1 // SPDX-License-Identifier: GPL-2.0+
4 * NXP FlexSPI(FSPI) controller driver.
6 * Copyright 2019-2020 NXP
7 * Copyright 2020 Puresoftware Ltd.
9 * FlexSPI is a flexsible SPI host controller which supports two SPI
10 * channels and up to 4 external devices. Each channel supports
11 * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
14 * FlexSPI controller is driven by the LUT(Look-up Table) registers
15 * LUT registers are a look-up-table for sequences of instructions.
16 * A valid sequence consists of four LUT registers.
17 * Maximum 32 LUT sequences can be programmed simultaneously.
19 * LUTs are being created at run-time based on the commands passed
20 * from the spi-mem framework, thus using single LUT index.
22 * Software triggered Flash read/write access by IP Bus.
24 * Memory mapped read access by AHB Bus.
26 * Based on SPI MEM interface and spi-fsl-qspi.c driver.
29 * Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
30 * Boris Brezillon <bbrezillon@kernel.org>
31 * Frieder Schrempf <frieder.schrempf@kontron.de>
34 #include <linux/acpi.h>
35 #include <linux/bitops.h>
36 #include <linux/clk.h>
37 #include <linux/completion.h>
38 #include <linux/delay.h>
39 #include <linux/err.h>
40 #include <linux/errno.h>
41 #include <linux/interrupt.h>
43 #include <linux/iopoll.h>
44 #include <linux/jiffies.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/mutex.h>
49 #include <linux/of_device.h>
50 #include <linux/platform_device.h>
51 #include <linux/pm_qos.h>
52 #include <linux/regmap.h>
53 #include <linux/sizes.h>
54 #include <linux/sys_soc.h>
56 #include <linux/mfd/syscon.h>
57 #include <linux/spi/spi.h>
58 #include <linux/spi/spi-mem.h>
61 * The driver only uses one single LUT entry, that is updated on
62 * each call of exec_op(). Index 0 is preset at boot with a basic
63 * read operation, so let's use the last entry (31).
67 /* Registers used by the driver */
68 #define FSPI_MCR0 0x00
69 #define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24)
70 #define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16)
71 #define FSPI_MCR0_LEARN_EN BIT(15)
72 #define FSPI_MCR0_SCRFRUN_EN BIT(14)
73 #define FSPI_MCR0_OCTCOMB_EN BIT(13)
74 #define FSPI_MCR0_DOZE_EN BIT(12)
75 #define FSPI_MCR0_HSEN BIT(11)
76 #define FSPI_MCR0_SERCLKDIV BIT(8)
77 #define FSPI_MCR0_ATDF_EN BIT(7)
78 #define FSPI_MCR0_ARDF_EN BIT(6)
79 #define FSPI_MCR0_RXCLKSRC(x) ((x) << 4)
80 #define FSPI_MCR0_END_CFG(x) ((x) << 2)
81 #define FSPI_MCR0_MDIS BIT(1)
82 #define FSPI_MCR0_SWRST BIT(0)
84 #define FSPI_MCR1 0x04
85 #define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16)
86 #define FSPI_MCR1_AHB_TIMEOUT(x) (x)
88 #define FSPI_MCR2 0x08
89 #define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24)
90 #define FSPI_MCR2_SAMEDEVICEEN BIT(15)
91 #define FSPI_MCR2_CLRLRPHS BIT(14)
92 #define FSPI_MCR2_ABRDATSZ BIT(8)
93 #define FSPI_MCR2_ABRLEARN BIT(7)
94 #define FSPI_MCR2_ABR_READ BIT(6)
95 #define FSPI_MCR2_ABRWRITE BIT(5)
96 #define FSPI_MCR2_ABRDUMMY BIT(4)
97 #define FSPI_MCR2_ABR_MODE BIT(3)
