mt76-6e-usb: mt7921u: Add support Netgear AXE3000(A8000) device
[platform/kernel/linux-rpi.git] / drivers / spi / spi-lantiq-ssc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2011-2015 Daniel Schwierzeck <daniel.schwierzeck@gmail.com>
4  * Copyright (C) 2016 Hauke Mehrtens <hauke@hauke-m.de>
5  */
6
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/of_device.h>
10 #include <linux/clk.h>
11 #include <linux/io.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/sched.h>
15 #include <linux/completion.h>
16 #include <linux/spinlock.h>
17 #include <linux/err.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/spi/spi.h>
20
21 #ifdef CONFIG_LANTIQ
22 #include <lantiq_soc.h>
23 #endif
24
25 #define LTQ_SPI_RX_IRQ_NAME     "spi_rx"
26 #define LTQ_SPI_TX_IRQ_NAME     "spi_tx"
27 #define LTQ_SPI_ERR_IRQ_NAME    "spi_err"
28 #define LTQ_SPI_FRM_IRQ_NAME    "spi_frm"
29
30 #define LTQ_SPI_CLC             0x00
31 #define LTQ_SPI_PISEL           0x04
32 #define LTQ_SPI_ID              0x08
33 #define LTQ_SPI_CON             0x10
34 #define LTQ_SPI_STAT            0x14
35 #define LTQ_SPI_WHBSTATE        0x18
36 #define LTQ_SPI_TB              0x20
37 #define LTQ_SPI_RB              0x24
38 #define LTQ_SPI_RXFCON          0x30
39 #define LTQ_SPI_TXFCON          0x34
40 #define LTQ_SPI_FSTAT           0x38
41 #define LTQ_SPI_BRT             0x40
42 #define LTQ_SPI_BRSTAT          0x44
43 #define LTQ_SPI_SFCON           0x60
44 #define LTQ_SPI_SFSTAT          0x64
45 #define LTQ_SPI_GPOCON          0x70
46 #define LTQ_SPI_GPOSTAT         0x74
47 #define LTQ_SPI_FPGO            0x78
48 #define LTQ_SPI_RXREQ           0x80
49 #define LTQ_SPI_RXCNT           0x84
50 #define LTQ_SPI_DMACON          0xec
51 #define LTQ_SPI_IRNEN           0xf4
52
53 #define LTQ_SPI_CLC_SMC_S       16      /* Clock divider for sleep mode */
54 #define LTQ_SPI_CLC_SMC_M       (0xFF << LTQ_SPI_CLC_SMC_S)
55 #define LTQ_SPI_CLC_RMC_S       8       /* Clock divider for normal run mode */
56 #define LTQ_SPI_CLC_RMC_M       (0xFF << LTQ_SPI_CLC_RMC_S)
57 #define LTQ_SPI_CLC_DISS        BIT(1)  /* Disable status bit */
58 #define LTQ_SPI_CLC_DISR        BIT(0)  /* Disable request bit */
59
60 #define LTQ_SPI_ID_TXFS_S       24      /* Implemented TX FIFO size */
61 #define LTQ_SPI_ID_RXFS_S       16      /* Implemented RX FIFO size */
62 #define LTQ_SPI_ID_MOD_S        8       /* Module ID */
63 #define LTQ_SPI_ID_MOD_M        (0xff << LTQ_SPI_ID_MOD_S)
64 #define LTQ_SPI_ID_CFG_S        5       /* DMA interface support */
65 #define LTQ_SPI_ID_CFG_M        (1 << LTQ_SPI_ID_CFG_S)
66 #define LTQ_SPI_ID_REV_M        0x1F    /* Hardware revision number */
67
68 #define LTQ_SPI_CON_BM_S        16      /* Data width selection */
69 #define LTQ_SPI_CON_BM_M        (0x1F << LTQ_SPI_CON_BM_S)
70 #define LTQ_SPI_CON_EM          BIT(24) /* Echo mode */
71 #define LTQ_SPI_CON_IDLE        BIT(23) /* Idle bit value */
72 #define LTQ_SPI_CON_ENBV        BIT(22) /* Enable byte valid control */
73 #define LTQ_SPI_CON_RUEN        BIT(12) /* Receive underflow error enable */
74 #define LTQ_SPI_CON_TUEN        BIT(11) /* Transmit underflow error enable */
75 #define LTQ_SPI_CON_AEN         BIT(10) /* Abort error enable */
76 #define LTQ_SPI_CON_REN         BIT(9)  /* Receive overflow error enable */
77 #define LTQ_SPI_CON_TEN         BIT(8)  /* Transmit overflow error enable */
78 #define LTQ_SPI_CON_LB          BIT(7)  /* Loopback control */
79 #define LTQ_SPI_CON_PO          BIT(6)  /* Clock polarity control */
80 #define LTQ_SPI_CON_PH          BIT(5)  /* Clock phase control */
81 #define LTQ_SPI_CON_HB          BIT(4)  /* Heading control */
82 #define LTQ_SPI_CON_RXOFF       BIT(1)  /* Switch receiver off */
83 #define LTQ_SPI_CON_TXOFF       BIT(0)  /* Switch transmitter off */
84
85 #define LTQ_SPI_STAT_RXBV_S     28
86 #define LTQ_SPI_STAT_RXBV_M     (0x7 << LTQ_SPI_STAT_RXBV_S)
87 #define LTQ_SPI_STAT_BSY        BIT(13) /* Busy flag */
88 #define LTQ_SPI_STAT_RUE        BIT(12) /* Receive underflow error flag */
