spi: pxa2xx: Add ready signal
[platform/kernel/linux-starfive.git] / drivers / spi / spi-pxa2xx.c
1 /*
2  * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
3  * Copyright (C) 2013, Intel Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15
16 #include <linux/bitops.h>
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/device.h>
20 #include <linux/ioport.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/interrupt.h>
24 #include <linux/kernel.h>
25 #include <linux/pci.h>
26 #include <linux/platform_device.h>
27 #include <linux/spi/pxa2xx_spi.h>
28 #include <linux/spi/spi.h>
29 #include <linux/delay.h>
30 #include <linux/gpio.h>
31 #include <linux/gpio/consumer.h>
32 #include <linux/slab.h>
33 #include <linux/clk.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/acpi.h>
36 #include <linux/of_device.h>
37
38 #include "spi-pxa2xx.h"
39
40 MODULE_AUTHOR("Stephen Street");
41 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
42 MODULE_LICENSE("GPL");
43 MODULE_ALIAS("platform:pxa2xx-spi");
44
45 #define TIMOUT_DFLT             1000
46
47 /*
48  * for testing SSCR1 changes that require SSP restart, basically
49  * everything except the service and interrupt enables, the pxa270 developer
50  * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
51  * list, but the PXA255 dev man says all bits without really meaning the
52  * service and interrupt enables
53  */
54 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
55                                 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
56                                 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
57                                 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
58                                 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
59                                 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
60
61 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF   \
62                                 | QUARK_X1000_SSCR1_EFWR        \
63                                 | QUARK_X1000_SSCR1_RFT         \
64                                 | QUARK_X1000_SSCR1_TFT         \
65                                 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
66
67 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
68                                 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
69                                 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
70                                 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
71                                 | CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
72                                 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
73
74 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE   BIT(24)
75 #define LPSS_CS_CONTROL_SW_MODE                 BIT(0)
76 #define LPSS_CS_CONTROL_CS_HIGH                 BIT(1)
77 #define LPSS_CAPS_CS_EN_SHIFT                   9
78 #define LPSS_CAPS_CS_EN_MASK                    (0xf << LPSS_CAPS_CS_EN_SHIFT)
79
80 struct lpss_config {
81         /* LPSS offset from drv_data->ioaddr */
82         unsigned offset;
83         /* Register offsets from drv_data->lpss_base or -1 */
84         int reg_general;
85         int reg_ssp;
86         int reg_cs_ctrl;
87         int reg_capabilities;
88         /* FIFO thresholds */
89         u32 rx_threshold;
90         u32 tx_threshold_lo;
91         u32 tx_threshold_hi;
92         /* Chip select control */
93         unsigned cs_sel_shift;
94         unsigned cs_sel_mask;
95         unsigned cs_num;
96 };
97
98 /* Keep these sorted with enum pxa_ssp_type */
99 static const struct lpss_config lpss_platforms[] = {
100         {       /* LPSS_LPT_SSP */
101                 .offset = 0x800,
102                 .reg_general = 0x08,
103                 .reg_ssp = 0x0c,
104                 .reg_cs_ctrl = 0x18,
105                 .reg_capabilities = -1,
106                 .rx_threshold = 64,
107                 .tx_threshold_lo = 160,
108                 .tx_threshold_hi = 224,
109         },
110         {       /* LPSS_BYT_SSP */
111                 .offset = 0x400,
112                 .reg_general = 0x08,
113                 .reg_ssp = 0x0c,
114                 .reg_cs_ctrl = 0x18,
115                 .reg_capabilities = -1,
116                 .rx_threshold = 64,
117                 .tx_threshold_lo = 160,
118                 .tx_threshold_hi = 224,
119         },
120         {       /* LPSS_BSW_SSP */
121                 .offset = 0x400,
122                 .reg_general = 0x08,
123                 .reg_ssp = 0x0c,
124                 .reg_cs_ctrl = 0x18,
125                 .reg_capabilities = -1,
126                 .rx_threshold = 64,
127                 .tx_threshold_lo = 160,
128                 .tx_threshold_hi = 224,
129                 .cs_sel_shift = 2,
130                 .cs_sel_mask = 1 << 2,
131                 .cs_num = 2,
132         },
133         {       /* LPSS_SPT_SSP */
134                 .offset = 0x200,
135                 .reg_general = -1,
136                 .reg_ssp = 0x20,
137                 .reg_cs_ctrl = 0x24,
138                 .reg_capabilities = -1,
139                 .rx_threshold = 1,
140                 .tx_threshold_lo = 32,
141                 .tx_threshold_hi = 56,
142         },
143         {       /* LPSS_BXT_SSP */
144                 .offset = 0x200,
145                 .reg_general = -1,
146                 .reg_ssp = 0x20,
147                 .reg_cs_ctrl = 0x24,
148                 .reg_capabilities = 0xfc,
149                 .rx_threshold = 1,
150                 .tx_threshold_lo = 16,
151                 .tx_threshold_hi = 48,
152                 .cs_sel_shift = 8,
153                 .cs_sel_mask = 3 << 8,
154         },
155         {       /* LPSS_CNL_SSP */
156                 .offset = 0x200,
157                 .reg_general = -1,
158                 .reg_ssp = 0x20,
159                 .reg_cs_ctrl = 0x24,
160                 .reg_capabilities = 0xfc,
161                 .rx_threshold = 1,
162                 .tx_threshold_lo = 32,
163                 .tx_threshold_hi = 56,
164                 .cs_sel_shift = 8,
165                 .cs_sel_mask = 3 << 8,
166         },
167 };
168
169 static inline const struct lpss_config
170 *lpss_get_config(const struct driver_data *drv_data)
171 {
172         return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
173 }
174
175 static bool is_lpss_ssp(const struct driver_data *drv_data)
176 {
177         switch (drv_data->ssp_type) {
178         case LPSS_LPT_SSP:
179         case LPSS_BYT_SSP:
180         case LPSS_BSW_SSP:
181         case LPSS_SPT_SSP:
182         case LPSS_BXT_SSP:
183         case LPSS_CNL_SSP:
184                 return true;
185         default:
186                 return false;
187         }
188 }
189
190 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
191 {
192         return drv_data->ssp_type == QUARK_X1000_SSP;
193 }
194
195 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
196 {
197         switch (drv_data->ssp_type) {
198         case QUARK_X1000_SSP:
199                 return QUARK_X1000_SSCR1_CHANGE_MASK;
200         case CE4100_SSP:
201                 return CE4100_SSCR1_CHANGE_MASK;
202         default:
203                 return SSCR1_CHANGE_MASK;
204         }
205 }
206
207 static u32
208 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
209 {
210         switch (drv_data->ssp_type) {
211         case QUARK_X1000_SSP:
212                 return RX_THRESH_QUARK_X1000_DFLT;
213         case CE4100_SSP:
214                 return RX_THRESH_CE4100_DFLT;
215         default:
216                 return RX_THRESH_DFLT;
217         }
218 }
219
220 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
221 {
222         u32 mask;
223
224         switch (drv_data->ssp_type) {
225         case QUARK_X1000_SSP:
226                 mask = QUARK_X1000_SSSR_TFL_MASK;
227                 break;
228         case CE4100_SSP:
229                 mask = CE4100_SSSR_TFL_MASK;
230                 break;
231         default:
232                 mask = SSSR_TFL_MASK;
233                 break;
234         }
235
236         return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
237 }
238
239 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
240                                      u32 *sccr1_reg)
241 {
242         u32 mask;
243
244         switch (drv_data->ssp_type) {
245         case QUARK_X1000_SSP:
246                 mask = QUARK_X1000_SSCR1_RFT;
247                 break;
248         case CE4100_SSP:
249                 mask = CE4100_SSCR1_RFT;
250                 break;
251         default:
252                 mask = SSCR1_RFT;
253                 break;
254         }
255         *sccr1_reg &= ~mask;
256 }
257
258 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
259                                    u32 *sccr1_reg, u32 threshold)
260 {
261         switch (drv_data->ssp_type) {
262         case QUARK_X1000_SSP:
263                 *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
264                 break;
265         case CE4100_SSP:
266                 *sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
267                 break;
268         default:
269                 *sccr1_reg |= SSCR1_RxTresh(threshold);
270                 break;
271         }
272 }
273
274 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
275                                   u32 clk_div, u8 bits)
276 {
277         switch (drv_data->ssp_type) {
278         case QUARK_X1000_SSP:
279                 return clk_div
280                         | QUARK_X1000_SSCR0_Motorola
281                         | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
282                         | SSCR0_SSE;
283         default:
284                 return clk_div
285                         | SSCR0_Motorola
286                         | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
287                         | SSCR0_SSE
288                         | (bits > 16 ? SSCR0_EDSS : 0);
289         }
290 }
291
292 /*
293  * Read and write LPSS SSP private registers. Caller must first check that
294  * is_lpss_ssp() returns true before these can be called.