98 #define FSPI_MCR2_ABRCADDR BIT(2)
99 #define FSPI_MCR2_ABRRADDR BIT(1)
100 #define FSPI_MCR2_ABR_CMD BIT(0)
102 #define FSPI_AHBCR 0x0c
103 #define FSPI_AHBCR_RDADDROPT BIT(6)
104 #define FSPI_AHBCR_PREF_EN BIT(5)
105 #define FSPI_AHBCR_BUFF_EN BIT(4)
106 #define FSPI_AHBCR_CACH_EN BIT(3)
107 #define FSPI_AHBCR_CLRTXBUF BIT(2)
108 #define FSPI_AHBCR_CLRRXBUF BIT(1)
109 #define FSPI_AHBCR_PAR_EN BIT(0)
111 #define FSPI_INTEN 0x10
112 #define FSPI_INTEN_SCLKSBWR BIT(9)
113 #define FSPI_INTEN_SCLKSBRD BIT(8)
114 #define FSPI_INTEN_DATALRNFL BIT(7)
115 #define FSPI_INTEN_IPTXWE BIT(6)
116 #define FSPI_INTEN_IPRXWA BIT(5)
117 #define FSPI_INTEN_AHBCMDERR BIT(4)
118 #define FSPI_INTEN_IPCMDERR BIT(3)
119 #define FSPI_INTEN_AHBCMDGE BIT(2)
120 #define FSPI_INTEN_IPCMDGE BIT(1)
121 #define FSPI_INTEN_IPCMDDONE BIT(0)
123 #define FSPI_INTR 0x14
124 #define FSPI_INTR_SCLKSBWR BIT(9)
125 #define FSPI_INTR_SCLKSBRD BIT(8)
126 #define FSPI_INTR_DATALRNFL BIT(7)
127 #define FSPI_INTR_IPTXWE BIT(6)
128 #define FSPI_INTR_IPRXWA BIT(5)
129 #define FSPI_INTR_AHBCMDERR BIT(4)
130 #define FSPI_INTR_IPCMDERR BIT(3)
131 #define FSPI_INTR_AHBCMDGE BIT(2)
132 #define FSPI_INTR_IPCMDGE BIT(1)
133 #define FSPI_INTR_IPCMDDONE BIT(0)
135 #define FSPI_LUTKEY 0x18
136 #define FSPI_LUTKEY_VALUE 0x5AF05AF0
138 #define FSPI_LCKCR 0x1C
140 #define FSPI_LCKER_LOCK 0x1
141 #define FSPI_LCKER_UNLOCK 0x2
143 #define FSPI_BUFXCR_INVALID_MSTRID 0xE
144 #define FSPI_AHBRX_BUF0CR0 0x20
145 #define FSPI_AHBRX_BUF1CR0 0x24
146 #define FSPI_AHBRX_BUF2CR0 0x28
147 #define FSPI_AHBRX_BUF3CR0 0x2C
148 #define FSPI_AHBRX_BUF4CR0 0x30
149 #define FSPI_AHBRX_BUF5CR0 0x34
150 #define FSPI_AHBRX_BUF6CR0 0x38
151 #define FSPI_AHBRX_BUF7CR0 0x3C
152 #define FSPI_AHBRXBUF0CR7_PREF BIT(31)
154 #define FSPI_AHBRX_BUF0CR1 0x40
155 #define FSPI_AHBRX_BUF1CR1 0x44
156 #define FSPI_AHBRX_BUF2CR1 0x48
157 #define FSPI_AHBRX_BUF3CR1 0x4C
158 #define FSPI_AHBRX_BUF4CR1 0x50
159 #define FSPI_AHBRX_BUF5CR1 0x54
160 #define FSPI_AHBRX_BUF6CR1 0x58
161 #define FSPI_AHBRX_BUF7CR1 0x5C
163 #define FSPI_FLSHA1CR0 0x60
164 #define FSPI_FLSHA2CR0 0x64
165 #define FSPI_FLSHB1CR0 0x68
166 #define FSPI_FLSHB2CR0 0x6C
167 #define FSPI_FLSHXCR0_SZ_KB 10
168 #define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB)
170 #define FSPI_FLSHA1CR1 0x70
171 #define FSPI_FLSHA2CR1 0x74
172 #define FSPI_FLSHB1CR1 0x78
173 #define FSPI_FLSHB2CR1 0x7C
174 #define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16)
175 #define FSPI_FLSHXCR1_CAS(x) ((x) << 11)
176 #define FSPI_FLSHXCR1_WA BIT(10)
177 #define FSPI_FLSHXCR1_TCSH(x) ((x) << 5)
178 #define FSPI_FLSHXCR1_TCSS(x) (x)
180 #define FSPI_FLSHA1CR2 0x80
181 #define FSPI_FLSHA2CR2 0x84
182 #define FSPI_FLSHB1CR2 0x88
183 #define FSPI_FLSHB2CR2 0x8C
184 #define FSPI_FLSHXCR2_CLRINSP BIT(24)
185 #define FSPI_FLSHXCR2_AWRWAIT BIT(16)
186 #define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13
187 #define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8
188 #define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5