89 #define LTQ_SPI_STAT_TUE        BIT(11) /* Transmit underflow error flag */
90 #define LTQ_SPI_STAT_AE         BIT(10) /* Abort error flag */
91 #define LTQ_SPI_STAT_RE         BIT(9)  /* Receive error flag */
92 #define LTQ_SPI_STAT_TE         BIT(8)  /* Transmit error flag */
93 #define LTQ_SPI_STAT_ME         BIT(7)  /* Mode error flag */
94 #define LTQ_SPI_STAT_MS         BIT(1)  /* Master/slave select bit */
95 #define LTQ_SPI_STAT_EN         BIT(0)  /* Enable bit */
96 #define LTQ_SPI_STAT_ERRORS     (LTQ_SPI_STAT_ME | LTQ_SPI_STAT_TE | \
97                                  LTQ_SPI_STAT_RE | LTQ_SPI_STAT_AE | \
98                                  LTQ_SPI_STAT_TUE | LTQ_SPI_STAT_RUE)
99
100 #define LTQ_SPI_WHBSTATE_SETTUE BIT(15) /* Set transmit underflow error flag */
101 #define LTQ_SPI_WHBSTATE_SETAE  BIT(14) /* Set abort error flag */
102 #define LTQ_SPI_WHBSTATE_SETRE  BIT(13) /* Set receive error flag */
103 #define LTQ_SPI_WHBSTATE_SETTE  BIT(12) /* Set transmit error flag */
104 #define LTQ_SPI_WHBSTATE_CLRTUE BIT(11) /* Clear transmit underflow error flag */
105 #define LTQ_SPI_WHBSTATE_CLRAE  BIT(10) /* Clear abort error flag */
106 #define LTQ_SPI_WHBSTATE_CLRRE  BIT(9)  /* Clear receive error flag */
107 #define LTQ_SPI_WHBSTATE_CLRTE  BIT(8)  /* Clear transmit error flag */
108 #define LTQ_SPI_WHBSTATE_SETME  BIT(7)  /* Set mode error flag */
109 #define LTQ_SPI_WHBSTATE_CLRME  BIT(6)  /* Clear mode error flag */
110 #define LTQ_SPI_WHBSTATE_SETRUE BIT(5)  /* Set receive underflow error flag */
111 #define LTQ_SPI_WHBSTATE_CLRRUE BIT(4)  /* Clear receive underflow error flag */
112 #define LTQ_SPI_WHBSTATE_SETMS  BIT(3)  /* Set master select bit */
113 #define LTQ_SPI_WHBSTATE_CLRMS  BIT(2)  /* Clear master select bit */
114 #define LTQ_SPI_WHBSTATE_SETEN  BIT(1)  /* Set enable bit (operational mode) */
115 #define LTQ_SPI_WHBSTATE_CLREN  BIT(0)  /* Clear enable bit (config mode */
116 #define LTQ_SPI_WHBSTATE_CLR_ERRORS     (LTQ_SPI_WHBSTATE_CLRRUE | \
117                                          LTQ_SPI_WHBSTATE_CLRME | \
118                                          LTQ_SPI_WHBSTATE_CLRTE | \
119                                          LTQ_SPI_WHBSTATE_CLRRE | \
120                                          LTQ_SPI_WHBSTATE_CLRAE | \
121                                          LTQ_SPI_WHBSTATE_CLRTUE)
122
123 #define LTQ_SPI_RXFCON_RXFITL_S 8       /* FIFO interrupt trigger level */
124 #define LTQ_SPI_RXFCON_RXFLU    BIT(1)  /* FIFO flush */
125 #define LTQ_SPI_RXFCON_RXFEN    BIT(0)  /* FIFO enable */
126
127 #define LTQ_SPI_TXFCON_TXFITL_S 8       /* FIFO interrupt trigger level */
128 #define LTQ_SPI_TXFCON_TXFLU    BIT(1)  /* FIFO flush */
129 #define LTQ_SPI_TXFCON_TXFEN    BIT(0)  /* FIFO enable */
130
131 #define LTQ_SPI_FSTAT_RXFFL_S   0
132 #define LTQ_SPI_FSTAT_TXFFL_S   8
133
134 #define LTQ_SPI_GPOCON_ISCSBN_S 8
135 #define LTQ_SPI_GPOCON_INVOUTN_S        0
136
137 #define LTQ_SPI_FGPO_SETOUTN_S  8
138 #define LTQ_SPI_FGPO_CLROUTN_S  0
139
140 #define LTQ_SPI_RXREQ_RXCNT_M   0xFFFF  /* Receive count value */
141 #define LTQ_SPI_RXCNT_TODO_M    0xFFFF  /* Recevie to-do value */
142
143 #define LTQ_SPI_IRNEN_TFI       BIT(4)  /* TX finished interrupt */
144 #define LTQ_SPI_IRNEN_F         BIT(3)  /* Frame end interrupt request */
145 #define LTQ_SPI_IRNEN_E         BIT(2)  /* Error end interrupt request */
146 #define LTQ_SPI_IRNEN_T_XWAY    BIT(1)  /* Transmit end interrupt request */
147 #define LTQ_SPI_IRNEN_R_XWAY    BIT(0)  /* Receive end interrupt request */
148 #define LTQ_SPI_IRNEN_R_XRX     BIT(1)  /* Transmit end interrupt request */
149 #define LTQ_SPI_IRNEN_T_XRX     BIT(0)  /* Receive end interrupt request */
150 #define LTQ_SPI_IRNEN_ALL       0x1F
151
152 struct lantiq_ssc_spi;
153
154 struct lantiq_ssc_hwcfg {
155         int (*cfg_irq)(struct platform_device *pdev, struct lantiq_ssc_spi *spi);
156         unsigned int    irnen_r;
157         unsigned int    irnen_t;
158         unsigned int    irncr;
159         unsigned int    irnicr;