295  */
296 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
297 {
298         WARN_ON(!drv_data->lpss_base);
299         return readl(drv_data->lpss_base + offset);
300 }
301
302 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
303                                   unsigned offset, u32 value)
304 {
305         WARN_ON(!drv_data->lpss_base);
306         writel(value, drv_data->lpss_base + offset);
307 }
308
309 /*
310  * lpss_ssp_setup - perform LPSS SSP specific setup
311  * @drv_data: pointer to the driver private data
312  *
313  * Perform LPSS SSP specific setup. This function must be called first if
314  * one is going to use LPSS SSP private registers.
315  */
316 static void lpss_ssp_setup(struct driver_data *drv_data)
317 {
318         const struct lpss_config *config;
319         u32 value;
320
321         config = lpss_get_config(drv_data);
322         drv_data->lpss_base = drv_data->ioaddr + config->offset;
323
324         /* Enable software chip select control */
325         value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
326         value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
327         value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
328         __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
329
330         /* Enable multiblock DMA transfers */
331         if (drv_data->master_info->enable_dma) {
332                 __lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
333
334                 if (config->reg_general >= 0) {
335                         value = __lpss_ssp_read_priv(drv_data,
336                                                      config->reg_general);
337                         value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
338                         __lpss_ssp_write_priv(drv_data,
339                                               config->reg_general, value);
340                 }
341         }
342 }
343
344 static void lpss_ssp_select_cs(struct spi_device *spi,
345                                const struct lpss_config *config)
346 {
347         struct driver_data *drv_data =
348                 spi_controller_get_devdata(spi->controller);
349         u32 value, cs;
350
351         if (!config->cs_sel_mask)
352                 return;
353
354         value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
355
356         cs = spi->chip_select;
357         cs <<= config->cs_sel_shift;
358         if (cs != (value & config->cs_sel_mask)) {
359                 /*
360                  * When switching another chip select output active the
361                  * output must be selected first and wait 2 ssp_clk cycles
362                  * before changing state to active. Otherwise a short
363                  * glitch will occur on the previous chip select since
364                  * output select is latched but state control is not.
365                  */
366                 value &= ~config->cs_sel_mask;
367                 value |= cs;
368                 __lpss_ssp_write_priv(drv_data,
369                                       config->reg_cs_ctrl, value);
370                 ndelay(1000000000 /
371                        (drv_data->master->max_speed_hz / 2));
372         }
373 }
374
375 static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
376 {
377         struct driver_data *drv_data =
378                 spi_controller_get_devdata(spi->controller);
379         const struct lpss_config *config;
380         u32 value;
381
382         config = lpss_get_config(drv_data);
383
384         if (enable)
385                 lpss_ssp_select_cs(spi, config);
386
387         value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
388         if (enable)
389                 value &= ~LPSS_CS_CONTROL_CS_HIGH;
390         else
391                 value |= LPSS_CS_CONTROL_CS_HIGH;
392         __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
393 }
394
395 static void cs_assert(struct spi_device *spi)
396 {
397         struct chip_data *chip = spi_get_ctldata(spi);
398         struct driver_data *drv_data =
399                 spi_controller_get_devdata(spi->controller);
400
401         if (drv_data->ssp_type == CE4100_SSP) {
402                 pxa2xx_spi_write(drv_data, SSSR, chip->frm);
403                 return;
404         }
405
406         if (chip->cs_control) {
407                 chip->cs_control(PXA2XX_CS_ASSERT);
408                 return;
409         }
410
411         if (chip->gpiod_cs) {
412                 gpiod_set_value(chip->gpiod_cs, chip->gpio_cs_inverted);
413                 return;
414         }
415
416         if (is_lpss_ssp(drv_data))
417                 lpss_ssp_cs_control(spi, true);
418 }
419
420 static void cs_deassert(struct spi_device *spi)
421 {
422         struct chip_data *chip = spi_get_ctldata(spi);
423         struct driver_data *drv_data =
424                 spi_controller_get_devdata(spi->controller);
425         unsigned long timeout;
426
427         if (drv_data->ssp_type == CE4100_SSP)
428                 return;
429
430         /* Wait until SSP becomes idle before deasserting the CS */
431         timeout = jiffies + msecs_to_jiffies(10);
432         while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
433                !time_after(jiffies, timeout))
434                 cpu_relax();
435
436         if (chip->cs_control) {
437                 chip->cs_control(PXA2XX_CS_DEASSERT);
438                 return;
439         }
440
441         if (chip->gpiod_cs) {
442                 gpiod_set_value(chip->gpiod_cs, !chip->gpio_cs_inverted);
443                 return;
444         }
445
446         if (is_lpss_ssp(drv_data))
447                 lpss_ssp_cs_control(spi, false);
448 }
449
450 static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
451 {
452         if (level)
453                 cs_deassert(spi);
454         else
455                 cs_assert(spi);
456 }
457
458 int pxa2xx_spi_flush(struct driver_data *drv_data)
459 {
460         unsigned long limit = loops_per_jiffy << 1;
461
462         do {
463                 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
464                         pxa2xx_spi_read(drv_data, SSDR);
465         } while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
466         write_SSSR_CS(drv_data, SSSR_ROR);
467
468         return limit;
469 }
470
471 static int null_writer(struct driver_data *drv_data)
472 {
473         u8 n_bytes = drv_data->n_bytes;
474
475         if (pxa2xx_spi_txfifo_full(drv_data)
476                 || (drv_data->tx == drv_data->tx_end))
477                 return 0;
478
479         pxa2xx_spi_write(drv_data, SSDR, 0);
480         drv_data->tx += n_bytes;
481
482         return 1;
483 }
484
485 static int null_reader(struct driver_data *drv_data)
486 {
487         u8 n_bytes = drv_data->n_bytes;
488
489         while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
490                && (drv_data->rx < drv_data->rx_end)) {
491                 pxa2xx_spi_read(drv_data, SSDR);
492                 drv_data->rx += n_bytes;
493         }
494
495         return drv_data->rx == drv_data->rx_end;
496 }
497
498 static int u8_writer(struct driver_data *drv_data)
499 {
500         if (pxa2xx_spi_txfifo_full(drv_data)
501                 || (drv_data->tx == drv_data->tx_end))
502                 return 0;
503
504         pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
505         ++drv_data->tx;
506
507         return 1;
508 }
509
510 static int u8_reader(struct driver_data *drv_data)
511 {
512         while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
513                && (drv_data->rx < drv_data->rx_end)) {
514                 *(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
515                 ++drv_data->rx;
516         }
517
518         return drv_data->rx == drv_data->rx_end;
519 }
520
521 static int u16_writer(struct driver_data *drv_data)
522 {
523         if (pxa2xx_spi_txfifo_full(drv_data)
524                 || (drv_data->tx == drv_data->tx_end))
525                 return 0;
526
527         pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
528         drv_data->tx += 2;
529
530         return 1;
531 }
532
533 static int u16_reader(struct driver_data *drv_data)
534 {
535         while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
536                && (drv_data->rx < drv_data->rx_end)) {
537                 *(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
538                 drv_data->rx += 2;
539         }
540
541         return drv_data->rx == drv_data->rx_end;
542 }
543
544 static int u32_writer(struct driver_data *drv_data)
545 {
546         if (pxa2xx_spi_txfifo_full(drv_data)
547                 || (drv_data->tx == drv_data->tx_end))
548                 return 0;
549
