 {
749         struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
750
751         rspi_rz_receive_init(rspi);
752
753         return rspi_common_transfer(rspi, xfer);
754 }
755
756 static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx,
757                                         u8 *rx, unsigned int len)
758 {
759         unsigned int i, n;
760         int ret;
761
762         while (len > 0) {
763                 n = qspi_set_send_trigger(rspi, len);
764                 qspi_set_receive_trigger(rspi, len);
765                 ret = rspi_wait_for_tx_empty(rspi);
766                 if (ret < 0) {
767                         dev_err(&rspi->ctlr->dev, "transmit timeout\n");
768                         return ret;
769                 }
770                 for (i = 0; i < n; i++)
771                         rspi_write_data(rspi, *tx++);
772
773                 ret = rspi_wait_for_rx_full(rspi);
774                 if (ret < 0) {
775                         dev_err(&rspi->ctlr->dev, "receive timeout\n");
776                         return ret;
777                 }
778                 for (i = 0; i < n; i++)
779                         *rx++ = rspi_read_data(rspi);
780
781                 len -= n;
782         }
783
784         return 0;
785 }
786
787 static int qspi_transfer_out_in(struct rspi_data *rspi,
788                                 struct spi_transfer *xfer)
789 {
790         int ret;
791
792         qspi_receive_init(rspi);
793
794         ret = rspi_dma_check_then_transfer(rspi, xfer);
795         if (ret != -EAGAIN)
796                 return ret;
797
798         return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf,
799                                             xfer->rx_buf, xfer->len);
800 }
801
802 static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
803 {
804         const u8 *tx = xfer->tx_buf;
805         unsigned int n = xfer->len;
806         unsigned int i, len;
807         int ret;
808
809         if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
810                 ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
811                 if (ret != -EAGAIN)
812                         return ret;
813         }
814
815         while (n > 0) {
816                 len = qspi_set_send_trigger(rspi, n);
817                 ret = rspi_wait_for_tx_empty(rspi);
818                 if (ret < 0) {
819                         dev_err(&rspi->ctlr->dev, "transmit timeout\n");
820                         return ret;
821                 }
822                 for (i = 0; i < len; i++)
823                         rspi_write_data(rspi, *tx++);
824
825                 n -= len;
826         }
827
828         /* Wait for the last transmission */
829         rspi_wait_for_tx_empty(rspi);
830
831         return 0;
832 }
833
834 static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
835 {
836         u8 *rx = xfer->rx_buf;
837         unsigned int n = xfer->len;
838         unsigned int i, len;
839         int ret;
840
841         if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
842                 ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
843                 if (ret != -EAGAIN)
844                         return ret;
845         }
846
847         while (n > 0) {
848                 len = qspi_set_receive_trigger(rspi, n);
849                 ret = rspi_wait_for_rx_full(rspi);
850                 if (ret < 0) {
851                         dev_err(&rspi->ctlr->dev, "receive timeout\n");
852                         return ret;
853                 }
854                 for (i = 0; i < len; i++)
855                         *rx++ = rspi_read_data(rspi);
856
857                 n -= len;
858         }
859
860         return 0;
861 }
862
863 static int qspi_transfer_one(struct spi_controller *ctlr,
864                              struct spi_device *spi, struct spi_transfer *xfer)
865 {
866         struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
867
868         xfer->effective_speed_hz = rspi->speed_hz;
869         if (spi->mode & SPI_LOOP) {
870                 return qspi_transfer_out_in(rspi, xfer);
871         } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
872                 /* Quad or Dual SPI Write */
873                 return qspi_transfer_out(rspi, xfer);
874         } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
