1 // SPDX-License-Identifier: GPL-2.0-only
3 * PXA2xx SPI DMA engine support.
5 * Copyright (C) 2013, Intel Corporation
6 * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
9 #include <linux/device.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/dmaengine.h>
12 #include <linux/pxa2xx_ssp.h>
13 #include <linux/scatterlist.h>
14 #include <linux/sizes.h>
15 #include <linux/spi/spi.h>
16 #include <linux/spi/pxa2xx_spi.h>
18 #include "spi-pxa2xx.h"
20 static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data,
23 struct spi_message *msg = drv_data->controller->cur_msg;
26 * It is possible that one CPU is handling ROR interrupt and other
27 * just gets DMA completion. Calling pump_transfers() twice for the
28 * same transfer leads to problems thus we prevent concurrent calls
29 * by using ->dma_running.
31 if (atomic_dec_and_test(&drv_data->dma_running)) {
33 * If the other CPU is still handling the ROR interrupt we
34 * might not know about the error yet. So we re-check the
35 * ROR bit here before we clear the status register.
38 u32 status = pxa2xx_spi_read(drv_data, SSSR)
40 error = status & SSSR_ROR;
43 /* Clear status & disable interrupts */
44 pxa2xx_spi_write(drv_data, SSCR1,
45 pxa2xx_spi_read(drv_data, SSCR1)
46 & ~drv_data->dma_cr1);
47 write_SSSR_CS(drv_data, drv_data->clear_sr);
48 if (!pxa25x_ssp_comp(drv_data))
49 pxa2xx_spi_write(drv_data, SSTO, 0);
52 /* In case we got an error we disable the SSP now */
53 pxa2xx_spi_write(drv_data, SSCR0,
54 pxa2xx_spi_read(drv_data, SSCR0)
59 spi_finalize_current_transfer(drv_data->controller);
63 static void pxa2xx_spi_dma_callback(void *data)
65 pxa2xx_spi_dma_transfer_complete(data, false);
68 static struct dma_async_tx_descriptor *
69 pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data,
70 enum dma_transfer_direction dir,
71 struct spi_transfer *xfer)
73 struct chip_data *chip =
74 spi_get_ctldata(drv_data->controller->cur_msg->spi);
75 enum dma_slave_buswidth width;
76 struct dma_slave_config cfg;
77 struct dma_chan *chan;
81 switch (drv_data->n_bytes) {
83 width = DMA_SLAVE_BUSWIDTH_1_BYTE;
86 width = DMA_SLAVE_BUSWIDTH_2_BYTES;
89 width = DMA_SLAVE_BUSWIDTH_4_BYTES;
93 memset(&cfg, 0, sizeof(cfg));
96 if (dir == DMA_MEM_TO_DEV) {
97 cfg.dst_addr = drv_data->ssdr_physical;
98 cfg.dst_addr_width = width;
99 cfg.dst_maxburst = chip->dma_burst_size;
102 chan = drv_data->controller->dma_tx;
104 cfg.src_addr = drv_data->ssdr_physical;
105 cfg.src_addr_width = width;
106 cfg.src_maxburst = chip->dma_burst_size;
109 chan = drv_data->controller->dma_rx;
112 ret = dmaengine_slave_config(chan, &cfg);
114 dev_warn(&drv_data->pdev->dev, "DMA slave config failed\n");
118 return dmaengine_prep_slave_sg(chan, sgt->sgl, sgt->nents, dir,
119 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
122 irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data)
126 status = pxa2xx_spi_read(drv_data, SSSR) & drv_data->mask_sr;
127 if (status & SSSR_ROR) {
128 dev_err(&drv_data->pdev->dev, "FIFO overrun\n");
130 dmaengine_terminate_async(drv_data->controller->dma_rx);
131 dmaengine_terminate_async(drv_data->controller->dma_tx);
133 pxa2xx_spi_dma_transfer_complete(drv_data, true);
140 int pxa2xx_spi_dma_prepare(struct driver_data *drv_data,
141 struct spi_transfer *xfer)
143 struct dma_async_tx_descriptor *tx_desc, *rx_desc;
146 tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV, xfer);
148 dev_err(&drv_data->pdev->dev,
149 "failed to get DMA TX descriptor\n");
154 rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM, xfer);
156 dev_err(&drv_data->pdev->dev,
157 "failed to get DMA RX descriptor\n");
162 /* We are ready when RX completes */
163 rx_desc->callback = pxa2xx_spi_dma_callback;
164 rx_desc->callback_param = drv_data;
166 dmaengine_submit(rx_desc);
167 dmaengine_submit(tx_desc);
171 dmaengine_terminate_async(drv_data->controller->dma_tx);
176 void pxa2xx_spi_dma_start(struct driver_data *drv_data)
178 dma_async_issue_pending(drv_data->controller->dma_rx);
179 dma_async_issue_pending(drv_data->controller->dma_tx);
181 atomic_set(&drv_data->dma_running, 1);
184 void pxa2xx_spi_dma_stop(struct driver_data *drv_data)
186 atomic_set(&drv_data->dma_running, 0);
187 dmaengine_terminate_sync(drv_data->controller->dma_rx);
188 dmaengine_terminate_sync(drv_data->controller->dma_tx);
191 int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
193 struct pxa2xx_spi_controller *pdata = drv_data->controller_info;
194 struct device *dev = &drv_data->pdev->dev;
195 struct spi_controller *controller = drv_data->controller;
199 dma_cap_set(DMA_SLAVE, mask);
201 controller->dma_tx = dma_request_slave_channel_compat(mask,
202 pdata->dma_filter, pdata->tx_param, dev, "tx");
203 if (!controller->dma_tx)
206 controller->dma_rx = dma_request_slave_channel_compat(mask,
207 pdata->dma_filter, pdata->rx_param, dev, "rx");
208 if (!controller->dma_rx) {
209 dma_release_channel(controller->dma_tx);
210 controller->dma_tx = NULL;
217 void pxa2xx_spi_dma_release(struct driver_data *drv_data)
219 struct spi_controller *controller = drv_data->controller;
221 if (controller->dma_rx) {
222 dmaengine_terminate_sync(controller->dma_rx);
223 dma_release_channel(controller->dma_rx);
224 controller->dma_rx = NULL;
226 if (controller->dma_tx) {
227 dmaengine_terminate_sync(controller->dma_tx);
228 dma_release_channel(controller->dma_tx);
229 controller->dma_tx = NULL;
233 int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
234 struct spi_device *spi,
235 u8 bits_per_word, u32 *burst_code,
238 struct pxa2xx_spi_chip *chip_info = spi->controller_data;
239 struct driver_data *drv_data = spi_controller_get_devdata(spi->controller);
240 u32 dma_burst_size = drv_data->controller_info->dma_burst_size;
243 * If the DMA burst size is given in chip_info we use that,
244 * otherwise we use the default. Also we use the default FIFO
245 * thresholds for now.
247 *burst_code = chip_info ? chip_info->dma_burst_size : dma_burst_size;
248 *threshold = SSCR1_RxTresh(RX_THRESH_DFLT)
249 | SSCR1_TxTresh(TX_THRESH_DFLT);