160         bool            irq_ack;
161         u32             fifo_size_mask;
162 };
163
164 struct lantiq_ssc_spi {
165         struct spi_master               *master;
166         struct device                   *dev;
167         void __iomem                    *regbase;
168         struct clk                      *spi_clk;
169         struct clk                      *fpi_clk;
170         const struct lantiq_ssc_hwcfg   *hwcfg;
171
172         spinlock_t                      lock;
173         struct workqueue_struct         *wq;
174         struct work_struct              work;
175
176         const u8                        *tx;
177         u8                              *rx;
178         unsigned int                    tx_todo;
179         unsigned int                    rx_todo;
180         unsigned int                    bits_per_word;
181         unsigned int                    speed_hz;
182         unsigned int                    tx_fifo_size;
183         unsigned int                    rx_fifo_size;
184         unsigned int                    base_cs;
185         unsigned int                    fdx_tx_level;
186 };
187
188 static u32 lantiq_ssc_readl(const struct lantiq_ssc_spi *spi, u32 reg)
189 {
190         return __raw_readl(spi->regbase + reg);
191 }
192
193 static void lantiq_ssc_writel(const struct lantiq_ssc_spi *spi, u32 val,
194                               u32 reg)
195 {
196         __raw_writel(val, spi->regbase + reg);
197 }
198
199 static void lantiq_ssc_maskl(const struct lantiq_ssc_spi *spi, u32 clr,
200                              u32 set, u32 reg)
201 {
202         u32 val = __raw_readl(spi->regbase + reg);
203
204         val &= ~clr;
205         val |= set;
206         __raw_writel(val, spi->regbase + reg);
207 }
208
209 static unsigned int tx_fifo_level(const struct lantiq_ssc_spi *spi)
210 {
211         const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
212         u32 fstat = lantiq_ssc_readl(spi, LTQ_SPI_FSTAT);
213
214         return (fstat >> LTQ_SPI_FSTAT_TXFFL_S) & hwcfg->fifo_size_mask;
215 }
216
217 static unsigned int rx_fifo_level(const struct lantiq_ssc_spi *spi)
218 {
219         const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
220         u32 fstat = lantiq_ssc_readl(spi, LTQ_SPI_FSTAT);
221
222         return (fstat >> LTQ_SPI_FSTAT_RXFFL_S) & hwcfg->fifo_size_mask;
223 }
224
225 static unsigned int tx_fifo_free(const struct lantiq_ssc_spi *spi)
226 {
227         return spi->tx_fifo_size - tx_fifo_level(spi);
228 }
229
230 static void rx_fifo_reset(const struct lantiq_ssc_spi *spi)
231 {
232         u32 val = spi->rx_fifo_size << LTQ_SPI_RXFCON_RXFITL_S;
233
234         val |= LTQ_SPI_RXFCON_RXFEN | LTQ_SPI_RXFCON_RXFLU;
235         lantiq_ssc_writel(spi, val, LTQ_SPI_RXFCON);
236 }
237
238 static void tx_fifo_reset(const struct lantiq_ssc_spi *spi)
239 {
240         u32 val = 1 << LTQ_SPI_TXFCON_TXFITL_S;
241
242         val |= LTQ_SPI_TXFCON_TXFEN | LTQ_SPI_TXFCON_TXFLU;
243         lantiq_ssc_writel(spi, val, LTQ_SPI_TXFCON);
244 }
245
246 static void rx_fifo_flush(const struct lantiq_ssc_spi *spi)
247 {
248         lantiq_ssc_maskl(spi, 0, LTQ_SPI_RXFCON_RXFLU, LTQ_SPI_RXFCON);
249 }
250
251 static void tx_fifo_flush(const struct lantiq_ssc_spi *spi)
252 {
253         lantiq_ssc_maskl(spi, 0, LTQ_SPI_TXFCON_TXFLU, LTQ_SPI_TXFCON);
254 }
255
256 static void hw_enter_config_mode(const struct lantiq_ssc_spi *spi)
257 {
258         lantiq_ssc_writel(spi, LTQ_SPI_WHBSTATE_CLREN, LTQ_SPI_WHBSTATE);
259 }
260
261 static void hw_enter_active_mode(const struct lantiq_ssc_spi *spi)
262 {
263         lantiq_ssc_writel(spi, LTQ_SPI_WHBSTATE_SETEN, LTQ_SPI_WHBSTATE);
264 }
265
266 static void hw_setup_speed_hz(const struct lantiq_ssc_spi *spi,
267                               unsigned int max_speed_hz)
268 {
269         u32 spi_clk, brt;
270
271         /*
272          * SPI module clock is derived from FPI bus clock dependent on
273          * divider value in CLC.RMS which is always set to 1.