875                 /* Quad or Dual SPI Read */
876                 return qspi_transfer_in(rspi, xfer);
877         } else {
878                 /* Single SPI Transfer */
879                 return qspi_transfer_out_in(rspi, xfer);
880         }
881 }
882
883 static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
884 {
885         if (xfer->tx_buf)
886                 switch (xfer->tx_nbits) {
887                 case SPI_NBITS_QUAD:
888                         return SPCMD_SPIMOD_QUAD;
889                 case SPI_NBITS_DUAL:
890                         return SPCMD_SPIMOD_DUAL;
891                 default:
892                         return 0;
893                 }
894         if (xfer->rx_buf)
895                 switch (xfer->rx_nbits) {
896                 case SPI_NBITS_QUAD:
897                         return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
898                 case SPI_NBITS_DUAL:
899                         return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
900                 default:
901                         return 0;
902                 }
903
904         return 0;
905 }
906
907 static int qspi_setup_sequencer(struct rspi_data *rspi,
908                                 const struct spi_message *msg)
909 {
910         const struct spi_transfer *xfer;
911         unsigned int i = 0, len = 0;
912         u16 current_mode = 0xffff, mode;
913
914         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
915                 mode = qspi_transfer_mode(xfer);
916                 if (mode == current_mode) {
917                         len += xfer->len;
918                         continue;
919                 }
920
921                 /* Transfer mode change */
922                 if (i) {
923                         /* Set transfer data length of previous transfer */
924                         rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
925                 }
926
927                 if (i >= QSPI_NUM_SPCMD) {
928                         dev_err(&msg->spi->dev,
929                                 "Too many different transfer modes");
930                         return -EINVAL;
931                 }
932
933                 /* Program transfer mode for this transfer */
934                 rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
935                 current_mode = mode;
936                 len = xfer->len;
937                 i++;
938         }
939         if (i) {
940                 /* Set final transfer data length and sequence length */
941                 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
942                 rspi_write8(rspi, i - 1, RSPI_SPSCR);
943         }
944
945         return 0;
946 }
947
948 static int rspi_setup(struct spi_device *spi)
949 {
950         struct rspi_data *rspi = spi_controller_get_devdata(spi->controller);
951         u8 sslp;
952
953         if (spi_get_csgpiod(spi, 0))
954                 return 0;
955
956         pm_runtime_get_sync(&rspi->pdev->dev);
957         spin_lock_irq(&rspi->lock);
958
959         sslp = rspi_read8(rspi, RSPI_SSLP);
960         if (spi->mode & SPI_CS_HIGH)
961                 sslp |= SSLP_SSLP(spi_get_chipselect(spi, 0));
962         else
963                 sslp &= ~SSLP_SSLP(spi_get_chipselect(spi, 0));
964         rspi_write8(rspi, sslp, RSPI_SSLP);
965
966         spin_unlock_irq(&rspi->lock);
967         pm_runtime_put(&rspi->pdev->dev);
968         return 0;
969 }
970
971 static int rspi_prepare_message(struct spi_controller *ctlr,
972                                 struct spi_message *msg)
973 {
974         struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
975         struct spi_device *spi = msg->spi;
976         const struct spi_transfer *xfer;
977         int ret;
978
979         /*
980          * As the Bit Rate Register must not be changed while the device is
981          * active, all transfers in a message must use the same bit rate.
982          * In theory, the sequencer could be enabled, and each Command Register
983          * could divide the base bit rate by a different value.
984          * However, most RSPI variants do not have Transfer Data Length
985          * Multiplier Setting Registers, so each sequence step would be limited
986          * to a single word, making this feature unsuitable for large
987          * transfers, which would gain most from it.