189 #define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0
191 #define FSPI_IPCR0 0xA0
193 #define FSPI_IPCR1 0xA4
194 #define FSPI_IPCR1_IPAREN BIT(31)
195 #define FSPI_IPCR1_SEQNUM_SHIFT 24
196 #define FSPI_IPCR1_SEQID_SHIFT 16
197 #define FSPI_IPCR1_IDATSZ(x) (x)
199 #define FSPI_IPCMD 0xB0
200 #define FSPI_IPCMD_TRG BIT(0)
202 #define FSPI_DLPR 0xB4
204 #define FSPI_IPRXFCR 0xB8
205 #define FSPI_IPRXFCR_CLR BIT(0)
206 #define FSPI_IPRXFCR_DMA_EN BIT(1)
207 #define FSPI_IPRXFCR_WMRK(x) ((x) << 2)
209 #define FSPI_IPTXFCR 0xBC
210 #define FSPI_IPTXFCR_CLR BIT(0)
211 #define FSPI_IPTXFCR_DMA_EN BIT(1)
212 #define FSPI_IPTXFCR_WMRK(x) ((x) << 2)
214 #define FSPI_DLLACR 0xC0
215 #define FSPI_DLLACR_OVRDEN BIT(8)
217 #define FSPI_DLLBCR 0xC4
218 #define FSPI_DLLBCR_OVRDEN BIT(8)
220 #define FSPI_STS0 0xE0
221 #define FSPI_STS0_DLPHB(x) ((x) << 8)
222 #define FSPI_STS0_DLPHA(x) ((x) << 4)
223 #define FSPI_STS0_CMD_SRC(x) ((x) << 2)
224 #define FSPI_STS0_ARB_IDLE BIT(1)
225 #define FSPI_STS0_SEQ_IDLE BIT(0)
227 #define FSPI_STS1 0xE4
228 #define FSPI_STS1_IP_ERRCD(x) ((x) << 24)
229 #define FSPI_STS1_IP_ERRID(x) ((x) << 16)
230 #define FSPI_STS1_AHB_ERRCD(x) ((x) << 8)
231 #define FSPI_STS1_AHB_ERRID(x) (x)
233 #define FSPI_AHBSPNST 0xEC
234 #define FSPI_AHBSPNST_DATLFT(x) ((x) << 16)
235 #define FSPI_AHBSPNST_BUFID(x) ((x) << 1)
236 #define FSPI_AHBSPNST_ACTIVE BIT(0)
238 #define FSPI_IPRXFSTS 0xF0
239 #define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16)
240 #define FSPI_IPRXFSTS_FILL(x) (x)
242 #define FSPI_IPTXFSTS 0xF4
243 #define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16)
244 #define FSPI_IPTXFSTS_FILL(x) (x)
246 #define FSPI_RFDR 0x100
247 #define FSPI_TFDR 0x180
249 #define FSPI_LUT_BASE 0x200
250 #define FSPI_LUT_OFFSET (SEQID_LUT * 4 * 4)
251 #define FSPI_LUT_REG(idx) \
252 (FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
254 /* register map end */
256 /* Instruction set for the LUT register. */
257 #define LUT_STOP 0x00
259 #define LUT_ADDR 0x02
260 #define LUT_CADDR_SDR 0x03
261 #define LUT_MODE 0x04
262 #define LUT_MODE2 0x05
263 #define LUT_MODE4 0x06
264 #define LUT_MODE8 0x07
265 #define LUT_NXP_WRITE 0x08
266 #define LUT_NXP_READ 0x09
267 #define LUT_LEARN_SDR 0x0A
268 #define LUT_DATSZ_SDR 0x0B
269 #define LUT_DUMMY 0x0C
270 #define LUT_DUMMY_RWDS_SDR 0x0D
271 #define LUT_JMP_ON_CS 0x1F
272 #define LUT_CMD_DDR 0x21
273 #define LUT_ADDR_DDR 0x22
274 #define LUT_CADDR_DDR 0x23
275 #define LUT_MODE_DDR 0x24
276 #define LUT_MODE2_DDR 0x25
277 #define LUT_MODE4_DDR 0x26
278 #define LUT_MODE8_DDR 0x27
279 #define LUT_WRITE_DDR 0x28
280 #define LUT_READ_DDR 0x29
281 #define LUT_LEARN_DDR 0x2A
282 #define LUT_DATSZ_DDR 0x2B
283 #define LUT_DUMMY_DDR 0x2C
284 #define LUT_DUMMY_RWDS_DDR 0x2D
287 * Calculate number of required PAD bits for LUT register.
289 * The pad stands for the number of IO lines [0:7].
290 * For example, the octal read needs eight IO lines,
291 * so you should use LUT_PAD(8). This macro
292 * returns 3 i.e. use eight (2^3) IP lines for read.
