2 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
4 * Copyright (C) 2008-2009 ST-Ericsson AB
5 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
7 * Author: Linus Walleij <linus.walleij@stericsson.com>
9 * Initial version inspired by:
10 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
11 * Initial adoption to PL022 by:
12 * Sachin Verma <sachin.verma@st.com>
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/ioport.h>
29 #include <linux/errno.h>
30 #include <linux/interrupt.h>
31 #include <linux/spi/spi.h>
32 #include <linux/delay.h>
33 #include <linux/clk.h>
34 #include <linux/err.h>
35 #include <linux/amba/bus.h>
36 #include <linux/amba/pl022.h>
38 #include <linux/slab.h>
39 #include <linux/dmaengine.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/scatterlist.h>
42 #include <linux/pm_runtime.h>
45 * This macro is used to define some register default values.
46 * reg is masked with mask, the OR:ed with an (again masked)
47 * val shifted sb steps to the left.
49 #define SSP_WRITE_BITS(reg, val, mask, sb) \
50 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
53 * This macro is also used to define some default values.
54 * It will just shift val by sb steps to the left and mask
55 * the result with mask.
57 #define GEN_MASK_BITS(val, mask, sb) \
58 (((val)<<(sb)) & (mask))
61 #define DO_NOT_DRIVE_TX 1
63 #define DO_NOT_QUEUE_DMA 0
70 * Macros to access SSP Registers with their offsets
72 #define SSP_CR0(r) (r + 0x000)
73 #define SSP_CR1(r) (r + 0x004)
74 #define SSP_DR(r) (r + 0x008)
75 #define SSP_SR(r) (r + 0x00C)
76 #define SSP_CPSR(r) (r + 0x010)
77 #define SSP_IMSC(r) (r + 0x014)
78 #define SSP_RIS(r) (r + 0x018)
79 #define SSP_MIS(r) (r + 0x01C)
80 #define SSP_ICR(r) (r + 0x020)
81 #define SSP_DMACR(r) (r + 0x024)
82 #define SSP_ITCR(r) (r + 0x080)
83 #define SSP_ITIP(r) (r + 0x084)
84 #define SSP_ITOP(r) (r + 0x088)
85 #define SSP_TDR(r) (r + 0x08C)
87 #define SSP_PID0(r) (r + 0xFE0)
88 #define SSP_PID1(r) (r + 0xFE4)
89 #define SSP_PID2(r) (r + 0xFE8)
90 #define SSP_PID3(r) (r + 0xFEC)
92 #define SSP_CID0(r) (r + 0xFF0)
93 #define SSP_CID1(r) (r + 0xFF4)
94 #define SSP_CID2(r) (r + 0xFF8)
95 #define SSP_CID3(r) (r + 0xFFC)
98 * SSP Control Register 0 - SSP_CR0
100 #define SSP_CR0_MASK_DSS (0x0FUL << 0)
101 #define SSP_CR0_MASK_FRF (0x3UL << 4)
102 #define SSP_CR0_MASK_SPO (0x1UL << 6)
103 #define SSP_CR0_MASK_SPH (0x1UL << 7)
104 #define SSP_CR0_MASK_SCR (0xFFUL << 8)
107 * The ST version of this block moves som bits
108 * in SSP_CR0 and extends it to 32 bits
110 #define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
111 #define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
112 #define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
113 #define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
116 * SSP Control Register 0 - SSP_CR1
118 #define SSP_CR1_MASK_LBM (0x1UL << 0)
119 #define SSP_CR1_MASK_SSE (0x1UL << 1)
120 #define SSP_CR1_MASK_MS (0x1UL << 2)
121 #define SSP_CR1_MASK_SOD (0x1UL << 3)
124 * The ST version of this block adds some bits
127 #define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
128 #define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
129 #define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
130 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
131 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
132 /* This one is only in the PL023 variant */
133 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
136 * SSP Status Register - SSP_SR
138 #define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
139 #define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
140 #define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
141 #define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
142 #define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
145 * SSP Clock Prescale Register - SSP_CPSR
147 #define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
150 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
152 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
153 #define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
154 #define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
155 #define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
158 * SSP Raw Interrupt Status Register - SSP_RIS
160 /* Receive Overrun Raw Interrupt status */
161 #define SSP_RIS_MASK_RORRIS (0x1UL << 0)
162 /* Receive Timeout Raw Interrupt status */
163 #define SSP_RIS_MASK_RTRIS (0x1UL << 1)
164 /* Receive FIFO Raw Interrupt status */
165 #define SSP_RIS_MASK_RXRIS (0x1UL << 2)
166 /* Transmit FIFO Raw Interrupt status */
167 #define SSP_RIS_MASK_TXRIS (0x1UL << 3)
170 * SSP Masked Interrupt Status Register - SSP_MIS
172 /* Receive Overrun Masked Interrupt status */
173 #define SSP_MIS_MASK_RORMIS (0x1UL << 0)
174 /* Receive Timeout Masked Interrupt status */
175 #define SSP_MIS_MASK_RTMIS (0x1UL << 1)
176 /* Receive FIFO Masked Interrupt status */
177 #define SSP_MIS_MASK_RXMIS (0x1UL << 2)
178 /* Transmit FIFO Masked Interrupt status */
179 #define SSP_MIS_MASK_TXMIS (0x1UL << 3)
182 * SSP Interrupt Clear Register - SSP_ICR
184 /* Receive Overrun Raw Clear Interrupt bit */
185 #define SSP_ICR_MASK_RORIC (0x1UL << 0)
186 /* Receive Timeout Clear Interrupt bit */
187 #define SSP_ICR_MASK_RTIC (0x1UL << 1)
190 * SSP DMA Control Register - SSP_DMACR
192 /* Receive DMA Enable bit */
193 #define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
194 /* Transmit DMA Enable bit */
195 #define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
198 * SSP Integration Test control Register - SSP_ITCR
200 #define SSP_ITCR_MASK_ITEN (0x1UL << 0)
201 #define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
204 * SSP Integration Test Input Register - SSP_ITIP
206 #define ITIP_MASK_SSPRXD (0x1UL << 0)
207 #define ITIP_MASK_SSPFSSIN (0x1UL << 1)
208 #define ITIP_MASK_SSPCLKIN (0x1UL << 2)
209 #define ITIP_MASK_RXDMAC (0x1UL << 3)
210 #define ITIP_MASK_TXDMAC (0x1UL << 4)
211 #define ITIP_MASK_SSPTXDIN (0x1UL << 5)
214 * SSP Integration Test output Register - SSP_ITOP
216 #define ITOP_MASK_SSPTXD (0x1UL << 0)
217 #define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
218 #define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
219 #define ITOP_MASK_SSPOEn (0x1UL << 3)
220 #define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
221 #define ITOP_MASK_RORINTR (0x1UL << 5)
222 #define ITOP_MASK_RTINTR (0x1UL << 6)
223 #define ITOP_MASK_RXINTR (0x1UL << 7)
224 #define ITOP_MASK_TXINTR (0x1UL << 8)
225 #define ITOP_MASK_INTR (0x1UL << 9)
226 #define ITOP_MASK_RXDMABREQ (0x1UL << 10)
227 #define ITOP_MASK_RXDMASREQ (0x1UL << 11)
228 #define ITOP_MASK_TXDMABREQ (0x1UL << 12)
229 #define ITOP_MASK_TXDMASREQ (0x1UL << 13)
232 * SSP Test Data Register - SSP_TDR
234 #define TDR_MASK_TESTDATA (0xFFFFFFFF)
238 * we use the spi_message.state (void *) pointer to
239 * hold a single state value, that's why all this
240 * (void *) casting is done here.