550         pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
551         drv_data->tx += 4;
552
553         return 1;
554 }
555
556 static int u32_reader(struct driver_data *drv_data)
557 {
558         while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
559                && (drv_data->rx < drv_data->rx_end)) {
560                 *(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
561                 drv_data->rx += 4;
562         }
563
564         return drv_data->rx == drv_data->rx_end;
565 }
566
567 static void reset_sccr1(struct driver_data *drv_data)
568 {
569         struct chip_data *chip =
570                 spi_get_ctldata(drv_data->master->cur_msg->spi);
571         u32 sccr1_reg;
572
573         sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
574         switch (drv_data->ssp_type) {
575         case QUARK_X1000_SSP:
576                 sccr1_reg &= ~QUARK_X1000_SSCR1_RFT;
577                 break;
578         case CE4100_SSP:
579                 sccr1_reg &= ~CE4100_SSCR1_RFT;
580                 break;
581         default:
582                 sccr1_reg &= ~SSCR1_RFT;
583                 break;
584         }
585         sccr1_reg |= chip->threshold;
586         pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
587 }
588
589 static void int_error_stop(struct driver_data *drv_data, const char* msg)
590 {
591         /* Stop and reset SSP */
592         write_SSSR_CS(drv_data, drv_data->clear_sr);
593         reset_sccr1(drv_data);
594         if (!pxa25x_ssp_comp(drv_data))
595                 pxa2xx_spi_write(drv_data, SSTO, 0);
596         pxa2xx_spi_flush(drv_data);
597         pxa2xx_spi_write(drv_data, SSCR0,
598                          pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
599
600         dev_err(&drv_data->pdev->dev, "%s\n", msg);
601
602         drv_data->master->cur_msg->status = -EIO;
603         spi_finalize_current_transfer(drv_data->master);
604 }
605
606 static void int_transfer_complete(struct driver_data *drv_data)
607 {
608         /* Clear and disable interrupts */
609         write_SSSR_CS(drv_data, drv_data->clear_sr);
610         reset_sccr1(drv_data);
611         if (!pxa25x_ssp_comp(drv_data))
612                 pxa2xx_spi_write(drv_data, SSTO, 0);
613
614         spi_finalize_current_transfer(drv_data->master);
615 }
616
617 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
618 {
619         u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
620                        drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
621
622         u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
623
624         if (irq_status & SSSR_ROR) {
625                 int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
626                 return IRQ_HANDLED;
627         }
628
629         if (irq_status & SSSR_TUR) {
630                 int_error_stop(drv_data, "interrupt_transfer: fifo underrun");
631                 return IRQ_HANDLED;
632         }
633
634         if (irq_status & SSSR_TINT) {
635                 pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
636                 if (drv_data->read(drv_data)) {
637                         int_transfer_complete(drv_data);
638                         return IRQ_HANDLED;
639                 }
640         }
641
642         /* Drain rx fifo, Fill tx fifo and prevent overruns */
643         do {
644                 if (drv_data->read(drv_data)) {
645                         int_transfer_complete(drv_data);
646                         return IRQ_HANDLED;
647                 }
648         } while (drv_data->write(drv_data));
649
650         if (drv_data->read(drv_data)) {
651                 int_transfer_complete(drv_data);
652                 return IRQ_HANDLED;
653         }
654
655         if (drv_data->tx == drv_data->tx_end) {
656                 u32 bytes_left;
657                 u32 sccr1_reg;
658
659                 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
660                 sccr1_reg &= ~SSCR1_TIE;
661
662                 /*
663                  * PXA25x_SSP has no timeout, set up rx threshould for the
664                  * remaining RX bytes.
665                  */
666                 if (pxa25x_ssp_comp(drv_data)) {
667                         u32 rx_thre;
668
669                         pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
670
671                         bytes_left = drv_data->rx_end - drv_data->rx;
672                         switch (drv_data->n_bytes) {
673                         case 4:
674                                 bytes_left >>= 2;
675                                 break;
676                         case 2:
677                                 bytes_left >>= 1;
678                                 break;
679                         }
680
681                         rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
682                         if (rx_thre > bytes_left)
683                                 rx_thre = bytes_left;
684
685                         pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
686                 }
687                 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
688         }
689
690         /* We did something */
691         return IRQ_HANDLED;
692 }
693
694 static void handle_bad_msg(struct driver_data *drv_data)
695 {
696         pxa2xx_spi_write(drv_data, SSCR0,
697                          pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
698         pxa2xx_spi_write(drv_data, SSCR1,
699                          pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1);
700         if (!pxa25x_ssp_comp(drv_data))
701                 pxa2xx_spi_write(drv_data, SSTO, 0);
702         write_SSSR_CS(drv_data, drv_data->clear_sr);
703
704         dev_err(&drv_data->pdev->dev,
705                 "bad message state in interrupt handler\n");
706 }
707
708 static irqreturn_t ssp_int(int irq, void *dev_id)
709 {
710         struct driver_data *drv_data = dev_id;
711         u32 sccr1_reg;
712         u32 mask = drv_data->mask_sr;
713         u32 status;
714
715         /*
716          * The IRQ might be shared with other peripherals so we must first
717          * check that are we RPM suspended or not. If we are we assume that
718          * the IRQ was not for us (we shouldn't be RPM suspended when the
719          * interrupt is enabled).
720          */
721         if (pm_runtime_suspended(&drv_data->pdev->dev))
722                 return IRQ_NONE;
723
724         /*
725          * If the device is not yet in RPM suspended state and we get an
726          * interrupt that is meant for another device, check if status bits
727          * are all set to one. That means that the device is already
728          * powered off.
729          */
730         status = pxa2xx_spi_read(drv_data, SSSR);
731         if (status == ~0)
732                 return IRQ_NONE;
733
734         sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
735
736         /* Ignore possible writes if we don't need to write */
737         if (!(sccr1_reg & SSCR1_TIE))
738                 mask &= ~SSSR_TFS;
739
740         /* Ignore RX timeout interrupt if it is disabled */
741         if (!(sccr1_reg & SSCR1_TINTE))
742                 mask &= ~SSSR_TINT;
743
744         if (!(status & mask))
745                 return IRQ_NONE;
746
747         pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
748         pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
749
750         if (!drv_data->master->cur_msg) {
751                 handle_bad_msg(drv_data);
752                 /* Never fail */
753                 return IRQ_HANDLED;
754         }
755
756         return drv_data->transfer_handler(drv_data);
757 }
758
759 /*
760  * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
761  * input frequency by fractions of 2^24. It also has a divider by 5.
762  *
763  * There are formulas to get baud rate value for given input frequency and
764  * divider parameters, such as DDS_CLK_RATE and SCR:
765  *
766  * Fsys = 200MHz
767  *
768  * Fssp = Fsys * DDS_CLK_RATE / 2^24                    (1)
769  * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))           (2)
770  *
771  * DDS_CLK_RATE either 2^n or 2^n / 5.
772  * SCR is in range 0 .. 255
773  *
774  * Divisor = 5^i * 2^j * 2 * k
775  *       i = [0, 1]      i = 1 iff j = 0 or j > 3
776  *       j = [0, 23]     j = 0 iff i = 1
777  *       k = [1, 256]
778  * Special case: j = 0, i = 1: Divisor = 2 / 5
779  *
780  * Accordingly to the specification the recommended values for DDS_CLK_RATE
781  * are:
782  *      Case 1:         2^n, n = [0, 23]
783  *      Case 2:         2^24 * 2 / 5 (0x666666)
784  *      Case 3:         less than or equal to 2^24 / 5 / 16 (0x33333)
785  *
786  * In all cases the lowest possible value is better.