988          */
989         rspi->speed_hz = spi->max_speed_hz;
990         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
991                 if (xfer->speed_hz < rspi->speed_hz)
992                         rspi->speed_hz = xfer->speed_hz;
993         }
994
995         rspi->spcmd = SPCMD_SSLKP;
996         if (spi->mode & SPI_CPOL)
997                 rspi->spcmd |= SPCMD_CPOL;
998         if (spi->mode & SPI_CPHA)
999                 rspi->spcmd |= SPCMD_CPHA;
1000         if (spi->mode & SPI_LSB_FIRST)
1001                 rspi->spcmd |= SPCMD_LSBF;
1002
1003         /* Configure slave signal to assert */
1004         rspi->spcmd |= SPCMD_SSLA(spi_get_csgpiod(spi, 0) ? rspi->ctlr->unused_native_cs
1005                                                 : spi_get_chipselect(spi, 0));
1006
1007         /* CMOS output mode and MOSI signal from previous transfer */
1008         rspi->sppcr = 0;
1009         if (spi->mode & SPI_LOOP)
1010                 rspi->sppcr |= SPPCR_SPLP;
1011
1012         rspi->ops->set_config_register(rspi, 8);
1013
1014         if (msg->spi->mode &
1015             (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
1016                 /* Setup sequencer for messages with multiple transfer modes */
1017                 ret = qspi_setup_sequencer(rspi, msg);
1018                 if (ret < 0)
1019                         return ret;
1020         }
1021
1022         /* Enable SPI function in master mode */
1023         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
1024         return 0;
1025 }
1026
1027 static int rspi_unprepare_message(struct spi_controller *ctlr,
1028                                   struct spi_message *msg)
1029 {
1030         struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
1031
1032         /* Disable SPI function */
1033         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
1034
1035         /* Reset sequencer for Single SPI Transfers */
1036         rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
1037         rspi_write8(rspi, 0, RSPI_SPSCR);
1038         return 0;
1039 }
1040
1041 static irqreturn_t rspi_irq_mux(int irq, void *_sr)
1042 {
1043         struct rspi_data *rspi = _sr;
1044         u8 spsr;
1045         irqreturn_t ret = IRQ_NONE;
1046         u8 disable_irq = 0;
1047
1048         rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1049         if (spsr & SPSR_SPRF)
1050                 disable_irq |= SPCR_SPRIE;
1051         if (spsr & SPSR_SPTEF)
1052                 disable_irq |= SPCR_SPTIE;
1053
1054         if (disable_irq) {
1055                 ret = IRQ_HANDLED;
1056                 rspi_disable_irq(rspi, disable_irq);
1057                 wake_up(&rspi->wait);
1058         }
1059
1060         return ret;
1061 }
1062
1063 static irqreturn_t rspi_irq_rx(int irq, void *_sr)
1064 {
1065         struct rspi_data *rspi = _sr;
1066         u8 spsr;
1067
1068         rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1069         if (spsr & SPSR_SPRF) {
1070                 rspi_disable_irq(rspi, SPCR_SPRIE);
1071                 wake_up(&rspi->wait);
1072                 return IRQ_HANDLED;
1073         }
1074
1075         return 0;
1076 }
1077
1078 static irqreturn_t rspi_irq_tx(int irq, void *_sr)
1079 {
1080         struct rspi_data *rspi = _sr;
1081         u8 spsr;
1082
1083         rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1084         if (spsr & SPSR_SPTEF) {
1085                 rspi_disable_irq(rspi, SPCR_SPTIE);
1086                 wake_up(&rspi->wait);
1087                 return IRQ_HANDLED;
1088         }
1089
1090         return 0;
1091 }
1092
1093 static struct dma_chan *rspi_request_dma_chan(struct device *dev,
1094                                               enum dma_transfer_direction dir,
1095                                               unsigned int id,
1096                                               dma_addr_t port_addr)
1097 {
1098         dma_cap_mask_t mask;
1099         struct dma_chan *chan;
1100         struct dma_slave_config cfg;
1101         int ret;
1102
1103         dma_cap_zero(mask);
1104         dma_cap_set(DMA_SLAVE, mask);
1105
1106         chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1107                                 (void *)(unsigned long)id, dev,