242 #define STATE_START ((void *) 0)
243 #define STATE_RUNNING ((void *) 1)
244 #define STATE_DONE ((void *) 2)
245 #define STATE_ERROR ((void *) -1)
248 * SSP State - Whether Enabled or Disabled
250 #define SSP_DISABLED (0)
251 #define SSP_ENABLED (1)
254 * SSP DMA State - Whether DMA Enabled or Disabled
256 #define SSP_DMA_DISABLED (0)
257 #define SSP_DMA_ENABLED (1)
262 #define SSP_DEFAULT_CLKRATE 0x2
263 #define SSP_DEFAULT_PRESCALE 0x40
266 * SSP Clock Parameter ranges
268 #define CPSDVR_MIN 0x02
269 #define CPSDVR_MAX 0xFE
274 * SSP Interrupt related Macros
276 #define DEFAULT_SSP_REG_IMSC 0x0UL
277 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
278 #define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
280 #define CLEAR_ALL_INTERRUPTS 0x3
282 #define SPI_POLLING_TIMEOUT 1000
285 * The type of reading going on on this chip
295 * The type of writing going on on this chip
305 * struct vendor_data - vendor-specific config parameters
306 * for PL022 derivates
307 * @fifodepth: depth of FIFOs (both)
308 * @max_bpw: maximum number of bits per word
309 * @unidir: supports unidirection transfers
310 * @extended_cr: 32 bit wide control register 0 with extra
311 * features and extra features in CR1 as found in the ST variants
312 * @pl023: supports a subset of the ST extensions called "PL023"
324 * struct pl022 - This is the private SSP driver data structure
325 * @adev: AMBA device model hookup
326 * @vendor: vendor data for the IP block
327 * @phybase: the physical memory where the SSP device resides
328 * @virtbase: the virtual memory where the SSP is mapped
329 * @clk: outgoing clock "SPICLK" for the SPI bus
330 * @master: SPI framework hookup
331 * @master_info: controller-specific data from machine setup
332 * @kworker: thread struct for message pump
333 * @kworker_task: pointer to task for message pump kworker thread
334 * @pump_messages: work struct for scheduling work to the message pump
335 * @queue_lock: spinlock to syncronise access to message queue
336 * @queue: message queue
337 * @busy: message pump is busy
338 * @running: message pump is running
339 * @pump_transfers: Tasklet used in Interrupt Transfer mode
340 * @cur_msg: Pointer to current spi_message being processed
341 * @cur_transfer: Pointer to current spi_transfer
342 * @cur_chip: pointer to current clients chip(assigned from controller_state)
343 * @next_msg_cs_active: the next message in the queue has been examined
344 * and it was found that it uses the same chip select as the previous
345 * message, so we left it active after the previous transfer, and it's
347 * @tx: current position in TX buffer to be read
348 * @tx_end: end position in TX buffer to be read
349 * @rx: current position in RX buffer to be written
350 * @rx_end: end position in RX buffer to be written
351 * @read: the type of read currently going on
352 * @write: the type of write currently going on
353 * @exp_fifo_level: expected FIFO level
354 * @dma_rx_channel: optional channel for RX DMA
355 * @dma_tx_channel: optional channel for TX DMA
356 * @sgt_rx: scattertable for the RX transfer
357 * @sgt_tx: scattertable for the TX transfer
358 * @dummypage: a dummy page used for driving data on the bus with DMA
361 struct amba_device *adev;
362 struct vendor_data *vendor;
363 resource_size_t phybase;
364 void __iomem *virtbase;
366 struct spi_master *master;
367 struct pl022_ssp_controller *master_info;
368 /* Message per-transfer pump */
369 struct tasklet_struct pump_transfers;
370 struct spi_message *cur_msg;
371 struct spi_transfer *cur_transfer;
372 struct chip_data *cur_chip;
373 bool next_msg_cs_active;
378 enum ssp_reading read;
379 enum ssp_writing write;
381 enum ssp_rx_level_trig rx_lev_trig;
382 enum ssp_tx_level_trig tx_lev_trig;
384 #ifdef CONFIG_DMA_ENGINE
385 struct dma_chan *dma_rx_channel;
386 struct dma_chan *dma_tx_channel;
387 struct sg_table sgt_rx;
388 struct sg_table sgt_tx;
395 * struct chip_data - To maintain runtime state of SSP for each client chip
396 * @cr0: Value of control register CR0 of SSP - on later ST variants this
397 * register is 32 bits wide rather than just 16
398 * @cr1: Value of control register CR1 of SSP
399 * @dmacr: Value of DMA control Register of SSP
400 * @cpsr: Value of Clock prescale register
401 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
402 * @enable_dma: Whether to enable DMA or not
403 * @read: function ptr to be used to read when doing xfer for this chip
404 * @write: function ptr to be used to write when doing xfer for this chip
405 * @cs_control: chip select callback provided by chip
406 * @xfer_type: polling/interrupt/DMA
408 * Runtime state of the SSP controller, maintained per chip,
409 * This would be set according to the current message that would be served
418 enum ssp_reading read;
419 enum ssp_writing write;
420 void (*cs_control) (u32 command);
425 * null_cs_control - Dummy chip select function
426 * @command: select/delect the chip
428 * If no chip select function is provided by client this is used as dummy
431 static void null_cs_control(u32 command)
433 pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
437 * giveback - current spi_message is over, schedule next message and call
438 * callback of this message. Assumes that caller already
439 * set message->status; dma and pio irqs are blocked
440 * @pl022: SSP driver private data structure
442 static void giveback(struct pl022 *pl022)
444 struct spi_transfer *last_transfer;
445 pl022->next_msg_cs_active = false;
447 last_transfer = list_entry(pl022->cur_msg->transfers.prev,
451 /* Delay if requested before any change in chip select */
452 if (last_transfer->delay_usecs)
454 * FIXME: This runs in interrupt context.
455 * Is this really smart?
457 udelay(last_transfer->delay_usecs);
459 if (!last_transfer->cs_change) {
460 struct spi_message *next_msg;
463 * cs_change was not set. We can keep the chip select
464 * enabled if there is message in the queue and it is
465 * for the same spi device.
467 * We cannot postpone this until pump_messages, because
468 * after calling msg->complete (below) the driver that
469 * sent the current message could be unloaded, which
470 * could invalidate the cs_control() callback...
472 /* get a pointer to the next message, if any */
473 next_msg = spi_get_next_queued_message(pl022->master);
476 * see if the next and current messages point
477 * to the same spi device.