274          *
275          *                 f_SPI
276          * baudrate = --------------
277          *             2 * (BR + 1)
278          */
279         spi_clk = clk_get_rate(spi->fpi_clk) / 2;
280
281         if (max_speed_hz > spi_clk)
282                 brt = 0;
283         else
284                 brt = spi_clk / max_speed_hz - 1;
285
286         if (brt > 0xFFFF)
287                 brt = 0xFFFF;
288
289         dev_dbg(spi->dev, "spi_clk %u, max_speed_hz %u, brt %u\n",
290                 spi_clk, max_speed_hz, brt);
291
292         lantiq_ssc_writel(spi, brt, LTQ_SPI_BRT);
293 }
294
295 static void hw_setup_bits_per_word(const struct lantiq_ssc_spi *spi,
296                                    unsigned int bits_per_word)
297 {
298         u32 bm;
299
300         /* CON.BM value = bits_per_word - 1 */
301         bm = (bits_per_word - 1) << LTQ_SPI_CON_BM_S;
302
303         lantiq_ssc_maskl(spi, LTQ_SPI_CON_BM_M, bm, LTQ_SPI_CON);
304 }
305
306 static void hw_setup_clock_mode(const struct lantiq_ssc_spi *spi,
307                                 unsigned int mode)
308 {
309         u32 con_set = 0, con_clr = 0;
310
311         /*
312          * SPI mode mapping in CON register:
313          * Mode CPOL CPHA CON.PO CON.PH
314          *  0    0    0      0      1
315          *  1    0    1      0      0
316          *  2    1    0      1      1
317          *  3    1    1      1      0
318          */
319         if (mode & SPI_CPHA)
320                 con_clr |= LTQ_SPI_CON_PH;
321         else
322                 con_set |= LTQ_SPI_CON_PH;
323
324         if (mode & SPI_CPOL)
325                 con_set |= LTQ_SPI_CON_PO | LTQ_SPI_CON_IDLE;
326         else
327                 con_clr |= LTQ_SPI_CON_PO | LTQ_SPI_CON_IDLE;
328
329         /* Set heading control */
330         if (mode & SPI_LSB_FIRST)
331                 con_clr |= LTQ_SPI_CON_HB;
332         else
333                 con_set |= LTQ_SPI_CON_HB;
334
335         /* Set loopback mode */
336         if (mode & SPI_LOOP)
337                 con_set |= LTQ_SPI_CON_LB;
338         else
339                 con_clr |= LTQ_SPI_CON_LB;
340
341         lantiq_ssc_maskl(spi, con_clr, con_set, LTQ_SPI_CON);
342 }
343
344 static void lantiq_ssc_hw_init(const struct lantiq_ssc_spi *spi)
345 {
346         const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
347
348         /*
349          * Set clock divider for run mode to 1 to
350          * run at same frequency as FPI bus
351          */
352         lantiq_ssc_writel(spi, 1 << LTQ_SPI_CLC_RMC_S, LTQ_SPI_CLC);
353
354         /* Put controller into config mode */
355         hw_enter_config_mode(spi);
356
357         /* Clear error flags */
358         lantiq_ssc_maskl(spi, 0, LTQ_SPI_WHBSTATE_CLR_ERRORS, LTQ_SPI_WHBSTATE);
359
360         /* Enable error checking, disable TX/RX */
361         lantiq_ssc_writel(spi, LTQ_SPI_CON_RUEN | LTQ_SPI_CON_AEN |
362                 LTQ_SPI_CON_TEN | LTQ_SPI_CON_REN | LTQ_SPI_CON_TXOFF |
363                 LTQ_SPI_CON_RXOFF, LTQ_SPI_CON);
364
365         /* Setup default SPI mode */
366         hw_setup_bits_per_word(spi, spi->bits_per_word);
367         hw_setup_clock_mode(spi, SPI_MODE_0);
368
369         /* Enable master mode and clear error flags */
370         lantiq_ssc_writel(spi, LTQ_SPI_WHBSTATE_SETMS |
371                                LTQ_SPI_WHBSTATE_CLR_ERRORS,
372                                LTQ_SPI_WHBSTATE);
373
374         /* Reset GPIO/CS registers */
375         lantiq_ssc_writel(spi, 0, LTQ_SPI_GPOCON);
376         lantiq_ssc_writel(spi, 0xFF00, LTQ_SPI_FPGO);
377
378         /* Enable and flush FIFOs */
379         rx_fifo_reset(spi);
380         tx_fifo_reset(spi);
381
382         /* Enable interrupts */
383         lantiq_ssc_writel(spi, hwcfg->irnen_t | hwcfg->irnen_r |
384                           LTQ_SPI_IRNEN_E, LTQ_SPI_IRNEN);
385 }
386
387 static int lantiq_ssc_setup(struct spi_device *spidev)
388 {
389         struct spi_master *master = spidev->master;
390         struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
391         unsigned int cs = spidev->chip_select;
392         u32 gpocon;
393
394         /* GPIOs are used for CS */
395         if (spidev->cs_gpiod)
396                 return 0;
397
398         dev_dbg(spi->dev, "using internal chipselect %u\n", cs);
399
400         if (cs < spi->base_cs) {
401                 dev_err(spi->dev,
402                         "chipselect %i too small (min %i)\n", cs, spi->base_cs);
403                 return -EINVAL;
404         }
405
406         /* set GPO pin to CS mode */
407         gpocon = 1 << ((cs - spi->base_cs) + LTQ_SPI_GPOCON_ISCSBN_S);
408
409         /* invert GPO pin */
410         if (spidev->mode & SPI_CS_HIGH)
411                 gpocon |= 1 << (cs - spi->base_cs);
412
413         lantiq_ssc_maskl(spi, 0, gpocon, LTQ_SPI_GPOCON);
414
415         return 0;
416 }
417
418 static int lantiq_ssc_prepare_message(struct spi_master *master,
419                                       struct spi_message *message)
420 {
421         struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
422
423         hw_enter_config_mode(spi);
424         hw_setup_clock_mode(spi, message->spi->mode);
425         hw_enter_active_mode(spi);
426
427         return 0;
428 }
429
430 static void hw_setup_transfer(struct lantiq_ssc_spi *spi,
431                               struct spi_device *spidev, struct spi_transfer *t)
432 {
433         unsigned int speed_hz = t->speed_hz;
434         unsigned int bits_per_word = t->bits_per_word;
435         u32 con;
436
437         if (bits_per_word != spi->bits_per_word ||
438                 speed_hz != spi->speed_hz) {
439                 hw_enter_config_mode(spi);
440                 hw_setup_speed_hz(spi, speed_hz);
441                 hw_setup_bits_per_word(spi, bits_per_word);
442                 hw_enter_active_mode(spi);
443
444                 spi->speed_hz = speed_hz;