787  *
788  * The function calculates parameters for all cases and chooses the one closest
789  * to the asked baud rate.
790  */
791 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
792 {
793         unsigned long xtal = 200000000;
794         unsigned long fref = xtal / 2;          /* mandatory division by 2,
795                                                    see (2) */
796                                                 /* case 3 */
797         unsigned long fref1 = fref / 2;         /* case 1 */
798         unsigned long fref2 = fref * 2 / 5;     /* case 2 */
799         unsigned long scale;
800         unsigned long q, q1, q2;
801         long r, r1, r2;
802         u32 mul;
803
804         /* Case 1 */
805
806         /* Set initial value for DDS_CLK_RATE */
807         mul = (1 << 24) >> 1;
808
809         /* Calculate initial quot */
810         q1 = DIV_ROUND_UP(fref1, rate);
811
812         /* Scale q1 if it's too big */
813         if (q1 > 256) {
814                 /* Scale q1 to range [1, 512] */
815                 scale = fls_long(q1 - 1);
816                 if (scale > 9) {
817                         q1 >>= scale - 9;
818                         mul >>= scale - 9;
819                 }
820
821                 /* Round the result if we have a remainder */
822                 q1 += q1 & 1;
823         }
824
825         /* Decrease DDS_CLK_RATE as much as we can without loss in precision */
826         scale = __ffs(q1);
827         q1 >>= scale;
828         mul >>= scale;
829
830         /* Get the remainder */
831         r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
832
833         /* Case 2 */
834
835         q2 = DIV_ROUND_UP(fref2, rate);
836         r2 = abs(fref2 / q2 - rate);
837
838         /*
839          * Choose the best between two: less remainder we have the better. We
840          * can't go case 2 if q2 is greater than 256 since SCR register can
841          * hold only values 0 .. 255.
842          */
843         if (r2 >= r1 || q2 > 256) {
844                 /* case 1 is better */
845                 r = r1;
846                 q = q1;
847         } else {
848                 /* case 2 is better */
849                 r = r2;
850                 q = q2;
851                 mul = (1 << 24) * 2 / 5;
852         }
853
854         /* Check case 3 only if the divisor is big enough */
855         if (fref / rate >= 80) {
856                 u64 fssp;
857                 u32 m;
858
859                 /* Calculate initial quot */
860                 q1 = DIV_ROUND_UP(fref, rate);
861                 m = (1 << 24) / q1;
862
863                 /* Get the remainder */
864                 fssp = (u64)fref * m;
865                 do_div(fssp, 1 << 24);
866                 r1 = abs(fssp - rate);
867
868                 /* Choose this one if it suits better */
869                 if (r1 < r) {
870                         /* case 3 is better */
871                         q = 1;
872                         mul = m;
873                 }
874         }
875
876         *dds = mul;
877         return q - 1;
878 }
879
880 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
881 {
882         unsigned long ssp_clk = drv_data->master->max_speed_hz;
883         const struct ssp_device *ssp = drv_data->ssp;
884
885         rate = min_t(int, ssp_clk, rate);
886
887         if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
888                 return (ssp_clk / (2 * rate) - 1) & 0xff;
889         else
890                 return (ssp_clk / rate - 1) & 0xfff;
891 }
892
893 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
894                                            int rate)
895 {
896         struct chip_data *chip =
897                 spi_get_ctldata(drv_data->master->cur_msg->spi);
898         unsigned int clk_div;
899
900         switch (drv_data->ssp_type) {
901         case QUARK_X1000_SSP:
902                 clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
903                 break;
904         default:
905                 clk_div = ssp_get_clk_div(drv_data, rate);
906                 break;
907         }
908         return clk_div << 8;
909 }
910
911 static bool pxa2xx_spi_can_dma(struct spi_controller *master,
912                                struct spi_device *spi,
913                                struct spi_transfer *xfer)
914 {
915         struct chip_data *chip = spi_get_ctldata(spi);
916
917         return chip->enable_dma &&
918                xfer->len <= MAX_DMA_LEN &&
919                xfer->len >= chip->dma_burst_size;
920 }
921
922 static int pxa2xx_spi_transfer_one(struct spi_controller *master,
923                                    struct spi_device *spi,
924                                    struct spi_transfer *transfer)
925 {
926         struct driver_data *drv_data = spi_controller_get_devdata(master);
927         struct spi_message *message = master->cur_msg;
928         struct chip_data *chip = spi_get_ctldata(message->spi);
929         u32 dma_thresh = chip->dma_threshold;
930         u32 dma_burst = chip->dma_burst_size;
931         u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
932         u32 clk_div;
933         u8 bits;
934         u32 speed;
935         u32 cr0;
936         u32 cr1;
937         int err;
938         int dma_mapped;
939
940         /* Check if we can DMA this transfer */
941         if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
942
943                 /* reject already-mapped transfers; PIO won't always work */
944                 if (message->is_dma_mapped
945                                 || transfer->rx_dma || transfer->tx_dma) {
946                         dev_err(&drv_data->pdev->dev,
947                                 "Mapped transfer length of %u is greater than %d\n",
948                                 transfer->len, MAX_DMA_LEN);
949                         return -EINVAL;
950                 }
951
952                 /* warn ... we force this to PIO mode */
953                 dev_warn_ratelimited(&message->spi->dev,
954                                      "DMA disabled for transfer length %ld greater than %d\n",
955                                      (long)transfer->len, MAX_DMA_LEN);
956         }
957
958         /* Setup the transfer state based on the type of transfer */
959         if (pxa2xx_spi_flush(drv_data) == 0) {
960                 dev_err(&drv_data->pdev->dev, "Flush failed\n");
961                 return -EIO;
962         }
963         drv_data->n_bytes = chip->n_bytes;
964         drv_data->tx = (void *)transfer->tx_buf;
965         drv_data->tx_end = drv_data->tx + transfer->len;
966         drv_data->rx = transfer->rx_buf;
967         drv_data->rx_end = drv_data->rx + transfer->len;
968         drv_data->write = drv_data->tx ? chip->write : null_writer;
969         drv_data->read = drv_data->rx ? chip->read : null_reader;
970
971         /* Change speed and bit per word on a per transfer */
972         bits = transfer->bits_per_word;
973         speed = transfer->speed_hz;
974
975         clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
976
977         if (bits <= 8) {
978                 drv_data->n_bytes = 1;
979                 drv_data->read = drv_data->read != null_reader ?
980                                         u8_reader : null_reader;
981                 drv_data->write = drv_data->write != null_writer ?
982                                         u8_writer : null_writer;
983         } else if (bits <= 16) {
984                 drv_data->n_bytes = 2;
985                 drv_data->read = drv_data->read != null_reader ?
986                                         u16_reader : null_reader;
987                 drv_data->write = drv_data->write != null_writer ?
988                                         u16_writer : null_writer;
989         } else if (bits <= 32) {
990                 drv_data->n_bytes = 4;
991                 drv_data->read = drv_data->read != null_reader ?
992                                         u32_reader : null_reader;
993                 drv_data->write = drv_data->write != null_writer ?