479 if (next_msg && next_msg->spi != pl022->cur_msg->spi)
481 if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
482 pl022->cur_chip->cs_control(SSP_CHIP_DESELECT);
484 pl022->next_msg_cs_active = true;
488 pl022->cur_msg = NULL;
489 pl022->cur_transfer = NULL;
490 pl022->cur_chip = NULL;
491 spi_finalize_current_message(pl022->master);
493 /* disable the SPI/SSP operation */
494 writew((readw(SSP_CR1(pl022->virtbase)) &
495 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
500 * flush - flush the FIFO to reach a clean state
501 * @pl022: SSP driver private data structure
503 static int flush(struct pl022 *pl022)
505 unsigned long limit = loops_per_jiffy << 1;
507 dev_dbg(&pl022->adev->dev, "flush\n");
509 while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
510 readw(SSP_DR(pl022->virtbase));
511 } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
513 pl022->exp_fifo_level = 0;
519 * restore_state - Load configuration of current chip
520 * @pl022: SSP driver private data structure
522 static void restore_state(struct pl022 *pl022)
524 struct chip_data *chip = pl022->cur_chip;
526 if (pl022->vendor->extended_cr)
527 writel(chip->cr0, SSP_CR0(pl022->virtbase));
529 writew(chip->cr0, SSP_CR0(pl022->virtbase));
530 writew(chip->cr1, SSP_CR1(pl022->virtbase));
531 writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
532 writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
533 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
534 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
538 * Default SSP Register Values
540 #define DEFAULT_SSP_REG_CR0 ( \
541 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
542 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
543 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
544 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
545 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
548 /* ST versions have slightly different bit layout */
549 #define DEFAULT_SSP_REG_CR0_ST ( \
550 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
551 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
552 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
553 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
554 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
555 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
556 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
559 /* The PL023 version is slightly different again */
560 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
561 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
562 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
563 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
564 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
567 #define DEFAULT_SSP_REG_CR1 ( \
568 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
569 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
570 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
571 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
574 /* ST versions extend this register to use all 16 bits */
575 #define DEFAULT_SSP_REG_CR1_ST ( \
576 DEFAULT_SSP_REG_CR1 | \
577 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
578 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
579 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
580 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
581 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
585 * The PL023 variant has further differences: no loopback mode, no microwire
586 * support, and a new clock feedback delay setting.
588 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
589 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
590 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
591 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
592 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
593 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
594 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
595 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
596 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
599 #define DEFAULT_SSP_REG_CPSR ( \
600 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
603 #define DEFAULT_SSP_REG_DMACR (\
604 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
605 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
609 * load_ssp_default_config - Load default configuration for SSP
610 * @pl022: SSP driver private data structure
612 static void load_ssp_default_config(struct pl022 *pl022)
614 if (pl022->vendor->pl023) {
615 writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
616 writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
617 } else if (pl022->vendor->extended_cr) {
618 writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
619 writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
621 writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
622 writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
624 writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
625 writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
626 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
627 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
631 * This will write to TX and read from RX according to the parameters
634 static void readwriter(struct pl022 *pl022)
638 * The FIFO depth is different between primecell variants.
639 * I believe filling in too much in the FIFO might cause
640 * errons in 8bit wide transfers on ARM variants (just 8 words
641 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
643 * To prevent this issue, the TX FIFO is only filled to the
644 * unused RX FIFO fill length, regardless of what the TX
645 * FIFO status flag indicates.
647 dev_dbg(&pl022->adev->dev,
648 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
649 __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
651 /* Read as much as you can */
652 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
653 && (pl022->rx < pl022->rx_end)) {
654 switch (pl022->read) {
656 readw(SSP_DR(pl022->virtbase));
659 *(u8 *) (pl022->rx) =
660 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
663 *(u16 *) (pl022->rx) =
664 (u16) readw(SSP_DR(pl022->virtbase));
667 *(u32 *) (pl022->rx) =
668 readl(SSP_DR(pl022->virtbase));
671 pl022->rx += (pl022->cur_chip->n_bytes);
672 pl022->exp_fifo_level--;
675 * Write as much as possible up to the RX FIFO size
677 while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
678 && (pl022->tx < pl022->tx_end)) {
679 switch (pl022->write) {
681 writew(0x0, SSP_DR(pl022->virtbase));
684 writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
687 writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
690 writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
693 pl022->tx += (pl022->cur_chip->n_bytes);
694 pl022->exp_fifo_level++;
696 * This inner reader takes care of things appearing in the RX
697 * FIFO as we're transmitting. This will happen a lot since the
698 * clock starts running when you put things into the TX FIFO,
699 * and then things are continuously clocked into the RX FIFO.
701 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
702 && (pl022->rx < pl022->rx_end)) {
703 switch (pl022->read) {
705 readw(SSP_DR(pl022->virtbase));
708 *(u8 *) (pl022->rx) =
709 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
712 *(u16 *) (pl022->rx) =
713 (u16) readw(SSP_DR(pl022->virtbase));
716 *(u32 *) (pl022->rx) =
717 readl(SSP_DR(pl022->virtbase));
720 pl022->rx += (pl022->cur_chip->n_bytes);
721 pl022->exp_fifo_level--;
725 * When we exit here the TX FIFO should be full and the RX FIFO
731 * next_transfer - Move to the Next transfer in the current spi message
732 * @pl022: SSP driver private data structure
734 * This function moves though the linked list of spi transfers in the
735 * current spi message and returns with the state of current spi
736 * message i.e whether its last transfer is done(STATE_DONE) or
737 * Next transfer is ready(STATE_RUNNING)
739 static void *next_transfer(struct pl022 *pl022)
741 struct spi_message *msg = pl022->cur_msg;
742 struct spi_transfer *trans = pl022->cur_transfer;
744 /* Move to next transfer */
745 if (trans->transfer_list.next != &msg->transfers) {
746 pl022->cur_transfer =
747 list_entry(trans->transfer_list.next,
748 struct spi_transfer, transfer_list);
749 return STATE_RUNNING;
755 * This DMA functionality is only compiled in if we have
756 * access to the generic DMA devices/DMA engine.
758 #ifdef CONFIG_DMA_ENGINE
759 static void unmap_free_dma_scatter(struct pl022 *pl022)
761 /* Unmap and free the SG tables */
762 dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
763 pl022->sgt_tx.nents, DMA_TO_DEVICE);
764 dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
765 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
766 sg_free_table(&pl022->sgt_rx);
767 sg_free_table(&pl022->sgt_tx);
770 static void dma_callback(void *data)
772 struct pl022 *pl022 = data;
773 struct spi_message *msg = pl022->cur_msg;
775 BUG_ON(!pl022->sgt_rx.sgl);
779 * Optionally dump out buffers to inspect contents, this is
780 * good if you want to convince yourself that the loopback
781 * read/write contents are the same, when adopting to a new
785 struct scatterlist *sg;
788 dma_sync_sg_for_cpu(&pl022->adev->dev,
793 for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
794 dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
795 print_hex_dump(KERN_ERR, "SPI RX: ",
803 for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
804 dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
805 print_hex_dump(KERN_ERR, "SPI TX: ",
816 unmap_free_dma_scatter(pl022);
818 /* Update total bytes transferred */
819 msg->actual_length += pl022->cur_transfer->len;
820 if (pl022->cur_transfer->cs_change)
822 cs_control(SSP_CHIP_DESELECT);
824 /* Move to next transfer */
825 msg->state = next_transfer(pl022);
826 tasklet_schedule(&pl022->pump_transfers);
829 static void setup_dma_scatter(struct pl022 *pl022,
832 struct sg_table *sgtab)
834 struct scatterlist *sg;
835 int bytesleft = length;
841 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
843 * If there are less bytes left than what fits
844 * in the current page (plus page alignment offset)
845 * we just feed in this, else we stuff in as much
848 if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
849 mapbytes = bytesleft;
851 mapbytes = PAGE_SIZE - offset_in_page(bufp);
852 sg_set_page(sg, virt_to_page(bufp),
853 mapbytes, offset_in_page(bufp));
855 bytesleft -= mapbytes;
856 dev_dbg(&pl022->adev->dev,
857 "set RX/TX target page @ %p, %d bytes, %d left\n",
858 bufp, mapbytes, bytesleft);
861 /* Map the dummy buffer on every page */
862 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
863 if (bytesleft < PAGE_SIZE)
864 mapbytes = bytesleft;
866 mapbytes = PAGE_SIZE;
867 sg_set_page(sg, virt_to_page(pl022->dummypage),
869 bytesleft -= mapbytes;
870 dev_dbg(&pl022->adev->dev,
871 "set RX/TX to dummy page %d bytes, %d left\n",
872 mapbytes, bytesleft);
880 * configure_dma - configures the channels for the next transfer
881 * @pl022: SSP driver's private data structure
883 static int configure_dma(struct pl022 *pl022)
885 struct dma_slave_config rx_conf = {
886 .src_addr = SSP_DR(pl022->phybase),
887 .direction = DMA_DEV_TO_MEM,
890 struct dma_slave_config tx_conf = {
891 .dst_addr = SSP_DR(pl022->phybase),
892 .direction = DMA_MEM_TO_DEV,
897 int rx_sglen, tx_sglen;
898 struct dma_chan *rxchan = pl022->dma_rx_channel;
899 struct dma_chan *txchan = pl022->dma_tx_channel;
900 struct dma_async_tx_descriptor *rxdesc;
901 struct dma_async_tx_descriptor *txdesc;
903 /* Check that the channels are available */
904 if (!rxchan || !txchan)
908 * If supplied, the DMA burstsize should equal the FIFO trigger level.