445                 spi->bits_per_word = bits_per_word;
446         }
447
448         /* Configure transmitter and receiver */
449         con = lantiq_ssc_readl(spi, LTQ_SPI_CON);
450         if (t->tx_buf)
451                 con &= ~LTQ_SPI_CON_TXOFF;
452         else
453                 con |= LTQ_SPI_CON_TXOFF;
454
455         if (t->rx_buf)
456                 con &= ~LTQ_SPI_CON_RXOFF;
457         else
458                 con |= LTQ_SPI_CON_RXOFF;
459
460         lantiq_ssc_writel(spi, con, LTQ_SPI_CON);
461 }
462
463 static int lantiq_ssc_unprepare_message(struct spi_master *master,
464                                         struct spi_message *message)
465 {
466         struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
467
468         flush_workqueue(spi->wq);
469
470         /* Disable transmitter and receiver while idle */
471         lantiq_ssc_maskl(spi, 0, LTQ_SPI_CON_TXOFF | LTQ_SPI_CON_RXOFF,
472                          LTQ_SPI_CON);
473
474         return 0;
475 }
476
477 static void tx_fifo_write(struct lantiq_ssc_spi *spi)
478 {
479         const u8 *tx8;
480         const u16 *tx16;
481         const u32 *tx32;
482         u32 data;
483         unsigned int tx_free = tx_fifo_free(spi);
484
485         spi->fdx_tx_level = 0;
486         while (spi->tx_todo && tx_free) {
487                 switch (spi->bits_per_word) {
488                 case 2 ... 8:
489                         tx8 = spi->tx;
490                         data = *tx8;
491                         spi->tx_todo--;
492                         spi->tx++;
493                         break;
494                 case 16:
495                         tx16 = (u16 *) spi->tx;
496                         data = *tx16;
497                         spi->tx_todo -= 2;
498                         spi->tx += 2;
499                         break;
500                 case 32:
501                         tx32 = (u32 *) spi->tx;
502                         data = *tx32;
503                         spi->tx_todo -= 4;
504                         spi->tx += 4;
505                         break;
506                 default:
507                         WARN_ON(1);
508                         data = 0;
509                         break;
510                 }
511
512                 lantiq_ssc_writel(spi, data, LTQ_SPI_TB);
513                 tx_free--;
514                 spi->fdx_tx_level++;
515         }
516 }
517
518 static void rx_fifo_read_full_duplex(struct lantiq_ssc_spi *spi)
519 {
520         u8 *rx8;
521         u16 *rx16;
522         u32 *rx32;
523         u32 data;
524         unsigned int rx_fill = rx_fifo_level(spi);
525
526         /*
527          * Wait until all expected data to be shifted in.
528          * Otherwise, rx overrun may occur.
529          */
530         while (rx_fill != spi->fdx_tx_level)
531                 rx_fill = rx_fifo_level(spi);
532
533         while (rx_fill) {
534                 data = lantiq_ssc_readl(spi, LTQ_SPI_RB);
535
536                 switch (spi->bits_per_word) {
537                 case 2 ... 8:
538                         rx8 = spi->rx;
539                         *rx8 = data;
540                         spi->rx_todo--;
541                         spi->rx++;
542                         break;
543                 case 16:
544                         rx16 = (u16 *) spi->rx;
545                         *rx16 = data;
546                         spi->rx_todo -= 2;
547                         spi->rx += 2;
548                         break;
549                 case 32:
550                         rx32 = (u32 *) spi->rx;
551                         *rx32 = data;
552                         spi->rx_todo -= 4;
553                         spi->rx += 4;
554                         break;
555                 default:
556                         WARN_ON(1);
557                         break;
558                 }
559
560                 rx_fill--;
561         }
562 }
563
564 static void rx_fifo_read_half_duplex(struct lantiq_ssc_spi *spi)
565 {
566         u32 data, *rx32;
567         u8 *rx8;
568         unsigned int rxbv, shift;
569         unsigned int rx_fill = rx_fifo_level(spi);
570
571         /*
572          * In RX-only mode the bits per word value is ignored by HW. A value
573          * of 32 is used instead. Thus all 4 bytes per FIFO must be read.
574          * If remaining RX bytes are less than 4, the FIFO must be read
575          * differently. The amount of received and valid bytes is indicated
576          * by STAT.RXBV register value.
577          */
578         while (rx_fill) {
579                 if (spi->rx_todo < 4)  {
580                         rxbv = (lantiq_ssc_readl(spi, LTQ_SPI_STAT) &
581                                 LTQ_SPI_STAT_RXBV_M) >> LTQ_SPI_STAT_RXBV_S;
582                         data = lantiq_ssc_readl(spi, LTQ_SPI_RB);
583
584                         shift = (rxbv - 1) * 8;
585                         rx8 = spi->rx;
586
587                         while (rxbv) {
588                                 *rx8++ = (data >> shift) & 0xFF;
589                                 rxbv--;
590                                 shift -= 8;
591                                 spi->rx_todo--;
592                                 spi->rx++;
593                         }
594                 } else {
595                         data = lantiq_ssc_readl(spi, LTQ_SPI_RB);
596                         rx32 = (u32 *) spi->rx;
597
598                         *rx32++ = data;
599                         spi->rx_todo -= 4;
600                         spi->rx += 4;
601                 }
602                 rx_fill--;
603         }
604 }
605
606 static void rx_request(struct lantiq_ssc_spi *spi)
607 {
608         unsigned int rxreq, rxreq_max;
609
610         /*
611          * To avoid receive overflows at high clocks it is better to request
612          * only the amount of bytes that fits into all FIFOs. This value
613          * depends on the FIFO size implemented in hardware.