994                                         u32_writer : null_writer;
995         }
996         /*
997          * if bits/word is changed in dma mode, then must check the
998          * thresholds and burst also
999          */
1000         if (chip->enable_dma) {
1001                 if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1002                                                 message->spi,
1003                                                 bits, &dma_burst,
1004                                                 &dma_thresh))
1005                         dev_warn_ratelimited(&message->spi->dev,
1006                                              "DMA burst size reduced to match bits_per_word\n");
1007         }
1008
1009         dma_mapped = master->can_dma &&
1010                      master->can_dma(master, message->spi, transfer) &&
1011                      master->cur_msg_mapped;
1012         if (dma_mapped) {
1013
1014                 /* Ensure we have the correct interrupt handler */
1015                 drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1016
1017                 err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1018                 if (err)
1019                         return err;
1020
1021                 /* Clear status and start DMA engine */
1022                 cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1023                 pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1024
1025                 pxa2xx_spi_dma_start(drv_data);
1026         } else {
1027                 /* Ensure we have the correct interrupt handler */
1028                 drv_data->transfer_handler = interrupt_transfer;
1029
1030                 /* Clear status  */
1031                 cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1032                 write_SSSR_CS(drv_data, drv_data->clear_sr);
1033         }
1034
1035         /* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1036         cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1037         if (!pxa25x_ssp_comp(drv_data))
1038                 dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1039                         master->max_speed_hz
1040                                 / (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1041                         dma_mapped ? "DMA" : "PIO");
1042         else
1043                 dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1044                         master->max_speed_hz / 2
1045                                 / (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1046                         dma_mapped ? "DMA" : "PIO");
1047
1048         if (is_lpss_ssp(drv_data)) {
1049                 if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
1050                     != chip->lpss_rx_threshold)
1051                         pxa2xx_spi_write(drv_data, SSIRF,
1052                                          chip->lpss_rx_threshold);
1053                 if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
1054                     != chip->lpss_tx_threshold)
1055                         pxa2xx_spi_write(drv_data, SSITF,
1056                                          chip->lpss_tx_threshold);
1057         }
1058
1059         if (is_quark_x1000_ssp(drv_data) &&
1060             (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1061                 pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1062
1063         /* see if we need to reload the config registers */
1064         if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1065             || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1066             != (cr1 & change_mask)) {
1067                 /* stop the SSP, and update the other bits */
1068                 pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1069                 if (!pxa25x_ssp_comp(drv_data))
1070                         pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1071                 /* first set CR1 without interrupt and service enables */
1072                 pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1073                 /* restart the SSP */
1074                 pxa2xx_spi_write(drv_data, SSCR0, cr0);
1075
1076         } else {
1077                 if (!pxa25x_ssp_comp(drv_data))
1078                         pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1079         }
1080
1081         if (spi_controller_is_slave(master)) {
1082                 while (drv_data->write(drv_data))
1083                         ;
1084                 if (drv_data->gpiod_ready) {
1085                         gpiod_set_value(drv_data->gpiod_ready, 1);
1086                         udelay(1);
1087                         gpiod_set_value(drv_data->gpiod_ready, 0);
1088                 }
1089         }
1090
1091         /*
1092          * Release the data by enabling service requests and interrupts,
1093          * without changing any mode bits
1094          */
1095         pxa2xx_spi_write(drv_data, SSCR1, cr1);
1096
1097         return 1;
1098 }
1099
1100 static int pxa2xx_spi_slave_abort(struct spi_master *master)
1101 {
1102         struct driver_data *drv_data = spi_controller_get_devdata(master);
1103
1104         /* Stop and reset SSP */
1105         write_SSSR_CS(drv_data, drv_data->clear_sr);
1106         reset_sccr1(drv_data);
1107         if (!pxa25x_ssp_comp(drv_data))
1108                 pxa2xx_spi_write(drv_data, SSTO, 0);
1109         pxa2xx_spi_flush(drv_data);
1110         pxa2xx_spi_write(drv_data, SSCR0,
1111                          pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1112
1113         dev_dbg(&drv_data->pdev->dev, "transfer aborted\n");
1114
1115         drv_data->master->cur_msg->status = -EINTR;
1116         spi_finalize_current_transfer(drv_data->master);
1117
1118         return 0;
1119 }
1120
1121 static void pxa2xx_spi_handle_err(struct spi_controller *master,
1122                                  struct spi_message *msg)
1123 {
1124         struct driver_data *drv_data = spi_controller_get_devdata(master);
1125
1126         /* Disable the SSP */
1127         pxa2xx_spi_write(drv_data, SSCR0,
1128                          pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1129         /* Clear and disable interrupts and service requests */
1130         write_SSSR_CS(drv_data, drv_data->clear_sr);
1131         pxa2xx_spi_write(drv_data, SSCR1,
1132                          pxa2xx_spi_read(drv_data, SSCR1)
1133                          & ~(drv_data->int_cr1 | drv_data->dma_cr1));
1134         if (!pxa25x_ssp_comp(drv_data))
1135                 pxa2xx_spi_write(drv_data, SSTO, 0);
1136
1137         /*
1138          * Stop the DMA if running. Note DMA callback handler may have unset
1139          * the dma_running already, which is fine as stopping is not needed
1140          * then but we shouldn't rely this flag for anything else than
1141          * stopping. For instance to differentiate between PIO and DMA
1142          * transfers.
1143          */
1144         if (atomic_read(&drv_data->dma_running))
1145                 pxa2xx_spi_dma_stop(drv_data);
1146 }
1147
1148 static int pxa2xx_spi_unprepare_transfer(struct spi_controller *master)
1149 {
1150         struct driver_data *drv_data = spi_controller_get_devdata(master);
1151
1152         /* Disable the SSP now */
1153         pxa2xx_spi_write(drv_data, SSCR0,
1154                          pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1155
1156         return 0;
1157 }
1158
1159 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1160                     struct pxa2xx_spi_chip *chip_info)
1161 {
1162         struct driver_data *drv_data =
1163                 spi_controller_get_devdata(spi->controller);
1164         struct gpio_desc *gpiod;
1165         int err = 0;
1166
1167         if (chip == NULL)
1168                 return 0;
1169
1170         if (drv_data->cs_gpiods) {
1171                 gpiod = drv_data->cs_gpiods[spi->chip_select];
1172                 if (gpiod) {
1173                         chip->gpiod_cs = gpiod;
1174                         chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1175                         gpiod_set_value(gpiod, chip->gpio_cs_inverted);
1176                 }
1177
1178                 return 0;
1179         }
1180
1181         if (chip_info == NULL)
1182                 return 0;
1183
1184         /* NOTE: setup() can be called multiple times, possibly with
1185          * different chip_info, release previously requested GPIO
1186          */
1187         if (chip->gpiod_cs) {
1188                 gpiod_put(chip->gpiod_cs);
1189                 chip->gpiod_cs = NULL;
1190         }
1191
1192         /* If (*cs_control) is provided, ignore GPIO chip select */
1193         if (chip_info->cs_control) {
1194                 chip->cs_control = chip_info->cs_control;
1195                 return 0;
1196         }
1197
1198         if (gpio_is_valid(chip_info->gpio_cs)) {
1199                 err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1200                 if (err) {
1201                         dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1202                                 chip_info->gpio_cs);
1203                         return err;
1204                 }
1205
1206                 gpiod = gpio_to_desc(chip_info->gpio_cs);
1207                 chip->gpiod_cs = gpiod;
1208                 chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1209
1210                 err = gpiod_direction_output(gpiod, !chip->gpio_cs_inverted);
1211         }
1212
1213         return err;
1214 }
1215
1216 static int setup(struct spi_device *spi)
1217 {
1218         struct pxa2xx_spi_chip *chip_info;
1219         struct chip_data *chip;
1220         const struct lpss_config *config;
1221         struct driver_data *drv_data =
1222                 spi_controller_get_devdata(spi->controller);
1223         uint tx_thres, tx_hi_thres, rx_thres;
1224
1225         switch (drv_data->ssp_type) {
1226         case QUARK_X1000_SSP:
1227                 tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1228                 tx_hi_thres = 0;
1229                 rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1230                 break;
1231         case CE4100_SSP:
1232                 tx_thres = TX_THRESH_CE4100_DFLT;
1233                 tx_hi_thres = 0;
1234                 rx_thres = RX_THRESH_CE4100_DFLT;
1235                 break;
1236         case LPSS_LPT_SSP:
1237         case LPSS_BYT_SSP:
1238         case LPSS_BSW_SSP:
1239         case LPSS_SPT_SSP:
1240         case LPSS_BXT_SSP:
1241         case LPSS_CNL_SSP:
1242                 config = lpss_get_config(drv_data);
1243                 tx_thres = config->tx_threshold_lo;
1244                 tx_hi_thres = config->tx_threshold_hi;
1245                 rx_thres = config->rx_threshold;
1246                 break;
1247         default:
1248                 tx_hi_thres = 0;
1249                 if (spi_controller_is_slave(drv_data->master)) {
1250                         tx_thres = 1;
1251                         rx_thres = 2;
1252                 } else {
1253                         tx_thres = TX_THRESH_DFLT;
1254                         rx_thres = RX_THRESH_DFLT;
1255                 }
1256                 break;
1257         }
1258
1259         /* Only alloc on first setup */
1260         chip = spi_get_ctldata(spi);
1261         if (!chip) {
1262                 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1263                 if (!chip)
1264                         return -ENOMEM;
1265
1266                 if (drv_data->ssp_type == CE4100_SSP) {
1267                         if (spi->chip_select > 4) {
1268                                 dev_err(&spi->dev,
1269                                         "failed setup: cs number must not be > 4.\n");
1270                                 kfree(chip);
1271                                 return -EINVAL;
1272                         }
1273
1274                         chip->frm = spi->chip_select;
1275                 }
1276                 chip->enable_dma = drv_data->master_info->enable_dma;
1277                 chip->timeout = TIMOUT_DFLT;
1278         }
1279
1280         /* protocol drivers may change the chip settings, so...