1108                                 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1109         if (!chan) {
1110                 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1111                 return NULL;
1112         }
1113
1114         memset(&cfg, 0, sizeof(cfg));
1115         cfg.dst_addr = port_addr + RSPI_SPDR;
1116         cfg.src_addr = port_addr + RSPI_SPDR;
1117         cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1118         cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1119         cfg.direction = dir;
1120
1121         ret = dmaengine_slave_config(chan, &cfg);
1122         if (ret) {
1123                 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1124                 dma_release_channel(chan);
1125                 return NULL;
1126         }
1127
1128         return chan;
1129 }
1130
1131 static int rspi_request_dma(struct device *dev, struct spi_controller *ctlr,
1132                             const struct resource *res)
1133 {
1134         const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
1135         unsigned int dma_tx_id, dma_rx_id;
1136
1137         if (dev->of_node) {
1138                 /* In the OF case we will get the slave IDs from the DT */
1139                 dma_tx_id = 0;
1140                 dma_rx_id = 0;
1141         } else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
1142                 dma_tx_id = rspi_pd->dma_tx_id;
1143                 dma_rx_id = rspi_pd->dma_rx_id;
1144         } else {
1145                 /* The driver assumes no error. */
1146                 return 0;
1147         }
1148
1149         ctlr->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
1150                                              res->start);
1151         if (!ctlr->dma_tx)
1152                 return -ENODEV;
1153
1154         ctlr->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
1155                                              res->start);
1156         if (!ctlr->dma_rx) {
1157                 dma_release_channel(ctlr->dma_tx);
1158                 ctlr->dma_tx = NULL;
1159                 return -ENODEV;
1160         }
1161
1162         ctlr->can_dma = rspi_can_dma;
1163         dev_info(dev, "DMA available");
1164         return 0;
1165 }
1166
1167 static void rspi_release_dma(struct spi_controller *ctlr)
1168 {
1169         if (ctlr->dma_tx)
1170                 dma_release_channel(ctlr->dma_tx);
1171         if (ctlr->dma_rx)
1172                 dma_release_channel(ctlr->dma_rx);
1173 }
1174
1175 static void rspi_remove(struct platform_device *pdev)
1176 {
1177         struct rspi_data *rspi = platform_get_drvdata(pdev);
1178
1179         rspi_release_dma(rspi->ctlr);
1180         pm_runtime_disable(&pdev->dev);
1181 }
1182
1183 static const struct spi_ops rspi_ops = {
1184         .set_config_register =  rspi_set_config_register,
1185         .transfer_one =         rspi_transfer_one,
1186         .min_div =              2,
1187         .max_div =              4096,
1188         .flags =                SPI_CONTROLLER_MUST_TX,
1189         .fifo_size =            8,
1190         .num_hw_ss =            2,
1191 };
1192
1193 static const struct spi_ops rspi_rz_ops __maybe_unused = {
1194         .set_config_register =  rspi_rz_set_config_register,
1195         .transfer_one =         rspi_rz_transfer_one,
1196         .min_div =              2,
1197         .max_div =              4096,
1198         .flags =                SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1199         .fifo_size =            8,      /* 8 for TX, 32 for RX */
1200         .num_hw_ss =            1,
1201 };
1202
1203 static const struct spi_ops qspi_ops __maybe_unused = {
1204         .set_config_register =  qspi_set_config_register,
1205         .transfer_one =         qspi_transfer_one,
1206         .extra_mode_bits =      SPI_TX_DUAL | SPI_TX_QUAD |
1207                                 SPI_RX_DUAL | SPI_RX_QUAD,
1208         .min_div =              1,
1209         .max_div =              4080,
1210         .flags =                SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1211         .fifo_size =            32,
1212         .num_hw_ss =            1,
1213 };
1214
1215 static const struct of_device_id rspi_of_match[] __maybe_unused = {
1216         /* RSPI on legacy SH */