614          */
615         rxreq = spi->rx_todo;
616         rxreq_max = spi->rx_fifo_size * 4;
617         if (rxreq > rxreq_max)
618                 rxreq = rxreq_max;
619
620         lantiq_ssc_writel(spi, rxreq, LTQ_SPI_RXREQ);
621 }
622
623 static irqreturn_t lantiq_ssc_xmit_interrupt(int irq, void *data)
624 {
625         struct lantiq_ssc_spi *spi = data;
626         const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
627         u32 val = lantiq_ssc_readl(spi, hwcfg->irncr);
628
629         spin_lock(&spi->lock);
630         if (hwcfg->irq_ack)
631                 lantiq_ssc_writel(spi, val, hwcfg->irncr);
632
633         if (spi->tx) {
634                 if (spi->rx && spi->rx_todo)
635                         rx_fifo_read_full_duplex(spi);
636
637                 if (spi->tx_todo)
638                         tx_fifo_write(spi);
639                 else if (!tx_fifo_level(spi))
640                         goto completed;
641         } else if (spi->rx) {
642                 if (spi->rx_todo) {
643                         rx_fifo_read_half_duplex(spi);
644
645                         if (spi->rx_todo)
646                                 rx_request(spi);
647                         else
648                                 goto completed;
649                 } else {
650                         goto completed;
651                 }
652         }
653
654         spin_unlock(&spi->lock);
655         return IRQ_HANDLED;
656
657 completed:
658         queue_work(spi->wq, &spi->work);
659         spin_unlock(&spi->lock);
660
661         return IRQ_HANDLED;
662 }
663
664 static irqreturn_t lantiq_ssc_err_interrupt(int irq, void *data)
665 {
666         struct lantiq_ssc_spi *spi = data;
667         const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
668         u32 stat = lantiq_ssc_readl(spi, LTQ_SPI_STAT);
669         u32 val = lantiq_ssc_readl(spi, hwcfg->irncr);
670
671         if (!(stat & LTQ_SPI_STAT_ERRORS))
672                 return IRQ_NONE;
673
674         spin_lock(&spi->lock);
675         if (hwcfg->irq_ack)
676                 lantiq_ssc_writel(spi, val, hwcfg->irncr);
677
678         if (stat & LTQ_SPI_STAT_RUE)
679                 dev_err(spi->dev, "receive underflow error\n");
680         if (stat & LTQ_SPI_STAT_TUE)
681                 dev_err(spi->dev, "transmit underflow error\n");
682         if (stat & LTQ_SPI_STAT_AE)
683                 dev_err(spi->dev, "abort error\n");
684         if (stat & LTQ_SPI_STAT_RE)
685                 dev_err(spi->dev, "receive overflow error\n");
686         if (stat & LTQ_SPI_STAT_TE)
687                 dev_err(spi->dev, "transmit overflow error\n");
688         if (stat & LTQ_SPI_STAT_ME)
689                 dev_err(spi->dev, "mode error\n");
690
691         /* Clear error flags */
692         lantiq_ssc_maskl(spi, 0, LTQ_SPI_WHBSTATE_CLR_ERRORS, LTQ_SPI_WHBSTATE);
693
694         /* set bad status so it can be retried */
695         if (spi->master->cur_msg)
696                 spi->master->cur_msg->status = -EIO;
697         queue_work(spi->wq, &spi->work);
698         spin_unlock(&spi->lock);
699
700         return IRQ_HANDLED;
701 }
702
703 static irqreturn_t intel_lgm_ssc_isr(int irq, void *data)
704 {
705         struct lantiq_ssc_spi *spi = data;
706         const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
707         u32 val = lantiq_ssc_readl(spi, hwcfg->irncr);
708
709         if (!(val & LTQ_SPI_IRNEN_ALL))
710                 return IRQ_NONE;
711
712         if (val & LTQ_SPI_IRNEN_E)
713                 return lantiq_ssc_err_interrupt(irq, data);
714
715         if ((val & hwcfg->irnen_t) || (val & hwcfg->irnen_r))
716                 return lantiq_ssc_xmit_interrupt(irq, data);
717
718         return IRQ_HANDLED;
719 }
720
721 static int transfer_start(struct lantiq_ssc_spi *spi, struct spi_device *spidev,
722                           struct spi_transfer *t)
723 {
724         unsigned long flags;
725
726         spin_lock_irqsave(&spi->lock, flags);
727
728         spi->tx = t->tx_buf;
729         spi->rx = t->rx_buf;
730
731         if (t->tx_buf) {
732                 spi->tx_todo = t->len;
733
734                 /* initially fill TX FIFO */
735                 tx_fifo_write(spi);
736         }
737
738         if (spi->rx) {
739                 spi->rx_todo = t->len;
740
741                 /* start shift clock in RX-only mode */
742                 if (!spi->tx)
743                         rx_request(spi);
744         }
745
746         spin_unlock_irqrestore(&spi->lock, flags);
747
748         return t->len;
749 }
750
751 /*
752  * The driver only gets an interrupt when the FIFO is empty, but there
753  * is an additional shift register from which the data is written to
754  * the wire. We get the last interrupt when the controller starts to
755  * write the last word to the wire, not when it is finished. Do busy
756  * waiting till it finishes.