1281          * if chip_info exists, use it */
1282         chip_info = spi->controller_data;
1283
1284         /* chip_info isn't always needed */
1285         chip->cr1 = 0;
1286         if (chip_info) {
1287                 if (chip_info->timeout)
1288                         chip->timeout = chip_info->timeout;
1289                 if (chip_info->tx_threshold)
1290                         tx_thres = chip_info->tx_threshold;
1291                 if (chip_info->tx_hi_threshold)
1292                         tx_hi_thres = chip_info->tx_hi_threshold;
1293                 if (chip_info->rx_threshold)
1294                         rx_thres = chip_info->rx_threshold;
1295                 chip->dma_threshold = 0;
1296                 if (chip_info->enable_loopback)
1297                         chip->cr1 = SSCR1_LBM;
1298         }
1299         if (spi_controller_is_slave(drv_data->master)) {
1300                 chip->cr1 |= SSCR1_SCFR;
1301                 chip->cr1 |= SSCR1_SCLKDIR;
1302                 chip->cr1 |= SSCR1_SFRMDIR;
1303                 chip->cr1 |= SSCR1_SPH;
1304         }
1305
1306         chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1307         chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1308                                 | SSITF_TxHiThresh(tx_hi_thres);
1309
1310         /* set dma burst and threshold outside of chip_info path so that if
1311          * chip_info goes away after setting chip->enable_dma, the
1312          * burst and threshold can still respond to changes in bits_per_word */
1313         if (chip->enable_dma) {
1314                 /* set up legal burst and threshold for dma */
1315                 if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1316                                                 spi->bits_per_word,
1317                                                 &chip->dma_burst_size,
1318                                                 &chip->dma_threshold)) {
1319                         dev_warn(&spi->dev,
1320                                  "in setup: DMA burst size reduced to match bits_per_word\n");
1321                 }
1322         }
1323
1324         switch (drv_data->ssp_type) {
1325         case QUARK_X1000_SSP:
1326                 chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1327                                    & QUARK_X1000_SSCR1_RFT)
1328                                    | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1329                                    & QUARK_X1000_SSCR1_TFT);
1330                 break;
1331         case CE4100_SSP:
1332                 chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1333                         (CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1334                 break;
1335         default:
1336                 chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1337                         (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1338                 break;
1339         }
1340
1341         chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1342         chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1343                         | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1344
1345         if (spi->mode & SPI_LOOP)
1346                 chip->cr1 |= SSCR1_LBM;
1347
1348         if (spi->bits_per_word <= 8) {
1349                 chip->n_bytes = 1;
1350                 chip->read = u8_reader;
1351                 chip->write = u8_writer;
1352         } else if (spi->bits_per_word <= 16) {
1353                 chip->n_bytes = 2;
1354                 chip->read = u16_reader;
1355                 chip->write = u16_writer;
1356         } else if (spi->bits_per_word <= 32) {
1357                 chip->n_bytes = 4;
1358                 chip->read = u32_reader;
1359                 chip->write = u32_writer;
1360         }
1361
1362         spi_set_ctldata(spi, chip);
1363
1364         if (drv_data->ssp_type == CE4100_SSP)
1365                 return 0;
1366
1367         return setup_cs(spi, chip, chip_info);
1368 }
1369
1370 static void cleanup(struct spi_device *spi)
1371 {
1372         struct chip_data *chip = spi_get_ctldata(spi);
1373         struct driver_data *drv_data =
1374                 spi_controller_get_devdata(spi->controller);
1375
1376         if (!chip)
1377                 return;
1378
1379         if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods &&
1380             chip->gpiod_cs)
1381                 gpiod_put(chip->gpiod_cs);
1382
1383         kfree(chip);
1384 }
1385
1386 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1387         { "INT33C0", LPSS_LPT_SSP },
1388         { "INT33C1", LPSS_LPT_SSP },
1389         { "INT3430", LPSS_LPT_SSP },
1390         { "INT3431", LPSS_LPT_SSP },
1391         { "80860F0E", LPSS_BYT_SSP },
1392         { "8086228E", LPSS_BSW_SSP },
1393         { },
1394 };
1395 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1396
1397 /*
1398  * PCI IDs of compound devices that integrate both host controller and private
1399  * integrated DMA engine. Please note these are not used in module
1400  * autoloading and probing in this module but matching the LPSS SSP type.