909 * Notice that the DMA engine uses one-to-one mapping. Since we can
910 * not trigger on 2 elements this needs explicit mapping rather than
913 switch (pl022->rx_lev_trig) {
914 case SSP_RX_1_OR_MORE_ELEM:
915 rx_conf.src_maxburst = 1;
917 case SSP_RX_4_OR_MORE_ELEM:
918 rx_conf.src_maxburst = 4;
920 case SSP_RX_8_OR_MORE_ELEM:
921 rx_conf.src_maxburst = 8;
923 case SSP_RX_16_OR_MORE_ELEM:
924 rx_conf.src_maxburst = 16;
926 case SSP_RX_32_OR_MORE_ELEM:
927 rx_conf.src_maxburst = 32;
930 rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
934 switch (pl022->tx_lev_trig) {
935 case SSP_TX_1_OR_MORE_EMPTY_LOC:
936 tx_conf.dst_maxburst = 1;
938 case SSP_TX_4_OR_MORE_EMPTY_LOC:
939 tx_conf.dst_maxburst = 4;
941 case SSP_TX_8_OR_MORE_EMPTY_LOC:
942 tx_conf.dst_maxburst = 8;
944 case SSP_TX_16_OR_MORE_EMPTY_LOC:
945 tx_conf.dst_maxburst = 16;
947 case SSP_TX_32_OR_MORE_EMPTY_LOC:
948 tx_conf.dst_maxburst = 32;
951 tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
955 switch (pl022->read) {
957 /* Use the same as for writing */
958 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
961 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
964 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
967 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
971 switch (pl022->write) {
973 /* Use the same as for reading */
974 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
977 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
980 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
983 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
987 /* SPI pecularity: we need to read and write the same width */
988 if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
989 rx_conf.src_addr_width = tx_conf.dst_addr_width;
990 if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
991 tx_conf.dst_addr_width = rx_conf.src_addr_width;
992 BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
994 dmaengine_slave_config(rxchan, &rx_conf);
995 dmaengine_slave_config(txchan, &tx_conf);
997 /* Create sglists for the transfers */
998 pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
999 dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1001 ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1003 goto err_alloc_rx_sg;
1005 ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1007 goto err_alloc_tx_sg;
1009 /* Fill in the scatterlists for the RX+TX buffers */
1010 setup_dma_scatter(pl022, pl022->rx,
1011 pl022->cur_transfer->len, &pl022->sgt_rx);
1012 setup_dma_scatter(pl022, pl022->tx,
1013 pl022->cur_transfer->len, &pl022->sgt_tx);
1015 /* Map DMA buffers */
1016 rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1017 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1021 tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1022 pl022->sgt_tx.nents, DMA_TO_DEVICE);
1026 /* Send both scatterlists */
1027 rxdesc = dmaengine_prep_slave_sg(rxchan,
1031 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1035 txdesc = dmaengine_prep_slave_sg(txchan,
1039 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1043 /* Put the callback on the RX transfer only, that should finish last */
1044 rxdesc->callback = dma_callback;
1045 rxdesc->callback_param = pl022;
1047 /* Submit and fire RX and TX with TX last so we're ready to read! */
1048 dmaengine_submit(rxdesc);
1049 dmaengine_submit(txdesc);
1050 dma_async_issue_pending(rxchan);
1051 dma_async_issue_pending(txchan);
1052 pl022->dma_running = true;
1057 dmaengine_terminate_all(txchan);
1059 dmaengine_terminate_all(rxchan);
1060 dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1061 pl022->sgt_tx.nents, DMA_TO_DEVICE);
1063 dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1064 pl022->sgt_tx.nents, DMA_FROM_DEVICE);
1066 sg_free_table(&pl022->sgt_tx);
1068 sg_free_table(&pl022->sgt_rx);
1073 static int __devinit pl022_dma_probe(struct pl022 *pl022)
1075 dma_cap_mask_t mask;
1077 /* Try to acquire a generic DMA engine slave channel */
1079 dma_cap_set(DMA_SLAVE, mask);
1081 * We need both RX and TX channels to do DMA, else do none
1084 pl022->dma_rx_channel = dma_request_channel(mask,
1085 pl022->master_info->dma_filter,
1086 pl022->master_info->dma_rx_param);
1087 if (!pl022->dma_rx_channel) {
1088 dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1092 pl022->dma_tx_channel = dma_request_channel(mask,
1093 pl022->master_info->dma_filter,
1094 pl022->master_info->dma_tx_param);
1095 if (!pl022->dma_tx_channel) {
1096 dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1100 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1101 if (!pl022->dummypage) {
1102 dev_dbg(&pl022->adev->dev, "no DMA dummypage!\n");
1103 goto err_no_dummypage;
1106 dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1107 dma_chan_name(pl022->dma_rx_channel),
1108 dma_chan_name(pl022->dma_tx_channel));
1113 dma_release_channel(pl022->dma_tx_channel);
1115 dma_release_channel(pl022->dma_rx_channel);
1116 pl022->dma_rx_channel = NULL;
1118 dev_err(&pl022->adev->dev,
1119 "Failed to work in dma mode, work without dma!\n");
1123 static void terminate_dma(struct pl022 *pl022)
1125 struct dma_chan *rxchan = pl022->dma_rx_channel;
1126 struct dma_chan *txchan = pl022->dma_tx_channel;
1128 dmaengine_terminate_all(rxchan);
1129 dmaengine_terminate_all(txchan);
1130 unmap_free_dma_scatter(pl022);
1131 pl022->dma_running = false;
1134 static void pl022_dma_remove(struct pl022 *pl022)
1136 if (pl022->dma_running)
1137 terminate_dma(pl022);
1138 if (pl022->dma_tx_channel)
1139 dma_release_channel(pl022->dma_tx_channel);
1140 if (pl022->dma_rx_channel)
1141 dma_release_channel(pl022->dma_rx_channel);
1142 kfree(pl022->dummypage);
1146 static inline int configure_dma(struct pl022 *pl022)
1151 static inline int pl022_dma_probe(struct pl022 *pl022)
1156 static inline void pl022_dma_remove(struct pl022 *pl022)
1162 * pl022_interrupt_handler - Interrupt handler for SSP controller
1164 * This function handles interrupts generated for an interrupt based transfer.