757  */
758 static void lantiq_ssc_bussy_work(struct work_struct *work)
759 {
760         struct lantiq_ssc_spi *spi;
761         unsigned long long timeout = 8LL * 1000LL;
762         unsigned long end;
763
764         spi = container_of(work, typeof(*spi), work);
765
766         do_div(timeout, spi->speed_hz);
767         timeout += timeout + 100; /* some tolerance */
768
769         end = jiffies + msecs_to_jiffies(timeout);
770         do {
771                 u32 stat = lantiq_ssc_readl(spi, LTQ_SPI_STAT);
772
773                 if (!(stat & LTQ_SPI_STAT_BSY)) {
774                         spi_finalize_current_transfer(spi->master);
775                         return;
776                 }
777
778                 cond_resched();
779         } while (!time_after_eq(jiffies, end));
780
781         if (spi->master->cur_msg)
782                 spi->master->cur_msg->status = -EIO;
783         spi_finalize_current_transfer(spi->master);
784 }
785
786 static void lantiq_ssc_handle_err(struct spi_master *master,
787                                   struct spi_message *message)
788 {
789         struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
790
791         /* flush FIFOs on timeout */
792         rx_fifo_flush(spi);
793         tx_fifo_flush(spi);
794 }
795
796 static void lantiq_ssc_set_cs(struct spi_device *spidev, bool enable)
797 {
798         struct lantiq_ssc_spi *spi = spi_master_get_devdata(spidev->master);
799         unsigned int cs = spidev->chip_select;
800         u32 fgpo;
801
802         if (!!(spidev->mode & SPI_CS_HIGH) == enable)
803                 fgpo = (1 << (cs - spi->base_cs));
804         else
805                 fgpo = (1 << (cs - spi->base_cs + LTQ_SPI_FGPO_SETOUTN_S));
806
807         lantiq_ssc_writel(spi, fgpo, LTQ_SPI_FPGO);
808 }
809
810 static int lantiq_ssc_transfer_one(struct spi_master *master,
811                                    struct spi_device *spidev,
812                                    struct spi_transfer *t)
813 {
814         struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
815
816         hw_setup_transfer(spi, spidev, t);
817
818         return transfer_start(spi, spidev, t);
819 }
820
821 static int intel_lgm_cfg_irq(struct platform_device *pdev, struct lantiq_ssc_spi *spi)
822 {
823         int irq;
824
825         irq = platform_get_irq(pdev, 0);
826         if (irq < 0)
827                 return irq;
828
829         return devm_request_irq(&pdev->dev, irq, intel_lgm_ssc_isr, 0, "spi", spi);
830 }
831
832 static int lantiq_cfg_irq(struct platform_device *pdev, struct lantiq_ssc_spi *spi)
833 {
834         int irq, err;
835
836         irq = platform_get_irq_byname(pdev, LTQ_SPI_RX_IRQ_NAME);
837         if (irq < 0)
838                 return irq;
839
840         err = devm_request_irq(&pdev->dev, irq, lantiq_ssc_xmit_interrupt,
841                                0, LTQ_SPI_RX_IRQ_NAME, spi);
842         if (err)
843                 return err;
844
845         irq = platform_get_irq_byname(pdev, LTQ_SPI_TX_IRQ_NAME);
846         if (irq < 0)
847                 return irq;
848
849         err = devm_request_irq(&pdev->dev, irq, lantiq_ssc_xmit_interrupt,
850                                0, LTQ_SPI_TX_IRQ_NAME, spi);
851
852         if (err)
853                 return err;
854
855         irq = platform_get_irq_byname(pdev, LTQ_SPI_ERR_IRQ_NAME);
856         if (irq < 0)
857                 return irq;
858
859         err = devm_request_irq(&pdev->dev, irq, lantiq_ssc_err_interrupt,
860                                0, LTQ_SPI_ERR_IRQ_NAME, spi);
861         return err;
862 }
863
864 static const struct lantiq_ssc_hwcfg lantiq_ssc_xway = {
865         .cfg_irq        = lantiq_cfg_irq,
866         .irnen_r        = LTQ_SPI_IRNEN_R_XWAY,
867         .irnen_t        = LTQ_SPI_IRNEN_T_XWAY,
868         .irnicr         = 0xF8,
869         .irncr          = 0xFC,
870         .fifo_size_mask = GENMASK(5, 0),
871         .irq_ack        = false,
872 };
873
874 static const struct lantiq_ssc_hwcfg lantiq_ssc_xrx = {
875         .cfg_irq        = lantiq_cfg_irq,
876         .irnen_r        = LTQ_SPI_IRNEN_R_XRX,
877         .irnen_t        = LTQ_SPI_IRNEN_T_XRX,
878         .irnicr         = 0xF8,
879         .irncr          = 0xFC,
880         .fifo_size_mask = GENMASK(5, 0),
881         .irq_ack        = false,
882 };
883
884 static const struct lantiq_ssc_hwcfg intel_ssc_lgm = {
885         .cfg_irq        = intel_lgm_cfg_irq,
886         .irnen_r        = LTQ_SPI_IRNEN_R_XRX,
887         .irnen_t        = LTQ_SPI_IRNEN_T_XRX,
888         .irnicr         = 0xFC,
889         .irncr          = 0xF8,
890         .fifo_size_mask = GENMASK(7, 0),
891         .irq_ack        = true,
892 };
893
894 static const struct of_device_id lantiq_ssc_match[] = {
895         { .compatible = "lantiq,ase-spi", .data = &lantiq_ssc_xway, },
896         { .compatible = "lantiq,falcon-spi", .data = &lantiq_ssc_xrx, },
897         { .compatible = "lantiq,xrx100-spi", .data = &lantiq_ssc_xrx, },
898         { .compatible = "intel,lgm-spi", .data = &intel_ssc_lgm, },
899         {},
900 };
901 MODULE_DEVICE_TABLE(of, lantiq_ssc_match);
902
903 static int lantiq_ssc_probe(struct platform_device *pdev)
904 {
905         struct device *dev = &pdev->dev;
906         struct spi_master *master;
907         struct lantiq_ssc_spi *spi;
908         const struct lantiq_ssc_hwcfg *hwcfg;
909         const struct of_device_id *match;
910         u32 id, supports_dma, revision;
911         unsigned int num_cs;
912         int err;
913
914         match = of_match_device(lantiq_ssc_match, dev);
915         if (!match) {
916                 dev_err(dev, "no device match\n");
917                 return -EINVAL;
918         }
919         hwcfg = match->data;
920
921         master = spi_alloc_master(dev, sizeof(struct lantiq_ssc_spi));
922         if (!master)
923                 return -ENOMEM;
924
925         spi = spi_master_get_devdata(master);
926         spi->master = master;
927         spi->dev = dev;
928         spi->hwcfg = hwcfg;
929         platform_set_drvdata(pdev, spi);
930         spi->regbase = devm_platform_ioremap_resource(pdev, 0);
931         if (IS_ERR(spi->regbase)) {
932                 err = PTR_ERR(spi->regbase);
933                 goto err_master_put;
934         }
935
936         err = hwcfg->cfg_irq(pdev, spi);
937         if (err)
938                 goto err_master_put;
939
940         spi->spi_clk = devm_clk_get(dev, "gate");
941         if (IS_ERR(spi->spi_clk)) {
942                 err = PTR_ERR(spi->spi_clk);
943                 goto err_master_put;
944         }
945         err = clk_prepare_enable(spi->spi_clk);
946         if (err)
947                 goto err_master_put;
948
949         /*
950          * Use the old clk_get_fpi() function on Lantiq platform, till it
951          * supports common clk.