1217         { .compatible = "renesas,rspi", .data = &rspi_ops },
1218         /* RSPI on RZ/A1H */
1219         { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1220         /* QSPI on R-Car Gen2 */
1221         { .compatible = "renesas,qspi", .data = &qspi_ops },
1222         { /* sentinel */ }
1223 };
1224
1225 MODULE_DEVICE_TABLE(of, rspi_of_match);
1226
1227 #ifdef CONFIG_OF
1228 static void rspi_reset_control_assert(void *data)
1229 {
1230         reset_control_assert(data);
1231 }
1232
1233 static int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1234 {
1235         struct reset_control *rstc;
1236         u32 num_cs;
1237         int error;
1238
1239         /* Parse DT properties */
1240         error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1241         if (error) {
1242                 dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1243                 return error;
1244         }
1245
1246         ctlr->num_chipselect = num_cs;
1247
1248         rstc = devm_reset_control_get_optional_exclusive(dev, NULL);
1249         if (IS_ERR(rstc))
1250                 return dev_err_probe(dev, PTR_ERR(rstc),
1251                                              "failed to get reset ctrl\n");
1252
1253         error = reset_control_deassert(rstc);
1254         if (error) {
1255                 dev_err(dev, "failed to deassert reset %d\n", error);
1256                 return error;
1257         }
1258
1259         error = devm_add_action_or_reset(dev, rspi_reset_control_assert, rstc);
1260         if (error) {
1261                 dev_err(dev, "failed to register assert devm action, %d\n", error);
1262                 return error;
1263         }
1264
1265         return 0;
1266 }
1267 #else
1268 #define rspi_of_match   NULL
1269 static inline int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1270 {
1271         return -EINVAL;
1272 }
1273 #endif /* CONFIG_OF */
1274
1275 static int rspi_request_irq(struct device *dev, unsigned int irq,
1276                             irq_handler_t handler, const char *suffix,
1277                             void *dev_id)
1278 {
1279         const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
1280                                           dev_name(dev), suffix);
1281         if (!name)
1282                 return -ENOMEM;
1283
1284         return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1285 }
1286
1287 static int rspi_probe(struct platform_device *pdev)
1288 {
1289         struct resource *res;
1290         struct spi_controller *ctlr;
1291         struct rspi_data *rspi;
1292         int ret;
1293         const struct rspi_plat_data *rspi_pd;
1294         const struct spi_ops *ops;
1295         unsigned long clksrc;
1296
1297         ctlr = spi_alloc_host(&pdev->dev, sizeof(struct rspi_data));
1298         if (ctlr == NULL)
1299                 return -ENOMEM;
1300
1301         ops = of_device_get_match_data(&pdev->dev);
1302         if (ops) {
1303                 ret = rspi_parse_dt(&pdev->dev, ctlr);
1304                 if (ret)
1305                         goto error1;
1306         } else {
1307                 ops = (struct spi_ops *)pdev->id_entry->driver_data;
1308                 rspi_pd = dev_get_platdata(&pdev->dev);
1309                 if (rspi_pd && rspi_pd->num_chipselect)
1310                         ctlr->num_chipselect = rspi_pd->num_chipselect;
1311                 else
1312                         ctlr->num_chipselect = 2; /* default */
1313         }
1314
1315         rspi = spi_controller_get_devdata(ctlr);
1316         platform_set_drvdata(pdev, rspi);
1317         rspi->ops = ops;
1318         rspi->ctlr = ctlr;
1319
1320         rspi->addr = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1321         if (IS_ERR(rspi->addr)) {
1322                 ret = PTR_ERR(rspi->addr);
1323                 goto error1;
1324         }
1325
1326         rspi->clk = devm_clk_get(&pdev->dev, NULL);
1327         if (IS_ERR(rspi->clk)) {
1328                 dev_err(&pdev->dev, "cannot get clock\n");
1329                 ret = PTR_ERR(rspi->clk);
1330                 goto error1;
1331         }
1332
1333         rspi->pdev = pdev;
1334         pm_runtime_enable(&pdev->dev);
1335
1336         init_waitqueue_head(&rspi->wait);