1165 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1166 * current message's state as STATE_ERROR and schedule the tasklet
1167 * pump_transfers which will do the postprocessing of the current message by
1168 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1169 * more data, and writes data in TX FIFO till it is not full. If we complete
1170 * the transfer we move to the next transfer and schedule the tasklet.
1172 static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1174 struct pl022 *pl022 = dev_id;
1175 struct spi_message *msg = pl022->cur_msg;
1179 if (unlikely(!msg)) {
1180 dev_err(&pl022->adev->dev,
1181 "bad message state in interrupt handler");
1186 /* Read the Interrupt Status Register */
1187 irq_status = readw(SSP_MIS(pl022->virtbase));
1189 if (unlikely(!irq_status))
1193 * This handles the FIFO interrupts, the timeout
1194 * interrupts are flatly ignored, they cannot be
1197 if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1199 * Overrun interrupt - bail out since our Data has been
1202 dev_err(&pl022->adev->dev, "FIFO overrun\n");
1203 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1204 dev_err(&pl022->adev->dev,
1205 "RXFIFO is full\n");
1206 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
1207 dev_err(&pl022->adev->dev,
1208 "TXFIFO is full\n");
1211 * Disable and clear interrupts, disable SSP,
1212 * mark message with bad status so it can be
1215 writew(DISABLE_ALL_INTERRUPTS,
1216 SSP_IMSC(pl022->virtbase));
1217 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1218 writew((readw(SSP_CR1(pl022->virtbase)) &
1219 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1220 msg->state = STATE_ERROR;
1222 /* Schedule message queue handler */
1223 tasklet_schedule(&pl022->pump_transfers);
1229 if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
1231 /* Disable Transmit interrupt, enable receive interrupt */
1232 writew((readw(SSP_IMSC(pl022->virtbase)) &
1233 ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1234 SSP_IMSC(pl022->virtbase));
1238 * Since all transactions must write as much as shall be read,
1239 * we can conclude the entire transaction once RX is complete.
1240 * At this point, all TX will always be finished.
1242 if (pl022->rx >= pl022->rx_end) {
1243 writew(DISABLE_ALL_INTERRUPTS,
1244 SSP_IMSC(pl022->virtbase));
1245 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1246 if (unlikely(pl022->rx > pl022->rx_end)) {
1247 dev_warn(&pl022->adev->dev, "read %u surplus "
1248 "bytes (did you request an odd "
1249 "number of bytes on a 16bit bus?)\n",
1250 (u32) (pl022->rx - pl022->rx_end));
1252 /* Update total bytes transferred */
1253 msg->actual_length += pl022->cur_transfer->len;
1254 if (pl022->cur_transfer->cs_change)
1256 cs_control(SSP_CHIP_DESELECT);
1257 /* Move to next transfer */
1258 msg->state = next_transfer(pl022);
1259 tasklet_schedule(&pl022->pump_transfers);
1267 * This sets up the pointers to memory for the next message to
1268 * send out on the SPI bus.
1270 static int set_up_next_transfer(struct pl022 *pl022,
1271 struct spi_transfer *transfer)
1275 /* Sanity check the message for this bus width */
1276 residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1277 if (unlikely(residue != 0)) {
1278 dev_err(&pl022->adev->dev,
1279 "message of %u bytes to transmit but the current "
1280 "chip bus has a data width of %u bytes!\n",
1281 pl022->cur_transfer->len,
1282 pl022->cur_chip->n_bytes);
1283 dev_err(&pl022->adev->dev, "skipping this message\n");
1286 pl022->tx = (void *)transfer->tx_buf;
1287 pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1288 pl022->rx = (void *)transfer->rx_buf;
1289 pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1291 pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1292 pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1297 * pump_transfers - Tasklet function which schedules next transfer
1298 * when running in interrupt or DMA transfer mode.
1299 * @data: SSP driver private data structure
1302 static void pump_transfers(unsigned long data)
1304 struct pl022 *pl022 = (struct pl022 *) data;
1305 struct spi_message *message = NULL;
1306 struct spi_transfer *transfer = NULL;
1307 struct spi_transfer *previous = NULL;
1309 /* Get current state information */
1310 message = pl022->cur_msg;
1311 transfer = pl022->cur_transfer;
1313 /* Handle for abort */
1314 if (message->state == STATE_ERROR) {
1315 message->status = -EIO;
1320 /* Handle end of message */
1321 if (message->state == STATE_DONE) {
1322 message->status = 0;
1327 /* Delay if requested at end of transfer before CS change */
1328 if (message->state == STATE_RUNNING) {
1329 previous = list_entry(transfer->transfer_list.prev,
1330 struct spi_transfer,
1332 if (previous->delay_usecs)
1334 * FIXME: This runs in interrupt context.
1335 * Is this really smart?
1337 udelay(previous->delay_usecs);
1339 /* Reselect chip select only if cs_change was requested */
1340 if (previous->cs_change)
1341 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1344 message->state = STATE_RUNNING;
1347 if (set_up_next_transfer(pl022, transfer)) {
1348 message->state = STATE_ERROR;
1349 message->status = -EIO;
1353 /* Flush the FIFOs and let's go! */
1356 if (pl022->cur_chip->enable_dma) {
1357 if (configure_dma(pl022)) {
1358 dev_dbg(&pl022->adev->dev,
1359 "configuration of DMA failed, fall back to interrupt mode\n");
1360 goto err_config_dma;
1366 /* enable all interrupts except RX */
1367 writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1370 static void do_interrupt_dma_transfer(struct pl022 *pl022)
1373 * Default is to enable all interrupts except RX -
1374 * this will be enabled once TX is complete
1376 u32 irqflags = ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM;
1378 /* Enable target chip, if not already active */
1379 if (!pl022->next_msg_cs_active)
1380 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1382 if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1384 pl022->cur_msg->state = STATE_ERROR;
1385 pl022->cur_msg->status = -EIO;
1389 /* If we're using DMA, set up DMA here */
1390 if (pl022->cur_chip->enable_dma) {
1391 /* Configure DMA transfer */
1392 if (configure_dma(pl022)) {
1393 dev_dbg(&pl022->adev->dev,
1394 "configuration of DMA failed, fall back to interrupt mode\n");
1395 goto err_config_dma;
1397 /* Disable interrupts in DMA mode, IRQ from DMA controller */
1398 irqflags = DISABLE_ALL_INTERRUPTS;
1401 /* Enable SSP, turn on interrupts */
1402 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1403 SSP_CR1(pl022->virtbase));
1404 writew(irqflags, SSP_IMSC(pl022->virtbase));
1407 static void do_polling_transfer(struct pl022 *pl022)
1409 struct spi_message *message = NULL;
1410 struct spi_transfer *transfer = NULL;
1411 struct spi_transfer *previous = NULL;
1412 struct chip_data *chip;
1413 unsigned long time, timeout;
1415 chip = pl022->cur_chip;
1416 message = pl022->cur_msg;
1418 while (message->state != STATE_DONE) {
1419 /* Handle for abort */
1420 if (message->state == STATE_ERROR)
1422 transfer = pl022->cur_transfer;
1424 /* Delay if requested at end of transfer */
1425 if (message->state == STATE_RUNNING) {
1427 list_entry(transfer->transfer_list.prev,
1428 struct spi_transfer, transfer_list);
1429 if (previous->delay_usecs)
1430 udelay(previous->delay_usecs);
1431 if (previous->cs_change)
1432 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1435 message->state = STATE_RUNNING;
1436 if (!pl022->next_msg_cs_active)
1437 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1440 /* Configuration Changing Per Transfer */
1441 if (set_up_next_transfer(pl022, transfer)) {
1443 message->state = STATE_ERROR;
1446 /* Flush FIFOs and enable SSP */
1448 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1449 SSP_CR1(pl022->virtbase));
1451 dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1453 timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1454 while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1457 if (time_after(time, timeout)) {
1458 dev_warn(&pl022->adev->dev,
1459 "%s: timeout!\n", __func__);
1460 message->state = STATE_ERROR;
1466 /* Update total byte transferred */
1467 message->actual_length += pl022->cur_transfer->len;
1468 if (pl022->cur_transfer->cs_change)
1469 pl022->cur_chip->cs_control(SSP_CHIP_DESELECT);
1470 /* Move to next transfer */
1471 message->state = next_transfer(pl022);
1474 /* Handle end of message */
1475 if (message->state == STATE_DONE)
1476 message->status = 0;
1478 message->status = -EIO;
1484 static int pl022_transfer_one_message(struct spi_master *master,
1485 struct spi_message *msg)
1487 struct pl022 *pl022 = spi_master_get_devdata(master);
1489 /* Initial message state */
1490 pl022->cur_msg = msg;
1491 msg->state = STATE_START;
1493 pl022->cur_transfer = list_entry(msg->transfers.next,
1494 struct spi_transfer, transfer_list);
1496 /* Setup the SPI using the per chip configuration */
1497 pl022->cur_chip = spi_get_ctldata(msg->spi);
1499 restore_state(pl022);
1502 if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1503 do_polling_transfer(pl022);
1505 do_interrupt_dma_transfer(pl022);
1510 static int pl022_prepare_transfer_hardware(struct spi_master *master)
1512 struct pl022 *pl022 = spi_master_get_devdata(master);
1515 * Just make sure we have all we need to run the transfer by syncing
1516 * with the runtime PM framework.