294 #define LUT_PAD(x) (fls(x) - 1)
297 * Macro for constructing the LUT entries with the following
300 * ---------------------------------------------------
301 * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
302 * ---------------------------------------------------
305 #define INSTR_SHIFT 10
306 #define OPRND_SHIFT 16
308 /* Macros for constructing the LUT register. */
309 #define LUT_DEF(idx, ins, pad, opr) \
310 ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
311 (opr)) << (((idx) % 2) * OPRND_SHIFT))
313 #define POLL_TOUT 5000
314 #define NXP_FSPI_MAX_CHIPSELECT 4
315 #define NXP_FSPI_MIN_IOMAP SZ_4M
317 #define DCFG_RCWSR1 0x100
319 /* Access flash memory using IP bus only */
320 #define FSPI_QUIRK_USE_IP_ONLY BIT(0)
322 struct nxp_fspi_devtype_data {
325 unsigned int ahb_buf_size;
330 static struct nxp_fspi_devtype_data lx2160a_data = {
331 .rxfifo = SZ_512, /* (64 * 64 bits) */
332 .txfifo = SZ_1K, /* (128 * 64 bits) */
333 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
335 .little_endian = true, /* little-endian */
338 static struct nxp_fspi_devtype_data imx8mm_data = {
339 .rxfifo = SZ_512, /* (64 * 64 bits) */
340 .txfifo = SZ_1K, /* (128 * 64 bits) */
341 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
343 .little_endian = true, /* little-endian */
346 static struct nxp_fspi_devtype_data imx8qxp_data = {
347 .rxfifo = SZ_512, /* (64 * 64 bits) */
348 .txfifo = SZ_1K, /* (128 * 64 bits) */
349 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
351 .little_endian = true, /* little-endian */
354 static struct nxp_fspi_devtype_data imx8dxl_data = {
355 .rxfifo = SZ_512, /* (64 * 64 bits) */
356 .txfifo = SZ_1K, /* (128 * 64 bits) */
357 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
358 .quirks = FSPI_QUIRK_USE_IP_ONLY,
359 .little_endian = true, /* little-endian */
363 void __iomem *iobase;
364 void __iomem *ahb_addr;
369 struct clk *clk, *clk_en;
372 struct nxp_fspi_devtype_data *devtype_data;
374 struct pm_qos_request pm_qos_req;
378 static inline int needs_ip_only(struct nxp_fspi *f)
380 return f->devtype_data->quirks & FSPI_QUIRK_USE_IP_ONLY;
384 * R/W functions for big- or little-endian registers:
385 * The FSPI controller's endianness is independent of
386 * the CPU core's endianness. So far, although the CPU
387 * core is little-endian the FSPI controller can use
388 * big-endian or little-endian.
390 static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
392 if (f->devtype_data->little_endian)
393 iowrite32(val, addr);
395 iowrite32be(val, addr);
398 static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
400 if (f->devtype_data->little_endian)
401 return ioread32(addr);
403 return ioread32be(addr);
406 static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id)
408 struct nxp_fspi *f = dev_id;
411 /* clear interrupt */
412 reg = fspi_readl(f, f->iobase + FSPI_INTR);
413 fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR);
415 if (reg & FSPI_INTR_IPCMDDONE)
421 static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
434 static bool nxp_fspi_supports_op(struct spi_mem *mem,
435 const struct spi_mem_op *op)
437 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
440 ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
443 ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
445 if (op->dummy.nbytes)
446 ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
449 ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
455 * The number of address bytes should be equal to or less than 4 bytes.
457 if (op->addr.nbytes > 4)
461 * If requested address value is greater than controller assigned
462 * memory mapped space, return error as it didn't fit in the range
463 * of assigned address space.
465 if (op->addr.val >= f->memmap_phy_size)
468 /* Max 64 dummy clock cycles supported */
469 if (op->dummy.buswidth &&
470 (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
473 /* Max data length, check controller limits and alignment */
474 if (op->data.dir == SPI_MEM_DATA_IN &&
475 (op->data.nbytes > f->devtype_data->ahb_buf_size ||
476 (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
477 !IS_ALIGNED(op->data.nbytes, 8))))
480 if (op->data.dir == SPI_MEM_DATA_OUT &&
481 op->data.nbytes > f->devtype_data->txfifo)
484 return spi_mem_default_supports_op(mem, op);
487 /* Instead of busy looping invoke readl_poll_timeout functionality. */
488 static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
489 u32 mask, u32 delay_us,
490 u32 timeout_us, bool c)
494 if (!f->devtype_data->little_endian)
495 mask = (u32)cpu_to_be32(mask);
498 return readl_poll_timeout(base, reg, (reg & mask),
499 delay_us, timeout_us);
501 return readl_poll_timeout(base, reg, !(reg & mask),
502 delay_us, timeout_us);
506 * If the slave device content being changed by Write/Erase, need to
507 * invalidate the AHB buffer. This can be achieved by doing the reset
508 * of controller after setting MCR0[SWRESET] bit.