952          */
953 #if defined(CONFIG_LANTIQ) && !defined(CONFIG_COMMON_CLK)
954         spi->fpi_clk = clk_get_fpi();
955 #else
956         spi->fpi_clk = clk_get(dev, "freq");
957 #endif
958         if (IS_ERR(spi->fpi_clk)) {
959                 err = PTR_ERR(spi->fpi_clk);
960                 goto err_clk_disable;
961         }
962
963         num_cs = 8;
964         of_property_read_u32(pdev->dev.of_node, "num-cs", &num_cs);
965
966         spi->base_cs = 1;
967         of_property_read_u32(pdev->dev.of_node, "base-cs", &spi->base_cs);
968
969         spin_lock_init(&spi->lock);
970         spi->bits_per_word = 8;
971         spi->speed_hz = 0;
972
973         master->dev.of_node = pdev->dev.of_node;
974         master->num_chipselect = num_cs;
975         master->use_gpio_descriptors = true;
976         master->setup = lantiq_ssc_setup;
977         master->set_cs = lantiq_ssc_set_cs;
978         master->handle_err = lantiq_ssc_handle_err;
979         master->prepare_message = lantiq_ssc_prepare_message;
980         master->unprepare_message = lantiq_ssc_unprepare_message;
981         master->transfer_one = lantiq_ssc_transfer_one;
982         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST | SPI_CS_HIGH |
983                                 SPI_LOOP;
984         master->bits_per_word_mask = SPI_BPW_RANGE_MASK(2, 8) |
985                                      SPI_BPW_MASK(16) | SPI_BPW_MASK(32);
986
987         spi->wq = alloc_ordered_workqueue(dev_name(dev), WQ_MEM_RECLAIM);
988         if (!spi->wq) {
989                 err = -ENOMEM;
990                 goto err_clk_put;
991         }
992         INIT_WORK(&spi->work, lantiq_ssc_bussy_work);
993
994         id = lantiq_ssc_readl(spi, LTQ_SPI_ID);
995         spi->tx_fifo_size = (id >> LTQ_SPI_ID_TXFS_S) & hwcfg->fifo_size_mask;
996         spi->rx_fifo_size = (id >> LTQ_SPI_ID_RXFS_S) & hwcfg->fifo_size_mask;
997         supports_dma = (id & LTQ_SPI_ID_CFG_M) >> LTQ_SPI_ID_CFG_S;
998         revision = id & LTQ_SPI_ID_REV_M;
999
1000         lantiq_ssc_hw_init(spi);
1001
1002         dev_info(dev,
1003                 "Lantiq SSC SPI controller (Rev %i, TXFS %u, RXFS %u, DMA %u)\n",
1004                 revision, spi->tx_fifo_size, spi->rx_fifo_size, supports_dma);
1005
1006         err = devm_spi_register_master(dev, master);
1007         if (err) {
1008                 dev_err(dev, "failed to register spi_master\n");
1009                 goto err_wq_destroy;
1010         }
1011
1012         return 0;
1013
1014 err_wq_destroy:
1015         destroy_workqueue(spi->wq);
1016 err_clk_put:
1017         clk_put(spi->fpi_clk);
1018 err_clk_disable:
1019         clk_disable_unprepare(spi->spi_clk);
1020 err_master_put:
1021         spi_master_put(master);
1022
1023         return err;
1024 }
1025
1026 static int lantiq_ssc_remove(struct platform_device *pdev)
1027 {
1028         struct lantiq_ssc_spi *spi = platform_get_drvdata(pdev);
1029
1030         lantiq_ssc_writel(spi, 0, LTQ_SPI_IRNEN);
1031         lantiq_ssc_writel(spi, 0, LTQ_SPI_CLC);
1032         rx_fifo_flush(spi);
1033         tx_fifo_flush(spi);
1034         hw_enter_config_mode(spi);
1035
1036         destroy_workqueue(spi->wq);
1037         clk_disable_unprepare(spi->spi_clk);
1038         clk_put(spi->fpi_clk);
1039
1040         return 0;
1041 }
1042
1043 static struct platform_driver lantiq_ssc_driver = {
1044         .probe = lantiq_ssc_probe,
1045         .remove = lantiq_ssc_remove,
1046         .driver = {
1047                 .name = "spi-lantiq-ssc",
1048                 .of_match_table = lantiq_ssc_match,
1049         },
1050 };
1051 module_platform_driver(lantiq_ssc_driver);
1052
1053 MODULE_DESCRIPTION("Lantiq SSC SPI controller driver");
1054 MODULE_AUTHOR("Daniel Schwierzeck <daniel.schwierzeck@gmail.com>");
1055 MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
1056 MODULE_LICENSE("GPL");
1057 MODULE_ALIAS("platform:spi-lantiq-ssc");