1518 pm_runtime_get_sync(&pl022->adev->dev);
1522 static int pl022_unprepare_transfer_hardware(struct spi_master *master)
1524 struct pl022 *pl022 = spi_master_get_devdata(master);
1526 /* nothing more to do - disable spi/ssp and power off */
1527 writew((readw(SSP_CR1(pl022->virtbase)) &
1528 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1530 if (pl022->master_info->autosuspend_delay > 0) {
1531 pm_runtime_mark_last_busy(&pl022->adev->dev);
1532 pm_runtime_put_autosuspend(&pl022->adev->dev);
1534 pm_runtime_put(&pl022->adev->dev);
1540 static int verify_controller_parameters(struct pl022 *pl022,
1541 struct pl022_config_chip const *chip_info)
1543 if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1544 || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1545 dev_err(&pl022->adev->dev,
1546 "interface is configured incorrectly\n");
1549 if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1550 (!pl022->vendor->unidir)) {
1551 dev_err(&pl022->adev->dev,
1552 "unidirectional mode not supported in this "
1553 "hardware version\n");
1556 if ((chip_info->hierarchy != SSP_MASTER)
1557 && (chip_info->hierarchy != SSP_SLAVE)) {
1558 dev_err(&pl022->adev->dev,
1559 "hierarchy is configured incorrectly\n");
1562 if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1563 && (chip_info->com_mode != DMA_TRANSFER)
1564 && (chip_info->com_mode != POLLING_TRANSFER)) {
1565 dev_err(&pl022->adev->dev,
1566 "Communication mode is configured incorrectly\n");
1569 switch (chip_info->rx_lev_trig) {
1570 case SSP_RX_1_OR_MORE_ELEM:
1571 case SSP_RX_4_OR_MORE_ELEM:
1572 case SSP_RX_8_OR_MORE_ELEM:
1573 /* These are always OK, all variants can handle this */
1575 case SSP_RX_16_OR_MORE_ELEM:
1576 if (pl022->vendor->fifodepth < 16) {
1577 dev_err(&pl022->adev->dev,
1578 "RX FIFO Trigger Level is configured incorrectly\n");
1582 case SSP_RX_32_OR_MORE_ELEM:
1583 if (pl022->vendor->fifodepth < 32) {
1584 dev_err(&pl022->adev->dev,
1585 "RX FIFO Trigger Level is configured incorrectly\n");
1590 dev_err(&pl022->adev->dev,
1591 "RX FIFO Trigger Level is configured incorrectly\n");
1595 switch (chip_info->tx_lev_trig) {
1596 case SSP_TX_1_OR_MORE_EMPTY_LOC:
1597 case SSP_TX_4_OR_MORE_EMPTY_LOC:
1598 case SSP_TX_8_OR_MORE_EMPTY_LOC:
1599 /* These are always OK, all variants can handle this */
1601 case SSP_TX_16_OR_MORE_EMPTY_LOC:
1602 if (pl022->vendor->fifodepth < 16) {
1603 dev_err(&pl022->adev->dev,
1604 "TX FIFO Trigger Level is configured incorrectly\n");
1608 case SSP_TX_32_OR_MORE_EMPTY_LOC:
1609 if (pl022->vendor->fifodepth < 32) {
1610 dev_err(&pl022->adev->dev,
1611 "TX FIFO Trigger Level is configured incorrectly\n");
1616 dev_err(&pl022->adev->dev,
1617 "TX FIFO Trigger Level is configured incorrectly\n");
1621 if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1622 if ((chip_info->ctrl_len < SSP_BITS_4)
1623 || (chip_info->ctrl_len > SSP_BITS_32)) {
1624 dev_err(&pl022->adev->dev,
1625 "CTRL LEN is configured incorrectly\n");
1628 if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1629 && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1630 dev_err(&pl022->adev->dev,
1631 "Wait State is configured incorrectly\n");
1634 /* Half duplex is only available in the ST Micro version */
1635 if (pl022->vendor->extended_cr) {
1636 if ((chip_info->duplex !=
1637 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1638 && (chip_info->duplex !=
1639 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1640 dev_err(&pl022->adev->dev,
1641 "Microwire duplex mode is configured incorrectly\n");
1645 if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1646 dev_err(&pl022->adev->dev,
1647 "Microwire half duplex mode requested,"
1648 " but this is only available in the"
1649 " ST version of PL022\n");
1656 static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1658 return rate / (cpsdvsr * (1 + scr));
1661 static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1662 ssp_clock_params * clk_freq)
1664 /* Lets calculate the frequency parameters */
1665 u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1666 u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1667 best_scr = 0, tmp, found = 0;
1669 rate = clk_get_rate(pl022->clk);
1670 /* cpsdvscr = 2 & scr 0 */
1671 max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1672 /* cpsdvsr = 254 & scr = 255 */
1673 min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1675 if (freq > max_tclk)
1676 dev_warn(&pl022->adev->dev,
1677 "Max speed that can be programmed is %d Hz, you requested %d\n",
1680 if (freq < min_tclk) {
1681 dev_err(&pl022->adev->dev,
1682 "Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1688 * best_freq will give closest possible available rate (<= requested
1689 * freq) for all values of scr & cpsdvsr.
1691 while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1692 while (scr <= SCR_MAX) {
1693 tmp = spi_rate(rate, cpsdvsr, scr);
1696 /* we need lower freq */
1702 * If found exact value, mark found and break.
1703 * If found more closer value, update and break.