510 static inline void nxp_fspi_invalid(struct nxp_fspi *f)
515 reg = fspi_readl(f, f->iobase + FSPI_MCR0);
516 fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
518 /* w1c register, wait unit clear */
519 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
520 FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
524 static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
525 const struct spi_mem_op *op)
527 void __iomem *base = f->iobase;
532 lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
536 if (op->addr.nbytes) {
537 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
538 LUT_PAD(op->addr.buswidth),
539 op->addr.nbytes * 8);
543 /* dummy bytes, if needed */
544 if (op->dummy.nbytes) {
545 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
547 * Due to FlexSPI controller limitation number of PAD for dummy
548 * buswidth needs to be programmed as equal to data buswidth.
550 LUT_PAD(op->data.buswidth),
551 op->dummy.nbytes * 8 /
556 /* read/write data bytes */
557 if (op->data.nbytes) {
558 lutval[lutidx / 2] |= LUT_DEF(lutidx,
559 op->data.dir == SPI_MEM_DATA_IN ?
560 LUT_NXP_READ : LUT_NXP_WRITE,
561 LUT_PAD(op->data.buswidth),
566 /* stop condition. */
567 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
570 fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
571 fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
574 for (i = 0; i < ARRAY_SIZE(lutval); i++)
575 fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i));
577 dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x], size: 0x%08x\n",
578 op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3], op->data.nbytes);
581 fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
582 fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
585 static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
589 if (is_acpi_node(f->dev->fwnode))
592 ret = clk_prepare_enable(f->clk_en);
596 ret = clk_prepare_enable(f->clk);
598 clk_disable_unprepare(f->clk_en);
605 static int nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
607 if (is_acpi_node(f->dev->fwnode))
610 clk_disable_unprepare(f->clk);
611 clk_disable_unprepare(f->clk_en);
617 * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
618 * register and start base address of the slave device.
621 * -------- <-- FLSHB2CR0
624 * B2 start address --> -------- <-- FLSHB1CR0
627 * B1 start address --> -------- <-- FLSHA2CR0
630 * A2 start address --> -------- <-- FLSHA1CR0
633 * A1 start address --> -------- (Lower address)
636 * Start base address defines the starting address range for given CS and
637 * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS.
639 * But, different targets are having different combinations of number of CS,
640 * some targets only have single CS or two CS covering controller's full
641 * memory mapped space area.
642 * Thus, implementation is being done as independent of the size and number
643 * of the connected slave device.
644 * Assign controller memory mapped space size as the size to the connected
646 * Mark FLSHxxCR0 as zero initially and then assign value only to the selected
647 * chip-select Flash configuration register.
649 * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
650 * memory mapped size of the controller.
651 * Value for rest of the CS FLSHxxCR0 register would be zero.
654 static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi)
656 unsigned long rate = spi->max_speed_hz;
661 * Return, if previously selected slave device is same as current
662 * requested slave device.
664 if (f->selected == spi->chip_select)
667 /* Reset FLSHxxCR0 registers */
668 fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
669 fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
670 fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
671 fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
673 /* Assign controller memory mapped space as size, KBytes, of flash. */
674 size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
676 fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
677 4 * spi->chip_select);
679 dev_dbg(f->dev, "Slave device [CS:%x] selected\n", spi->chip_select);
681 nxp_fspi_clk_disable_unprep(f);
683 ret = clk_set_rate(f->clk, rate);
687 ret = nxp_fspi_clk_prep_enable(f);
691 f->selected = spi->chip_select;
694 static int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
696 u32 start = op->addr.val;
697 u32 len = op->data.nbytes;
699 /* if necessary, ioremap before AHB read */
700 if ((!f->ahb_addr) || start < f->memmap_start ||
701 start + len > f->memmap_start + f->memmap_len) {
703 iounmap(f->ahb_addr);
705 f->memmap_start = start;
706 f->memmap_len = len > NXP_FSPI_MIN_IOMAP ?