1337         spin_lock_init(&rspi->lock);
1338
1339         ctlr->bus_num = pdev->id;
1340         ctlr->setup = rspi_setup;
1341         ctlr->auto_runtime_pm = true;
1342         ctlr->transfer_one = ops->transfer_one;
1343         ctlr->prepare_message = rspi_prepare_message;
1344         ctlr->unprepare_message = rspi_unprepare_message;
1345         ctlr->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1346                           SPI_LOOP | ops->extra_mode_bits;
1347         clksrc = clk_get_rate(rspi->clk);
1348         ctlr->min_speed_hz = DIV_ROUND_UP(clksrc, ops->max_div);
1349         ctlr->max_speed_hz = DIV_ROUND_UP(clksrc, ops->min_div);
1350         ctlr->flags = ops->flags;
1351         ctlr->dev.of_node = pdev->dev.of_node;
1352         ctlr->use_gpio_descriptors = true;
1353         ctlr->max_native_cs = rspi->ops->num_hw_ss;
1354
1355         ret = platform_get_irq_byname_optional(pdev, "rx");
1356         if (ret < 0) {
1357                 ret = platform_get_irq_byname_optional(pdev, "mux");
1358                 if (ret < 0)
1359                         ret = platform_get_irq(pdev, 0);
1360                 if (ret >= 0)
1361                         rspi->rx_irq = rspi->tx_irq = ret;
1362         } else {
1363                 rspi->rx_irq = ret;
1364                 ret = platform_get_irq_byname(pdev, "tx");
1365                 if (ret >= 0)
1366                         rspi->tx_irq = ret;
1367         }
1368
1369         if (rspi->rx_irq == rspi->tx_irq) {
1370                 /* Single multiplexed interrupt */
1371                 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1372                                        "mux", rspi);
1373         } else {
1374                 /* Multi-interrupt mode, only SPRI and SPTI are used */
1375                 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1376                                        "rx", rspi);
1377                 if (!ret)
1378                         ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1379                                                rspi_irq_tx, "tx", rspi);
1380         }
1381         if (ret < 0) {
1382                 dev_err(&pdev->dev, "request_irq error\n");
1383                 goto error2;
1384         }
1385
1386         ret = rspi_request_dma(&pdev->dev, ctlr, res);
1387         if (ret < 0)
1388                 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1389
1390         ret = devm_spi_register_controller(&pdev->dev, ctlr);
1391         if (ret < 0) {
1392                 dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
1393                 goto error3;
1394         }
1395
1396         dev_info(&pdev->dev, "probed\n");
1397
1398         return 0;
1399
1400 error3:
1401         rspi_release_dma(ctlr);
1402 error2:
1403         pm_runtime_disable(&pdev->dev);
1404 error1:
1405         spi_controller_put(ctlr);
1406
1407         return ret;
1408 }
1409
1410 static const struct platform_device_id spi_driver_ids[] = {
1411         { "rspi",       (kernel_ulong_t)&rspi_ops },
1412         {},
1413 };
1414
1415 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1416
1417 #ifdef CONFIG_PM_SLEEP
1418 static int rspi_suspend(struct device *dev)
1419 {
1420         struct rspi_data *rspi = dev_get_drvdata(dev);
1421
1422         return spi_controller_suspend(rspi->ctlr);
1423 }
1424
1425 static int rspi_resume(struct device *dev)
1426 {
1427         struct rspi_data *rspi = dev_get_drvdata(dev);
1428
1429         return spi_controller_resume(rspi->ctlr);
1430 }
1431
1432 static SIMPLE_DEV_PM_OPS(rspi_pm_ops, rspi_suspend, rspi_resume);
1433 #define DEV_PM_OPS      &rspi_pm_ops
1434 #else
1435 #define DEV_PM_OPS      NULL
1436 #endif /* CONFIG_PM_SLEEP */
1437
1438 static struct platform_driver rspi_driver = {
1439         .probe =        rspi_probe,
1440         .remove_new =   rspi_remove,
1441         .id_table =     spi_driver_ids,
1442         .driver         = {
1443                 .name = "renesas_spi",
1444                 .pm = DEV_PM_OPS,
1445                 .of_match_table = of_match_ptr(rspi_of_match),
1446         },
1447 };
1448 module_platform_driver(rspi_driver);
1449
1450 MODULE_DESCRIPTION("Renesas RSPI bus driver");
1451 MODULE_LICENSE("GPL v2");
1452 MODULE_AUTHOR("Yoshihiro Shimoda");