1705 if (tmp > best_freq) {
1707 best_cpsdvsr = cpsdvsr;
1714 * increased scr will give lower rates, which are not
1723 WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1726 clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1727 clk_freq->scr = (u8) (best_scr & 0xFF);
1728 dev_dbg(&pl022->adev->dev,
1729 "SSP Target Frequency is: %u, Effective Frequency is %u\n",
1731 dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1732 clk_freq->cpsdvsr, clk_freq->scr);
1738 * A piece of default chip info unless the platform
1741 static const struct pl022_config_chip pl022_default_chip_info = {
1742 .com_mode = POLLING_TRANSFER,
1743 .iface = SSP_INTERFACE_MOTOROLA_SPI,
1744 .hierarchy = SSP_SLAVE,
1745 .slave_tx_disable = DO_NOT_DRIVE_TX,
1746 .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1747 .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1748 .ctrl_len = SSP_BITS_8,
1749 .wait_state = SSP_MWIRE_WAIT_ZERO,
1750 .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1751 .cs_control = null_cs_control,
1755 * pl022_setup - setup function registered to SPI master framework
1756 * @spi: spi device which is requesting setup
1758 * This function is registered to the SPI framework for this SPI master
1759 * controller. If it is the first time when setup is called by this device,
1760 * this function will initialize the runtime state for this chip and save
1761 * the same in the device structure. Else it will update the runtime info
1762 * with the updated chip info. Nothing is really being written to the
1763 * controller hardware here, that is not done until the actual transfer
1766 static int pl022_setup(struct spi_device *spi)
1768 struct pl022_config_chip const *chip_info;
1769 struct chip_data *chip;
1770 struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1772 struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1773 unsigned int bits = spi->bits_per_word;
1776 if (!spi->max_speed_hz)
1779 /* Get controller_state if one is supplied */
1780 chip = spi_get_ctldata(spi);
1783 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1786 "cannot allocate controller state\n");
1790 "allocated memory for controller's runtime state\n");
1793 /* Get controller data if one is supplied */
1794 chip_info = spi->controller_data;
1796 if (chip_info == NULL) {
1797 chip_info = &pl022_default_chip_info;
1798 /* spi_board_info.controller_data not is supplied */
1800 "using default controller_data settings\n");
1803 "using user supplied controller_data settings\n");
1806 * We can override with custom divisors, else we use the board
1809 if ((0 == chip_info->clk_freq.cpsdvsr)
1810 && (0 == chip_info->clk_freq.scr)) {
1811 status = calculate_effective_freq(pl022,
1815 goto err_config_params;
1817 memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1818 if ((clk_freq.cpsdvsr % 2) != 0)
1820 clk_freq.cpsdvsr - 1;
1822 if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1823 || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1826 "cpsdvsr is configured incorrectly\n");
1827 goto err_config_params;
1830 status = verify_controller_parameters(pl022, chip_info);
1832 dev_err(&spi->dev, "controller data is incorrect");
1833 goto err_config_params;
1836 pl022->rx_lev_trig = chip_info->rx_lev_trig;
1837 pl022->tx_lev_trig = chip_info->tx_lev_trig;
1839 /* Now set controller state based on controller data */
1840 chip->xfer_type = chip_info->com_mode;
1841 if (!chip_info->cs_control) {
1842 chip->cs_control = null_cs_control;
1844 "chip select function is NULL for this chip\n");
1846 chip->cs_control = chip_info->cs_control;
1848 /* Check bits per word with vendor specific range */
1849 if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1851 dev_err(&spi->dev, "illegal data size for this controller!\n");
1852 dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1853 pl022->vendor->max_bpw);
1854 goto err_config_params;
1855 } else if (bits <= 8) {
1856 dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1858 chip->read = READING_U8;
1859 chip->write = WRITING_U8;
1860 } else if (bits <= 16) {
1861 dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1863 chip->read = READING_U16;
1864 chip->write = WRITING_U16;
1866 dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1868 chip->read = READING_U32;
1869 chip->write = WRITING_U32;
1872 /* Now Initialize all register settings required for this chip */
1877 if ((chip_info->com_mode == DMA_TRANSFER)
1878 && ((pl022->master_info)->enable_dma)) {
1879 chip->enable_dma = true;
1880 dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1881 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1882 SSP_DMACR_MASK_RXDMAE, 0);
1883 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1884 SSP_DMACR_MASK_TXDMAE, 1);
1886 chip->enable_dma = false;
1887 dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1888 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1889 SSP_DMACR_MASK_RXDMAE, 0);
1890 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1891 SSP_DMACR_MASK_TXDMAE, 1);
1894 chip->cpsr = clk_freq.cpsdvsr;
1896 /* Special setup for the ST micro extended control registers */
1897 if (pl022->vendor->extended_cr) {
1900 if (pl022->vendor->pl023) {
1901 /* These bits are only in the PL023 */
1902 SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1903 SSP_CR1_MASK_FBCLKDEL_ST, 13);
1905 /* These bits are in the PL022 but not PL023 */
1906 SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1907 SSP_CR0_MASK_HALFDUP_ST, 5);
1908 SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1909 SSP_CR0_MASK_CSS_ST, 16);
1910 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1911 SSP_CR0_MASK_FRF_ST, 21);
1912 SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
1913 SSP_CR1_MASK_MWAIT_ST, 6);
1915 SSP_WRITE_BITS(chip->cr0, bits - 1,
1916 SSP_CR0_MASK_DSS_ST, 0);
1918 if (spi->mode & SPI_LSB_FIRST) {
1925 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
1926 SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
1927 SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
1928 SSP_CR1_MASK_RXIFLSEL_ST, 7);
1929 SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
1930 SSP_CR1_MASK_TXIFLSEL_ST, 10);
1932 SSP_WRITE_BITS(chip->cr0, bits - 1,
1933 SSP_CR0_MASK_DSS, 0);
1934 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1935 SSP_CR0_MASK_FRF, 4);
1938 /* Stuff that is common for all versions */
1939 if (spi->mode & SPI_CPOL)
1940 tmp = SSP_CLK_POL_IDLE_HIGH;
1942 tmp = SSP_CLK_POL_IDLE_LOW;
1943 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
1945 if (spi->mode & SPI_CPHA)
1946 tmp = SSP_CLK_SECOND_EDGE;
1948 tmp = SSP_CLK_FIRST_EDGE;
1949 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
1951 SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
1952 /* Loopback is available on all versions except PL023 */
1953 if (pl022->vendor->loopback) {
1954 if (spi->mode & SPI_LOOP)
1955 tmp = LOOPBACK_ENABLED;
1957 tmp = LOOPBACK_DISABLED;
1958 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
1960 SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
1961 SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
1962 SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
1965 /* Save controller_state */
1966 spi_set_ctldata(spi, chip);
1969 spi_set_ctldata(spi, NULL);
1975 * pl022_cleanup - cleanup function registered to SPI master framework
1976 * @spi: spi device which is requesting cleanup
1978 * This function is registered to the SPI framework for this SPI master
1979 * controller. It will free the runtime state of chip.