707 len : NXP_FSPI_MIN_IOMAP;
709 f->ahb_addr = ioremap_wc(f->memmap_phy + f->memmap_start,
713 dev_err(f->dev, "failed to alloc memory\n");
718 /* Read out the data directly from the AHB buffer. */
719 memcpy_fromio(op->data.buf.in,
720 f->ahb_addr + start - f->memmap_start, len);
725 static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
726 const struct spi_mem_op *op)
728 void __iomem *base = f->iobase;
730 u8 *buf = (u8 *) op->data.buf.out;
732 /* clear the TX FIFO. */
733 fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
736 * Default value of water mark level is 8 bytes, hence in single
737 * write request controller can write max 8 bytes of data.
740 for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
741 /* Wait for TXFIFO empty */
742 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
747 fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR);
748 fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4);
749 fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
752 if (i < op->data.nbytes) {
755 /* Wait for TXFIFO empty */
756 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
761 for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) {
762 memcpy(&data, buf + i + j, 4);
763 fspi_writel(f, data, base + FSPI_TFDR + j);
765 fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
769 static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
770 const struct spi_mem_op *op)
772 void __iomem *base = f->iobase;
774 int len = op->data.nbytes;
775 u8 *buf = (u8 *) op->data.buf.in;
778 * Default value of water mark level is 8 bytes, hence in single
779 * read request controller can read max 8 bytes of data.
781 for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
782 /* Wait for RXFIFO available */
783 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
788 *(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
789 *(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
790 /* move the FIFO pointer */
791 fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
798 buf = op->data.buf.in + i;
799 /* Wait for RXFIFO available */
800 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
805 len = op->data.nbytes - i;
806 for (j = 0; j < op->data.nbytes - i; j += 4) {
807 tmp = fspi_readl(f, base + FSPI_RFDR + j);
809 memcpy(buf + j, &tmp, size);
814 /* invalid the RXFIFO */
815 fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
816 /* move the FIFO pointer */
817 fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
820 static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
822 void __iomem *base = f->iobase;
827 reg = fspi_readl(f, base + FSPI_IPRXFCR);
828 /* invalid RXFIFO first */
829 reg &= ~FSPI_IPRXFCR_DMA_EN;
830 reg = reg | FSPI_IPRXFCR_CLR;
831 fspi_writel(f, reg, base + FSPI_IPRXFCR);
833 init_completion(&f->c);
835 fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
837 * Always start the sequence at the same index since we update
838 * the LUT at each exec_op() call. And also specify the DATA
839 * length, since it's has not been specified in the LUT.
841 fspi_writel(f, op->data.nbytes |
842 (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) |
843 (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
846 /* Trigger the LUT now. */
847 fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
849 /* Wait for the interrupt. */
850 if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000)))
853 /* Invoke IP data read, if request is of data read. */
854 if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
855 nxp_fspi_read_rxfifo(f, op);
860 static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
862 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
865 mutex_lock(&f->lock);
867 /* Wait for controller being ready. */
868 err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
869 FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
872 nxp_fspi_select_mem(f, mem->spi);
874 nxp_fspi_prepare_lut(f, op);
876 * If we have large chunks of data, we read them through the AHB bus by
877 * accessing the mapped memory. In all other cases we use IP commands
878 * to access the flash. Read via AHB bus may be corrupted due to
879 * existence of an errata and therefore discard AHB read in such cases.
881 if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
882 op->data.dir == SPI_MEM_DATA_IN &&
884 err = nxp_fspi_read_ahb(f, op);
886 if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
887 nxp_fspi_fill_txfifo(f, op);
889 err = nxp_fspi_do_op(f, op);
892 /* Invalidate the data in the AHB buffer. */
895 mutex_unlock(&f->lock);
900 static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