1401  */
1402 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1403         /* SPT-LP */
1404         { PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1405         { PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1406         /* SPT-H */
1407         { PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1408         { PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1409         /* KBL-H */
1410         { PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1411         { PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1412         /* BXT A-Step */
1413         { PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1414         { PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1415         { PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1416         /* BXT B-Step */
1417         { PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1418         { PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1419         { PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1420         /* GLK */
1421         { PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
1422         { PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
1423         { PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
1424         /* ICL-LP */
1425         { PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP },
1426         { PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP },
1427         { PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP },
1428         /* APL */
1429         { PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1430         { PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1431         { PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1432         /* CNL-LP */
1433         { PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
1434         { PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
1435         { PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
1436         /* CNL-H */
1437         { PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
1438         { PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
1439         { PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
1440         { },
1441 };
1442
1443 static const struct of_device_id pxa2xx_spi_of_match[] = {
1444         { .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP },
1445         {},
1446 };
1447 MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match);
1448
1449 #ifdef CONFIG_ACPI
1450
1451 static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1452 {
1453         unsigned int devid;
1454         int port_id = -1;
1455
1456         if (adev && adev->pnp.unique_id &&
1457             !kstrtouint(adev->pnp.unique_id, 0, &devid))
1458                 port_id = devid;
1459         return port_id;
1460 }
1461
1462 #else /* !CONFIG_ACPI */
1463
1464 static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1465 {
1466         return -1;
1467 }
1468
1469 #endif /* CONFIG_ACPI */
1470
1471
1472 #ifdef CONFIG_PCI
1473
1474 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1475 {
1476         struct device *dev = param;
1477
1478         if (dev != chan->device->dev->parent)
1479                 return false;
1480
1481         return true;
1482 }
1483
1484 #endif /* CONFIG_PCI */
1485
1486 static struct pxa2xx_spi_master *
1487 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1488 {
1489         struct pxa2xx_spi_master *pdata;
1490         struct acpi_device *adev;
1491         struct ssp_device *ssp;
1492         struct resource *res;
1493         const struct acpi_device_id *adev_id = NULL;
1494         const struct pci_device_id *pcidev_id = NULL;
1495         const struct of_device_id *of_id = NULL;
1496         enum pxa_ssp_type type;
1497
1498         adev = ACPI_COMPANION(&pdev->dev);
1499
1500         if (pdev->dev.of_node)
1501                 of_id = of_match_device(pdev->dev.driver->of_match_table,
1502                                         &pdev->dev);
1503         else if (dev_is_pci(pdev->dev.parent))
1504                 pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match,
1505                                          to_pci_dev(pdev->dev.parent));
1506         else if (adev)
1507                 adev_id = acpi_match_device(pdev->dev.driver->acpi_match_table,
1508                                             &pdev->dev);
1509         else
1510                 return NULL;
1511
1512         if (adev_id)
1513                 type = (enum pxa_ssp_type)adev_id->driver_data;
1514         else if (pcidev_id)
1515                 type = (enum pxa_ssp_type)pcidev_id->driver_data;
1516         else if (of_id)
1517                 type = (enum pxa_ssp_type)of_id->data;
1518         else
1519                 return NULL;
1520
1521         pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1522         if (!pdata)
1523                 return NULL;
1524
1525         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1526         if (!res)
1527                 return NULL;
1528
1529         ssp = &pdata->ssp;
1530
1531         ssp->phys_base = res->start;
1532         ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1533         if (IS_ERR(ssp->mmio_base))
1534                 return NULL;
1535
1536 #ifdef CONFIG_PCI
1537         if (pcidev_id) {
1538                 pdata->tx_param = pdev->dev.parent;
1539                 pdata->rx_param = pdev->dev.parent;
1540                 pdata->dma_filter = pxa2xx_spi_idma_filter;
1541         }
1542 #endif
1543
1544 #if CONFIG_OF
1545         if (of_id) {
1546                 pdata->is_slave = of_property_read_bool(pdev->dev.of_node,
1547                                                                 "spi-slave");
1548         }
1549 #endif
1550
1551         ssp->clk = devm_clk_get(&pdev->dev, NULL);
1552         ssp->irq = platform_get_irq(pdev, 0);
1553         ssp->type = type;
1554         ssp->pdev = pdev;
1555         ssp->port_id = pxa2xx_spi_get_port_id(adev);
1556
1557         pdata->num_chipselect = 1;
1558         pdata->enable_dma = true;
1559
1560         return pdata;
1561 }
1562
1563 static int pxa2xx_spi_fw_translate_cs(struct spi_controller *master,
1564                                       unsigned int cs)
1565 {
1566         struct driver_data *drv_data = spi_controller_get_devdata(master);
1567
1568         if (has_acpi_companion(&drv_data->pdev->dev)) {
1569                 switch (drv_data->ssp_type) {
1570                 /*
1571                  * For Atoms the ACPI DeviceSelection used by the Windows
1572                  * driver starts from 1 instead of 0 so translate it here
1573                  * to match what Linux expects.
1574                  */
1575                 case LPSS_BYT_SSP:
1576                 case LPSS_BSW_SSP:
1577                         return cs - 1;
1578
1579                 default:
1580                         break;
1581                 }
1582         }
1583
1584         return cs;
1585 }
1586
1587 static int pxa2xx_spi_probe(struct platform_device *pdev)
1588 {
1589         struct device *dev = &pdev->dev;
1590         struct pxa2xx_spi_master *platform_info;
1591         struct spi_controller *master;
1592         struct driver_data *drv_data;
1593         struct ssp_device *ssp;
1594         const struct lpss_config *config;
1595         int status, count;
1596         u32 tmp;
1597
1598         platform_info = dev_get_platdata(dev);
1599         if (!platform_info) {
1600                 platform_info = pxa2xx_spi_init_pdata(pdev);
1601                 if (!platform_info) {
1602                         dev_err(&pdev->dev, "missing platform data\n");
1603                         return -ENODEV;
1604                 }
1605         }
1606
1607         ssp = pxa_ssp_request(pdev->id, pdev->name);
1608         if (!ssp)
1609                 ssp = &platform_info->ssp;
1610
1611         if (!ssp->mmio_base) {
1612                 dev_err(&pdev->dev, "failed to get ssp\n");
1613                 return -ENODEV;
1614         }
1615
1616         if (platform_info->is_slave)
1617                 master = spi_alloc_slave(dev, sizeof(struct driver_data));
1618         else
1619                 master = spi_alloc_master(dev, sizeof(struct driver_data));
1620
1621         if (!master) {
1622                 dev_err(&pdev->dev, "cannot alloc spi_master\n");
1623                 pxa_ssp_free(ssp);
1624                 return -ENOMEM;
1625         }
1626         drv_data = spi_controller_get_devdata(master);
1627         drv_data->master = master;
1628         drv_data->master_info = platform_info;
1629         drv_data->pdev = pdev;
1630         drv_data->ssp = ssp;
1631
1632         master->dev.of_node = pdev->dev.of_node;
1633         /* the spi->mode bits understood by this driver: */
1634         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1635
1636         master->bus_num = ssp->port_id;
1637         master->dma_alignment = DMA_ALIGNMENT;
1638         master->cleanup = cleanup;
1639         master->setup = setup;
1640         master->set_cs = pxa2xx_spi_set_cs;
1641         master->transfer_one = pxa2xx_spi_transfer_one;
1642         master->slave_abort = pxa2xx_spi_slave_abort;
1643         master->handle_err = pxa2xx_spi_handle_err;
1644         master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1645         master->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1646         master->auto_runtime_pm = true;
1647         master->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1648
1649         drv_data->ssp_type = ssp->type;
1650
1651         drv_data->ioaddr = ssp->mmio_base;
1652         drv_data->ssdr_physical = ssp->phys_base + SSDR;
1653         if (pxa25x_ssp_comp(drv_data)) {
1654                 switch (drv_data->ssp_type) {
1655                 case QUARK_X1000_SSP:
1656                         master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1657                         break;
1658                 default:
1659                         master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1660                         break;
1661                 }
1662
1663                 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1664                 drv_data->dma_cr1 = 0;
1665                 drv_data->clear_sr = SSSR_ROR;
1666                 drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1667         } else {
1668                 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1669                 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1670                 drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1671                 drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1672                 drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