1981 static void pl022_cleanup(struct spi_device *spi)
1983 struct chip_data *chip = spi_get_ctldata(spi);
1985 spi_set_ctldata(spi, NULL);
1989 static int __devinit
1990 pl022_probe(struct amba_device *adev, const struct amba_id *id)
1992 struct device *dev = &adev->dev;
1993 struct pl022_ssp_controller *platform_info = adev->dev.platform_data;
1994 struct spi_master *master;
1995 struct pl022 *pl022 = NULL; /*Data for this driver */
1998 dev_info(&adev->dev,
1999 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2000 if (platform_info == NULL) {
2001 dev_err(&adev->dev, "probe - no platform data supplied\n");
2006 /* Allocate master with space for data */
2007 master = spi_alloc_master(dev, sizeof(struct pl022));
2008 if (master == NULL) {
2009 dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2014 pl022 = spi_master_get_devdata(master);
2015 pl022->master = master;
2016 pl022->master_info = platform_info;
2018 pl022->vendor = id->data;
2021 * Bus Number Which has been Assigned to this SSP controller
2024 master->bus_num = platform_info->bus_id;
2025 master->num_chipselect = platform_info->num_chipselect;
2026 master->cleanup = pl022_cleanup;
2027 master->setup = pl022_setup;
2028 master->prepare_transfer_hardware = pl022_prepare_transfer_hardware;
2029 master->transfer_one_message = pl022_transfer_one_message;
2030 master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
2031 master->rt = platform_info->rt;
2034 * Supports mode 0-3, loopback, and active low CS. Transfers are
2035 * always MS bit first on the original pl022.
2037 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2038 if (pl022->vendor->extended_cr)
2039 master->mode_bits |= SPI_LSB_FIRST;
2041 dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2043 status = amba_request_regions(adev, NULL);
2045 goto err_no_ioregion;
2047 pl022->phybase = adev->res.start;
2048 pl022->virtbase = ioremap(adev->res.start, resource_size(&adev->res));
2049 if (pl022->virtbase == NULL) {
2051 goto err_no_ioremap;
2053 printk(KERN_INFO "pl022: mapped registers from 0x%08x to %p\n",
2054 adev->res.start, pl022->virtbase);
2056 pm_runtime_resume(dev);
2058 pl022->clk = clk_get(&adev->dev, NULL);
2059 if (IS_ERR(pl022->clk)) {
2060 status = PTR_ERR(pl022->clk);
2061 dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2065 status = clk_prepare(pl022->clk);
2067 dev_err(&adev->dev, "could not prepare SSP/SPI bus clock\n");
2071 status = clk_enable(pl022->clk);
2073 dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2077 /* Initialize transfer pump */
2078 tasklet_init(&pl022->pump_transfers, pump_transfers,
2079 (unsigned long)pl022);
2082 writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2083 SSP_CR1(pl022->virtbase));
2084 load_ssp_default_config(pl022);
2086 status = request_irq(adev->irq[0], pl022_interrupt_handler, 0, "pl022",
2089 dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2093 /* Get DMA channels */
2094 if (platform_info->enable_dma) {
2095 status = pl022_dma_probe(pl022);
2097 platform_info->enable_dma = 0;
2100 /* Register with the SPI framework */
2101 amba_set_drvdata(adev, pl022);
2102 status = spi_register_master(master);
2105 "probe - problem registering spi master\n");
2106 goto err_spi_register;
2108 dev_dbg(dev, "probe succeeded\n");
2110 /* let runtime pm put suspend */
2111 if (platform_info->autosuspend_delay > 0) {
2112 dev_info(&adev->dev,
2113 "will use autosuspend for runtime pm, delay %dms\n",
2114 platform_info->autosuspend_delay);
2115 pm_runtime_set_autosuspend_delay(dev,
2116 platform_info->autosuspend_delay);
2117 pm_runtime_use_autosuspend(dev);
2118 pm_runtime_put_autosuspend(dev);
2120 pm_runtime_put(dev);
2125 if (platform_info->enable_dma)
2126 pl022_dma_remove(pl022);
2128 free_irq(adev->irq[0], pl022);
2130 clk_disable(pl022->clk);
2132 clk_unprepare(pl022->clk);
2134 clk_put(pl022->clk);
2136 iounmap(pl022->virtbase);
2138 amba_release_regions(adev);
2140 spi_master_put(master);
2146 static int __devexit
2147 pl022_remove(struct amba_device *adev)
2149 struct pl022 *pl022 = amba_get_drvdata(adev);
2155 * undo pm_runtime_put() in probe. I assume that we're not
2156 * accessing the primecell here.
2158 pm_runtime_get_noresume(&adev->dev);
2160 load_ssp_default_config(pl022);
2161 if (pl022->master_info->enable_dma)
2162 pl022_dma_remove(pl022);
2164 free_irq(adev->irq[0], pl022);
2165 clk_disable(pl022->clk);
2166 clk_unprepare(pl022->clk);
2167 clk_put(pl022->clk);
2168 pm_runtime_disable(&adev->dev);
2169 iounmap(pl022->virtbase);
2170 amba_release_regions(adev);
2171 tasklet_disable(&pl022->pump_transfers);
2172 spi_unregister_master(pl022->master);
2173 spi_master_put(pl022->master);
2174 amba_set_drvdata(adev, NULL);
2178 #ifdef CONFIG_SUSPEND
2179 static int pl022_suspend(struct device *dev)
2181 struct pl022 *pl022 = dev_get_drvdata(dev);
2184 ret = spi_master_suspend(pl022->master);
2186 dev_warn(dev, "cannot suspend master\n");
2190 dev_dbg(dev, "suspended\n");
2194 static int pl022_resume(struct device *dev)
2196 struct pl022 *pl022 = dev_get_drvdata(dev);
2199 /* Start the queue running */
2200 ret = spi_master_resume(pl022->master);
2202 dev_err(dev, "problem starting queue (%d)\n", ret);
2204 dev_dbg(dev, "resumed\n");
2208 #endif /* CONFIG_PM */
2210 #ifdef CONFIG_PM_RUNTIME
2211 static int pl022_runtime_suspend(struct device *dev)
2213 struct pl022 *pl022 = dev_get_drvdata(dev);
2215 clk_disable(pl022->clk);
2220 static int pl022_runtime_resume(struct device *dev)
2222 struct pl022 *pl022 = dev_get_drvdata(dev);
2224 clk_enable(pl022->clk);
2230 static const struct dev_pm_ops pl022_dev_pm_ops = {
2231 SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2232 SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2235 static struct vendor_data vendor_arm = {
2239 .extended_cr = false,
2244 static struct vendor_data vendor_st = {
2248 .extended_cr = true,
2253 static struct vendor_data vendor_st_pl023 = {
2257 .extended_cr = true,
2262 static struct amba_id pl022_ids[] = {
2265 * ARM PL022 variant, this has a 16bit wide
2266 * and 8 locations deep TX/RX FIFO
2270 .data = &vendor_arm,
2274 * ST Micro derivative, this has 32bit wide
2275 * and 32 locations deep TX/RX FIFO
2283 * ST-Ericsson derivative "PL023" (this is not
2284 * an official ARM number), this is a PL022 SSP block
2285 * stripped to SPI mode only, it has 32bit wide
2286 * and 32 locations deep TX/RX FIFO but no extended
2291 .data = &vendor_st_pl023,
2296 MODULE_DEVICE_TABLE(amba, pl022_ids);
2298 static struct amba_driver pl022_driver = {
2300 .name = "ssp-pl022",
2301 .pm = &pl022_dev_pm_ops,
2303 .id_table = pl022_ids,
2304 .probe = pl022_probe,
2305 .remove = __devexit_p(pl022_remove),
2308 static int __init pl022_init(void)
2310 return amba_driver_register(&pl022_driver);
2312 subsys_initcall(pl022_init);
2314 static void __exit pl022_exit(void)
2316 amba_driver_unregister(&pl022_driver);
2318 module_exit(pl022_exit);
2320 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2321 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2322 MODULE_LICENSE("GPL");