902 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
904 if (op->data.dir == SPI_MEM_DATA_OUT) {
905 if (op->data.nbytes > f->devtype_data->txfifo)
906 op->data.nbytes = f->devtype_data->txfifo;
908 if (op->data.nbytes > f->devtype_data->ahb_buf_size)
909 op->data.nbytes = f->devtype_data->ahb_buf_size;
910 else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
911 op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
914 /* Limit data bytes to RX FIFO in case of IP read only */
915 if (op->data.dir == SPI_MEM_DATA_IN &&
917 op->data.nbytes > f->devtype_data->rxfifo)
918 op->data.nbytes = f->devtype_data->rxfifo;
923 static void erratum_err050568(struct nxp_fspi *f)
925 const struct soc_device_attribute ls1028a_soc_attr[] = {
926 { .family = "QorIQ LS1028A" },
929 struct device_node *np;
931 u32 val = 0, sysclk = 0;
934 /* Check for LS1028A family */
935 if (!soc_device_match(ls1028a_soc_attr)) {
936 dev_dbg(f->dev, "Errata applicable only for LS1028A\n");
940 /* Compute system clock frequency multiplier ratio */
941 map = syscon_regmap_lookup_by_compatible("fsl,ls1028a-dcfg");
943 dev_err(f->dev, "No syscon regmap\n");
947 ret = regmap_read(map, DCFG_RCWSR1, &val);
951 /* Strap bits 6:2 define SYS_PLL_RAT i.e frequency multiplier ratio */
952 val = (val >> 2) & 0x1F;
953 WARN(val == 0, "Strapping is zero: Cannot determine ratio");
955 /* Compute system clock frequency */
956 np = of_find_node_by_name(NULL, "clock-sysclk");
960 if (of_property_read_u32(np, "clock-frequency", &sysclk))
963 sysclk = (sysclk * val) / 1000000; /* Convert sysclk to Mhz */
964 dev_dbg(f->dev, "val: 0x%08x, sysclk: %dMhz\n", val, sysclk);
966 /* Use IP bus only if PLL is 300MHz */
968 f->devtype_data->quirks |= FSPI_QUIRK_USE_IP_ONLY;
973 dev_err(f->dev, "Errata cannot be executed. Read via IP bus may not work\n");
976 static int nxp_fspi_default_setup(struct nxp_fspi *f)
978 void __iomem *base = f->iobase;
982 /* disable and unprepare clock to avoid glitch pass to controller */
983 nxp_fspi_clk_disable_unprep(f);
985 /* the default frequency, we will change it later if necessary. */
986 ret = clk_set_rate(f->clk, 20000000);
990 ret = nxp_fspi_clk_prep_enable(f);
995 * ERR050568: Flash access by FlexSPI AHB command may not work with
996 * platform frequency equal to 300 MHz on LS1028A.
997 * LS1028A reuses LX2160A compatible entry. Make errata applicable for
998 * Layerscape LS1028A platform.
1000 if (of_device_is_compatible(f->dev->of_node, "nxp,lx2160a-fspi"))
1001 erratum_err050568(f);
1003 /* Reset the module */
1004 /* w1c register, wait unit clear */
1005 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
1006 FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
1009 /* Disable the module */
1010 fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
1012 /* Reset the DLL register to default value */
1013 fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
1014 fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
1017 fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) |
1018 FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN,
1022 * Disable same device enable bit and configure all slave devices
1025 reg = fspi_readl(f, f->iobase + FSPI_MCR2);
1026 reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
1027 fspi_writel(f, reg, base + FSPI_MCR2);
1029 /* AHB configuration for access buffer 0~7. */
1030 for (i = 0; i < 7; i++)
1031 fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
1034 * Set ADATSZ with the maximum AHB buffer size to improve the read
1037 fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
1038 FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
1040 /* prefetch and no start address alignment limitation */
1041 fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
1044 /* AHB Read - Set lut sequence ID for all CS. */
1045 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2);
1046 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2);
1047 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2);
1048 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2);
1052 /* enable the interrupt */
1053 fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN);
1058 static const char *nxp_fspi_get_name(struct spi_mem *mem)
1060 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
1061 struct device *dev = &mem->spi->dev;
1064 // Set custom name derived from the platform_device of the controller.
1065 if (of_get_available_child_count(f->dev->of_node) == 1)
1066 return dev_name(f->dev);
1068 name = devm_kasprintf(dev, GFP_KERNEL,
1069 "%s-%d", dev_name(f->dev),
1070 mem->spi->chip_select);