1673                                                 | SSSR_ROR | SSSR_TUR;
1674         }
1675
1676         status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1677                         drv_data);
1678         if (status < 0) {
1679                 dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1680                 goto out_error_master_alloc;
1681         }
1682
1683         /* Setup DMA if requested */
1684         if (platform_info->enable_dma) {
1685                 status = pxa2xx_spi_dma_setup(drv_data);
1686                 if (status) {
1687                         dev_dbg(dev, "no DMA channels available, using PIO\n");
1688                         platform_info->enable_dma = false;
1689                 } else {
1690                         master->can_dma = pxa2xx_spi_can_dma;
1691                 }
1692         }
1693
1694         /* Enable SOC clock */
1695         status = clk_prepare_enable(ssp->clk);
1696         if (status)
1697                 goto out_error_dma_irq_alloc;
1698
1699         master->max_speed_hz = clk_get_rate(ssp->clk);
1700
1701         /* Load default SSP configuration */
1702         pxa2xx_spi_write(drv_data, SSCR0, 0);
1703         switch (drv_data->ssp_type) {
1704         case QUARK_X1000_SSP:
1705                 tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1706                       QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1707                 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1708
1709                 /* using the Motorola SPI protocol and use 8 bit frame */
1710                 tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1711                 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1712                 break;
1713         case CE4100_SSP:
1714                 tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1715                       CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1716                 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1717                 tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1718                 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1719                 break;
1720         default:
1721
1722                 if (spi_controller_is_slave(master)) {
1723                         tmp = SSCR1_SCFR |
1724                               SSCR1_SCLKDIR |
1725                               SSCR1_SFRMDIR |
1726                               SSCR1_RxTresh(2) |
1727                               SSCR1_TxTresh(1) |
1728                               SSCR1_SPH;
1729                 } else {
1730                         tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1731                               SSCR1_TxTresh(TX_THRESH_DFLT);
1732                 }
1733                 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1734                 tmp = SSCR0_Motorola | SSCR0_DataSize(8);
1735                 if (!spi_controller_is_slave(master))
1736                         tmp |= SSCR0_SCR(2);
1737                 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1738                 break;
1739         }
1740
1741         if (!pxa25x_ssp_comp(drv_data))
1742                 pxa2xx_spi_write(drv_data, SSTO, 0);
1743
1744         if (!is_quark_x1000_ssp(drv_data))
1745                 pxa2xx_spi_write(drv_data, SSPSP, 0);
1746
1747         if (is_lpss_ssp(drv_data)) {
1748                 lpss_ssp_setup(drv_data);
1749                 config = lpss_get_config(drv_data);
1750                 if (config->reg_capabilities >= 0) {
1751                         tmp = __lpss_ssp_read_priv(drv_data,
1752                                                    config->reg_capabilities);
1753                         tmp &= LPSS_CAPS_CS_EN_MASK;
1754                         tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1755                         platform_info->num_chipselect = ffz(tmp);
1756                 } else if (config->cs_num) {
1757                         platform_info->num_chipselect = config->cs_num;
1758                 }
1759         }
1760         master->num_chipselect = platform_info->num_chipselect;
1761
1762         count = gpiod_count(&pdev->dev, "cs");
1763         if (count > 0) {
1764                 int i;
1765
1766                 master->num_chipselect = max_t(int, count,
1767                         master->num_chipselect);
1768
1769                 drv_data->cs_gpiods = devm_kcalloc(&pdev->dev,
1770                         master->num_chipselect, sizeof(struct gpio_desc *),
1771                         GFP_KERNEL);
1772                 if (!drv_data->cs_gpiods) {
1773                         status = -ENOMEM;
1774                         goto out_error_clock_enabled;
1775                 }
1776
1777                 for (i = 0; i < master->num_chipselect; i++) {
1778                         struct gpio_desc *gpiod;
1779
1780                         gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1781                         if (IS_ERR(gpiod)) {
1782                                 /* Means use native chip select */
1783                                 if (PTR_ERR(gpiod) == -ENOENT)
1784                                         continue;
1785
1786                                 status = PTR_ERR(gpiod);
1787                                 goto out_error_clock_enabled;
1788                         } else {
1789                                 drv_data->cs_gpiods[i] = gpiod;
1790                         }
1791                 }
1792         }
1793
1794         if (platform_info->is_slave) {
1795                 drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
1796                                                 "ready", GPIOD_OUT_LOW);
1797                 if (IS_ERR(drv_data->gpiod_ready)) {
1798                         status = PTR_ERR(drv_data->gpiod_ready);
1799                         goto out_error_clock_enabled;
1800                 }
1801         }
1802
1803         pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1804         pm_runtime_use_autosuspend(&pdev->dev);
1805         pm_runtime_set_active(&pdev->dev);
1806         pm_runtime_enable(&pdev->dev);
1807
1808         /* Register with the SPI framework */
1809         platform_set_drvdata(pdev, drv_data);
1810         status = devm_spi_register_controller(&pdev->dev, master);
1811         if (status != 0) {
1812                 dev_err(&pdev->dev, "problem registering spi master\n");
1813                 goto out_error_clock_enabled;
1814         }
1815
1816         return status;
1817
1818 out_error_clock_enabled:
1819         pm_runtime_put_noidle(&pdev->dev);
1820         pm_runtime_disable(&pdev->dev);
1821         clk_disable_unprepare(ssp->clk);
1822
1823 out_error_dma_irq_alloc:
1824         pxa2xx_spi_dma_release(drv_data);
1825         free_irq(ssp->irq, drv_data);
1826
1827 out_error_master_alloc:
1828         spi_controller_put(master);
1829         pxa_ssp_free(ssp);
1830         return status;
1831 }
1832
1833 static int pxa2xx_spi_remove(struct platform_device *pdev)
1834 {
1835         struct driver_data *drv_data = platform_get_drvdata(pdev);
1836         struct ssp_device *ssp;
1837
1838         if (!drv_data)
1839                 return 0;
1840         ssp = drv_data->ssp;
1841
1842         pm_runtime_get_sync(&pdev->dev);
1843
1844         /* Disable the SSP at the peripheral and SOC level */
1845         pxa2xx_spi_write(drv_data, SSCR0, 0);
1846         clk_disable_unprepare(ssp->clk);
1847
1848         /* Release DMA */
1849         if (drv_data->master_info->enable_dma)
1850                 pxa2xx_spi_dma_release(drv_data);
1851
1852         pm_runtime_put_noidle(&pdev->dev);
1853         pm_runtime_disable(&pdev->dev);
1854
1855         /* Release IRQ */
1856         free_irq(ssp->irq, drv_data);
1857
1858         /* Release SSP */
1859         pxa_ssp_free(ssp);
1860
1861         return 0;
1862 }
1863
1864 #ifdef CONFIG_PM_SLEEP
1865 static int pxa2xx_spi_suspend(struct device *dev)
1866 {
1867         struct driver_data *drv_data = dev_get_drvdata(dev);
1868         struct ssp_device *ssp = drv_data->ssp;
1869         int status;
1870
1871         status = spi_controller_suspend(drv_data->master);
1872         if (status != 0)
1873                 return status;
1874         pxa2xx_spi_write(drv_data, SSCR0, 0);
1875
1876         if (!pm_runtime_suspended(dev))
1877                 clk_disable_unprepare(ssp->clk);
1878
1879         return 0;
1880 }
1881
1882 static int pxa2xx_spi_resume(struct device *dev)
1883 {
1884         struct driver_data *drv_data = dev_get_drvdata(dev);
1885         struct ssp_device *ssp = drv_data->ssp;
1886         int status;
1887
1888         /* Enable the SSP clock */
1889         if (!pm_runtime_suspended(dev)) {
1890                 status = clk_prepare_enable(ssp->clk);
1891                 if (status)
1892                         return status;
1893         }
1894
1895         /* Start the queue running */
1896         return spi_controller_resume(drv_data->master);
1897 }
1898 #endif
1899
1900 #ifdef CONFIG_PM
1901 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1902 {
1903         struct driver_data *drv_data = dev_get_drvdata(dev);
1904
1905         clk_disable_unprepare(drv_data->ssp->clk);
1906         return 0;
1907 }
1908
1909 static int pxa2xx_spi_runtime_resume(struct device *dev)
1910 {
1911         struct driver_data *drv_data = dev_get_drvdata(dev);
1912         int status;
1913
1914         status = clk_prepare_enable(drv_data->ssp->clk);
1915         return status;
1916 }
1917 #endif
1918
1919 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1920         SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1921         SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1922                            pxa2xx_spi_runtime_resume, NULL)
1923 };
1924
1925 static struct platform_driver driver = {
1926         .driver = {
1927                 .name   = "pxa2xx-spi",
1928                 .pm     = &pxa2xx_spi_pm_ops,
1929                 .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1930                 .of_match_table = of_match_ptr(pxa2xx_spi_of_match),
1931         },
1932         .probe = pxa2xx_spi_probe,
1933         .remove = pxa2xx_spi_remove,
1934 };
1935
1936 static int __init pxa2xx_spi_init(void)
1937 {
1938         return platform_driver_register(&driver);
1939 }
1940 subsys_initcall(pxa2xx_spi_init);
1941
1942 static void __exit pxa2xx_spi_exit(void)
1943 {
1944         platform_driver_unregister(&driver);
1945 }
1946 module_exit(pxa2xx_spi_exit);