1 // SPDX-License-Identifier: GPL-2.0-only
3 * PXA2xx SPI DMA engine support.
5 * Copyright (C) 2013, 2021 Intel Corporation
6 * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
9 #include <linux/device.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/dmaengine.h>
12 #include <linux/scatterlist.h>
13 #include <linux/sizes.h>
15 #include <linux/spi/pxa2xx_spi.h>
16 #include <linux/spi/spi.h>
18 #include "spi-pxa2xx.h"
20 static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data,
23 struct spi_message *msg = drv_data->controller->cur_msg;
26 * It is possible that one CPU is handling ROR interrupt and other
27 * just gets DMA completion. Calling pump_transfers() twice for the
28 * same transfer leads to problems thus we prevent concurrent calls
29 * by using dma_running.
31 if (atomic_dec_and_test(&drv_data->dma_running)) {
33 * If the other CPU is still handling the ROR interrupt we
34 * might not know about the error yet. So we re-check the
35 * ROR bit here before we clear the status register.
38 error = read_SSSR_bits(drv_data, drv_data->mask_sr) & SSSR_ROR;
40 /* Clear status & disable interrupts */
41 clear_SSCR1_bits(drv_data, drv_data->dma_cr1);
42 write_SSSR_CS(drv_data, drv_data->clear_sr);
43 if (!pxa25x_ssp_comp(drv_data))
44 pxa2xx_spi_write(drv_data, SSTO, 0);
47 /* In case we got an error we disable the SSP now */
48 pxa_ssp_disable(drv_data->ssp);
52 spi_finalize_current_transfer(drv_data->controller);
56 static void pxa2xx_spi_dma_callback(void *data)
58 pxa2xx_spi_dma_transfer_complete(data, false);
61 static struct dma_async_tx_descriptor *
62 pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data,
63 enum dma_transfer_direction dir,
64 struct spi_transfer *xfer)
66 struct chip_data *chip =
67 spi_get_ctldata(drv_data->controller->cur_msg->spi);
68 enum dma_slave_buswidth width;
69 struct dma_slave_config cfg;
70 struct dma_chan *chan;
74 switch (drv_data->n_bytes) {
76 width = DMA_SLAVE_BUSWIDTH_1_BYTE;
79 width = DMA_SLAVE_BUSWIDTH_2_BYTES;
82 width = DMA_SLAVE_BUSWIDTH_4_BYTES;
86 memset(&cfg, 0, sizeof(cfg));
89 if (dir == DMA_MEM_TO_DEV) {
90 cfg.dst_addr = drv_data->ssp->phys_base + SSDR;
91 cfg.dst_addr_width = width;
92 cfg.dst_maxburst = chip->dma_burst_size;
95 chan = drv_data->controller->dma_tx;
97 cfg.src_addr = drv_data->ssp->phys_base + SSDR;
98 cfg.src_addr_width = width;
99 cfg.src_maxburst = chip->dma_burst_size;
102 chan = drv_data->controller->dma_rx;
105 ret = dmaengine_slave_config(chan, &cfg);
107 dev_warn(drv_data->ssp->dev, "DMA slave config failed\n");
111 return dmaengine_prep_slave_sg(chan, sgt->sgl, sgt->nents, dir,
112 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
115 irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data)
119 status = read_SSSR_bits(drv_data, drv_data->mask_sr);
120 if (status & SSSR_ROR) {
121 dev_err(drv_data->ssp->dev, "FIFO overrun\n");
123 dmaengine_terminate_async(drv_data->controller->dma_rx);
124 dmaengine_terminate_async(drv_data->controller->dma_tx);
126 pxa2xx_spi_dma_transfer_complete(drv_data, true);
133 int pxa2xx_spi_dma_prepare(struct driver_data *drv_data,
134 struct spi_transfer *xfer)
136 struct dma_async_tx_descriptor *tx_desc, *rx_desc;
139 tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV, xfer);
141 dev_err(drv_data->ssp->dev, "failed to get DMA TX descriptor\n");
146 rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM, xfer);
148 dev_err(drv_data->ssp->dev, "failed to get DMA RX descriptor\n");
153 /* We are ready when RX completes */
154 rx_desc->callback = pxa2xx_spi_dma_callback;
155 rx_desc->callback_param = drv_data;
157 dmaengine_submit(rx_desc);
158 dmaengine_submit(tx_desc);
162 dmaengine_terminate_async(drv_data->controller->dma_tx);
167 void pxa2xx_spi_dma_start(struct driver_data *drv_data)
169 dma_async_issue_pending(drv_data->controller->dma_rx);
170 dma_async_issue_pending(drv_data->controller->dma_tx);
172 atomic_set(&drv_data->dma_running, 1);
175 void pxa2xx_spi_dma_stop(struct driver_data *drv_data)
177 atomic_set(&drv_data->dma_running, 0);
178 dmaengine_terminate_sync(drv_data->controller->dma_rx);
179 dmaengine_terminate_sync(drv_data->controller->dma_tx);
182 int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
184 struct pxa2xx_spi_controller *pdata = drv_data->controller_info;
185 struct spi_controller *controller = drv_data->controller;
186 struct device *dev = drv_data->ssp->dev;
190 dma_cap_set(DMA_SLAVE, mask);
192 controller->dma_tx = dma_request_slave_channel_compat(mask,
193 pdata->dma_filter, pdata->tx_param, dev, "tx");
194 if (!controller->dma_tx)
197 controller->dma_rx = dma_request_slave_channel_compat(mask,
198 pdata->dma_filter, pdata->rx_param, dev, "rx");
199 if (!controller->dma_rx) {
200 dma_release_channel(controller->dma_tx);
201 controller->dma_tx = NULL;
208 void pxa2xx_spi_dma_release(struct driver_data *drv_data)
210 struct spi_controller *controller = drv_data->controller;
212 if (controller->dma_rx) {
213 dmaengine_terminate_sync(controller->dma_rx);
214 dma_release_channel(controller->dma_rx);
215 controller->dma_rx = NULL;
217 if (controller->dma_tx) {
218 dmaengine_terminate_sync(controller->dma_tx);
219 dma_release_channel(controller->dma_tx);
220 controller->dma_tx = NULL;
224 int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
225 struct spi_device *spi,
226 u8 bits_per_word, u32 *burst_code,
229 struct pxa2xx_spi_chip *chip_info = spi->controller_data;
230 struct driver_data *drv_data = spi_controller_get_devdata(spi->controller);
231 u32 dma_burst_size = drv_data->controller_info->dma_burst_size;
234 * If the DMA burst size is given in chip_info we use that,
235 * otherwise we use the default. Also we use the default FIFO
236 * thresholds for now.
238 *burst_code = chip_info ? chip_info->dma_burst_size : dma_burst_size;
239 *threshold = SSCR1_RxTresh(RX_THRESH_DFLT)
240 | SSCR1_TxTresh(TX_THRESH_DFLT);