1073 dev_err(dev, "failed to get memory for custom flash name\n");
1074 return ERR_PTR(-ENOMEM);
1080 static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
1081 .adjust_op_size = nxp_fspi_adjust_op_size,
1082 .supports_op = nxp_fspi_supports_op,
1083 .exec_op = nxp_fspi_exec_op,
1084 .get_name = nxp_fspi_get_name,
1087 static int nxp_fspi_probe(struct platform_device *pdev)
1089 struct spi_controller *ctlr;
1090 struct device *dev = &pdev->dev;
1091 struct device_node *np = dev->of_node;
1092 struct resource *res;
1097 ctlr = spi_alloc_master(&pdev->dev, sizeof(*f));
1101 ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL |
1102 SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL;
1104 f = spi_controller_get_devdata(ctlr);
1106 f->devtype_data = (struct nxp_fspi_devtype_data *)device_get_match_data(dev);
1107 if (!f->devtype_data) {
1112 platform_set_drvdata(pdev, f);
1114 /* find the resources - configuration register address space */
1115 if (is_acpi_node(f->dev->fwnode))
1116 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1118 res = platform_get_resource_byname(pdev,
1119 IORESOURCE_MEM, "fspi_base");
1121 f->iobase = devm_ioremap_resource(dev, res);
1122 if (IS_ERR(f->iobase)) {
1123 ret = PTR_ERR(f->iobase);
1127 /* find the resources - controller memory mapped space */
1128 if (is_acpi_node(f->dev->fwnode))
1129 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1131 res = platform_get_resource_byname(pdev,
1132 IORESOURCE_MEM, "fspi_mmap");
1139 /* assign memory mapped starting address and mapped size. */
1140 f->memmap_phy = res->start;
1141 f->memmap_phy_size = resource_size(res);
1143 /* find the clocks */
1144 if (dev_of_node(&pdev->dev)) {
1145 f->clk_en = devm_clk_get(dev, "fspi_en");
1146 if (IS_ERR(f->clk_en)) {
1147 ret = PTR_ERR(f->clk_en);
1151 f->clk = devm_clk_get(dev, "fspi");
1152 if (IS_ERR(f->clk)) {
1153 ret = PTR_ERR(f->clk);
1157 ret = nxp_fspi_clk_prep_enable(f);
1159 dev_err(dev, "can not enable the clock\n");
1164 /* Clear potential interrupts */
1165 reg = fspi_readl(f, f->iobase + FSPI_INTR);
1167 fspi_writel(f, reg, f->iobase + FSPI_INTR);
1170 ret = platform_get_irq(pdev, 0);
1172 goto err_disable_clk;
1174 ret = devm_request_irq(dev, ret,
1175 nxp_fspi_irq_handler, 0, pdev->name, f);
1177 dev_err(dev, "failed to request irq: %d\n", ret);
1178 goto err_disable_clk;
1181 mutex_init(&f->lock);
1184 ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT;
1185 ctlr->mem_ops = &nxp_fspi_mem_ops;
1187 nxp_fspi_default_setup(f);
1189 ctlr->dev.of_node = np;
1191 ret = devm_spi_register_controller(&pdev->dev, ctlr);
1193 goto err_destroy_mutex;
1198 mutex_destroy(&f->lock);
1201 nxp_fspi_clk_disable_unprep(f);
1204 spi_controller_put(ctlr);
1206 dev_err(dev, "NXP FSPI probe failed\n");
1210 static int nxp_fspi_remove(struct platform_device *pdev)
1212 struct nxp_fspi *f = platform_get_drvdata(pdev);
1214 /* disable the hardware */
1215 fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0);
1217 nxp_fspi_clk_disable_unprep(f);
1219 mutex_destroy(&f->lock);
1222 iounmap(f->ahb_addr);
1227 static int nxp_fspi_suspend(struct device *dev)
1232 static int nxp_fspi_resume(struct device *dev)
1234 struct nxp_fspi *f = dev_get_drvdata(dev);
1236 nxp_fspi_default_setup(f);
1241 static const struct of_device_id nxp_fspi_dt_ids[] = {
1242 { .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, },
1243 { .compatible = "nxp,imx8mm-fspi", .data = (void *)&imx8mm_data, },
1244 { .compatible = "nxp,imx8mp-fspi", .data = (void *)&imx8mm_data, },
1245 { .compatible = "nxp,imx8qxp-fspi", .data = (void *)&imx8qxp_data, },
1246 { .compatible = "nxp,imx8dxl-fspi", .data = (void *)&imx8dxl_data, },
1249 MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids);
1252 static const struct acpi_device_id nxp_fspi_acpi_ids[] = {
1253 { "NXP0009", .driver_data = (kernel_ulong_t)&lx2160a_data, },
1256 MODULE_DEVICE_TABLE(acpi, nxp_fspi_acpi_ids);
1259 static const struct dev_pm_ops nxp_fspi_pm_ops = {
1260 .suspend = nxp_fspi_suspend,
1261 .resume = nxp_fspi_resume,
1264 static struct platform_driver nxp_fspi_driver = {
1267 .of_match_table = nxp_fspi_dt_ids,
1268 .acpi_match_table = ACPI_PTR(nxp_fspi_acpi_ids),
1269 .pm = &nxp_fspi_pm_ops,
1271 .probe = nxp_fspi_probe,
1272 .remove = nxp_fspi_remove,
1274 module_platform_driver(nxp_fspi_driver);
1276 MODULE_DESCRIPTION("NXP FSPI Controller Driver");
1277 MODULE_AUTHOR("NXP Semiconductor");
1278 MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>");
1279 MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
1280 MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
1281 MODULE_LICENSE("GPL v2");